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ABSTRACT

Large language models (LLMs) have been increasingly employed for (interac-
tive) decision-making, via the development of LLM-based autonomous agents.
Despite their emerging successes, the performance of LLM agents in decision-
making has not been fully investigated through rigorous metrics, especially in the
multi-agent setting when they interact with each other, a typical scenario in real-
world LLM-agent applications. To better understand the limits of LLM agents in
these interactive environments, we propose to study their interactions in bench-
mark decision-making settings of online learning and games, through the per-
formance metric of regret. We first empirically study the no-regret behaviors of
LLMs in canonical (non-stationary) online learning problems, as well as the emer-
gence of equilibria when LLM agents interact through playing repeated games.
We then provide theoretical insights into the no-regret behaviors of LLM agents,
under certain assumptions on supervised pre-training and rationality model of hu-
man decision-makers who generate the data. Notably, we also identify (simple)
cases where advanced LLMs such as GPT-4 fail to be no-regret. To promote the
no-regret behaviors, we propose a novel unsupervised training loss of regret-loss,
which, in contrast to the supervised pre-training loss, does not require the labels
of (optimal) actions. We then establish the statistical guarantee of generalization
bound for regret-loss minimization, followed by the optimization guarantee that
minimizing such a loss may automatically lead to known no-regret learning algo-
rithms. Our further experiments demonstrate the effectiveness of our regret-loss,
especially in addressing the above “regrettable” cases.

1 INTRODUCTION
Live Life with No Excuses. Travel with No Regret.

Oscar Wilde

Large language models (LLMs) have recently exhibited remarkable reasoning capabilities (Bubeck
et al., 2023; Achiam et al., 2023; Wei et al., 2022b; Yao et al., 2023). As a consequence, a burgeoning
body of work has been investigating the employment of LLMs as central controllers for (interactive)
decision-making, through the construction of LLM-based autonomous agents (Hao et al., 2023;
Shen et al., 2023; Yao et al., 2022; Shinn et al., 2023; Wang et al., 2023c; Significant Gravitas).
Specifically, the LLM agent interacts with the (physical) world in a dynamical/sequential way: it
uses LLMs as an oracle for reasoning, then acts in the environment based on the reasoning and the
feedback it perceives over time. LLM agent has achieved impressive successes in embodied AI (Ahn
et al., 2022; Huang et al., 2022a; Wang et al., 2023a), natural science (Wu et al., 2023; Swan et al.,
2023), and social science (Park et al., 2022; 2023) applications.
Besides being dynamic, another increasingly captivating feature of LLM-based decision-making is
the involvement of strategic interactions, oftentimes among multiple LLM agents. For example, it
has been continually reported that the reasoning capability of LLMs can be improved by interacting
with each other through negotiation and/or debate games (Fu et al., 2023; Du et al., 2023); LLM
agents have now been widely used to simulate the strategic behaviors for social and economic stud-
ies, to understand the emerging behaviors in interactive social systems (Aher et al., 2023; Park et al.,
2023). Moreover, LLMs have also exhibited remarkable potential in solving various games (Bakhtin
et al., 2022; Mukobi et al., 2023), and in fact, a rapidly expanding literature has employed repeated
games as a fundamental benchmark to understand the strategic behaviors of LLMs (Brookins &
DeBacker, 2023; Akata et al., 2023; Fan et al., 2023). These exciting empirical successes call for a
rigorous examination and understanding through a theoretical lens of decision-making.
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Regret, on the other hand, has been a core metric in (online) decision-making. It measures how
“sorry” the decision-maker is, in retrospect, not to have followed the best prediction in hindsight
(Shalev-Shwartz, 2012). It provides not only a sensible way to evaluate the intelligence level of on-
line decision-makers, but also a quantitative way to measure their robustness against arbitrary (and
possibly adversarial) environments. More importantly, it inherently offers a connection to modeling
and analyzing strategic behaviors: long-run interactions of no-regret learners lead to certain equilib-
ria when they repeatedly play games (Cesa-Bianchi & Lugosi, 2006). In fact, no-regret learning has
been posited as an important model of agents’ “rational behavior” in playing games (Blum et al.,
2008; Roughgarden, 2015; Roughgarden et al., 2017). Thus, it is natural to ask:

Can we examine and better understand the decision-making of LLMs through the lens of regret?
Acknowledging that LLM(-agents) are extremely complicated to analyze, to gain some insights into
the question, we focus on benchmark decision-making settings: online learning with convex (linear)
loss functions, and playing repeated games. We summarize our contributions as follows.

Contributions. First, we carefully examine the performance of several representative pre-trained
LLMs in benchmark online decision-making settings as mentioned above, in terms of regret. We
observe that oftentimes, LLM agents exhibit no-regret behaviors in these (non-stationary) online
learning settings, where the loss functions change over time either arbitrarily (and even adversari-
ally) or by following some pattern with bounded variation, and in playing both representative and
randomly generated repeated games, where equilibria will emerge as the long-term behavior of the
interactions. Second, we provide some theoretical insights into the observed no-regret behaviors, un-
der certain assumptions on the rationality model of human decision-makers who generate the data,
and the supervised pre-training procedure, a common practice in training large models for decision-
making where the (optimal) actions are used as labels to predict. In particular, we make connections
of pre-trained LLMs to the known no-regret algorithm of follow-the-perturbed-leader (FTPL) under
certain assumptions. Third, we also identify (simple) cases where advanced LLMs as GPT-4 fail to
be no-regret. We thus propose a novel unsupervised training loss, regret-loss, which, in contrast to
the supervised pre-training loss, does not require the labels of (optimal) actions. We then establish
both statistical and optimization guarantees for regret-loss minimization, showing that minimizing
such a loss may automatically lead to known no-regret learning algorithms. Our further experiments
demonstrate the effectiveness of regret-loss, especially in addressing the above “regrettable” cases.
1.1 RELATED WORK

LLM(-agent) for decision-making. The impressive capability of LLMs for reasoning (Wei et al.,
2022b; Srivastava et al., 2023; Yao et al., 2023) has inspired a growing line of research on LLM
for (interactive) decision-making (Hao et al., 2023; Valmeekam et al., 2023; Ahn et al., 2022; Yao
et al., 2022; Shinn et al., 2023; Driess et al., 2023). However, the performance has not been rigor-
ously investigated via the regret metric in these works. Very recently, Liu et al. (2023c) proposed a
principled architecture for LLM-agent, with provable regret guarantees in stationary and stochastic
environments. In contrast, our work focuses on online learning and game-theoretic settings, in po-
tentially adversarial and non-stationary environments. Moreover, (first part of) our work focuses on
evaluating the intelligence level of LLM per se in decision-making, while Liu et al. (2023c) focused
on developing a new architecture that uses LLM as an oracle to achieve sublinear (Bayesian) regret.
LLMs in multi-agent and social environments. Fu et al. (2023); Du et al. (2023); Liang et al.
(2023) showed that LLMs can autonomously improve reasoning capabilities via negotiation and/or
debate. The interaction has also been increasingly studied under the game-theoretic framework
(Bakhtin et al., 2022; Brookins & DeBacker, 2023; Akata et al., 2023; Lorè & Heydari, 2023;
Brookins & DeBacker, 2023). Nonetheless, these empirical studies have not been formally inves-
tigated through the lens of regret, nor online learning and equilibrium-computation, which are all
fundamental in analyzing strategic multi-agent interactions. LLMs have also been used to simulate
the (emerging) behaviors of humans, for social science and economics studies (Horton, 2023; Li
et al., 2023b; Chen et al., 2023a;b; Park et al., 2022; 2023), which have motivated our work, a more
quantitative understanding of the emerging behavior of LLMs as computational human models.
Online learning and games. Online learning has been extensively studied in the literature, see
Shalev-Shwartz (2012); Hazan (2016) for comprehensive introductions of its (and regret notions’)
importance, and Cesa-Bianchi & Lugosi (2006) for a connection to game theory. Following the
conventions in this literature, the online settings we focus on, which handle a potentially adversarial
environment (which itself may consist of strategic agents), shall not be confused with the stationary
and stochastic settings explored in other recent works on Transformers for decision-making (Lee
et al., 2023; Lin et al., 2023) (see Appendix A for a detailed comparison).
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2 PRELIMINARIES

Notation. For a finite set S, we use ∆(S) to denote the simplex over S. We denote R+ = {x ∈
R |x ≥ 0}. For two vectors x, y ∈ Rd, we use ⟨x, y⟩ to denote the inner product of x and y.
We define 000d and 111d as the d-dimensional all-zero and all-one vector, respectively, and OOOd×d and
Id×d as the d × d-dimensional zero matrix and identity matrix, respectively. For a positive integer
d, we define [d] = {1, 2, . . . , d}. For p ∈ Rd, R > 0 and C ⊆ Rd being a convex set, define
B(p,R, ∥ · ∥) := {x ∈ Rd | ∥x − p∥ ≤ R} and ProjC,∥·∥(p) = argminx∈C ∥x − p∥. For any

x ∈ Rd, define Softmax(x) =
(

exi∑
i∈[d] e

xi

)
i∈[d]

. For a vector v ∈ Rn, we use ∥v∥p to denote its

ℓp-norm, with ∥v∥ denoting the ℓ2-norm by default. We define 1(E) = 1 if some event E is true,
and 1(E) = 0 otherwise. For a random variable X , we use supp(X) to denote its support.

2.1 ONLINE LEARNING & GAMES

Online learning. We first consider the online learning setting where an agent interacts with the
environment for T rounds, by iteratively making decisions based on the feedback she receives.
Specifically, at each time step t, the agent chooses her decision policy πt ∈ Π for some bounded
domain Π, and after her commitment to πt, a bounded loss function ft : Π → [−B,B] for some
constant B > 0 is revealed to her, which may be chosen adversarially. The agent thus incurs a loss
of ft(πt), and will update her decision to πt+1 using the feedback. We focus on the most basic
setting where the agent chooses actions from a finite set A every round, which is also referred to as
the Experts Problem (Littlestone & Warmuth, 1994; Hazan, 2016), without loss of much generality
(c.f. Appendix B.4 for a discussion). In this case, Π becomes the simplex over A, i.e., Π = ∆(A),
and ft(πt) = ⟨ℓt, πt⟩ for some loss vector ℓt ∈ Rd that may change over time, where d := |A|.
At time step t ∈ [T ], the agent may receive either the full vector ℓt, or only the realized loss
ℓt(at) for some at ∼ πt(·), as feedback, which will be referred to as online learning with full-
information feedback, and that with bandit feedback, respectively. The latter is also referred to as
the adversarial/non-stochastic bandit problem in the multi-armed bandit (MAB) literature. Note
that hereafter, we will by default refer to this setting that does not make any assumptions on the
loss sequence (ℓt)t∈[T ] simply as online learning. Moreover, if the loss functions change over time
(usually with certain bounded variation), we will refer to it as non-stationary online learning for
short, whose bandit-feedback version is also referred to as the non-stationary bandit problem.
Repeated games. The online learning setting above has an intimate connection to game theory.
Consider a normal-form game G = ⟨N, {An}n∈[N ], {rn}n∈[N ]⟩, where N is the number of players,
An and rn : A1 × ... × AN → R are the action set and the payoff function of player n, respec-
tively. The N players repeatedly play the game for T rounds, each player n maintains a strategy
πn,t ∈ ∆(An) at time t, and takes action an,t ∼ πn,t(·). The joint action at = (a1,t, · · · , aN,t)
determines the payoff of each player at time t, {rn(at)}n∈[N ]. From a single-player’s (e.g.,
player n’s) perspective, she encounters an online learning problem with (expected) loss function
ℓt := −Ea−n,t∼π−n,t(·)[rn(·, a−n,t)] at time t, where −n denotes the index for players other than
player n. We will refer to it as the game setting for short, and use the terms of “agent” and “player”
interchangeably. The key difference between online learning and repeated games is in their interac-
tion dynamics: online learning involves an agent facing a potentially adversarial, changing environ-
ment (or sequence of loss functions), while in repeated games, agents interact by playing the same
game repeatedly, which might be less adversarial when they follow specific learning algorithms.

2.2 PERFORMANCE METRIC: REGRET
We now introduce regret, the core performance metric used in online learning and games. For a given
algorithm A, let πA,t denote the decision policy of the agent at time t generated by A. Then, the
regret, which is the difference between the accumulated (expected) loss incurred by implementing
A and that incurred by the best-in-hindsight fixed decision, can be defined as

RegretA
(
(ft)t∈[T ]

)
:=

T∑
t=1

ft(πA,t)− inf
π∈Π

T∑
t=1

ft(π).

In the Experts Problem, the definition can be instantiated as RegretA((ℓt)t∈[T ]) :=∑T
t=1⟨ℓt, πA,t⟩ − infπ∈Π

∑T
t=1⟨ℓt, π⟩. With bandit-feedback, the regret guarantee may also take

further expectation for RegretA, over the randomness of the (πA,t)t∈[T ] generated. An algorithm is
referred to as being no-regret, if RegretA((ft)t∈[T ]) ∼ o(T ), i.e., the regret grows sublinearly in T .
Widely-known no-regret algorithms include follow-the-regularized-leader (FTRL) (Shalev-Shwartz
& Singer, 2007), FTPL (Kalai & Vempala, 2005) (See Appendix B.3.1).
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Dynamic regret GPT-4 FTRL FTPL

Full information Gradual variation 12.61± 7.01 36.58± 24.51 35.19± 22.51
Abrupt variation 30.0± 19.91 36.52± 27.68 36.24± 28.22

Bandit Gradual variation 21.39± 10.86 37.64± 21.97 36.37± 20.7
Abrupt variation 35.94± 28.93 36.52± 27.68 38.82± 26.17

Table 1: Dynamic regret of GPT-4 in non-stationary environment with either full information or
bandit feedback. The experiments are validated by our framework (low p value and low β̂0).

In non-stationary online learning, one also uses the metric of dynamic regret (Zinkevich, 2003),
where the comparator in the definition also changes over time, as the best decision policy at each
time t: D-RegretA((ft)t∈[T ]) :=

∑T
t=1 ft(πA,t) −

∑T
t=1 infπ∈Π ft(π), which is a stronger notion

than RegretA((ft)t∈[T ]) in that RegretA((ft)t∈[T ]) ≤ D-RegretA((ft)t∈[T ]).

3 DO PRE-TRAINED LLMS HAVE REGRET? EXPERIMENTAL VALIDATION

In this section, we explore the no-regret behaviors of representative LLMs (i.e., GPT-4 Turbo, GPT-
4, and GPT-3.5), in the context of online learning and games. All experiments with LLMs are
conducted using the public OpenAI Python API (Openai, 2023). We provided intuition why per-
trained LLM might have no-regret behavior in Appendix C.2.

Interaction protocol. To enable the sequential interactions with the LLM, we first describe the
setup and objective of our experimental study. At each round, we incorporate the entire history of
loss vectors of past interactions into our prompts, as concatenated texts, and ask the LLM agent to
determine a policy that guides the decision-making for the next round. Note that since we hope to
evaluate the intelligence level of pre-trained LLM through online learning, we only provide simple
prompts that it should utilize the history information, without providing explicit rules of how to make
use of the history information, nor asking it to minimize regret (in any sense). Detailed descriptions
of the prompts are deferred to Appendix C.1.

3.1 FRAMEWORK FOR NO-REGRET BEHAVIOR VALIDATION

Before delving into the results, we propose two frameworks to rigorously validate no-regret behavior
in algorithms over a finite T , which might be of independent interest. Details are in Appendix C.3.

Trend-checking framework. This framework is built upon non-parametric hypothesis testing.

H0 : (Regret(t)/t)t∈[T ] does not exhibit a decreasing trend;

H1 : (Regret(t)/t)t∈[T ] shows a decreasing trend.

Ideally, one should check if
Regret(t)/t approaches zero as
t goes to infinity. With finite T
values, testing these hypotheses

provides a method to quantify this—whether we reject H0 offers a way to measure it. To this end,
one needs to count the number of R(t)/t−R(t+ 1)/(t+ 1) > 0, for which we have Proposition 1
to give some understanding of the probability it happens with various counts. We will report the
p-value of H0 as the output of this framework.

Regression-based framework. Alternatively, one can use the data {(t, logRegret(t))}t∈[T ] to fit
a linear function logRegret(t) = β0 log t+ β1, where the estimate of β0, i.e., β̂0, satisfying β̂0 < 1
may be used to indicate the no-regret behavior.

3.2 RESULTS: ONLINE LEARNING

We now present the experimental results on the no-regret behavior of pre-trained LLMs in online
learning in 1) arbitrarily changing environments, 2) non-stationary environments, and 3) bandit-
feedback settings. We defer a detailed explanation to Appendix C.4. For arbitrary changing
environments, the average regret (over multiple randomly generated instances) performance is pre-
sented in Figure 1, where we compare GPT-4 with well-known no-regret algorithms, FTRL with
entropy regularization and FTPL with gaussian perturbations (with tuned parameters). It is seen that
these pre-trained LLMs can indeed achieve no-regret, and often have smaller regrets than baselines.
For non-stationary environments, the average dynamic regret results are presented in Table 1. It
can be seen that GPT-4 achieves sublinear dynamic regret and outperforms Restart FTRL/FTPL.
For bandit-feedback settings, we compare the performance with the counterparts of FTRL in the
bandit-feedback setting, e.g., EXP3 (Auer et al., 2002) and the bandit-version of FTPL (Abernethy
et al., 2015) in both Figure 10 and Table 1, where GPT-4 consistently achieves lower regret.
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Figure 1: Regret of GPT-4 for online learning with full information feedback in 4 different settings.
It performs comparably or better than well-known no-regret algorithms, FTRL, FTPL.
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Figure 2: Regret of GPT-4 for online learning with bandit feedback in 4 different settings. It per-
forms comparably or better than well-known no-regret algorithms, FTRL, FTPL.
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Figure 3: Regret of GPT-4 agents for repeated games of 3 different game sizes, where sublinear
regret is validated by our both statistical framework.

3.3 RESULTS: MULTI-PLAYER REPEATED GAMES

We now consider the setting when multiple LLM agents make online strategic decisions in a shared
environment. In this setting, at each round, the loss vectors each agent receives are determined
by both her payoff matrix and the strategies of all other players. Note that the payoff matrix is not
directly revealed to the LLM agent, but she has to make decisions in a completely online fashion (See
Figure 7 for the prompt). This is a typical scenario in learning in games (Fudenberg & Levine, 1998).
We introduce the detailed games in Appendix C.5. The results (Figure 3, 9 and 6) show that: 1)
GPT-4 agents indeed have no-regret behavior when interacting in repeated games; 2) GPT-4 agents’
regrets are comparable with those obtained by the FTRL algorithm, according to the frameworks in
Section 3.1 and the graphic trends.

3.4 PRE-TRAINED LLM AGENTS MAY STILL HAVE REGRET

It seems tempting to conclude that pre-trained LLMs can achieve no-regret in both online learning
and playing repeated games. However, is this capability universal? We show that the no-regret
property might break for LLM agents if the loss vectors are generated in a more adversarial fashion.
We provided two scenarios for regrettable behavior of GPT-4: (1) less-predictable loss sequences
and 2) Adaptive loss sequences) in Figure 4. Detailed explanations for the counterexamples are
in Appendix C.6. This observation has thus inspired us to design new ways to better promote the
no-regret property of LLM agents, as to be detailed in Section 5. Before delving into the design of
such a stronger LLM agent, we first provide some theoretical insights into why pre-trained LLMs
already exhibit good no-regret behaviors oftentimes.
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Figure 4: (left, mid) Failure of GPT-4 and GPT-4-turbo on two scenarios for regrettable behavior of
GPT (left = less-predictable trend, right = adaptive loss), while transformers with regret-loss provide
no-regret behaviors. (right) Comparison of GPT-4 with a calibrated agent on the test set, where the
calibrated quantal response can perfectly capture the behavior of the GPT-4 agent.

4 WHY ARE PRE-TRAINED LLMS (NO-)REGRET? THEORETICAL INSIGHTS

We now provide some plausible explanations about the no-regret behavior of pre-trained LLMs, as
observed in Sections 3.2 and 3.3. Note that our explanations have to be hypothetical by nature, since
to the best of our knowledge, the details of pre-training these popular LLMs (e.g., GPT-3.5 and GPT-
4), regarding data distribution, training algorithm, etc., have not been revealed. We instead make the
explanations based on some common assumptions and arguments in the recent literature on under-
standing LLMs/Transformers. As a preliminary result, we provided Observation 1 which indicates
that pre-trained LLMs have similar regret as humans (who generate data). Detailed explanations are
deferred in Appendix D. We discuss next under what (natural) behavioral models of humans (who
generate the pre-training data), the no-regret behavior of pre-trained LLM agents emerge.
In Appendix D.2, we newly defined quantal response for the multiple-losses (Definition 2), which
is defined as the standard quantal response against some scaled summation of the losses. We also
provided implications of our generalized quantal response from behavioral economics. Moreover,
our generalized quantal response is equivalent to the FTPL algorithm (Kalai & Vempala, 2005) with
proper perturbation (Observation 2).

Case study: pre-training under canonical data distribution assumptions. Although some em-
pirical validation, e.g., Ding et al. (2022), has confirmed that our generalized quantal response can
model human behaviors in sequential decision-making, it remains unclear how to concretely achieve
such behavior via pre-training. We here provide a case study of pre-training to gain some insights.

The training of LLMs often involves the method of next token prediction. When applying LLMs
to sequential decision-making, the model receives the context of the decision-making sequence and
then generates a series of actions. This process can be conceptualized as predicting the optimal
action in the form of the next token prediction. For instance, (Yao et al., 2022; Shinn et al., 2023;
Liu et al., 2023a;c) demonstrated how decision-making can be framed in this way. Meanwhile, large
models such as Transformers are often (pre-)trained for sequential decision-making problems under
a stationary underlying loss vector (Lin et al., 2023; Lee et al., 2023), which limits their ability to
generalize the no-regret behavior to arbitrary loss sequences in our online learning setup. Thus, it is
natural to ask: Is it possible to have a generalized quantal response emerging as a consequence of
this (optimal) action prediction, under stationary pre-training data distributions over environments?

We model the pre-training data distribution as follows: there exists a random variable z, repre-
senting a static underlying loss of the individual sequential decision-making problem. The pre-
training dataset, however, only contains t partial observations (ℓt)t∈[T ] of z due to the noises in data
generation. The presence of noises could be attributed to z, a variable privately observed by the
data-generator (human), representing the intentions of a human being/data-generator. LLM will be
pre-trained with partial and noisy information about z. We assume that the optimal action a w.r.t
the static underlying loss vector z is available in the pre-training dataset as the label. Note that
this is consistent with the supervised pre-training process in the recent studies of Transformers for
decision-making (Lee et al., 2023; Lin et al., 2023). Formally, we consider the following:

Assumption 1 (Factorization of pre-training distribution). We assume the joint distribution of
(z, (ℓi)i∈[T ], a) satisfies Ppre(z, (ℓi)i∈[T ], a) = Ppre(z)Ppre((ℓi)i∈[T ] | z)1[a ∈ argmini zi].

Furthermore, we consider the standard pre-training objective of Maximum likelihood estimation:
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min
θ

EPpre(z,(ℓi)i∈[T ],a)

T∑
t=1

[logLLMθ(a | (ℓi)i∈[t])], (4.1)

where LLMθ denotes the LLM (usually a Transformer) parameterized by θ. We now analyze the
performance of a trained LLMθ in the following theorem:

Theorem 4.1. (Emergence of no-regret behavior). Suppose Assumption 1 holds with Ppre(z) =
N (0, σ2I), Ppre((ℓi)i∈[T ] | z) =

∏
i∈[T ] Ppre(ℓi | z) with Ppre(ℓi | z) = N (z, σ2I) for some

σ > 0, and LLMθ⋆ that is sufficiently expressive minimizes Equation (4.1). Then, we have
LLMθ⋆(a | (ℓi)i∈[t]) = Pηt

quantal(a | (ℓi)i∈[t]) with Pnoise = N (0, I) and ηt = Θ(
√
t) for any t ∈ [T ].

Correspondingly, there exist algorithms that can utilize LLMθ⋆ to achieve no (dynamic) regret for
(nonstationary) online learning with full-information/adversarial bandit.

We presented the statement and proof of non-asymptotic bounds for the (dynamic) regret in various
online learning problems using LLM in Appendix D.3. Furthermore, we demonstrated that the prior
distribution of z could be replaced with a general distribution in Proposition 2. We also point out
in Remark 3 that the pre-training distributions can be further relaxed. It is important to observe
that even when pre-training is conducted solely with stationary loss vector generation, it can still
lead to the emergence of no-regret behavior in online learning with potentially adversarial losses.
Key in the proof is our newly established connection of pre-trained LLM models to the online
learning algorithm of FTPL. Note that the data assumption here mostly follows that used in the
recent literature, for the theoretical case study, and can be possibly generalized as follows. We
provide comparison to Lee et al. (2023); Lin et al. (2023) in Appendix D.4.

Calibrating the degree of bounded rationality of actual LLMs. Here we here propose to cali-
brate the parameter {ηt}t∈[T ], the degree of bounded rationality through behaviors of actual LLM
agents with Pnoise to be standard normal distribution. Then we run the generalized quantal response
model with the calibrated {η⋆t }t∈[T ] on the N episodes of {(ℓit)t∈[T ]}j∈[N ] and compare it with
the behavior of the real LLM agents. In Figure 4, we show the averaged regret for LLM agent
and the calibrated generalized quantal response over N episodes. It can be seen that calibrated
generalized quantal response can very well capture the behavior of the LLM agent, justifying the
superiority of our proposed generalized quantal response model. We refer the details of calibration
to Appendix D.5.

Finally, we acknowledge that for popular pre-trained LLM models like GPT-4, the canonical as-
sumptions above may not hold. Moreover, the supervision labels, i.e., the optimal action given z,
may not be available in practice in pre-training. Hence, it is completely possible to observe regret-
table behaviors (c.f. Section 3.4). Motivated by these caveats, we next propose a new training loss
that is unsupervised, and can promote no-regret behavior provably.

5 GUARANTEED NO-REGRET BY AN UNSUPERVISED TRAINING LOSS

In light of the observations in Section 3, we ask the question: Is there a way to further enhance
the no-regret property of LLM agents, hopefully without (optimal) action labels? To address this
question, we propose to train LLMs with a new unsupervised loss that naturally provides no-regret
behaviors. This approach is akin to “instruction tuning” (Wei et al., 2021), which has been shown
to have enhanced LLM ability when learning from context, both theoretical (Ahn et al., 2023; Ma-
hankali et al., 2023; Zhang et al., 2023b) and empirical (Lu et al., 2023) support.

5.1 A NEW UNSUPERVISED TRAINING LOSS: REGRET-LOSS

Intuitively, our new training loss is designed to enforce the trained LLMs to minimize the regret
under an arbitrary sequence of loss vectors. Specifically, letting θ ∈ Θ parameterize LLMθ, we
define the training loss as

L(θ) := max
ℓ1,...,ℓT

RegretLLMθ
((ℓt)t∈[T ]) (5.1)

where ∥ℓt∥∞ ≤ B for t ∈ [T ]. As shown in Kirschner et al. (2023), directly minimizing the
max regret is computationally intractable. Hence, one may parameterize the LLM and resort to
differentiable programming to solve it approximately. However, Equation (5.1) is not necessarily
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differentiable with respect to parameter θ, if it does not satisfy the condition of Danskin’s Theorem
(Danskin, 1966), or even if it is differentiable (i.e., the maximizer of (ℓt)t∈[T ] is unique), compu-
tation of derivative is intractable since we need to calculate argmax(ℓi)i∈[T ]

RegretLLMθ
((ℓt)t∈[T ])

since we have inf in the definition of regret. Therefore, we provide a general framework so that we
can approximate Equation (5.1) by the following surrogate:

L(θ, k,N) := E

[∑
j∈[N ] h(RegretLLMθ

((ℓ
(j)
t )t∈[T ]))f(RegretLLMθ

((ℓ
(j)
t )t∈[T ]), k)∑

j∈[N ] f(RegretLLMθ
((ℓ

(j)
t )t∈[T ]), k)

]
, (5.2)

where k ∈ R, N is a positive integer, h : R→ R+ is a continuous function, and f : R×R+ → R+

is a continuous function such that limk→∞
f(R1,k)
f(R2,k)

= ∞ · 1(R1 > R2) + 1(R1 = R2) where we
use the convention of∞ · 0 = 0. Examples of such an f include f(x, k) = xk and exp(kx).

We will sample N trajectories of loss sequences (ℓ
(j)
t )t∈[T ],j∈[N ] from some continuous

probability distribution supported on [−B,B]T×N , and the expectation in Equation (5.2) is
taken with respect to this distribution. Note that we do not require any statistical assump-
tions on (ℓ

(j)
t )t∈[T ],j∈[N ], in contrast to those in Section 4 when justifying the no-regret

property of pre-trained LLMs. In Appendix E.2, we prove that limN,k→∞ L(θ, k,N) =
h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])), and also the uniform convergence of L(θ, k,N) (i.e.,
limN,k→∞ supθ∈Θ |h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ]))−L(θ, k,N)| = 0 where Θ is some com-
pact set of the LLM parameter). Hence, one can expect that minimizing the loss function Equa-
tion (5.2) with large enough k and N may promote the trained LLM to have a small regret value.
We will refer to Equation (5.2) as the regret-loss. Similarly, we can also define dynamic-regret-loss,
and the results to be presented next will also hold in this case (Remark 4 in Appendix E.3).

5.2 GUARANTEES VIA REGRET-LOSS MINIMIZATION

We first establish a statistical guarantee under general parameterizations of LLMθ that is Lips-
chitz with respect to θ, including the Transformer-based models such as GPT-4 and most existing
LLMs (see Proposition 3 for an example with formal statement). This guarantee focuses on their
generalization ability when trained to minimize the empirical regret loss (c.f. Equation (E.2) in Ap-
pendix E.3), denoted as L̂(θ, k,N,NT ). This involves replacing the expectation E with the empirical
mean with NT sampling in Equation (5.2). We will denote θ̂k,N,NT

∈ argminθ∈Θ L̂(θ, k,N,NT ).
Theorem 5.1. (Generalization gap). For any 0 < ϵ < 1/2, with probability at least 1− ϵ, we have

L
(
θ̂k,N,NT , k,N

)
− inf

θ∈Θ
L(θ, k,N) ≤ O

(
1 + log(1/ϵ)√

NT

)
, (5.3)

for any N and sufficiently large k, where the empirical loss L is computed with NT samples.
Through a careful use of Berge’s Maximum Theorem (Berge, 1877), we prove that the right-
hand side of Equation (5.3) does not depend on k and N , which allows us to take the limit of
limN→∞ limk→∞ without affecting the generalization bound. Thanks to the uniform convergence
of L(θ, k,N) (c.f. Appendix E.2), we further obtain the following corollary:
Corollary 1. (Regret). Suppose h is a non-decreasing function and log f is a supermodular twice-
continuously-differentiable function (i.e., ∂2 log f

∂x∂k ≥ 0). For any 0 < ϵ < 1/2, with probability at
least 1− ϵ, we have

h( lim
N→∞

lim
k→∞

max
∥ℓt∥∞≤B

RegretLLM
θ̂k,N,NT

(
(ℓt)t∈[T ]

)
) ≤ h

(
inf
θ∈Θ

max
∥ℓt∥∞≤B

RegretLLMθ
((ℓt)t∈[T ])

)
+ Õ

(
1

√
NT

)
.

(5.4)

Proofs of Theorem 5.1 and Corollary 1 are deferred to Appendix E.3. Therefore, if additionally,
the LLM parameterization (i.e., Transformers) can realize a no-regret algorithm (for example, the
single-layer self-attention model can construct FTRL, as to be shown in Section 5.3), then Corol-
lary 1 means that the with a large enough number of samples NT , the learned LLMθ̂k,N,NT

be-
comes no-regret, i.e., RegretLLM

θ̂k,N,NT

((ℓt)t∈[T ]) = o(T ), since the first term on the right-hand-

side of Equation (5.4) would directly be o(T ) under the choice of h(x) = max{0, x}. For other
choices of h, one can use the inverse of h−1 (which always exists by our requirement of h) to ensure
RegretLLM

θ̂k,N,NT

((ℓt)t∈[T ]) is of order o(T ).
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Despite the power of previous results, one cannot use an infinitely large N and k in practical training.
Hence, in the next subsection, we provide results when N is finite, for specific parameterizations of
the LLMs using Transformers.

5.3 MINIMIZING REGRET-LOSS CAN AUTOMATICALLY PRODUCE KNOWN ONLINE
LEARNING ALGORITHMS

We now study the setting of minimizing Equation (5.2) when LLMθ is specifically parameterized by
Transformers. As an initial step, we focus on single-layer (linear) self-attention models, as in most
recent theoretical studies of Transformers (Ahn et al., 2023; Zhang et al., 2023b; Mahankali et al.,
2023), and the more practical setting with a finite N = 1. In this section, we drop superscript (N) in
Equation (5.2). We sample ℓt for t ∈ [T ] by realizing some random variable Z. Here, Z is symmetric
about zero (i.e., Z d

= −Z), and Var(Z) = Σ is positive definite. Recent works of Ahn et al. (2023);
Zhang et al. (2023b); Mahankali et al. (2023) have demonstrated that when a Transformer is trained
by a certain loss, an optimal solution within the single-layer linear self-attention model class can
emulate the gradient descent algorithm for linear regression. We aim to have a similar result for our
regret-loss, justifying its usefulness in online learning. Firstly, we consider the following structure
of single-layer self-attention model g (see a formal introduction in Appendix B.2):

g(Zt;V,K,Q, vc, kc, qc) := (V ℓ1:t + vc111
⊺
t )Softmax ((Kℓ1:t + kc111

⊺
t )

⊺ · (Qc+ qc)) , (5.5)

where Zt = (ℓ1, . . . , ℓt, c) and V,K,Q ∈ Rd×d correspond to the value, key, and query matrices,
respectively, vc, kc, qc ∈ Rd correspond to the bias terms of the value, key, and query matrices, and
c ̸= 000d is a constant vector. We then have the following result.
Theorem 5.2. The configuration in Equation (5.5) and Π = B(0, RΠ, ∥ · ∥) for some
RΠ > 0, (V,K,Q, vc, kc, qc) such that K⊺(Qc + qc) = vc = 000d and V =

−RΠ
T∑T−1

t=1 1/t
Σ−1E

[
∥∑T

t=1 ℓt∥ℓ1ℓ
⊺
2

]
Σ−1 is a first-order stationary point of Equation (5.2) with

N = 1, h(x) = x2. Moreover, if Σ is a diagonal matrix, then plugging this configuration to Equa-
tion (5.5) then ProjΠ,∥·∥ would perform FTRL with an L2-regularizer for the loss vectors (ℓt)t∈[T ].

We also consider the single-layer linear self-attention as follows, for which we can strengthen the
results above from a stationary-point to an optimal-solution argument:

g(Zt;V,K,Q, vc, kc, qc) =

t∑
i=1

(V ℓi + vc)((Kℓi + kc))
⊺ · (Qc+ qc)). (5.6)

Theorem 5.3. The configuration of a single-layer linear self-attention model in Equation (5.6)
(V,K,Q, vc, kc, qc) such that K⊺(Qc + qc) = vc = 000d and Π = B(0, RΠ, ∥ · ∥) for some

RΠ > 0, V = −2RΠΣ
−1E

(
∥∑T

t=1 ℓt∥ℓ1ℓ
⊺
2

)
Σ−1 is a global optimal solution of Equation (5.2)

with N = 1, h(x) = x2. Moreover, every global optimal configuration of Equation (5.2) within the
parameterization class of Equation (5.6) has the same output function g. If Σ is a diagonal matrix,
plugging any global optimal configuration to Equation (5.6) then ProjΠ,∥·∥ would perform FTRL
with an-L2-regularizer for the loss vectors (ℓt)t∈[T ].

Theorem 5.3 shows the capacity of self-attention Transformer model structures to realize online
learning algorithms, thanks to the regret-loss we proposed. In particular, this can be achieved auto-
matically by optimizing the new loss, without hard-coding the parameters of the Transformer.

The above results are for the case of FTRL with an L2-regularizer, and it is possible to consider
FTRL with an entropy regularizer, leading to the well-known Hedge algorithm (Freund & Schapire,
1997) that is more compatible with the simplex constraint on π. We defer the discussion of this
case to Appendix E.7, together with the empirical validations through the training of our regret-loss.
Through these theorems, we can also guarantee in the game setting that we can efficiently find
coarse correlated equilibria since each player exhibits no-regret behavior in the matrix game.

5.4 EXPERIMENTAL RESULTS FOR MINIMIZING REGRET-LOSS

We now provide experimental results for minimizing our regret-loss: 1) randomly-generated loss
sequences (Figure 13); 2) loss sequences with a predictable trend (Figure 14); 3) repeated games
(Figure 15; and 4) regrettable behavior examples for current LLMs (Figure 4). Details of the training
setup can be found in Appendix E.8. We provide detailed experimental settings in Appendix E.9.
We also provided an ablation study for the training Equation (5.2) loss in Appendix E.10.
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A DETAILED RELATED WORK

LLM(-agent) for decision-making. The impressive capability of LLMs for reasoning (Bubeck
et al., 2023; Achiam et al., 2023; Wei et al., 2022b;a; Srivastava et al., 2023; Yao et al., 2023)
has inspired a growing line of research on LLM for (interactive) decision-making, i.e., an LLM-
based autonomous agent interacts with the environment by taking actions repeatedly/sequentially,
based on the feedback it perceives. Some promises have been shown from a planning perspective
(Hao et al., 2023; Valmeekam et al., 2023; Huang et al., 2022b; Shen et al., 2023). In particular,
for embodied AI applications, e.g., robotics, LLMs have achieved impressive performance when
used as the controller for decision-making (Ahn et al., 2022; Yao et al., 2022; Shinn et al., 2023;
Wang et al., 2023c; Driess et al., 2023; Significant Gravitas). However, the performance of decision-
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making has not been rigorously characterized via the regret metric in these works. Very recently, Liu
et al. (2023c) has proposed a principled architecture for LLM-agent, with provable regret guarantees
in stationary and stochastic decision-making environments, under the Bayesian adaptive Markov
decision processes framework. In contrast, our work focuses on online learning and game-theoretic
settings, in potentially adversarial and non-stationary environments. Moreover, (first part of) our
work focuses on evaluating the intelligence level of LLM per se in decision-making (in terms of the
regret metric), while Liu et al. (2023c) focused on developing a new architecture that uses LLM as
an oracle for reasoning, together with memory and specific planning/acting subroutines, to achieve
sublinear (Bayesian) regret, in stationary and stochastic environments.

LLMs in multi-agent environments. The interaction of multiple LLM agents has garnered sig-
nificant attention lately. For example, Fu et al. (2023) showed that LLMs can autonomously improve
each other in a negotiation game by playing and criticizing each other. Similarly, Du et al. (2023);
Liang et al. (2023); Xiong et al. (2023); Chan et al. (2023) showed that multi-LLM debate can im-
prove the reasoning and evaluation capabilities of the LLMs. Qian et al. (2023); Schick et al. (2022);
Wu et al. (2023) demonstrated the potential of multi-LLM interactions and collaboration in software
development, writing, and problem-solving, respectively. Zhang et al. (2023a) exhibited a similar
potential in embodied cooperative environments. More formally, multi-LLM interactions have also
been investigated under a game-theoretic framework, to characterize the strategic decision-making
of LLM agents. Bakhtin et al. (2022); Mukobi et al. (2023) and Xu et al. (2023b;a) have demon-
strated the promise of LLMs in playing Diplomacy and WereWolf games, respectively, which are
both language-based games with a mixture of competitive and cooperative agents. Note that these
works utilized LLM to solve a specific rather than a general game. Related to our work, Brookins
& DeBacker (2023); Akata et al. (2023); Lorè & Heydari (2023); Brookins & DeBacker (2023);
Fan et al. (2023) have also used (repeated) matrix games as a benchmark to evaluate the reasoning
capability and rationality of LLM agents, with more recent observations in Anonymous (2023a;b).
In contrast to our work, these empirical studies have not formally investigated LLM agents using
the metric of regret, nor through the lenses of online learning and equilibrium-computation, which
are all fundamental in modeling and analyzing strategic multi-agent interactions. Moreover, our
work also provides theoretical results to explain and further enhance the no-regret property of LLM
agents.

LLMs & Human/Social behavior. LLMs have also been used to simulate the behavior of hu-
man beings, for social science and economics studies (Engel et al., 2023). The extent of LLMs
simulating human behavior has been claimed as a way to evaluate the level of its intelligence in a
controlled environment (Aher et al., 2023; Tsai et al., 2023). For example, Li et al. (2023b); Hong
et al. (2023); Zhao et al. (2023) showed that by specifying different “roles” to LLM agents, certain
collaborative/competitive behaviors can emerge. Argyle et al. (2023) showed that LLMs can emulate
response distributions from diverse human subgroups, illustrating their adaptability. Horton (2023)
argued that an LLM, as a computational model of humans, can be used as homo economicus when
given endowments, information, preferences, etc., to gain new economic insights by simulating its
interaction with other LLMs. Park et al. (2022; 2023) proposed scalable simulators that can generate
realistic social behaviors emerging in populated and interactive social systems, and the emerging be-
haviors of LLM agents in society have also been consistently observed in Chen et al. (2023a;b). Li
et al. (2023c;a) studied the opinion/behavioral dynamics of LLM agents on social networks. These
empirical results have inspired our work, which can be viewed as an initial attempt towards quanti-
tatively understanding the emerging behavior of LLMs as computational human models, given the
well-known justification of equilibrium being a long-run emerging behavior of learning dynamics
(Fudenberg & Levine, 1998) and strategic interactions (Young, 2004; Camerer, 2011).

Transformers & In-context-learning. LLMs nowadays are predominantly built upon the archi-
tecture of Transformers (Vaswani et al., 2017). Transformers have exhibited a remarkable capacity
of in-context-learning (ICL), which can construct new predictors from sequences of labeled exam-
ples as input, without further parameter updates. This has enabled the few-shot learning capability of
Transformers (Brown et al., 2020; Garg et al., 2022; Min et al., 2022). The empirical successes have
inspired burgeoning theoretical studies on ICL. Xie et al. (2021) used a Bayesian inference frame-
work to explain how ICL works, which has also been adopted in Wang et al. (2023b); Jiang (2023).
Akyürek et al. (2022); Von Oswald et al. (2023); Dai et al. (2022); Giannou et al. (2023) showed
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(among other results) that ICL comes from the fact that Transformers can implement the gradient
descent (GD) algorithm. Bai et al. (2023) further established that Transformers can implement a
broad class of machine learning algorithms in context. Moreover, Ahn et al. (2023); Zhang et al.
(2023b); Mahankali et al. (2023) proved that a minimizer of the certain training loss among single-
layer Transformers is equivalent to a single step of GD for linear regression. The result of a similar
type (but for no-regret learning) will also be established in our work. Li et al. (2023d) established
generalization bounds of ICL from a multi-task learning perspective. Zhang et al. (2023c) argued
that ICL implicitly implements Bayesian model averaging, and can be approximated by the atten-
tion mechanism. They also established a result on some regret metric. However, the regret notion
is not defined for (online) decision-making, and is fundamentally different from ours that is stan-
dard in online learning and games. Also, we provide extensive experiments to validate the no-regret
behavior by our definition. More recently, the ICL property has also been generalized to decision-
making settings. Laskin et al. (2022); Lee et al. (2023); Lin et al. (2023) investigated the in-context
reinforcement learning property of Transformers. In particular, they showed that Transformers af-
ter supervised pretraining, where the supervision signals come from either good RL algorithms or
optimal actions, can approximate online reinforcement learning algorithms for stochastic bandits
and Markov decision processes. In contrast, our work focuses on online learning settings with an
arbitrary and potentially adversarial nature, as well as game-theoretic settings. We also provide an
unsupervised strategic training loss to enforce the no-regret behavior. The ICL property has also
played a critical role in the framework in Liu et al. (2023c) mentioned above.

Online learning and games. Online learning has been extensively studied to model the decision-
making of an agent who interacts with the environment sequentially, with a potentially arbitrary
sequence of loss functions (Shalev-Shwartz, 2012; Hazan, 2016), and has a deep connection to
game theory (Cesa-Bianchi & Lugosi, 2006). In particular, regret, the difference between the in-
curred accumulated loss and the best-in-hindsight accumulated loss, has been the core performance
metric, and a good online learning algorithm should have regret at most sublinear in time T (i.e.,
of order o(T )), which is referred to as being no-regret. Many well-known algorithms can achieve
no-regret against arbitrary loss sequences, e.g., multiplicative weight updates (MWU)/Hedge (Fre-
und & Schapire, 1997; Arora et al., 2012), EXP3 (Auer et al., 2002), and more generally follow-
the-regularized-leader (FTRL) (Shalev-Shwartz & Singer, 2007) and follow-the-perturbed-leader
(FTPL) (Kalai & Vempala, 2005). In the bandit literature (Lattimore & Szepesvári, 2020; Bubeck
et al., 2012), such a setting without any statistical assumptions on the losses is also referred to as the
adversarial/non-stochastic setting. Following the conventions in this literature, the online settings
we focus on shall not be confused with the stationary and stochastic(-bandit)/(-reinforcement learn-
ing) settings that have been explored in several other recent works on Transformers for decision-
making (Lee et al., 2023; Lin et al., 2023). Centering around the regret metric, our work has also
explored the non-stationary bandit (Besbes et al., 2014) settings, as well as the repeated game setting
where the environment itself consists of strategic agents (Cesa-Bianchi & Lugosi, 2006).

B DEFERRED NOTATION AND DEFINITION

B.1 NOTATION

For a finite set S, we use ∆(S) to denote the simplex over S. For two vectors x, y ∈ Rd, we
use ⟨x, y⟩ to denote the inner product of x and y. We define 000d and 111d as a d dimensional zero
or one vector, and OOOd×d as a d × d dimensional zero matrix. We define [d] = {1, 2, . . . , d}.
For p ∈ Rd, R > 0 and C ⊆ Rd is a convex set, define B(p,R, ∥ · ∥) := {x ∈ Rd |
∥x − p∥ ≤ R}, ProjC,∥·∥(p) = argminx∈C ∥x − p∥ (which is well defined as C is a convex

set), and clipR(x) := [ProjB(0,R,∥·∥2),∥·∥2
(xi)]i∈[d]. Define Softmax(x) =

(
exi∑

i∈[d] e
xi

)
i∈[d]

and ReLU(x) = max(0, x) for x ∈ Rd. For A ∈ Rm×n, define ∥A∥op := max∥x∥2≤1 ∥Ax∥2,
∥A∥2,∞ := sup ∥Ai∥2, ∥A∥2,2 := ∥(∥Ai∥2)∥2 (which is also known as Frobenius norm), and
A−1 := An which indicates the last column vector. We define R+ := {x | x ≥ 0}. For a set Π,
diam(Π) := supπ1,π2∈Π ∥π1−π2∥2. We define 1(E) = 1 if E is true, and 1(E) = 0 otherwise. For
random variable sequence (Xn)n∈N and random variable X,Y , we denote FX as the cumulative
distribution function of a random variable X , Xn

p→ X if ∀ϵ > 0, limn→∞ P (|Xn −X| > ϵ) = 0,
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Xn
d→ X if limn→∞ FXn(x) = FX(x) for all x where FX(x) is continuous, X

d
= Y if

FX(x) = FY (x) for all x, Xn
a.s.→ X if P (limn→∞ Xn = X) = 1, and esssup(X) = inf{M ∈

R : P (X > M) = 0}. For a random variable X , we use supp(X) to denote its support.

B.2 DETAILED DEFINITION FOR APPENDIX

(Linear) Self-attention. One key component in Transformers (Vaswani et al., 2017), the backbone
of modern language models, is the (self-)attention mechanism. For simplicity, we here focus on
introducing the single-layer self-attention architecture. The mechanism takes a sequence of vectors
Z = [z1, . . . , zt] ∈ Rd×t as input, and outputs some sequence of [ẑ1, . . . , ẑt] ∈ Rd×t. For each
i ∈ [t] where i > 1, the output is generated by ẑi = (V z1:i−1)σ((Kz1:i−1)

⊺(Qzi)), where z1:i−1

denotes the 1 to i−1 columns of Z, σ is either the Softmax or ReLU activation function, and for the
initial output, ẑ1 = 000d. Here, V,Q,K ∈ Rd×d are referred to as the Value, Query, and Key matrices,
respectively. Following the theoretical framework in Von Oswald et al. (2023); Mahankali et al.
(2023), we exclude the attention score for a token zi in relation to itself. For theoretical analysis, we
also consider the linear self-attention model, where ẑi = (V z1:i−1)((Kz1:i−1)

⊺(Qzi)). We write
this (linear) self-attention layer’s output as (L)SA(V,Q,K)(Z). We define an M -head self-attention
layer with θ = {(Vm, Qm,Km)}m∈[M ] as M-(L)SAθ(Z) :=

∑M
m=1 (L)SA(Vm,Qm,Km)(Z). We

define ∥ · ∥M-(L)SA as ∥θ∥M-(L)SA := maxm∈[M ] {∥Qm∥op, ∥Km∥op}+
∑M

m=1 ∥Vm∥op.

Transformers. For a multilayer perceptron (MLP) layer, it takes Z = [z1, . . . , zt] ∈ Rd×t as
input, with parameter θ = (W1,W2) ∈ Rd′×d × Rd×d′

such that for each i ∈ [t], the out-
put is ẑi := W2σ(W1zi) where σ is either Softmax or ReLU. We write the output of an
MLP layer with parameter θ as MLPθ(Z). Defining ∥ · ∥MLP as ∥θ∥MLP := ∥W1∥op + ∥W2∥op
and ResNet(f, Z) := Z + f(Z), we can define an L-layer Transformer with parameter θ =
(θ(lm), θ(la))l∈[L] as TFθ(Z) := Z(L), where the output Z(L) is defined iteratively from Z(0) =
clipR(Z) := min(−R,max(R,Z)) and

Z(l) = clipR

(
ResNet

(
MLPθ(la) ,ResNet

(
M-(L)SAθ(lm) , Z(l−1)

)))
.

We define a class of Transformers with certain parameters as Θd,L,M,d′,BTF := {θ =

(θ(lm), θ(la))l∈[L],m∈[M ] : ∥θ∥TF ≤ BTF} where M is the number of head of self-attention. where
∥θ∥TF := maxl∈[L]

{
∥θ(la)∥M-(L)SA + ∥θ(lm)∥MLP

}
, and BTF > 0 is some constant. We assume R

to be sufficiently large so that clip does not take effect on any of our approximation results.

For general one: train without time-embedding.

input: Zt = [z1, · · · , zt] ∈ Rd×t, zi ∈ Rd. Here, Z1:i = [z1, · · · , zi] for i = 1, 2, · · · , t.
output: Ol = Ol−1 + attn(Ol−1) ∈ Rd×t

where attn(Ol−1,i) = Vl−1Z1:iσ((Kl−1O1:i)
⊺ql−1)

Here Ol−1,i is ith column of Ol−1 ∈ Rd×t and Vl−1,Kl−1 ∈ Rd×d, ql−1 ∈ Rd are the trainable
variable.

B.3 IN-CONTEXT LEARNING

In-context learning is an emergent behavior of LLMs (Brown et al., 2020), which means that these
models can adapt and learn from a limited number of examples provided within their immediate
input context. In in-context learning, the prompt is usually constituted by a length of T in-context
(independent) examples (xt, yt)t∈[T ] and (T +1)th input xT+1, so the LLM((zt)t∈[T ], xT+1)) pro-
vides the inference of yT+1.

B.3.1 DEFINITION OF FTRL ALGORITHM AND FTPL ALGORITHM

Follow-the-regularized-leader (FTRL). The Follow-the-Regularized-Leader (FTRL) algorithm
(Shalev-Shwartz, 2007) is an iterative method that updates policy based on the observed data and a
regularization term. The idea is to choose the next policy that minimizes the sum of the past losses
and a regularization term.
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Mathematically, given a sequence of loss vectors ℓ1, ℓ2, . . . , ℓt, the FTRL algorithm updates the
policy π at each time step t as follows:

πt+1 = argmin
π∈Π

(
t∑

i=1

⟨ℓi, π⟩+R(π)

)

where R(π) is a regularization term. The regularization term R(π) is introduced to prevent overfit-
ting and can be any function that penalizes the complexity of the model. A function R(π) is said to
be λ-strongly convex with respect to a norm ∥ · ∥ if for all π, π′ ∈ Π:

R(π) ≥ R(π′) + ⟨∇R(π′), π − π′⟩+ λ

2
∥π − π′∥22.

A key property that ensures the convergence and stability of the FTRL algorithm is the strong con-
vexity of the regularization term R(π). Strong convexity of R(π) ensures that the optimization
problem in FTRL has a unique solution. The FTRL algorithm’s flexibility allows it to encompass a
wide range of online learning algorithms, from gradient-based methods like online gradient descent
to decision-making algorithms like Hedge.

Connection to online gradient descent (OGD). The Online Gradient Descent (OGD) (Cesa-
Bianchi et al., 1996) algorithm is a special case of the FTRL algorithm when the regularization
term is the L2 norm, i.e., R(π) = 1

2∥π∥22 and Π = Rd. In OGD, at each time step t, the policy π is
updated using the gradient of the loss function:

πt+1 = πt − ℓt,

which is exactly the OGD algorithm. Therefore, the connection between FTRL and OGD can be
seen by observing that the update rule for FTRL with L2 regularization can be derived from the
OGD update rule.

Connection to the Hedge algorithm. The Hedge algorithm (sometimes called as Multiplicative
Weight Update algorithm) (Arora et al., 2012) is an online learning algorithm designed for problems
where the learner has to choose from a set of actions (denoted as A) at each time step and suffers a
loss based on the chosen action. The FTRL framework can be used to derive the Hedge algorithm
by considering an entropy regularization term. Specifically the regularization term is the negative
entropy R(π) =

∑
j∈[d] πj log πj , (here, d is the dimension of policy π) then the FTRL update rule

yields the Hedge algorithm as

π(t+1)j = πtj
exp(−ℓtjπtj)∑
i∈[d] exp(−ℓtiπti)

for j ∈ [d] where d := |A|.

Follow-the-perturbed-leader (FTPL). Given a sequence of loss vectors ℓ1, ℓ2, . . . , ℓt−1, the
Follow-the-Perturbed-Leader algorithm (Kalai & Vempala, 2005) updates the policy π at each time
step t by incorporating a perturbation vector ϵt. This perturbation is sampled from a predefined
distribution. The policy πt for the next time step is chosen by solving the following optimization
problem:

πt = E

[
argmin

π∈Π
⟨ϵt, π⟩+

t−1∑
i=1

⟨ℓi, π⟩
]

(B.1)

Here ϵt introduces randomness to the decision-making.
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Relationship between FTRL and FTPL. FTPL with Exponential distribution Perturbations and
FTRL with Entropy Regularization (i.e., Hedge) are equivalent. In addition, FTPL with Gaussian
distribution Perturbations and FTRL with L2 Regularization (i.e., OGD) are equivalent. However,
this equivalence is typically not exact due to the randomization in FTPL. It’s more of a theoretical
observation that under certain mathematical conditions, the algorithms’ update rules can be aligned.
Usually, the two algorithms will have different behaviors, especially since FTPL inherently includes
randomness while FTRL does not.

B.4 WHY FOCUSING ON LINEAR LOSS FUNCTION ft(π) := ⟨ℓt, π⟩?

We note that focusing on the linear loss function ft(π) := ⟨ℓt, π⟩ does not lose generality. Specifi-
cally, for the general convex loss function (ft)t∈[T ], we have ft(πA,t)−ft(π) ≤ ⟨∇ft(πA,t), πA,t−
π⟩ for any π ∈ Π, which indicates

RegretA((ft)t∈[T ])

≤
T∑

t=1

E[⟨∇ft(πA,t), πA,t⟩]− inf
π∈Π

T∑
t=1

E[⟨∇ft(πA,t), π⟩].

Therefore, one can regard the loss vector (ℓt)t∈[T ] as ℓt := ∇ft(πA,t) for t ∈ [T ], and control the
actual regret by studying the linear loss function (Hazan, 2016). The same argument regarding the
general convex ft can be applied to the dynamic-regret value. In sum, an algorithm designed for
online linear optimization can be adapted for online convex optimization, with the understanding
that the instance received at round t corresponds to the gradient of the convex function evaluated at
that round.

B.5 SIX REPRESENTATIVE TWO-PLAYER GENERAL-SUM GAMES

In game theory, there are six representative two-player general-sum games (Robinson & Goforth,

2005). Firstly, consider the win-win game represented by matrices A =

(
1 4
1 2

)
and B =

(
1 4
1 2

)
for players A and B, respectively. This setup fosters a cooperative dynamic, as both players receive
identical payoffs, encouraging strategies that benefit both parties equally.

Contrastingly, the Prisoner’s Dilemma, is depicted by A =

(
1 3
2 4

)
and B =

(
4 3
2 1

)
. This

game illustrates the conflict between individual and collective rationality, where players are tempted
to pursue individual gain at the collective’s expense, often resulting in suboptimal outcomes for both.

In an unfair game, represented by A =

(
2 1
3 4

)
and B =

(
4 3
1 2

)
, the asymmetry in the payoff

structure places one player at a disadvantage, regardless of the chosen strategy. This imbalance often
reflects real-world scenarios where power or information asymmetry affects decision-making.

Cyclic games, with matrices A =

(
3 1
2 4

)
and B =

(
3 4
2 1

)
, present a scenario where no stable

equilibrium exists. The best strategy for each player changes in response to the other’s actions,
leading to a continuous cycle of strategy adaptation without a clear resolution.

Biased games, denoted by A =

(
3 2
1 4

)
and B =

(
4 2
1 3

)
, inherently favor one player, often

reflecting situations where external factors or inherent advantages influence outcomes, leading to
consistently unequal payoffs.

Finally, the second-best game, with matrices A =

(
1 2
3 4

)
and B =

(
1 4
3 2

)
, encapsulates sce-

narios where players settle for less-than-optimal outcomes due to constraints like risk aversion or
limited options. This often results in players choosing safer, albeit less rewarding, strategies.
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Each of these games exemplifies distinct aspects of strategic decision-making and interaction. From
cooperative to competitive and balanced to biased scenarios, these matrices provide a rich landscape
for exploring the nuances of game theory and human behavior.

C DEFERRED EXPLANATIONS IN SECTION 3

C.1 ABLATION STUDY ON PROMPTS
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Figure 5: Ablation study on our prompt design.

To systematically understand the effects of our prompt on the final performance of the LLM agent,
we create three different variants of our prompt and report the regret from different prompts in
Figure 5. Specifically, for ablation1, we remove examples to illustrate the game rules. For ablation2,
we remove the number of iterations. For ablation3, we remove the hints. We can see in Figure 5 that
the performance of the LLM agent is consistent under different variants of prompts.

C.2 INTUITION OF WHY PRE-TRAINED LANGUAGE MODELS MAY EXHIBIT NO-REGRET
BEHAVIORS

Transformer-based LLMs have demonstrated impressive in-context-learning and few-shot learning
capabilities (Brown et al., 2020; Garg et al., 2022; Min et al., 2022). One theoretical explana-
tion is that, trained Transformers can implement the gradient descent algorithm on the testing loss
(Akyürek et al., 2022; Von Oswald et al., 2023; Dai et al., 2022; Ahn et al., 2023; Zhang et al.,
2023b; Mahankali et al., 2023), which is inherently adaptive to the loss function used at test time.
On the other hand, it is known in online learning that the simple algorithm of online gradient de-
scent (Zinkevich, 2003) can achieve no-regret. Hence, it seems reasonable to envision the no-regret
online learning behavior of such meta-learners. However, it is not trivial due to the fundamental
difference between multi-task/meta-learning and online learning settings, as well as that between
stationary and non-stationary/adversarial environments in decision-making. Next, we provide both
experimental and theoretical studies to validate the intuition above.

C.3 STATISTICAL FRAMEWORKS FOR VALIDATING NO-REGRET BEHAVIOR

We now introduce two statistical frameworks for validating the no-regret behaviors, which might be
of independent interest.

Trend-checking framework We propose the following hypothesis test:

H0 : The sequence (Regret(t)/t)∞t=1 either diverges or converges to a positive constant.
H1 : The sequence (Regret(t)/t)∞t=1 converges to 0.

The notion of convergence is related to T → ∞ by definition, making it challenging to verify
directly. As an alternative, we propose a more tractable hypothesis test, albeit a weaker one, that
still captures the essence of our objective:

H0 : The sequence (Regret(t)/t)t∈[T ] does not exhibit a decreasing trend.

H1 : The sequence (Regret(t)/t)t∈[T ] shows a decreasing trend.
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For our analysis, we will employ non-parametric testing. Given the sequence
(Regret(1)/1, . . . ,Regret(T )/T ), we aim to identify its decreasing behavior. Specifically,
we will count the number where R(t)/t−R(t+ 1)/(t+ 1) > 0.
Proposition 1. [p-value of the null hypothesis] Define the event E(s, T ) :=
{The number of R(t)/t − R(t + 1)/(t + 1) > 0 for t = 1, . . . , T is at least s ≥ T−1

2 }.
Under the assumption that the null hypothesis H0 holds, the probability of this event happening is

bounded as PH0(E(s, T )) ≤ 1
2T−1

∑T−1
t=s

(
T − 1

t

)
.

Proof. Under the null hypothesis H0, the probability p that R(t)/t − R(t + 1)/(t + 1) > 0 is less
than 1

2 . Therefore, if we consider the event E(s, T ), we have

PH0(E(s, T )) =
T−1∑
k=s

ps(1− p)T−1−s

(
T − 1
k

)
≤ 1

2T−1

T−1∑
k=s

(
T − 1
k

)
since s ≥ T−1

2 .

For our experiments, where the primary focus is on T = 25, it’s noteworthy that: PH0(E(17, 25)) <
0.032,PH0(E(19, 25)) < 0.0035,PH0(E(21, 25)) < 0.00014, i.e., one can easily reject H0 with
high probability. We will report the p-value of H0 as the output of this framework.

Regression-based framework. In complement to the statistical framework above, we propose an
alternative approach by fitting the data. In particular, one can use the data {(t, logRegret(t))}t∈[T ]

to fit a linear function logRegret(t) = β0 log t + β1, where the estimate of β0, i.e., β̂0, satisfying
β̂0 < 1 may be used to indicate the no-regret behavior. While being simple, it cannot be directly
used when Regret(t) < 0, so we set logRegret(t) as -10. We will report β̂0 as the output of this
framework.

C.4 DETAILED ENVIRONMENT SETTINGS FOR THE EXPERIMENTS IN SECTION 3.2

Online learning in arbitrarily changing environment. We first consider the setting with ar-
bitrarily changing environments, with the following instantiations: 1) Randomly-generated loss
sequences. At every timestep, we generate a random loss vector ℓt ∼ Unif([0, 10]d) or ℓt ∼
N (5 ·1d, I) with clipping to [0, 10] to ensure the boundedness, such that the loss vectors of different
timesteps can be arbitrarily distinct; 2) Loss sequences with predictable trend. Although real-world
environments can change arbitrarily, they could often exhibit certain patterns. Therefore, we con-
sider two representative trends, a linear trend and a periodic (sinusoid) trend. For the linear trend,
we sample a, b ∼ Unif([0, 10]d) and let ℓt = (b− a) t

T + a for each t ∈ [T ]. For the periodic trend,
we sample a, b ∼ Unif[0, 10]d and let ℓt = 5(1 + sin(at+ b)) for each t ∈ [T ]. In the experiments,
we choose d = 2. The average regret (over multiple randomly generated instances) performance is
presented in Figure 1, where we compare GPT-4 with well-known no-regret algorithms, FTRL with
entropy regularization and FTPL with gaussian perturbations (with tuned parameters). It is seen that
these pre-trained LLMs can indeed achieve no-regret, and often have smaller regret than baselines.

Online learning (in non-stationary environment). We then experiment on the setting when the
losses are still changing over time but their variations across time are bounded, more concretely,
sublinear in T . Correspondingly, we consider the stronger metric of dynamic regret here to measure
the performance. Note that without constraining the variation of the loss vectors, dynamic regret
can be linear w.r.t T in the worst case. Hence, we generate the loss vectors in two different ways:
1) Gradual variation. We firstly sample ℓ1 ∼ Unif[0, 10]d. Then for each t ≥ 2, we uniformly
and randomly generate ℓt+1 under the constraint ∥ℓt+1 − ℓt∥∞ ≤ 1√

t
, such that the variations over

time are guaranteed to satisfy
∑T−1

t=1 ∥ℓt+1 − ℓt∥∞ = O(
√
T ); 2) Abrupt variation. We randomly

generate ℓ1 ∼ Unif[0, 10]d and m time indices {ti}i∈[m] from {1, 2, · · · , T}. At each time step ti
for i ∈ [m], the sign of the loss vector ℓti is flipped, i.e., we let ℓti ← 10 − ℓti . For the specific
choice of T = 25 in our experiments, we choose m = 3. For both cases, the average dynamic regret
results are presented in Table 1. It can be seen that GPT-4 achieves sublinear dynamic regret and
outperforms Restart FTRL/FTPL.
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Figure 6: Regret of GPT-4 agents and the FTRL algorithm in 6 randomly generated four-player
general-sum games. GPT-4 agents have comparable (even better) no-regret properties when com-
pared with the FTRL algorithm.

Extension to bandit-feedback settings. Although pre-trained LLMs have achieved good perfor-
mance in online learning with full-information feedback, it is unclear whether they can still maintain
no-regret with only bandit feedback. For such problems, we modify the prompt and protocol of in-
teractions slightly, where we still ask the LLM agent to provide a policy πt at time step t, but
manually sample one at ∼ πt and then inform the agent of the sampled action at, together with the
loss corresponding to that action, i.e., ℓtj ← ℓtj

πtj
1(at = j) for all j ∈ [d] instead of providing ℓtat .

Note such an operation of re-weighting the loss by the inverse of the probability is standard in online
learning when adapting full-information-feedback no-regret algorithms to the bandit-feedback ones.
Later, we will also show the provable benefits of such operations (c.f. Section 4). We compare the
performance with the counterparts of FTRL in the bandit-feedback setting, e.g., EXP3 (Auer et al.,
2002) and the bandit-version of FTPL (Abernethy et al., 2015) in both Figure 10 and Table 1, where
GPT-4 consistently achieves lower regret.

C.5 DETAILED ENVIRONMENT SETTINGS FOR THE EXPERIMENTS IN SECTION 3.3

Representative games. We first test on all 6 representative two-player general-sum games (win-
win, prisoner’s dilemma, unfair, cyclic, biased, and second best) studied in Robinson & Goforth
(2005) (see a detailed introduction of these games in Appendix B.5). For each type of the game, we
conduct 20 repeated experiments.

Randomly generated games. To further validate the no-regret behavior of LLM agents, we
also test on 50 randomly generated three-player general-sum games, and 50 randomly generated
four-player general-sum games, where each entry of the payoff matrix is sampled randomly from
Unif[0, 10]. These are larger and more challenging settings than the two-player and structured cases
above.

We summarize experimental results in Figure 3, which are similar to the above: for all types of
games, GPT-4 agents achieve sublinear regret, which is comparable with that obtained by FTRL for
most games (See Figure 9 and Figure 6 for more results).

C.6 DETAILED ENVIRONMENT SETTINGS FOR THE EXPERIMENTS IN SECTION 3.4

To begin with, we consider a well-known example that follow-the-leader (FTL) algorithm Shalev-
Shwartz (2012) suffers from linear regret Hazan (2016), where ℓ11 = 5, ℓ12 = 0 and ℓt(2−t%2) =
10, ℓt(1+t%2) = 0 for t ≥ 2 where % is the modulo operation. Interestingly, GPT-4 agent can easily

26



Under review as a conference paper at ICLR 2024

Human Moderator’s Prompt
You are playing a matrix game problem for T rounds. There are A number of actions. At 
each round, you need to choose a policy; it specifies your probability of choosing each 
action. This policy should be A-dimensional, and the sum of its components should 
equal 1. After that, you will be shown the reward vector for choosing each action. 
Remember that this reward vector is decided by the external system and can be 
potentially different for different rounds. It is not decided by what policies you have 
chosen. The reward vector is also A-dimensional. You can adjust your policy based on 
the reward vectors for all previous rounds. You’re required to provide your policy in 
numeric format. Your response’s last line should be formatted as ‘Policy: [your A-
dimensional policy]’. Let’s think step by step. Explicitly examining history is important. 
Please explain how you chose the policy by guessing what reward you might receive for 
each action according to the history.

Figure 7: Demonstration of the prompts used for multi-player repeated games. A human moderator
does not provide the game’s payoff matrices to the LLM agents. Instead, at each round, the human
moderator provides each player’s own payoff vector history.
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Figure 8: Regret of both GPT-4 and GPT-4-Turbo under the seminal counter-example for FTL.
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Figure 9: Regret of GPT-4 agents and the FTRL algorithm in 6 randomly generated three-player
general-sum games. GPT-4 agents have comparable (even better) no-regret properties when com-
pared with the FTRL algorithm.

identify the pattern for the loss sequence that the optimal action alternates, thus accurately predicting
the loss it will receive and achieving near zero regret in Figure 8.
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Figure 10: We report regret of GPT-4 for online learning with bandit feedback in 4 different settings.
It performs comparably or better than the bandit version of well-known no-regret algorithms, FTRL,
FTPL.

Less predictable loss sequence. Inspired by FTL observation, we design a new loss sequence
that is similar but less predictable. Specifically, we construct the following (simple) loss sequence
with 2 actions such that ℓt(1+t%2) = min(25/t, 10), ℓt(2−t%2) ∼ Unif[9, 10] for t ∈ [25].

Adaptive loss sequence. We also develop a simpler but more adaptive loss sequence that takes
the full power of the adversary in the online learning setup. After the GPT-4 agent provides πt, we
choose ℓt such that ℓt(argmaxi πti) = 10 and ℓt(3−argmaxi πti) = 0. We report the regret averaged for
the later two settings over 20 repeated experiments using GPT-4 and more advanced GPT-4 Turbo in
Figure 4, where linear regret is confirmed by both trend-checking and regression-based frameworks.

D DEFERRED EXPLANATION IN SECTION 4

D.1 PRE-TRAINED LLMS HAVE SIMILAR REGRET AS HUMANS (WHO GENERATE DATA)

Recently, a growing literature has evidenced that the intelligence level of LLM agents are determined
by, and in fact mimic, those of human beings who generate the data for pre-training the models (Park
et al., 2022; Argyle et al., 2023; Horton, 2023). The key rationale was that, LLMs (with Transformer
parameterization) can approximate the pre-training data distribution very well (Xie et al., 2021;
Zhang et al., 2023c; Lee et al., 2023). In such a context, one can expect that LLM agents can
achieve similar regret as human decision-makers who generate the pre-training data, as we formally
state below.
Observation 1. An LLM agent is said to be pre-trained with an ϵ-decision error if, for any arbitrary
t and loss sequences (ℓi)i∈[t], the following condition holds:

sup
π∈Π

∣∣Pdata(π | (ℓi)i∈[t])− PLLM(π | (ℓi)i∈[t])
∣∣ ≤ ϵ,

where Pdata and PLLM are the pre-training data distribution and the pre-trained LLM model, respec-
tively. Then the regret of an LLM agent with ϵ-decision error is bounded as:

(D-)RegretLLM

(
(ℓt)t∈[T ]

)
∈
[

(D-)Regretdata

(
(ℓt)t∈[T ]

)
± ϵ∥ℓt∥ sup

π∈Π
∥π∥

]
,

where [a± b] := [a− b, a+ b].

Observation 1 shows that the pre-trained LLM-agent’s regret can be controlled by that of the pre-
training dataset and the decision error ϵ. A small ϵ can be achievable if LLM is constructed with the
Transformer architecture (Zhang et al., 2023c; Lin et al., 2023).

Proof. For given (ℓt)t∈[T ],

T∑
t=1

PLLM(πt | (ℓi)i∈[t])⟨ℓt, πt⟩ ≤
T∑

t=1

(Pdata(πt | (ℓi)i∈[t]) + ϵ)⟨ℓt, πt⟩
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holds, so

RegretLLM((ℓt)t∈[T ]) =

T∑
t=1

PLLM(πt | (ℓi)i∈[t])⟨ℓt, πt⟩ − inf
π∈Π

T∑
t=1

⟨ℓt, π⟩

≤
T∑

t=1

(Pdata(πt | (ℓi)i∈[t]) + ϵ)⟨ℓt, πt⟩ − inf
π∈Π

T∑
t=1

⟨ℓt, π⟩

=

T∑
t=1

Pdata(πt | (ℓi)i∈[t])⟨ℓt, πt⟩ − inf
π∈Π

T∑
t=1

⟨ℓt, π⟩+
T∑

t=1

ϵ⟨ℓt, πt⟩

≤ Regretdata((ℓt)t∈[T ]) + ϵ∥ℓ∥p∥π∥qT

where 1
p+

1
q = 1 and p, q ≥ 1. Similarly, we can establish the lower bound for RegretLLM((ℓt)t∈[T ]).

To prove the dynamic regret cases, we can simply change the term infπ∈Π

∑T
t=1⟨ℓt, π⟩ in the regret

case to
∑T

t=1 infπ∈Π⟨ℓt, π⟩.

D.2 DEFERRED DEFINITION OF GENERALIZED QUANTAL RESPONSE IN SECTION 4

Generalized quantal response gives rise to follow-the-perturbed-leader. A seminal model for
human behaviors is the quantal response model, which assumes that humans are often not perfect
decision-makers, and their bounded rationality can be modeled through unseen latent variables that
influence the decision-making process (McFadden, 1976; McKelvey & Palfrey, 1995). Formally,
the quantal response is defined as follows:

Definition 1 (Quantal response). Given a loss vector l ∈ Rd, a noise distribution ϵ ∼ Pnoise, and
η > 0, the quantal response is defined as

Pη
quantal(a | ℓ) = Pnoise

(
a ∈ argmin

i∈[d]

(ℓ+ ηϵ)[i]

)
.

In essence, this implies that humans are rational but with respect to the latent variable ℓ+ηϵ instead
of ℓ. This addition of noise to the actual loss vector characterizes the bounded rationality of humans
in decision-making.

Traditional quantal response formulations primarily focused on scenarios with a single loss vector.
In online learning, given the history information, the decision-maker (either human or LLM agent)
at each time t is faced with multiple loss vectors. Hence, we propose the following generalization to
model human behavior in online decision-making.

Definition 2 (Quantal response against multiple losses). Given a set of loss vectors (ℓi)i∈[t],
a noise distribution Pnoise, and ηt > 0, the generalized quantal response is defined as

Pηt

quantal

(
a | (ℓi)i∈[t]

)
:= Pηt

quantal

(
a

∣∣∣∣ ∑t
i=1 ℓi

)
.

In simpler terms, the generalized quantal response is defined as the standard quantal response against
some scaled summation of the losses. Note that such a dynamic version of quantal response also
has implications from behavior economics, and has been recently used to model human behaviors in
sequential decision-making (Ding et al., 2022) (in stochastic and stationary environments). Indeed,
there is a direct relationship between our Definition 2 and a well-known no-regret learning algorithm
in online learning, follow-the-perturbed-leader (Kalai & Vempala, 2005), whose formal definition
can be found in Appendix B.3.1.

Observation 2. Suppose at each time step t, the decision-maker (i.e., human or LLM agent) re-
sponse follows Definition 2, then the decision-making process is equivalent to using the FTPL algo-
rithm with proper perturbation.

Before we move to the proof, we will define the random variable which has distribution Pnoise as
Znoise
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Proof.

Pηt

quantal(a | (ℓi)i∈[t]) := Pnoise

(
a ∈ argmin

j∈[d]

(

t∑
i=1

ℓi + ηtϵ)j

)

which is exactly the case that ϵt in Equation (B.1) satisfies ϵt
d
= ηtϵ.

D.3 DEFERRED PROOF OF THEOREM 4.1

Theorem 4.1. (Emergence of no-regret behavior). Suppose Assumption 1 holds with Ppre(z) =
N (0, σ2I), Ppre((ℓi)i∈[T ] | z) =

∏
i∈[T ] Ppre(ℓi | z) with Ppre(ℓi | z) = N (z, σ2I) for some

σ > 0, and LLMθ⋆ that is sufficiently expressive minimizes Equation (4.1). Then, we have
LLMθ⋆(a | (ℓi)i∈[t]) = Pηt

quantal(a | (ℓi)i∈[t]) with Pnoise = N (0, I) and ηt = Θ(
√
t) for any t ∈ [T ].

Correspondingly, there exist algorithms that can utilize LLMθ⋆ to achieve no (dynamic) regret for
(nonstationary) online learning with full-information/adversarial bandit.

To be specific,

(1) For online learning with full-information feedback, RegretLLMθ⋆
((ℓi)i∈[T ]) ≤ O(

√
T log d);

(2) For non-stationary online learning with full-information feedback, D-RegretLLMθ⋆
((ℓi)i∈[T ]) ≤

O((d log d VT )
1/3T 2/3);

(3) For adversarial bandits, E[RegretLLMθ⋆
((ℓi)i∈[T ])] ≤ O((log d)1/2T 1/2+2 log log T/ log T );

(4) For non-stationary bandits, E[D-RegretLLMθ⋆
((ℓi)i∈[T ])] ≤

O((d log d VT )
1/3T 2/3+2 log log T/ log T ),

where we define VT :=
∑T−1

t=1 ∥ℓt+1 − ℓt∥∞.

Proof. Due to the same reason as (Lee et al., 2023; Lin et al., 2023, Theorem 1), the mini-
mizer of EPpre(z,(ℓi)i∈[T ],a)

∑T
t=1[logLLMθ(a | (ℓi)i∈[t])] is given by the posterior distribution, so

LLMθ⋆(a | (ℓi)i∈[t]) = Ppre(a | (ℓi)i∈[t]) as long as the LLM is sufficiently expressive. Therefore,
we will calculate Ppre(z | (ℓi)i∈[t]) for each t ∈ [T ]. Since z ∼ N (0, σ1I), and ℓi | z ∼ N (z, σI),
we have

z | (ℓi)i∈[t] ∼ N

 1

t+ 1

∑
i∈[t]

ℓi,
σ2

t+ 1
I


by the posterior distribution of the normal distribution. Therefore, the corresponding noise level ηt
in the procedure of FTPL is ηt =

√
t.

(1) Combining the above result with Lemma 1, we can derive the regret bound.

(2) Combining the above result with Lemma 1 and Lemma 3, we can prove a regret guarantee for
online learning in a non-stationary environment with full information feedback.

(3) Combining the above result with Lemma 2, we can prove regret guarantee for adversarial bandits.

(4) Combining this result with Lemma 2 and Lemma 3, we can prove regret guarantee for adversarial
bandits.

Now, we present Lemma 1 - Lemma 3.

Lemma 1 (FTPL Regret guarantee with full-information feedback.). Suppose the noise distribution
satisfies that Pnoise = N (000d, I) and ηt = Θ(

√
t), then for online learning with full information

feedback,

Regret((ℓi)i∈[T ]) ≤ O(
√

T log d).
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Proof. By Theorem 8 of Abernethy et al. (2014), we have

Regret((ℓi)i∈[T ]) ≤
√
2 log d

(
ηT +

T∑
t=1

1

ηt
∥ℓt∥2∞

)
.

Therefore, plugging ηt = Θ(
√
t) and ∥ℓt∥2∞ ≤ 1 provides

Regret((ℓi)i∈[T ]) ≤
√

2 log d

(
√
T +

T∑
t=1

1√
t

)
≤ O(

√
T log d).

Lemma 2 (Regret guarantee of FTPL with bandit feedback.). Suppose the noise distribution satis-
fies that Pnoise = N (000d, I) and ηt = Θ(

√
t), then for online learning with full information feedback,

E[Regret((ℓi)i∈[T ])] ≤ O(
√

T log d).

Proof. The proof of the bandit problem is more complex. We first define the following notations.
We denote Gt =

∑t
t′=1 ℓt, Ĝt =

∑t
t′=1 ℓ̂t, Φ(G) = maxπ⟨π,G⟩, Φt(G) = Eϵ∼N (000d,I)Φ(G+ηtϵ),

and DΦt
to be the Bregman divergence with respect to Φt. By Li & Tewari (2017), πt = ∇Φt(Ĝt).

Due to the convexity of Φ,

Φ(GT ) = Φ(E[ĜT ]) ≤ EΦ(ĜT ).

Therefore,

E[Regret((ℓi)i∈[T ])] = Φ(GT )− E[
T∑

t=1

⟨πt, ℓ̂t⟩] ≤ E[Φ(ĜT )−
T∑

t=1

⟨πt, ℓ̂t⟩].

By recalling the definition of the Bregman divergence, we have

−
T∑

t=1

⟨πt, ℓ̂t⟩ = −
T∑

t=1

⟨∇Φt(Ĝt), ℓ̂t⟩ = −
T∑

t=1

⟨∇Φt(Ĝt), Ĝt − Ĝt−1⟩

=

T∑
t=1

DΦt
(Ĝt, Ĝt−1) + Φt(Ĝt−1)− Φt(Ĝt).

Therefore,

E[Regret((ℓi)i∈[T ])]

≤ E[
T∑

t=1

DΦt(Ĝt, Ĝt−1)]︸ ︷︷ ︸
(i)

+E[
T∑

t=1

Φt(Ĝt−1)− Φt−1(Ĝt−1)]︸ ︷︷ ︸
(ii)

+E[Φ(ĜT )− ΦT (ĜT )]︸ ︷︷ ︸
(iii)

.

(iii) ≤ 0 due to the convexity of Φ. For (ii), we use Lemma 10 of Abernethy et al. (2014): we have

E[
T∑

t=1

Φt(Ĝt−1)− Φt−1(Ĝt−1)] ≤ ηTEϵ[Φ(ϵ)] ≤ O(
√

2T log d).

For (i), by Theorem 8 of Li & Tewari (2017), for any α ∈ (0, 1), the following holds:

E[
T∑

t=1

DΦt
(Ĝt, Ĝt−1)] ≤

T∑
t=1

ηα−1
t

4

α(1− α)
≤ 4

α(1− α)
O(T 1+α

2 ).

By tuning α = 2
log T , we proved that E[Regret((ℓi)i∈[T ])] ≤ O((log d)

1
2T

1
2+

2 log log T
log T ).

31



Under review as a conference paper at ICLR 2024

Lemma 3. Denote the variation of loss vectors as VT =
∑T−1

t=1 ∥ℓt+1− ℓt∥∞. Suppose there exists
an algorithm for online learning with full information feedback with regret guarantee that Regret ≤
f(T, d) for some function f , where T denotes the horizon and d denotes the policy dimension. Then,
there exists an algorithm that can achieve

D-Regret((ℓi)i∈[T ]) ≤ min
∆T∈[T ]

(
T

∆T
+ 1

)
f(∆T , d) + 2∆TVT .

Similarly, suppose there exists an algorithm for adversarial bandit problem with regret guarantee
that ERegret ≤ g(T, d) for some function g; then there exists an algorithm that can achieve

E[D-Regret((ℓi)i∈[T ])] ≤ min
∆T∈[T ]

(
T

∆T
+ 1

)
g(∆T , d) + 2∆TVT .

Proof. This is a direct result of the proof of Theorem 2 of Besbes et al. (2014).

Note that in the first part of Theorem 4.1, we establish the fact that pre-trained LLM agent (under
mild pre-training distribution assumptions) mimics FTPL with Gaussian perturbations and time-
varying learning rate ηt = O(

√
t) for t ∈ [T ]. However, existing literature for FTPL usually does

not address such a kind of learning rate ηt, especially for bandit problems, which makes the known
regret guarantee not directly applicable. Nevertheless, it’s still possible to extend the analysis to the
time-varying learning rate case. Moreover, for a similar reason to the above, a non-stationary setting
cannot be directly derived from the literature.
Remark 1. In the context of an LLM minimizing Equation (4.1), the condition that a minimizer
is equivalent to the FTPL algorithm does not strictly require that both the prior distribution and
the conditional distribution of ℓi given z, t must be normal distributions. It is possible to consider
the emergent algorithm as FTPL even if the posterior distribution of z aligns with

∑
i∈[t] ℓi + ϵt,

where ϵt is independent of the sequence (ℓi)i∈[t]. The assumption that the prior distribution and
the distribution of ℓi given z, t are normal is made not just to facilitate FTPL, but also to naturally
encourage no-regret behavior in the algorithm.

Remark 2. Although Lee et al. (2023); Lin et al. (2023) have shown pre-trained LLM agents can
solve stochastic bandit provably in light of the equivalence to posterior sampling, it cannot be used
for adversarial bandit since posterior sampling can perform almost as badly as a worst-performing
agent in some non-stationary environments (Liu et al., 2023b). In contrast, due to the equivalence
to FTPL, our approach solves adversarial bandit problems with simple modifications.

Remark 3 (Weaker data assumption). When interacting with LLMs, users will explicitly prompt
the task, i.e., online learning in our context. Therefore, the LLM agent’s policy is essentially
LLMθ(a | (ℓt)t∈[T ],OL=True), where the OL (denoting “online learning”) represents the extra
prompts fed into LLMs (like a description of the problem setting) beyond only (ℓi)i∈[T ]. This implies
that Assumption 1 on P(z, (ℓt)t∈[T ], a) is essentially only required on P(z, (ℓi)i∈[T ], a,OL=True)
and the objective generalizes to EPpre(z,(ℓi)i∈[T ],a,OL)

∑T
t=1[log LLMθ(a | (ℓi)i∈[t],OL)], while we do

not need any assumptions on P(z, (ℓi)i∈[T ], a,OL=False), i.e., the training data that is not related
to online learning problems.

D.3.1 EXTENDING THEOREM 4.1 WITH A GENERAL TASK DISTRIBUTION

Proposition 2. In Theorem 4.1, we can relax the assumption on Ppre(z) that we only require
Ppre(z) to be i.i.d for each coordinate and 0 < Ppre(zj) < ∞ for any j ∈ [d], zj ∈ R, and
the guarantee for (1) and (2) only increase by O(d2 log T ).

The key idea of the proof is that when t is large enough, the prior distribution does not affect the
posterior distribution, which is also called the Bayesian Central Limit Theorem.

Proof. Since we extend Theorem 4.1 to settings with general task prior distribution only requiring
the coordinates to be i.i.d, from now on, we consider j-th coordinate only. To begin with, fix t ∈ [T ],
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we define the log-likelihood of the posterior as

Lt(zj) = log

t∏
i=1

1

σd(2π)d/2
e−

1
2σ2 (ℓij−zj)

2

= −n log σ − n

2
log 2π −

n∑
i=1

1

2σ2
(ℓij − zj)

2.

Then MLE estimator ẑj,t is defined as

ẑj,t := argmax
zj∈R

Lt(zj) =
1

t

t∑
i=1

ℓij .

We also define Ĵt as:

Ĵt(zj) := −
∇2Lt(zj)

n
=

1

σ2
.

For Assumption 1 of Kasprzak et al. (2022) to hold, any δ > 0, M2 > 0 suffices.

For Assumption 2 of Kasprzak et al. (2022) to hold, we can choose M̂1 = maxzj∈[−δ,1+δ]
1

Ppre(zj)

For Assumption 7 of Kasprzak et al. (2022) to hold, we choose δ to be σ.

For Assumption 8 of Kasprzak et al. (2022) to hold, one can choose M2 = σ
2 .

For Assumption 9 of Kasprzak et al. (2022) to hold, we have

κ ≤ − sup
(zj−ẑj)2≥δ

Lt(zj)− Lt(ẑj,t)

t
= − 1

2σ2t
sup

(zj−ẑj,t)2≥δ

t∑
i=1

(ℓij − ẑj,t)
2 − (ℓij − zj)

2 =
1

4σ
.

For Assumption 10 of Kasprzak et al. (2022) to hold, we choose M1 = supzj∈[−δ,1+δ] ∥∇Ppre(zj)
Ppre(zj)

∥2,

M̃1 = supzj∈[−δ,1+δ] |Ppre(zj)|.
By Theorem 6.1 of Kasprzak et al. (2022),∫

zj

|P(zj/
√
t+ ẑj | (ℓij)i∈[t])− Ce−

1
2σ2 z2 |dzj

=
√
t

∫
zj

|P(zj | (ℓij)i∈[t])−N (ẑj , σ
2t)|dzj ≤ D1t

−1/2 +D2t
1/2e−tκ + 2D̂(t, δ),

where

D1 =

√
M̃1M̂1

σ


√
3σ2

2

(
1−

√
D̂(t, δ)

)M2 +M1


D2 =

2M̂1Ĵ
p
t (ẑj , δ)

(2π)1/2(1− D̂p(t, δ))

D̂(t, δ) = e−
1
2 (

√
t−1)2

Ĵp
t (ẑj , δ) =

1

σ2
+

δM2

3
.

Therefore, we conclude that TV distance for the joint random variable z is guaranteed that∫
z

|P(z | (ℓi)i∈[t])−N (ẑ, σ2t)|dz ≤
d∑

j=1

∫
zj

|P(zj | (ℓij)i∈[t])−N (ẑj , σ
2t)|dzj ≤ O(d/t),

due to the independence of (zj)j∈[d] conditioned on (li)i∈[t]. Now we denote policy π̂t to be the
policy obtained by smoothing using noise distribution P(z | (ℓi)i∈[t]) and its corresponding regret as
R̂egret. Similarly, we define πt and Regret to be associated with N (ẑj , σ

2t). Therefore, we have

|R̂egret− Regret| ≤
T∑

t=1

d∥πt − π̂t∥∞ ≤ d

T∑
t=1

∫
z

|P(z | (ℓi)i∈[t])−N (ẑ, σ2t)|dz = O(d2 log T ).
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In other words, using P(z | (ℓi)i∈[t]) as the smoothing distribution only increase regret by
O(d2 log T ). Similarly, it is easy to see that

| ̂D-Regret− D-Regret| ≤ O(d2 log T ).

D.4 COMPARISON TO LEE ET AL. (2023); LIN ET AL. (2023)

Intriguingly, similar assumptions and objectives have also been considered in the very recent work
of Lee et al. (2023); Lin et al. (2023) for studying in-context reinforcement learning (RL) property
of Transformers under supervised pre-training. Lee et al. (2023) established its equivalence to pos-
terior sampling (Osband et al., 2013), an important RL algorithm with provable regret guarantees
when the environments are stationary, and Lin et al. (2023) generalized the study of the settings with
algorithm distillation as in Laskin et al. (2022). However, their results cannot imply the no-regret
guarantee in our online learning setting, due to the known facts that posterior sampling can perform
poorly under potentially adversarial or non-stationary environments (Zimmert & Seldin, 2021; Liu
et al., 2023b). In contrast, we here establish the equivalence of the pre-trained LLM to the FTPL al-
gorithm (under different pre-training distribution specifications), with the ability to handle arbitrary
loss sequences, even though the LLMs are only trained on a fixed distribution of stationary online
learning problems.

D.5 DETAILS ON CALIBRATION

Given N episodes of the LLM agent’s behavior {(ℓjt , πj
t )t∈[T ]}j∈[N ], we propose to calibrate

{ηt}t∈[T ] by solving the following problem for each t ∈ [T ]

η⋆t ∈ argmin
ηt

∑
j∈[N ]

∥∥∥πj
t − Pηt

quantal

(
· |

t−1∑
t′=1

ℓt′
)∥∥∥

1
.

We solve this single-variable optimization problem by grid search over [0, 10].

E DEFERRED EXPLANATION IN SECTION 5

E.1 BASIC LEMMAS

Lemma 4 (Double sequences’s iterated limit). Suppose that limm,n→∞ amn = L. Then the follow-
ing are equivalent:

• For each m, limn→∞ amn exist

• limm→∞ limn→∞ amn = L.
Lemma 5 (Hoeffeding’s inequality). Let X1, X2, . . . , Xn be independent random variables
bounded by the intervals [ai, bi] respectively. Define X̄ = 1

n

∑n
i=1 Xi and let µ = E[X̄] be the

expected value of X̄ . Then, for any t > 0,

P (|X̄ − µ| ≥ t) ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
Lemma 6 (Uniform convergence allow order changing of limit and infimum). If (fn(x) : X →
R)n∈N is a sequence of continuous functions that uniformly converges to a function f(x), then
limn→∞ infx∈X fn(x) = infx∈X f(x) holds.

E.2 MATHEMATICALLY RIGOROUS ARGUMENT FOR SECTION 5.1

In this section, we prove the mathematical details regarding L(θ, k,N).
Claim 1 (Iterated limit of L(θ, k,N) is the same with double limit of L(θ, k,N)).

lim
N→∞

lim
k→∞

L(θ, k,N) = lim
N,k→∞

L(θ, k,N) = lim
k→∞

lim
N→∞

L(θ, k,N) = h( max
ℓ1,...,ℓT

RegretLLMθ
((ℓt)t∈[T ]))
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Proof. Step 1. limN→∞ limk→∞ L(θ, k,N) = h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T ]))

Firstly, as h is a non-negative function, we have

lim
k→∞

L(θ, k,N) = E lim
k→∞

[∑
j∈[N ] h(RLLMθ

((ℓ
(j)
t )t∈[T ]))f(RLLMθ

((ℓ
(j)
t )t∈[T ]), k)∑

j∈[N ] f(RLLMθ
((ℓ

(j)
i )t∈[T ]), k)

]

= E
(ℓ

(j)
t )t∈[T ],j∈[N]

[
h(max

j∈[N ]
RegretLLMθ

((ℓ
(j)
t )t∈[T ]))

]
.

By (Ahsanullah et al., 2013), we have h(maxj∈[N ] RegretLLMθ
((ℓ

(j)
t )t∈[T ]))

p→
h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])) when N → ∞, so limN→∞ limk→∞ L(θ, k,N) =
h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])) holds.

Step 2. limN,k→∞ L(θ, k,N) = h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T ]))

Now, we will calculate limN,k→∞ L(θ, k,N).

Lemma 7. For any 0 < ϵ < 1,

lim
N,k→∞

∑N
i=1 f(Xi, k)h(Xi)1(h(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)h(Xi)1(h(Xi) > 1− ϵ/2)
= 0

and

lim
N,k→∞

∑N
i=1 f(Xi, k)1(h(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(h(Xi) > 1− ϵ/2)
= 0

hold with probability 1 where Xi’s are i.i.d. random variable and esssup(h(Xi)) = 1

Proof of Lemma 7. Since f, h is nonnegative, and f and h is an non-decreasing function, we have∑N
i=1 f(Xi, k)h(Xi)1(h(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)h(Xi)1(h(Xi) > 1− ϵ/2)
≤ (1− ϵ)f(h−1((1− ϵ), k))|{i ∈ [N ] | (h(Xi) < 1− ϵ)}|

(1− ϵ/2)f(h−1((1− ϵ/2), k))|{i ∈ [N ] | (h(Xi) > 1− ϵ/2)}|

and we know that

|{i ∈ [N ] | (h(Xi) < 1− ϵ)}|
|{i ∈ [N ] | (h(Xi) > 1− ϵ/2)}|

a.s.→ F (1− ϵ)

1− F (1− ϵ/2)

as N → ∞ where F is the cumulative distribution function of random variable h(X). Therefore,
we have

0 ≤ lim
N,k→∞

∑N
i=1 f(Xi, k)h(Xi)1(h(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)h(Xi)1(h(Xi) > 1− ϵ/2)
≤ lim

N,k→∞

(1− ϵ)f(h−1((1− ϵ), k))|{i ∈ [N ] | (h(Xi) < 1− ϵ)}|
(1− ϵ/2)f(h−1((1− ϵ/2), k))|{i ∈ [N ] | (h(Xi) > 1− ϵ/2)}|

≤
a.s.

lim
N,k→∞

(1− ϵ)f(h−1((1− ϵ), k))

(1− ϵ/2)f(h−1((1− ϵ/2), k))

F (1− ϵ)

1− F (1− ϵ/2)
= 0.

Similarly, we have

lim
N,k→∞

∑N
i=1 f(Xi, k)1(h(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(h(Xi) > 1− ϵ/2)
= 0

with probability 1.

By Lemma 7, we have

lim
N,k→∞

∑N
i=1 f(Xi, k)h(Xi)1(h(Xi) > 1− ϵ)∑N

i=1 f(Xi, k)h(Xi)
= lim

N,k→∞

∑N
i=1 f(Xi, k)1(h(Xi) > 1− ϵ)∑N

i=1 f(Xi, k)
= 1
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with probability 1. Therefore, for any 0 < ϵ < 1, we have

lim
N,k→∞

L(θ, k,N) = E lim
N,k→∞

[∑
j∈[N ] h(RLLMθ

((ℓ
(j)
t )t∈[T ]))f(RLLMθ

((ℓ
(j)
t )t∈[T ]), k)∑

j∈[N ] f(RLLMθ
((ℓ

(j)
i )t∈[T ]), k)

]
= h( max

ℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T ]))

× E lim
N,k→∞

∑j∈[N ]

h(RLLMθ
((ℓ

(j)
t )t∈[T ]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T ]))
f(RLLMθ

((ℓ
(j)
t )t∈[T ]), k)1(

h(RLLMθ
((ℓ

(j)
t )t∈[T ]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T ]))
> 1− ϵ)∑

j∈[N ] f(RLLMθ
((ℓ

(j)
i )t∈[T ]), k)1(

h(RLLMθ
((ℓ

(j)
t )t∈[T ]))

h(maxℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T ]))
> 1− ϵ)


≥ (1− ϵ)h( max

ℓ1,...,ℓT
RLLMθ

((ℓt)t∈[T ]))

where RLLMθ
is a shorthand for RegretLLMθ

, which implies limN,k→∞ L(θ, k,N) =
h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])).

Step 3. limk→∞ limN→∞ L(θ, k,N) = h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T ]))

Lastly, if N →∞, we have

lim
N→∞

L(θ, k,N) = E lim
N→∞

[∑
j∈[N ] h(RLLMθ

((ℓ
(j)
t )t∈[T ]))f(RLLMθ

((ℓ
(j)
t )t∈[T ]), k)∑

j∈[N ] f(RLLMθ
((ℓ

(j)
i )t∈[T ]), k)

]

=
Eh(RLLMθ

((ℓ
(j)
t )t∈[T ]))f(RLLMθ

((ℓ
(j)
t )

Ef(RLLMθ
((ℓ

(j)
i )t∈[T ]), k)

since we can use the law of large numbers on each numerator and denominator. There-
fore, limN→∞ L(θ, k,N) always exists for every k. Now, we use well-known prop-
erties of double sequence (Lemma 4), which provides limk→∞ limN→∞ L(θ, k,N) =
h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ]).

Claim 2 (Uniform convergence of L(θ, k,N) (with respect to k and N )). L(θ, k,N) uniformly
converges to h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])).

Proof. We will provide a similar analysis with Lemma 7 as follows:
Lemma 8. For any 0 < ϵ < 1 and 0 < δ < 1,∑N

i=1 f(Xi, k)1(h(Xi) < 1− ϵ)∑N
i=1 f(Xi, k)1(h(Xi) > 1− ϵ)

= Õ
(
A(k, h, ϵ)

(
1

1− F (1− ϵ/2)
+

1√
N

))
with probability at least 1− δ where Xi’s are i.i.d. random variable and esssup(h(Xi)) = 1. Here,
A(k, h, ϵ) = (1−ϵ)f(h−1((1−ϵ),k))

(1−ϵ/2)f(h−1((1−ϵ/2),k)) .

Proof of Lemma 8. For the same reason as the proof of Lemma 7, we have∑N
i=1 f(Xi, k)1(h(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(h(Xi) > 1− ϵ/2)
≤ f(h−1((1− ϵ), k))|{i ∈ [N ] | (h(Xi) < 1− ϵ)}|

f(h−1((1− ϵ/2), k))|{i ∈ [N ] | (h(Xi) > 1− ϵ/2)}| .

1
N |{i ∈ [N ] | (h(Xi) < 1 − ϵ)}| = F (1 − ϵ) + Õ(1/

√
N) with probability at least 1 − δ due

to Hoeffeding’s inequality (Lemma 5). Similarly, we have 1
N |{i ∈ [N ] | (h(Xi) > 1 − ϵ/2)}| =

1− F (1− ϵ/2) + Õ(1/
√
N) with probability at least 1− δ, where F is the cumulative distribution

function of random variable h(X). Therefore,
|{i ∈ [N ] | (h(Xi) < 1− ϵ)}|
|{i ∈ [N ] | (h(Xi) > 1− ϵ/2)}| =

F (1− ϵ)

1− F (1− ϵ/2)
+ Õ(

√
1/N) ≤ 1

1− F (1− ϵ/2)
+ Õ(

√
1/N).

with probability at least 1− δ. Finally, we have∑N
i=1 f(Xi, k)1(h(Xi) < 1− ϵ)∑N
i=1 f(Xi, k)1(h(Xi) > 1− ϵ)

<

∑N
i=1 f(Xi, k)1(h(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(h(Xi) > 1− ϵ/2)
≤ A(k, h, ϵ)

(
1

1− F (1− ϵ/2)
+ Õ( 1√

N
)

)
.

Note that limk→∞ A(k, h, ϵ) = 0 by the definition of f .
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By Lemma 8, we have∑N
i=1 f(Xi, k)1(h(Xi) ≥ 1− ϵ)∑N

i=1 f(Xi, k)
≥

∑N
i=1 f(Xi, k)1(h(Xi) < 1− ϵ)∑N

i=1 f(Xi, k)1(h(Xi) > 1− ϵ/2)
≥ 1

1 +A(k, h, ϵ)( 1
1−F (1−ϵ/2) + Õ(

√
1/N))

.

Therefore,

1 ≥
∑N

i=1 f(Xi, k)h(Xi)∑N
i=1 f(Xi, k)

≥
∑N

i=1 f(Xi, k)h(Xi)1(h(Xi) ≥ 1− ϵ)∑N
i=1 f(Xi, k)1(h(Xi) ≥ 1− ϵ)

1

1 +A(k, h, ϵ)( 1
1−F (1−ϵ/2) + Õ(

√
1/N))

≥ 1− ϵ

1 +A(k, h, ϵ)( 1
1−F (1−ϵ/2) + Õ(

√
1/N))

with probability at least 1− δ.

Now, for any ϵ > 0 and δ > 0, we have

0 ≤ h( max
ℓ1,...,ℓT

RegretLLMθ
((ℓt)t∈[T ]))− L(θ, k,N)

≤ h( max
ℓ1,...,ℓT

RegretLLMθ
((ℓt)t∈[T ]))

(
1− (1− δ)(1− ϵ)

1 +A(k, h, ϵ)( 1
1−Fθ(1−ϵ/2) + Õ(

√
1/N))

)

where Fθ is the cumulative distribution function of the random variable
h(RegretLLMθ

(ℓt)t∈[T ]))

h(maxℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T ]))
. Note that

1− Fθ(1− ϵ/2) = P(h(RegretLLMθ
(ℓt)t∈[T ])) > (1− ϵ/2)h( max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T ]))

is a continuous function on θ since we assume LLMθ is a continuous function, (ℓt)t∈[T ] has a
continuous distribution, and RegretLLMθ

((ℓt)t∈[T ]) is a continuous function on LLMθ and (ℓt)t∈[T ].
Since we consider the compact Θ (as several literature in Transformer Bai et al. (2023)), we have
p(ϵ) := minθ∈Θ 1− Fθ(1− ϵ/2) > 0. Therefore,(

1− (1− δ)(1− ϵ)

1 +A(k, h, ϵ)( 1
1−Fθ(1−ϵ/2) + Õ(

√
1/N))

)
≤
(
1− (1− δ)(1− ϵ)

1 +A(k, h, ϵ)( 1
p(ϵ) + Õ(

√
1/N))

)
(E.1)

and we know that limN,k→∞ 1 + A(k, h, ϵ)( 1
p(ϵ) + Õ(

√
1/N)) = 1, which is not dependent on θ,

we can conclude limN,k→∞ supθ∈Θ |h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T ]))−L(θ, k,N)| = 0.

Claim 3 (Double limit of supremum). limN→∞ limk→∞ supθ∈Θ |L(θ, k,N) −
h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ]))| = 0.

Proof. Since h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T ])) ≥ L(θ, k,N), we will prove

limN→∞ limk→∞ supθ∈Θ(h(maxℓ1,...,ℓT RegretLLMθ
((ℓt)t∈[T ]))− L(θ, k,N)) = 0.

Lemma 9.
∑N

i=1 f(Xi,k1)h(Xi)∑N
i=1 f(Xi,k1)

≤
∑N

i=1 f(Xi,k2)h(Xi)∑N
i=1 f(Xi,k2)

holds if k1 ≤ k2.

Proof. By multiplying (
∑N

i=1 f(Xi, k1))(
∑N

i=1 f(Xi, k2)) to both sides of the lemma, this is equiv-
alent to

∑
1≤i ̸=j≤N f(Xi, k1)h(Xi)f(Xj , k2) ≤

∑
1≤i̸=j≤N f(Xi, k1)h(Xj)f(Xj , k2). This is

equivalent to ∑
1≤i̸=j≤N

(f(Xj , k1)f(Xi, k2)− f(Xi, k1)f(Xj , k2))(h(Xi)− h(Xj)) ≥ 0

which is true since if Xi ≥ Xj , (f(Xj , k1)f(Xi, k2) − f(Xi, k1)f(Xj , k2)) ≥ 0 due to the log-
increasing difference of f .
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Therefore, L(θ, k,N) is a monotone nondecreasing function of k if N is fixed, which indicates
that limk→∞ supθ∈Θ(h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])) − L(θ, k,N)) exists, as L(θ, k,N) is
also bounded. Therefore, by Lemma 4 and Claim 2, limN→∞ limk→∞ supθ∈Θ |L(θ, k,N) −
h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ]))| exists and this value should be 0.

Claim 4. limN,k→∞ infθ∈Θ L(θ, k,N) = limN→∞ limk→∞ infθ∈Θ L(θ, k,N) =
infθ∈Θ h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])) holds.

Proof. Firstly, by Lemma 6, we have limN,k→∞ infθ∈Θ L(θ, k,N) =
infθ∈Θ h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])). Plus, we already know that L(θ, k,N) iis
a monotone nondecreasing function of k if N is fixed (Lemma 9) and it is bounded,
limk→∞ infθ∈Θ L(θ, k,N) always exists. Therefore, by Lemma 4, we also have
limN→∞ lim k →∞ infθ∈Θ L(θ, k,N) = infθ∈Θ h(maxℓ1,...,ℓT RegretLLMθ

((ℓt)t∈[T ])).

E.3 DEFERRED PROOF OF THEOREM 5.1 AND COROLLARY 1

Definition 3 (Empirical loss function). We define the empirical loss L̂ computed with NT samples
as follows:

L̂(θ, k,N,NT ) :=

NT∑
s=1

1

NT

[∑
j∈[N ] h(RLLMθ

((ℓ
(j)
s,t )t∈[T ]))f(RLLMθ

((ℓ
(j)
s,t )t∈[T ]), k)∑

j∈[N ] f(RLLMθ
((ℓ

(j)
s,i )t∈[T ]), k)

]
(E.2)

where (ℓ
(j)
s,t )j∈[N ],t∈[T ] indicates sth sampling of (ℓ(j)t )j∈[N ],t∈[T ] for estimating L.

Theorem 5.1. (Generalization gap). For any 0 < ϵ < 1/2, with probability at least 1− ϵ, we have

L
(
θ̂k,N,NT , k,N

)
− inf

θ∈Θ
L(θ, k,N) ≤ O

(
1 + log(1/ϵ)√

NT

)
, (5.3)

for any N and sufficiently large k, where the empirical loss L is computed with NT samples.

Proof. Firstly, we point out that the Transformer structure has a Lipschtiness with respect to the
parameter. We adapt the result from (Bai et al., 2023, Section J.1), which is about the Lipschitzness
of Transformer:
Proposition 3. The function TFθ is CTF := L

(
(1 +B2

TF)(1 +B2
TFR

3)
)L

BTFR(1 + BTFR
2 +

B3
TFR

2) - Lipschitz function, i.e.,

∥TFθ1(Z)− TFθ2(Z)∥2,∞ ≤ CTF∥θ1 − θ2∥TF.

Now, we set Cθ as a Lipshitz constant for the LLM. Now, we prove that regret is also a Lipschtiz
function with respect to the Transformer’s parameter.

Lemma 10 (Lipschitzness of Regret value). The function Regretgθ is CReg := B
√
d∥A∥opTCθ -

Lipschitz function, i.e.,

|Regretgθ1 ((ℓt)
T
t=1, T )− Regretgθ2 ((ℓt)

T
t=1, T )| ≤ CReg∥θ1 − θ2∥TF.

Proof.

|Regretgθ1 ((ℓt)
T
t=1, T )− Regretgθ2 ((ℓt)

T
t=1, T )| =

∣∣∣∣∣
T∑

t=1

⟨ℓt, (gθ1(Zt−1)− gθ2(Zt−1))⟩
∣∣∣∣∣

=

∣∣∣∣∣
T∑

t=1

⟨ℓt,Operator(A · LLMθ1(Zt−1)−1)− Operator(A · LLMθ2(Zt−1)−1)⟩
∣∣∣∣∣

≤ B
√
d

T∑
t=1

∥A · LLMθ1(Zt−1)−1 −A · LLMθ2(Zt−1)−1∥2

≤ B
√
d∥A∥opTCLLM∥θ1 − θ2∥LLM = CReg∥θ1 − θ2∥LLM,

where Zt := (ℓ1, . . . , ℓt, c) for all t ∈ [T ]. Here, the penultimate inequality holds since
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• If Operator is a projection to the convex set, then ∥Operator(x)−Operator(y)∥2 ≤
∥x− y∥2.

• If Operator is Softmax, then ∥Softmax(x) − Softmax(y)∥2 ≤ ∥x − y∥2 (Gao &
Pavel, 2017, Corollary 3)

and ∥ℓi∥2 ≤ B
√
d as ∥ℓi∥∞ ≤ B. Note that the only condition that we require for Operator is

nonexpansiveness.

Now, we will prove the Lipschitzness of

c((ℓ
(j)
t )t∈[T ],j∈[N ], k, θ) :=

∑
j∈[N ] h(Regretgθ ((ℓ

(j)
t )Tt=1))f(Regretgθ ((ℓ

(j)
t )Tt=1), k)∑

j∈[N ] f(Regretgθ ((ℓ
(j)
t )Tt=1), k)

. (E.3)

Claim 5. For R > 0, there exists βR such that if β > βR, we have∣∣∣∣∣
∑

n∈[N ] xnf(xn, β)∑
n∈[N ] f(xn, β)

−
∑

n∈[N ] ynf(yn, β)∑
n∈[N ] f(yn, β)

∣∣∣∣∣ ≤ 2∥x− y∥∞

for every x, y ∈ Rn such that |xi| ≤ R, |yi| ≤ R for all i ∈ [N ].

Proof. If β =∞, we have

lim
β→∞

(∣∣∣∣∣
∑

n∈[N ] xnf(xn, β)∑
n∈[N ] f(xn, β)

−
∑

n∈[N ] ynf(yn, β)∑
n∈[N ] f(yn, β)

∣∣∣∣∣/∥x− y∥∞
)

=
|maxn∈[N ] xn −maxn∈[N ] yn|

∥x− y∥∞
≤ 1

holds. Moreover, we can think of an optimization problem as follows:

F (R, β) = max

(∣∣∣∣∣
∑

n∈[N ] xnf(xn, β)∑
n∈[N ] f(xn, β)

−
∑

n∈[N ] ynf(yn, β)∑
n∈[N ] f(yn, β)

∣∣∣∣∣/∥x− y∥∞
)

subject to |xi| ≤ R, |yi| ≤ R for all i ∈ [N ]

Then, since ∥x∥∞ ≤ R and ∥y∥∞ ≤ R is a compact set, by Berge’s maximum theorem, we have
that F (R, β) is a continuous function for β. Moreover, we know that F (R,∞) ≤ 1, which indicates
that we can find Cβ(R) such that if β > βR, F (β) ≤ 2.

Note that Claim 5 does not hold if xi or yi is not bounded. Now, we will apply Claim 5 to Equa-
tion (E.3). We can guarantee that Regretgθ ((ℓt)

T
t=1) ≤ diam(Π)TB. Since we assumed the conti-

nuity of h′, and the domain of h is the range of Regretgθ ((ℓt)
T
t=1), which is a compact interval, we

can assume that h is Ch(diam(Π)TB) Lipschitz continuous.
Lemma 11 (Lipshitzness of c). Equation (E.3) is Ccost := 2Ch(diam(Π)TB)CReg Lipschitz func-
tion if k > kdiam(Π)TB , i.e.,

|c((ℓ(j)t )t∈[T ],j∈[N ], k, θ1)− c((ℓ
(j)
t )t∈[T ],j∈[N ], k, θ2)| ≤ Ccost∥θ1 − θ2∥LLM.

Proof.

|c((ℓ(j)t )t∈[T ],j∈[N ], k, θ1)− c((ℓ
(j)
t )t∈[T ],j∈[N ], k, θ2)|

≤
(i)

2∥h(Regretgθ1 ((ℓ
(j)
t )Tt=1))− h(Regretgθ2 ((ℓ

(j)
t )Tt=1))∥∞

≤
(ii)

2Ch(diam(Π)TB)∥Regretgθ1 ((ℓ
(j)
t )Tt=1)− Regretgθ2 ((ℓ

(j)
t )Tt=1)∥∞

≤
(iii)

2Ch(diam(Π)TB)CReg∥θ1 − θ2∥LLM = Ccost∥θ1 − θ2∥LLM.

Here, (i) holds due to Claim 5, (ii) holds since h is Ch(diam(Π)TB) Lipschitz continuous, and (iii)
holds due to Lemma 10.
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For completeness of the paper, we provide the definition of covering set and covering number.

Definition 4 (Covering set and Covering number). For δ > 0, a metric space (X, ∥ · ∥), and subset
Y ⊆ X , set C ⊂ Y is a δ covering when Y ⊆ ∪c∈CB(c, δ, ∥ · ∥) holds. δ covering number
N(δ;Y, ∥ · ∥) is defined as the minimum cardinality of any covering.

By (Wainwright, 2019, Example 5.8)), we can verify that the δ-covering number N(δ;B(0, r, ∥ ·
∥LLM), ∥ · ∥LLM) as

logN(δ;B(0, r, ∥ · ∥LLM), ∥ · ∥LLM) ≤ dθ log(1 + 2r/δ).

where dθ is the dimension of LLM’s parameter space. For example, if we use the Transformer with
parameter space Θd.L,M,d′,BTF ,

logN(δ;B(0, r, ∥ · ∥LLM), ∥ · ∥LLM) ≤ L(3Md2 + 2d(dd′ + 3md2)) log(1 + 2r/δ).

Therefore, there exists a set Θ0 with log |Θ0| = dθ log(1 + 2r/δ) so for any θ ∈ Θ, there exists
θ0 ∈ Θ0 with

|c((ℓ(j)t )t∈[T ],j∈[N ], k, θ)− c((ℓ
(j)
t )t∈[T ],j∈[N ], k, θ0)| ≤ Ccostδ.

Then, by the standard result of the statistical learning theory, if we trained with NT samples, for
every 0 < ϵ < 1/2, with probability at least 1− ϵ, we have

L(θ̂k,N,NT
, k,N)− inf

θ∈Θ
L(θ, k,N) ≤

√
2(log |Θ0|+ log(2/ϵ))

NT
+ 2Ccostδ

if we set δ = Ω(
√
log(ϵ)/NT ), we obtain

L(θ̂k,N,NT
, k,N)− inf

θ∈Θ
L(θ, k,N) ≤ O

√1 + log(1/ϵ)

NT


with probability at least 1− ϵ.

Corollary 1. (Regret). Suppose h is a non-decreasing function and log f is a supermodular twice-
continuously-differentiable function (i.e., ∂2 log f

∂x∂k ≥ 0). For any 0 < ϵ < 1/2, with probability at
least 1− ϵ, we have

h( lim
N→∞

lim
k→∞

max
∥ℓt∥∞≤B

RegretLLM
θ̂k,N,NT

(
(ℓt)t∈[T ]

)
) ≤ h

(
inf
θ∈Θ

max
∥ℓt∥∞≤B

RegretLLMθ
((ℓt)t∈[T ])

)
+ Õ

(
1

√
NT

)
.

(5.4)

Proof. The limit of right-hand side remains as O
(√

1+log(1/ϵ)
NT

)
since we firstly do limk→inf and

then we use limN→inf , as we can guarantee Theorem 5.1 when k > kR. Note that kR is implicitly
related to N .

Next, we have

lim
N→∞

lim
k→∞

|L(θ̂K,N , k,N)− h( lim
N→∞

lim
k→∞

max
∥ℓt∥∞≤B

RegretLLM
θ̂N,k

((ℓt)t∈[T ])|

≤ lim
N→∞

lim
k→∞

sup
θ∈Θ
|L(θ, k,N)− h( lim

N→∞
lim
k→∞

max
∥ℓt∥∞≤B

RegretLLMθ
((ℓt)t∈[T ])| = 0

due to Claim 3.

Finally, we have

lim
N→∞

lim
k→∞

inf
θ∈Θ
L(θ, k,N) = inf

θ∈Θ
h( max

ℓ1,...,ℓT
RegretLLMθ

((ℓt)t∈[T ]))

due to Claim 4.
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Remark 4 (Dynamic regret loss). Similarly, we can define the dynamic regret loss function as fol-
lows:

L(θ, k,N) := E

[∑
j∈[N ] h(D-RegretLLMθ

((ℓ
(j)
t )t∈[T ]))f(D-RegretLLMθ

((ℓ
(j)
t )t∈[T ]), k)∑

j∈[N ] f(D-RegretLLMθ
((ℓ

(j)
i )t∈[T ]), k)

]

Then, in disease, we can also show the same result as the regret loss case since regret loss does
not utilize the property of the regret except boundedness. To be specific, Lemma 10 holds due to
the reason that we can bound the difference of the regret with

∣∣∣∑T
t=1⟨ℓt, (gθ1(Zt−1)− gθ2(Zt−1))⟩

∣∣∣
term as well as infπi∈Π⟨ℓi, πi⟩ is canceled. Moreover, every component of Appendix E.2 holds for
the same reason.

E.4 DEFERRED PROOF OF THEOREM 5.2

Theorem 5.2. The configuration in Equation (5.5) and Π = B(0, RΠ, ∥ · ∥) for some
RΠ > 0, (V,K,Q, vc, kc, qc) such that K⊺(Qc + qc) = vc = 000d and V =

−RΠ
T∑T−1

t=1 1/t
Σ−1E

[
∥∑T

t=1 ℓt∥ℓ1ℓ
⊺
2

]
Σ−1 is a first-order stationary point of Equation (5.2) with

N = 1, h(x) = x2. Moreover, if Σ is a diagonal matrix, then plugging this configuration to Equa-
tion (5.5) then ProjΠ,∥·∥ would perform FTRL with an L2-regularizer for the loss vectors (ℓt)t∈[T ].

Proof. Define a := K⊺(Qc+ qc) ∈ Rd and bt−1 := β111t−1 := k⊺c (Qc+ qc)111t−1 ∈ Rt−1. The loss
function (Equation (5.2)) can be written as follows:

f(V, a, b, vc) := E

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2
)2

Step 1. Calculating df
da

For x ∈ [d], we calculate the x directional derivative with the following equation:

d

dax
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1)

=
d

dax

t−1∑
i=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)ei

exp(e⊺i (ℓ
⊺
1:t−1a+ bt−1))∑t−1

s=1 exp(e
⊺
s(ℓ

⊺
1:t−1a+ bt−1))

=

∑t−1
i=1 ℓ

⊺
t (V ℓ1:t−1 + vc111

⊺
t−1)ei exp(e

⊺
i (ℓ

⊺
1:t−1a+ bt−1))

de
⊺
i (ℓ

⊺
1:t−1a+bt−1)

dax
(
∑t−1

s=1 exp(e
⊺
s(ℓ

⊺
1:t−1a+ bt−1)))

(
∑t−1

s=1 exp(e
⊺
s(ℓ

⊺
1:t−1a+ bt−1)))2

−

∑t−1
i=1 ℓ

⊺
t (V ℓ1:t−1 + vc111

⊺
t−1)ei exp(e

⊺
i (ℓ

⊺
1:t−1a+ bt−1))

(∑t−1
s=1 exp(e

⊺
s(ℓ

⊺
1:t−1a+ bt−1))

de⊺s (ℓ
⊺
1:t−1a+bt−1)

dax

)
(
∑t−1

s=1 exp(e
⊺
s(ℓ

⊺
1:t−1a+ bt−1)))2

.

Plugging a = 000d and vc = 000d, and bt−1 = β111t−1 provides

d

dax
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1)

∣∣∣∣
a=000d,vc=000d,b=β111t−1

=

∑t−1
i=1 ℓ

⊺
t V ℓiℓix

(t− 1)
−
∑t−1

i=1 ℓ
⊺
t V ℓi

(∑t−1
s=1 ℓsx

)
(t− 1)2

,
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Using the above calculation, now we calculate df/dax as follows:

df(V, a, b, vc)

dax

∣∣∣∣
a=000d,vc=000d,bt−1=β111t−1

= E d

dax

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)2 ∣∣∣∣
a=000d,vc=000d,bt−1=β111t−1

= E

[(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)∣∣∣∣
a=000d,vc=000d,bt−1=β111t−1

d

dax

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)∣∣∣∣
a=000d,vc=000d,bt−1=β111t−1

]

= E

[(
T∑

t=1

1

t− 1
ℓ⊺tV

t−1∑
i=1

ℓi +RΠ∥
T∑

t=1

ℓt∥2

)
T∑

t=1

(∑t−1
i=1 ℓ

⊺
tV ℓiℓix

(t− 1)
−
∑t−1

i=1 ℓ
⊺
tV ℓi

(∑t−1
s=1 ℓsx

)
(t− 1)2

)]
= 0

since the expectation of odd-order polynomial or even-order polynomial times ∥ · ∥2 with respect to
symmetric distribution ℓt is 0.

Step 2. Calculating df
dvc

We will use the following equation:

d

dvc
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1)

=
d

dvc

t−1∑
i=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)ei

exp(e⊺i (ℓ
⊺
1:t−1a+ bt−1))∑t−1

s=1 exp(e
⊺
s (ℓ

⊺
1:t−1a+ bt−1))

= ℓt.

Therefore, we can calculate f ’s derivative over vc:

df(V, a, b, vc)

dvc

∣∣∣∣
a=000d,vc=000d,bt−1=β111t−1

= E d

dvc

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)2 ∣∣∣∣
a=000d,vc=000d,bt−1=β111t−1

= E

[(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)∣∣∣∣
a=000d,vc=000d,bt−1=β111t−1

d

dvc

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2

)∣∣∣∣
a=000d,vc=000d,bt−1=β111t−1

]

= E

[(
T∑

t=1

1

t− 1
ℓ⊺tV

t−1∑
i=1

ℓi +RΠ∥
T∑

t=1

ℓt∥2

)
T∑

t=1

ℓt

]
= 0

since the expectation of odd-order polynomial or even-order polynomial times ∥ · ∥2 with respect to
symmetric distribution ℓt is 0.

Step 3. Calculating df
dV

We calculate the following equation, which will be used to calculate df/dV :

d

dV
ℓ⊺t (V ℓ1:t−1 + vc111

⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1)

∣∣∣∣
a=000d,vc=000d

=
d

dV

t−1∑
i=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)ei

exp(e⊺i (ℓ
⊺
1:t−1a+ bt−1))∑t−1

s=1 exp(e
⊺
s (ℓ

⊺
1:t−1a+ bt−1))

∣∣∣∣
a=000d,vc=000d

=

t−1∑
i=1

ℓtℓ
⊺
i

exp(e⊺i (ℓ
⊺
1:t−1a+ bt−1))∑t−1

s=1 exp(e
⊺
s (ℓ

⊺
1:t−1a+ bt−1))

∣∣∣∣
a=000d,vc=000d

=
1

t− 1

t−1∑
i=1

ℓtℓ
⊺
i .
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Therefore, if we calculate the derivative over V , then we have
df(V, a, b, vc)

dV

∣∣∣∣
a=000d,vc=000d

= E
d

dV

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2
)2 ∣∣∣∣

a=000d,vc=000d

= E

[(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2
)∣∣∣∣

a=000d,vc=000d

d

dV

(
T∑

t=1

ℓ⊺t (V ℓ1:t−1 + vc111
⊺
t−1)Softmax(ℓ

⊺
1:t−1a+ bt−1) +RΠ∥

T∑
t=1

ℓt∥2
)∣∣∣∣

a=000d,vc=000d,

]

= E

[(
T∑

t=1

1

t− 1
ℓ⊺t V

t−1∑
i=1

ℓi +RΠ∥
T∑

t=1

ℓt∥2
)

T∑
t=1

t−1∑
i=1

1

t− 1
ℓtℓ

⊺
i

]

= E

[(
T∑

t=1

t−1∑
i=1

(
1

t− 1
ℓ⊺t V ℓi

)(
1

t− 1
ℓtℓ

⊺
i

)
+RΠT∥

T∑
t=1

ℓt∥2ℓtℓ⊺i

)]

= E

[(
T∑

t=1

t−1∑
i=1

d∑
x=1

d∑
y=1

vxyℓtxℓiy

(
1

t− 1

)2

[ℓtzℓiw](z,w) +RΠT∥
T∑

t=1

ℓt∥2ℓtℓ⊺i

)]

=

T∑
t=1

t−1∑
i=1

d∑
x=1

d∑
y=1

1

(t− 1)2
[σxzvxyσyw](z,w) + E

[
RΠT∥

T∑
t=1

ℓt∥2ℓtℓ⊺i

]

=

(
T−1∑
t=1

1

t

)
ΣV Σ+ E

[
RΠT∥

T∑
t=1

ℓt∥2ℓtℓ⊺i

]
.

Therefore, if V = RΠ
T∑T−1

t=1 1/T
Σ−1E

[
∥∑T

t=1 ℓt∥2ℓtℓ
⊺
i

]
Σ−1, df

dV = Od×d. Lastly, we have

df

dK
=

df

da

da

dK
= 000d

da

dK
= OOOd×d

df

dQ
=

df

da

da

dQ
= 000d

da

dQ
= OOOd×d

df

dqc
=

df

da

da

dqc
= 000d

da

dqc
= 000d

which means that such configurations are the first-order stationary points.

E.5 DEFERRED PROOF OF THEOREM 5.3

Theorem 5.3. The configuration of a single-layer linear self-attention model in Equation (5.6)
(V,K,Q, vc, kc, qc) such that K⊺(Qc + qc) = vc = 000d and Π = B(0, RΠ, ∥ · ∥) for some

RΠ > 0, V = −2RΠΣ
−1E

(
∥∑T

t=1 ℓt∥ℓ1ℓ
⊺
2

)
Σ−1 is a global optimal solution of Equation (5.2)

with N = 1, h(x) = x2. Moreover, every global optimal configuration of Equation (5.2) within the
parameterization class of Equation (5.6) has the same output function g. If Σ is a diagonal matrix,
plugging any global optimal configuration to Equation (5.6) then ProjΠ,∥·∥ would perform FTRL
with an-L2-regularizer for the loss vectors (ℓt)t∈[T ].

Proof. The output of the single-layer self-attention structure is as follows:
g(Zt;V,K,Q, vc, kc, qc)

=

t∑
i=1

(V ℓiℓ
⊺
i (K

⊺(Qc+ qc)) + (V k⊺c (Qc+ qc) + vc(Qc+ qc)
⊺K) ℓi + vck

⊺
c (Qc+ qc))

(E.4)
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which can be expressed with a larger class

g(Zt,A, β,C, δ) :=
t∑

i=1

(Aℓiℓ⊺i β + Cℓi + δ) (E.5)

where A ∈ Rd×d, β,C, δ ∈ Rd. Then, if a minimizer of

f(A, β,C, δ) : = E

(
T∑

t=1

⟨ℓt,
t−1∑
i=1

(Aℓiℓ⊺i β + Cℓi + δ)⟩ − inf
π∈Π

〈
T∑

t=1

ℓt, π

〉)2

can be expressed with A = V, β = K⊺(Qc + qc),C = V k⊺c (Qc + qc) + vc(Qc + qc)
⊺K,β =

vck
⊺
c (Qc+ qc), we can conclude that corresponding V,Q,K, vc, qc, kc are also a minimizer of

E

(
T∑

t=1

⟨ℓt, g(Zt−1)⟩ − inf
π∈Π

〈
T∑

t=1

ℓi, π

〉)2

since corresponding V,Q,K, vc, qc, kc constitute a minimizer among a larger class. Now, since
Π = B(000d, B, ∥ · ∥), we can rewrite f as

f(A, β,C, δ) = E

(
T∑

t=1

⟨ℓt,
t−1∑
i=1

(Aℓiℓ⊺i β + Cℓi + δ)⟩+RΠ

∥∥∥∥ T∑
t=1

ℓi

∥∥∥∥
2

)2

. (E.6)

Step 1. Finding condition for df
dδ = 0

Due to the Leibniz rule, if we calculate the derivative of Equation (E.6) over δ, we have

df(A, β,C, δ)
dδ

=
d

dβ
E

(
T∑

t=1

⟨ℓt,
t−1∑
i=1

(Aℓiℓ⊺i β + Cℓi + δ)⟩+RΠ∥
T∑

t=1

ℓt∥2
)2

= E
d

dδ

(
T∑

t=1

⟨ℓt,
t−1∑
i=1

(Aℓiℓ⊺i β + Cℓi + δ)⟩+RΠ∥
T∑

t=1

ℓt∥2
)2

= E
T∑

t=1

(t− 1)ℓt

(
T∑

t=1

t−1∑
i=1

ℓ⊺t (Aℓiℓ
⊺
i β + Cℓi + δ) +RΠ∥

T∑
t=1

ℓt∥
)
. (E.7)

Since the expectation of odd-order polynomial or even-order polynomial times ∥ · ∥2 with respect to
symmetric distribution ℓt is 0, we have

E
T∑

t=1

(t− 1)ℓtRΠ∥
T∑

t=1

ℓt∥2 = 0, E
T∑

t=1

(t− 1)ℓt

T∑
t=1

t−1∑
i=1

ℓ⊺tCℓi = 0.

Now, we calculate

E
T∑

t=1

(t− 1)ℓt

T∑
t=1

t−1∑
i=1

ℓ⊺tAℓiℓ
⊺
i β = E

T∑
t1=1

T∑
t=1

t−1∑
i=1

(t1 − 1)ℓt1ℓ
⊺
tAℓiℓ

⊺
i β

=
(i)

E
T∑

t=1

t−1∑
i=1

(t− 1)ℓtℓ
⊺
tAℓiℓ

⊺
i β = E

T∑
t=1

(t− 1)2ℓtℓ
⊺
tAΣβ =

1

6
n(2n2 − 3n+ 1)ΣAΣβ

since (i) holds since if t1 ̸= t, due to the independence of ℓt, ℓt1 , we can use Eℓt = 0. Lastly,

E
T∑

t=1

(t− 1)ℓt

T∑
t=1

t−1∑
i=1

ℓ⊺t δ = E
T∑

t1=1

T∑
t=1

(t1 − 1)(t− 1)ℓt1ℓ
⊺
t δ =

1

6
n(2n2 − 3n+ 1)Σδ.

Plugging above equations to Equation (E.7), we have

df(A, β,C, δ)
dδ

=
1

6
n(2n2 − 3n+ 1)(ΣAΣβ +Σδ).
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Due to the optimality condition, we have
AΣβ + δ = 0. (E.8)

Step 2. Plugging the optimality condition from df
dδ to Equation (E.6)

Plugging Equation (E.8) to Equation (E.6), f can be written as

f(A,β,C,−AΣβ) = E

(
T∑

t=1

t−1∑
i=1

ℓ⊺t (A(ℓiℓ
⊺
i − Σ)β + Cℓi) +RΠ

∥∥∥∥ T∑
t=1

ℓt

∥∥∥∥
2

)2

= E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tA(ℓiℓ
⊺
i − Σ)β

)2

︸ ︷︷ ︸
(i)

+E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)2

+ E

(
RΠ

∥∥∥∥ T∑
t=1

ℓt

∥∥∥∥
2

)2

+ 2E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tA(ℓiℓ
⊺
i − Σ)β

)(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)
︸ ︷︷ ︸

(ii)

+ 2E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tA(ℓiℓ
⊺
i − Σ)β

)(
RΠ

∥∥∥∥ T∑
t=1

ℓt

∥∥∥∥
2

)
︸ ︷︷ ︸

(iii)

+ 2E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)(
RΠ

∥∥∥∥ T∑
t=1

ℓt

∥∥∥∥
2

)
.

For the part (i), we have

E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tA(ℓiℓ
⊺
i − Σ)β

)2

= E

[
T∑

t1=1

t1−1∑
i1=1

T∑
t=1

t−1∑
i=1

β⊺(ℓi1ℓ
⊺
i1
− Σ)A⊺ℓt1ℓ

⊺
tA(ℓiℓ

⊺
i − Σ)β

]

=
(1)

E

[
T∑

t=1

t−1∑
i1=1

t−1∑
i=1

β⊺(ℓi1ℓ
⊺
i1
− Σ)A⊺ℓtℓ

⊺
tA(ℓiℓ

⊺
i − Σ)β

]

=
(2)

E

[
T∑

t=1

t−1∑
i=1

β⊺(ℓiℓ
⊺
i − Σ)A⊺ℓiℓ

⊺
i A(ℓiℓ

⊺
i − Σ)β

]

= E
[
(T − 1)T

2
β⊺(ℓiℓ

⊺
i − Σ)A⊺ΣA(ℓiℓ⊺i − Σ)β

]
= E

[
(T − 1)T

2
∥
√
ΣA(ℓiℓ⊺i − Σ)β∥2

]
(E.9)

Here, (1) holds because if t1 ̸= t, we know that Eℓt1 = Eℓt = 0 and they are independent, and (2)
holds because if i1 ̸= i, We can calculate E(ℓi1ℓ

⊺
i1
− Σ) = Od×d In addition, we can easily check

that (ii) and (iii) are 0 as they are a polynomial of odd degrees and we have Z
d
= −Z. Note that

equation E.9 is minimized when P(
√
ΣA(ℓiℓ⊺i −Σ)β = 000d) = 1. If A ̸= Od×d, assume that singular

value decomposition of A = UΛV such that Λ is a diagonal matrix that the first diagonal element is
non-zero, and U, V are orthogonal matrices. Then, we want to find β that

√
ΣUΛV ℓiℓ

⊺
i β = 000d for

any ℓi such that P(ℓi) ̸= 0. Since Σ and U are invertible, we only need to consider ΛV ℓiℓ
⊺
i β = 000d.

Since Λ’s first diagonal component is non-zero, we will consider equation eee1ΛV ℓiℓ
⊺
i β = 0 where

eee1 ∈ Rd is (1, 0, . . . , 0)⊺. This is equivalent to V1ℓiℓ
⊺
i β = 0 where V1 is the first row of V which is

non-zero vector. Since ℓi’s support is Rd, V1ℓi can be any value, so ℓ⊺i β = 0 for all ℓi ∈ supp(Z),
which indicates β = 000d.

Therefore, if we want to minimize Equation (E.9), A = Od×d or β = 000d holds. In both cases,
Equation (E.5) can be re-written as

g(Zt;A, β,C, δ) :=
t∑

i=1

Cℓi,
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and this is covered by the original parametrization (Equation (E.4)) with K⊺(Qc+ qc) = vc = 000d.

Step 3. Calculating df
dC

Now, we do optimization over C. So we have the following minimization problem with respect to
C:

f(C) := E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi +RΠ∥
T∑

t=1

ℓt∥
)2

= E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)2

︸ ︷︷ ︸
(i)

+2E

((
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)
RΠ∥

T∑
t=1

ℓt∥
)

+ E

(
RΠ∥

T∑
t=1

ℓt∥
)2

=
T (T − 1)

2
Tr (C⊺ΣCΣ) + 2E

B

T∑
t=1

t−1∑
i=1

ℓ⊺tCℓi∥
T∑

j=1

ℓj∥

+ E

(
RΠ∥

T∑
t=1

ℓt∥
)2

.

Here, (i) can be calculated as follows:

E

(
T∑

t=1

t−1∑
i=1

ℓ⊺tCℓi

)2

= E

(
T∑

t1=1

t1−1∑
i1=1

T∑
t=1

t−1∑
i=1

ℓ⊺i1C
⊺ℓt1ℓ

⊺
i Cℓi

)

=
(1)

E

(
T∑

t=1

i−1∑
i1=1

t−1∑
i=1

ℓ⊺i1C
⊺ℓiℓ

⊺
i Cℓi

)
= E

(
T∑

t=1

i−1∑
i1=1

t−1∑
i=1

ℓ⊺i1C
⊺ΣCℓi

)

=
(2)

E

(
T∑

t=1

t−1∑
i=1

ℓ⊺kC
⊺ΣCℓi

)
=
(3)

ETr

(
T∑

t=1

t−1∑
i=1

C⊺ΣCℓiℓ⊺k

)
=

T (T − 1)

2
Tr (C⊺ΣCΣ) ,

since (1) holds because if t1 ̸= t, we already know that Eℓt = Eℓt1 = 0, (2) holds due to a similar
reason, and (3) comes from Tr(AB) = Tr(BA).

We calculate df(C)
dC :

df(C)
dC

= T (T − 1)ΣCΣ+ 2RΠE

∥ T∑
j=1

ℓj∥
T∑

t=1

t−1∑
i=1

ℓtℓ
⊺
i

 ,

So the optimal C = − 2RΠ

T (T−1)Σ
−1E

(
∥∑T

j=1 ℓj∥
∑T

t=1

∑t−1
i=1 ℓtℓ

⊺
i

)
Σ−1.

Now, we see the special case of Σ = I , then we have C = −RΠE
(
∥∑T

j=1 ℓj∥ℓtℓ
⊺
i

)
. If we

calculate (a, b)-coordinate of C, we need to calculate

El


√√√√ d∑

o=1

(

T∑
s=1

ℓso)2ℓiaℓkb


If a ̸= b, then since Z is symmetric, we can think event about (ℓta)

T
t=1 become (−ℓta)Tt=1,

so it becomes zero. Therefore, we only need to consider a = b case, which is

El

[√∑d
o=1(

∑T
s=1 ℓso)

2ℓiaℓka

]
, and it will be the same value among a ∈ [d] if ℓi’s coordinate

is also independent.

Now, we calculate the scale of El

[√∑d
o=1(

∑T
s=1 ℓso)

2ℓidℓkd

]
. Firstly, we have

∑T
s=1 ℓso/

√
T

d→

N (0, 1) by central limit theorem, and by Slutsky theorem, we have (
∑T

s=1 ℓso/
√
T )2

d→ χ2(1), so
we have ∑d−1

o=1(
∑T

s=1 ℓso)
2

T
√
d

−
√
d

d→ N (1, 2).
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If we define Z =
∑d−1

o=1 (
∑T

s=1 ℓso)
2

T
√
d

and W =
∑

s ̸=i,k ℓsd/
√
T

d→ N (0, 1), we have

El


√√√√ d∑

o=1

(

T∑
s=1

ℓso)2ℓidℓkd

 = EZ,W,ℓid,ℓkd

[√
T
√
dZ + (

√
TW + ℓid + ℓkd)2ℓidℓkd

]

= EZ,W,ℓid>ℓkd≥0

[√
T
√
dZ + (

√
TW + ℓid + ℓkd)2ℓidℓkd −

√
T
√
dZ + (

√
TW + ℓid − ℓkd)2ℓidℓkd

]

= EZ,W,ℓid>ℓkd≥0

 4(
√
TW + ℓid)ℓkd√

T
√
dZ + (

√
TW + ℓid + ℓkd)2 +

√
T
√
dZ + (

√
TW + ℓid − ℓkd)2

ℓidℓkd


Assuming that T, d→∞, we can estimate this value with

EZ,W,ℓid>ℓkd≥0

[
4(
√
TW )ℓ2kdℓid + const

2
√
Td

]
= Θ(1/

√
Td).

Therefore, the output of the single-layer self-attention provides us with online gradient descent with
step-size Θ(RΠ/

√
Td). In the online gradient descent literature, we usually set the gradient step

size as Θ(RΠ/
√
Td) (Hazan, 2016, Theorem 3.1), so it is consistent with existing online learning

literature too.

Remark 5. The studies by (Ahn et al., 2023; Zhang et al., 2023b; Mahankali et al., 2023)
demonstrate that if Zt = ((x1, y1), . . . , (xt, yt), (xt+1, 0)) and the ‘instruction tuning’ loss
(i.e., E[∥ŷt+1 − yt+1∥2]) is being minimized with a single-layer linear self-attention model, then
a global optimizer among single-layer linear self-attention models yields the output ŷn+1 =
η
∑n

i=1 yix
⊺
i xn+1. This output can be interpreted as a gradient descent algorithm, indicating that

a single-layer self-attention model implicitly performs gradient descent. However, in the online
learning setting where there are no y labels, implicit gradient descent is hard to define. Compared
to the previous studies, our global optimizer among single-layer linear self-attention models is an
explicit online gradient descent algorithm for online learning. Additionally, we employ a distinct
loss function specifically designed for no-regret learning.

E.6 EMPIRICAL VALIDATION OF THEOREM 5.2 AND THEOREM 5.3

We will provide empirical validation of Theorem 5.2 and Theorem 5.3. We provide the training
details and the results.

E.6.1 EMPIRICAL VALIDATION OF THEOREM 5.2

Our model architecture is defined as follows: the number of layers T is set to 30 and the dimen-
sionality d to 32, with the loss vector li’s distribution Z following a standard normal distribution
N (0, 1). During training, we conducted 40,000 epochs with a batch size of 512. We employed the
Adam optimizer, setting the learning rate to 0.001. We initialized the value, query, and key vectors
(vc, qc, kc) as zero vectors.

Our empirical analysis aims to demonstrate that the optimized model inherently emulates online
gradient descent. To illustrate this, we will focus on two key convergence properties: K⊺Q ap-
proaching the zero matrix OOOd×d and V converging to a111d111

⊺
d + bId×d, where a and b are con-

stants in R. The conditions K⊺Q = OOOd×d and V = a111d111
⊺
d + bId×d imply that the function

g(Zt;V,Q,K) =
∑t

i=1(b − a)li, effectively emulating the process of an online gradient descent
method. We repeated 10 times. For verifying K⊺Q = OOOd×d, we will measure Frobenius norm
(∥ · ∥2,2) of K⊺Q. Also for measuring the closeness of V and a111d111

⊺
d + bId×d, we will measure

mina,b∈R ∥V − (a111d111
⊺
d + bId×d)∥2,2/b. The results are demonstrated in the first plot of Figure 11.

E.6.2 EMPIRICAL VALIDATION OF THEOREM 5.3

We will focus on two key convergence properties: K⊺(Q111+ qc) approaching the zero vector 000d and
V converging to a111d111

⊺
d+bId×d, where a and b are constants in R. The conditions K⊺(Q111+qc) = 000d

and V = a111d111
⊺
d + bId×d imply that the function g(Zt;V,Q,K) =

∑t
i=1(b − a)li, effectively
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emulating the process of an online gradient descent method. We repeated 10 times. For verifying
K⊺(Q111 + qc) = 000d, we will measure 2-norm of K⊺(Q111 + qc). Also for measuring the closeness
of V and a111d111

⊺
d + bId×d, we will measure mina,b∈R ∥V − (a111d111

⊺
d + bId×d)∥2,2/b. The results are

demonstrated in the second plot of Figure 11.

Figure 11: Empirical validation of Theorem 5.2 (top), Theorem 5.3 (middle), and Conjecture 1
(bottom). The observed convergence in Theorem 5.2 and Conjecture 1’s result suggests that config-
uration in Theorem 5.2 and Conjecture 1 are not only the local optimal point, but it has potential for
the global optimizer.

E.7 DISCUSSIONS AND VALIDATIONS ON THE PRODUCTION OF FTRL WITH ENTROPY
REGULARIZATION

Now, we will consider projecting a single-layer linear self-attention model into a constrained domain
such as a simplex; which includes the setting for the expert problem setting in online learning. To
this end, we consider the following parameterization by adding an additional non-linear structure
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for the single-layer linear self-attention:

g(Zt;V,K,Q, vc, kc, qc) (E.10)

= Operator

(
t∑

i=1

(V ℓi + vc)((Kℓi + kc))
⊺ · (Qc+ qc))

)
,

where the Operator denotes projection to the convex set.

Conjecture 1. Assume Σ = I . Then, the configuration that K⊺(Qc + qc) = vc = 000d and V =

Ω̃
(
− 1√

nd

)
Id×d is a first-order stationary point of Equation (5.2) with N = 1 and h(x) = x2 when

LLMθ is parameterized with Equation (E.10), Operator = Softmax, and Π = ∆(A). This
configuration performs FTRL with an entropy regularizer which is a no-regret algorithm.

We provide a possible idea for proving the conjecture, together with its numerical validation. Also,
we have observed in Figure 11 that Theorem 5.2 and Conjecture 1 might be also a global optimal
point, as training results provide the configuration that Theorem 5.2 and Conjecture 1 have sug-
gested.

We will investigate the case Π = B(0, B, ∥ · ∥2) and Operator(p) = ProjB,∥·∥2
(p). also, we

will consider the case Σ = I . To be specific, we will consider

f(V, a, β, vc) = E

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

2

and will try to prove that a = 000d, vc = v111d, V = kI is a first order stationary point.

Step 1. Calculating df
dvc

We use the following formula; for x ∈ [d], we have

d

dvcx
exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V =kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
d

dvcx

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V =kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
t∑

i=1

(a⊺ℓiex + β)

∣∣∣∣
a=000d,vc=v111d,V =kI

= tβ exp(vβ) exp(βk

t∑
i=1

ℓiy),

so we have

d

dvcx

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
ja+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

∣∣∣∣
a=000d,vc=v111d,V =kI

= β exp(vβ)

T∑
t=1

t

d∑
s=1

ℓts

∑d
y=1 exp

(∑t−1
j=1 βkℓjy

)
exp

(∑t−1
j=1 βkℓjs

)
−
∑d

y=1 exp
(∑t−1

j=1 βkℓjs
)
exp

(∑t−1
j=1 βkℓjy

)
(∑d

y=1 exp
(
e⊺y
∑t−1

j=1 βV ℓj
))2

= 0.
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Therefore,

df(V, a, β, vc)

dvcx

∣∣∣∣
a=000d,vc=v111d,V=kI

= E

[ T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts


d

dvcx

 T∑
t=1

d∑
s=1

ℓts
exp

(
e⊺s
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca

⊺)ℓj + vcβ)
)

∑d
y=1 exp

(
e⊺y
∑t−1

j=1(V ℓjℓ
⊺
j a+ (βV + vca⊺)ℓj + vcβ)

) −min
s

T∑
t=1

ℓts

]∣∣∣∣
a=000d,vc=v111d,V=kI

= 0.

Step 2. Calculating df
dV

The following formula will be used for calculating df
dV ; for r, c ∈ [d], we have

d

dVrc
exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V=kI

= exp

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)
d

dVrc

(
e⊺y

t∑
i=1

(V ℓiℓ
⊺
i a+ (βV + vca

⊺)ℓi + vcβ)

)∣∣∣∣
a=000d,vc=v111d,V=kI

= exp

(
t∑

i=1

kβℓiy + vβ

)
t∑

i=1

β111(y = r)ℓic.

Therefore,

df(V, a, β, vc)

dVrc

∣∣∣∣
a=000d,vc=v111d,V =kI

= E

[ T∑
t=1

d∑
s=1

ℓts
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(
e⊺s
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j=1(V ℓjℓ
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︸ ︷︷ ︸
(i)
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−

∑T
t=1

∑t−1
j=1

∑d
y=1 ℓtyℓjc exp

(
βk
∑t−1

j=1 ℓjr
)
exp

(
βk
∑t−1

j=1 ℓjy
)

(∑d
y=1 exp

(
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))2

︸ ︷︷ ︸
(ii)

)]
.

We can observe the followings: 1) if r1 ̸= c1 and r2 ̸= c2, df
dVr1c1

= df
dVr2c2

holds, and 2) df
dVr1r1

=
df

dVr2r2
.

Step 3. Calculating df
dβ

The following formula will be used for calculating df
dβ ;

d
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(
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.

so we have
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= 0.

Step 4. Calculating df
da

Note that
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Therefore,

df(V, a, β, vc)
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Note that the value does not depend on x, which means that df
da = c111d for some constant c.

E.7.1 NUMERICAL ANALYSIS OF STEP 2 AND STEP 4.

In steps 2 and 4, we were not able to show that a k whose value becomes zero exists, so we will
provide empirical evidence. First, we attach here the estimated df

dVrc
(r ̸= c), df

dVrr
, df
dax

) and df
dax

graph with respect to k value when ℓts ∼ Unif([0, 1]) for all t ∈ [T ], s ∈ [d]. While the graph of df
dV

is not stable, we can see that k for df
dVrc

= 0, df
dVrr

= 0 and df
dax

= 0 is very similar in Figure 12. We
used Monte Carlo estimation for 1,000,000 times.

E.7.2 EMPIRICAL VALIDATION

Our model architecture is defined as follows: the number of layers T is set to 30 and the dimen-
sionality d to 32, with the loss vector li’s distribution Z following a standard normal distribution
N (0, 1). During training, we conducted 40,000 epochs with a batch size of 512. We employed the
Adam optimizer, setting the learning rate to 0.001. We focus on two key convergence properties:
K⊺(Q111 + qc) approaching the zero vector 000d and V converging to a111d111

⊺
d + bId×d, where a and b

are constants in R. The conditions K⊺(Q111 + qc) = 000d and V = a111d111
⊺
d + bId×d imply that the

function g(Zt;V,Q,K) =
∑t

i=1(b − a)li, effectively emulating the process of an online gradient
descent method. We repeated 10 times. For verifying K⊺(Q111 + qc) = 000d, we will measure 2-norm
of K⊺(Q111 + qc). Also for measuring the closeness of V and a111d111

⊺
d + bId×d, we will measure

mina,b∈R ∥V − (a111d111
⊺
d + bId×d)∥2,2/b. The results are demonstrated in the third plot of Figure 11.
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Figure 12: Calculation of 20 df
dVrc

(r ̸= c)(red), 20 df
dVrr

(blue), and df
dax

(black). We experimented
with n ∈ [4, 9] and d ∈ [4, 9]. The figure might indicate that βk that makes the derivative zero
would coincide.
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E.8 TRAINING DETAILS ON SECTION 5.4

We provide the training details on Section 5.4. For the multi-layer transformer training, we used 4
layers, 1 head Transformer. For both single-layer and multi-layer, we employed the Adam optimizer,
setting the learning rate to 0.001. During training, we conducted 2,000 epochs with a batch size 512.
Moreover, when we trian for the loss sequences with predictable trend, we used 4 layers, 1 head
Transformer. For both single-layer and multi-layer, we employed the Adam optimizer, setting the
learning rate to 0.001. During training, we conducted 9,000 epochs with a batch size 512.

E.9 DETAILED EXPERIMENTAL SETTINGS IN SECTION 5.4

E.9.1 RANDOMLY-GENERATED LOSS SEQUENCES

We used the same loss vector with Section 3.2’s randomly generated loss function to compare the
result with GPT-4. The results show that the trained single-layer self-attention model or trained
Transformer with regret-loss has comparable regret with FTRL and GPT-4’s regret, and it can be
checked in Figure 13.

Figure 13: Result of the Randomly-generated loss sequences with Gaussian (left) and uniform with
truncation (right). The p-value and β̂0 value of the Gaussian loss sequences with trained Transformer
/ single-layer self-attention results were p = 0.0, β̂0 = 0.4, p = 0.0, β̂0 = 0.39, repsectively. The
p-value and β̂0 value of uniform loss sequences with trained Transformer / single-layer self-attention
results were p = 0.0, β̂0 = 0.43, p = 0.0, β̂0 = 0.47, repsectively.

E.9.2 LOSS SEQUENCES WITH A PREDICTABLE TREND

We investigate the case of loss sequences with predictable trends such as linear trends or sinusoid
trends. We might expect that the performance of the trained Transformer would surpass the per-
formance of traditional no-regret algorithms since FTRL would not be an optimal algorithm for the
loss sequence with a predictable trend. We modified the training distribution of random variable
Z to follow two kinds of trends: linear and sinusoid functions. The results show that the trained
single-layer self-attention model or trained Transformer with regret-loss outperformed GPT-4 in the
metric of regret when the loss sequence is a linear trend, and it can be checked in Figure 14.

E.9.3 REPEATED GAMES

We investigate the case with a multi-player repeated game; 2x2, 3x3x3, 3x3x3x3 games. The results
show that the trained single-layer self-attention model or trained Transformer with regret-loss has a
similar performance with FTRL; it can be checked in Figure 15.
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Figure 14: Result of the loss sequences with linear trends (left) and sinusoid trend (right). The
p-value and β̂0 value of the Gaussian loss sequences with trained Transformer / single-layer self-
attention results were p = 0.0, β̂0 = 0.51, p = 0.0, β̂0 = −0.13, repsectively. The p-value and β̂0

value of uniform loss sequences with trained Transformer / single-layer self-attention results were
p = 0.0, β̂0 = 0.89, p = 0.0, β̂0 = −0.9, repsectively.

Figure 15: Result of the game with two-player (left) ((p, β̂0) = (0.0, 0.69)), three-player (middle)
((p, β̂0) = (0.0, 0.94)), and four-player (right) ((p, β̂0) = (0.0, 0.98)).

E.9.4 TWO SCENARIOS FOR REGRETTABLE BEHAVIOR OF GPT-4

We used the same loss vector as in Section 3.2. The results show that the trained single-layer self-
attention model or training Transformer with regret-loss can achieve comparable regret performance
as FTRL and outperform GPT-4, and it can also be checked with Figure 4.

E.10 ABLATION STUDY ON TRAINING EQUATION (5.2)

In this section, we provide an ablation study that changing N and k in Equation (5.2). To be specific,
we will set N = 1, 2, 4, f(x, k) = max(x, 0)k, h(x) = max(x, 0)2, and k = 0, 1, 2. For the
multi-layer transformer training, we used 4 layers, 1 head Transformer. For both single-layer and
multi-layer, we employed the Adam optimizer, setting the learning rate to 0.001. During training,
we conducted 2,000 epochs with a batch size 512. We experimented on the randomly-generated
loss sequences. Especially, we used the uniform loss sequence (ℓt ∼ Unif([0, 10]2) (Figure 16 and
Figure 17) and the Gaussian loss sequence (ℓt ∼ N (5,1112, I) (Figure 18 and Figure 19). The result
shows that it might be available to train with several different setting.
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Figure 16: Ablation study for the uniform loss sequence trained with single-layer self-attention layer
with Softmax projection. p value is around 0.03 to 0.08, and it shows the no-regret behavior by
our trend-checking framework.
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Figure 17: Ablation study for the uniform loss sequence trained with multi-layer self-attention layer
with Softmax projection. p value is around 0.03 to 0.08, and it shows the no-regret behavior by
our trend-checking framework.
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Figure 18: Ablation study for the Gaussian loss sequence trained with single-layer self-attention
layer with Softmax projection. p value is around 0.08 to 0.27, and it shows the no-regret behavior
by our trend-checking framework.
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Figure 19: Ablation study for the Gaussian loss sequence trained with single-layer self-attention
layer with Softmax projection. p value is around 0.08 to 0.27, and it shows the no-regret behavior
by our trend-checking framework.
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