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ABSTRACT

Despite the superior performance of Large Reasoning Models (LRMs), their reason-
ing behaviors are often counterintuitive, leading to suboptimal reasoning capabili-
ties. To theoretically formalize the desired reasoning behaviors, this paper presents
the Laws of Reasoning (LORE), a unified framework that characterizes intrinsic
reasoning patterns in LRMs. We first propose compute law with the hypothesis
that the reasoning compute should scale linearly with question complexity. Beyond
compute, we extend LORE with a supplementary accuracy law. Since the question
complexity is difficult to quantify in practice, we examine these hypotheses by two
properties of the laws, monotonicity and compositionality. We therefore introduce
LORE-BENCH, a benchmark that systematically measures these two tractable prop-
erties for large reasoning models. Evaluation shows that most reasoning models
exhibit reasonable monotonicity but lack compositionality. In response, we de-
velop an effective finetuning approach that enforces compute-law compositionality.
Extensive empirical studies demonstrate that better compliance with compute laws
yields consistently improved reasoning performance on multiple benchmarks, and
uncovers synergistic effects across properties and laws.

1 INTRODUCTION

Large Reasoning Models (LRMs) such as OpenAl ol (Jaech et al.,[2024) have demonstrated unprece-
dented progress in approaching human-like reasoning capabilities. Despite their strong performance
on solving complex problems, even powerful LRMs exhibit abnormal behaviors that deviate from
typical human reasoning patterns. Human generally adapt their thinking based on problem complex-
ity (Newell et al., [1972)). In contrast, as illustrated in Fig.|l} DeepSeek-R1 (Guo et al., 2025} tends to
generate longer reasoning but with a lower accuracy on a simpler sub-proble

We also identify this unexpected phenomenon across a wide range of reasoning models, as shown
in Fig.[5] This is primarily because researchers generally overlook the high variability of Chain-of-
Thought (CoT) (Wei et al.,[2022)) data during the training phase. These CoT data are heuristically
curated by human annotators or generated through online rollout (Schulman et al., 2017} |Shao
et al.l [2024), rarely constrained by explicit rules, e.g., how much thinking budget to allocate for
a given problem (Wu et al. 2025). Hence, the current training paradigm fails to guide models
toward an optimal thinking strategy. It will lead to inefficient allocation of computation—either
overthinking (Chen et al.,|2024b; [Sui et al.,[2025) or underthinking (Su et al.,|2025} Yang et al.| [2025}
Wang et al.||2025)), which in turn harms the performance (Stechly et al.| 2024} Zhou et al.,2025a).

To overcome this limitation, one line of work focuses on adaptive post-training techniques, including
supervised fine-tuning with variable-length CoT (Aggarwal & Welleck, [2025} |Team et al., [2025)).
Another line of work modulates reasoning at test time (Muennighoff et al., 2025; [Fan et al., [2025;
Zhang et al.,[2025b). While many attempts have been made to control reasoning, existing approaches
primarily rely on ad-hoc heuristics and still behave undesirably in our studies. Therefore, beyond
empirical methods, several key challenges remain: (Q1) Can we theoretically formalize model
reasoning to ensure desirable behavior? (Section (Q2) How can we evaluate whether popular
LRMs follow these proposed principles? (Section[3) (Q3) Does enforcing these principles further
improve general reasoning capabilities? (Section[d] [5)

To fill this gap, we introduce the Laws of Reasoning (LORE), which systematically formalize the
relationship between complexity and model reasoning behaviors in LRMs. The LORE framework

"For each problem, we generated multiple samples to account for randomness.
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Figure 1: Illustrative example with DeepSeek-R1 on (a) a summation question, (b) a squaring
question, and (c) their composition (“sum, then square”). The model allocates ~300 more reasoning
tokens to solve the squaring question than to the composite question, with a 12.5% accuracy drop.
The mismatch with human reasoning reveals an abnormal reasoning pattern present in current LRMs.

comprises a core compute law and a complementary accuracy law. Given the practical challenges of
measuring these hypotheses, the two fundamental laws are approximated via two tractable properties
of optimal reasoning models, monotonicity and compositionality.

We then evaluate whether current LRMs follow the laws by developing LORE-BENCH, a comprehen-
sive benchmark that examines monotonicity and compositionality in LRMs. While LORE-MONO is
a curated benchmark across diverse domains for monotonicity, LORE-COMPO is constructed from
MATHS500 (Lightman et al., 2023)) to measure compositionality. Our evaluation shows that current
models exhibit reasonable monotonicity but lack compositionality, even for competitive baselines.

In response, we propose a simple yet effective fine-tuning approach to enforce the compute-law
compositionality. From validation experiments, we present three key insights: (1) the compositionality
of reasoning compute can be greatly improved with simple fine-tuning approach; (2) Enforcing
compositionality generally leads to better reasoning capability; (3) Synergistic effects emerge,
yielding broader improvements across different properties and laws.

2 THE LAWS OF REASONING

We introduce the Laws of Reasoning (LORE), a unified framework that formalizes the relationship
between question complexity and model reasoning behaviors. Specifically, we focus on two key
aspects, reasoning compute and accuracy, which are fundamental to understanding how models scale,
generalize, and allocate computation budget when solving complex problems. Section [2. I formulates
the key concepts of reasoning. In Section[2.2] we present the central compute law, with a hypothesis
that the reasoning budget should scale proportionally with question complexity. In Section [2.3]
we introduce the complementary accuracy law, which posits that overall accuracy should decay
exponentially with increasing complexity. See Fig. [2] for an illustration of the overall framework.

2.1 PROBLEM FORMULATION

Notation. Letz € X C V* denote a question, where V* is the space of finite-length sequences over
a vocabulary V. Let My € M denote an autoregressive large reasoning model. LRMs adopts the
thinking-then-answering paradigm (Guo et al., 2025;|Abdin et al.,[2025}; |(Comanici et al.,2025), where
the model My first generates a reasoning chain » € R C V* with probability pg(r | z) and then an
answer y € ) C V* with probability py(y | x, ). We assume a fixed decoding strategy by default
and denote the model’s output by o= (r,y) € O C V*. We define the composition of two questions
x1 and x4 as their concatenation with a connector prompt ¢ € V*ﬂ i.e., x1 ® 2o = concat(zy, ¢, x2).
Definition 1 (Complexity). Let a unit-cost primitive step denote a single valid transition of a fixed
deterministic Turing machine (Turing et al.,|1936)), and let 7 be any finite sequence of primitive steps
with length ¢(7) € N. Let v(z, 7) € {0, 1} be a binary verifier that accepts (x, 7) if and only if 7 is a
valid solution sequence for z. The complexity of x € X is

k(z) £ min{4(7): v(z,7) =1} € NU{oo},

2One example of ¢ can be “Answer the following questions in order: Q1. {Q1}\nQ2. {Q2}".
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Figure 2: Overview of the LORE Framework.
with k(x) = oo if no valid solution sequence exists.

Here the complexity refers to the minimal number of unit-cost primitive steps. Conceptually, x(z) can
be well-defined via a binary verifier and a fixed deterministic Turing machine. However, computing
k(x) is generally intractable, as verifying the minimal solution length requires a global search over a
potentially exponential space.

For a given model, its test-time reasoning compute is directly proportional to the number of reasoning
tokens generated. We therefore quantify reasoning compute as follows.

Definition 2 (Reasoning Compute). The reasoning compute on question x is defined as the expected

number of reasoning tokens generated by the model: Cy(z) £ E,.p, (.z) [€(r)], where {(r) denotes
the length (in tokens) of the reasoning chain r.

Definition 3 (Reasoning Accuracy). The reasoning accuracy is defined as the probability that the
model, when generating a reasoning chain and an answer given input x, produces a final answer that
matches the ground truth. Formally, Ag(z) £ E(,. ) p,(.|2) [1 {ans(y) = a*(2)}] € [0,1]. where
a*(z) denotes the correct answer to x, and ans(y) extracts the final answer from y.

2.2 COMPUTE Law

We hypothesize that, if a reasoning model allocates its reasoning compute efficiently, the amount of
compute is expected to scale proportionally with complexity in approximation, i.e., Cy(z) x k(z):

Hypothesis 1 (Compute Law). For an optimal reasoning model My and a question « with complexity
k(x), there exist aig > 0 with,

Co(x) = ag r(x) + o(k(2)),

for some ap > 0 that depends only on My and the decoding strategy. o(x(z)) denotes a small
systematic overhead that is sublinear, i.e., o(k)/x — 0 when kK — occ.

Specifically, the o(x(x)) term captures the introductory and transition tokens during the reasoning
process. These tokens generally constitute a very small portion of the overall reasoning and can
therefore be ignored in practice.

Two Tractable Alternative Properties as Proxies. As discussed in Definition I} the complexity
k(x) is difficult to measure in practice. Consequently, empirically validating the linear relationship
is nontrivial, as it would require known complexity values for individual questions. To address
this, we adopt two tractable properties as empirical proxies for studying the laws: monotonicity
and compositionality. These properties offer two key advantages: (i) they are tractable to verify
without access to the exact value of «(x). Monotonicity relies only on relative comparisons between
questions, while compositionality tests whether compute is additive over independent question pairs;
(ii) they are theoretically sufficient to imply the proposed compute law (Proposition IJ).

Property 1 (Compute-Complexity Monotonicity). For x1,z2 € X, the reasoning compute is
monotonically non-decreasing with complexity:

k(z1) < k(z2) = Co(x1) < Cy(22).

Definition 4 (Independence). For x1,x2 € X, x1 and x5 are independent if the complexity of their
composition is additive, ie., k(1 ® x2) = k(1) + K(x2).
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In practice, since the exact complexity values are difficult to obtain, we define independence opera-
tionally. Suppose each question z € X is associated with a set of mathematical conceptﬂ Sx)CS
relevant to solving it. We consider two questions z; and x5 to be independent if their concept sets are
disjoint, i.e., S(z1) N S(z2) = @.

Property 2 (Compute-Complexity Compositionality). For x1, 22 € X, if 21 and x4 are independent,
their composite x1 @ x5 exhibits additive compute:

Co(x1 © 22) = Co(21) + Co(2) + o(K(21) + K(22)),

where the sublinear terms accounts for systematic overhead in the reasoning process (as assumed in
Hypothesis[I). Therefore, the reasoning compute is approximately additive:

09(171 D 1’2) ~ Cg(xl) + Cg(xg).

Discussion. Intuitively, these properties are motivated by two basic principles: (i) more complex ques-
tions naturally require more reasoning; (ii) Two independent sub-questions involve no overlapping
reasoning, so the total compute is the sum of solving each one individually. In the next proposition,
we state informally that these properties imply the compute law (Hypothesis|[I)); a formal proof is
provided in Appendix [D} These tractable properties thus offer a practical means to evaluate whether
current LRMs follow the compute law.

Proposition 1. Under certain conditions, if a reasoning model My satisfies compute-complexity
monotonicity and compositionality, then its reasoning compute Cy(z) x k(z) for z € X.

2.3 BEYOND COMPUTE: ACCURACY LAW

Following Deﬁnition suppose a question requires solving (z) unit-cost primitive steps. If each
step succeeds independently with a fixed probability and all steps must succeed for the final answer to
be correct, then the overall accuracy is expected to decrease exponentially with (). This intuition
motivates the following formulation of the accuracy law:

Hypothesis 2 (Accuracy Law). For an optimal reasoning model My and a question x with complexity
k(x), when 0 < Ag(x) < 1, there exists Ag > 0 with,

Ag(z) = exp( — X k(x)).
Equivalently, log Ag(x) < —k(z), where Ag > 0 is the decay rate.

Similar to the compute law, we assume that the reasoning accuracy for the optimal reasoning model
My also satisfies two fundamental properties: monotonicity and compositionality.

Property 3 (Accuracy-Complexity Monotonicity). For x,,z9 € X, the reasoning accuracy is
monotonically non-increasing with complexity:

k(z1) < k(ze) = Ap(z1) > Ap(z2).
Property 4 (Accuracy-Complexity Compositionality). For z1,x2 € &, if x1 and x, are independent,
their composite x1 @ x5 exhibits multiplicative accuracy:

Ag(l‘l (&) 1‘2) = Ae(l‘l) -Ag(.%‘g).

Discussion. These properties are motivated by two basic principles: (i) more complex questions tend
to have lower accuracy; (ii) for two independent questions with accuracies p; and ps (e.g., p1 = 0.8,
p2 = 0.7), the probability of correctly answering both should be p; - ps (e.g., 0.56). We state below
that these properties imply the accuracy law, with a formal proof provided in Appendix [D}

Proposition 2. Under certain conditions, if a reasoning model My satisfies accuracy-complexity
monotonicity and compositionality, then its reasoning accuracy log Ag(z) x —k(z) forz € X.

3 D0 CURRENT LRMS FOLLOW THE LAWS?

In this section, we systematically evaluate whether current LRMs follow our proposed reasoning
laws. Specifically, we introduce LORE-BENCH, a two-fold benchmark that leverages two tractable
properties, monotonicity and compositionality, to examine LRMs.

3For example, concepts may come from Calculus (e.g., derivatives), Algebra (e.g., group theory), or Discrete
mathematics (e.g., logic).
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Figure 3: Question Generation of LORE-MONO. For each seed question, we generate 30 variants
with increasing complexity. Specifically, variant N applies the update rules N times to compute the
answer, so the question complexity increases monotonically with V.

3.1 LORE-MoONO

Evaluating the monotonicity property in Property [I|or Property [3|requires comparing the complexity
of arbitrary question pairs. However, due to its definition via minimal solution length, complexity
is inherently difficult to quantify in practice. As a result, existing benchmarks are not suited for
such analysis. To address this challenge, we construct LORE-MONO, a synthetic benchmark where
questions are carefully curated and validated to follow known complexity orderings, allowing us to
systematically assess the monotonicity of reasoning compute and accuracy.

(1) Seed Question Curation. We select four domains that require extensive reasoning—rnath,
science, language, and code—and curate 10 diverse seed questions for each. A seed question defines
a problem template shared across its variants. (2) From Seed Questions to Variants. As shown in
Fig.[3] for each seed question, we create a series of variants (30 in total) that become increasingly
complex by requiring more steps to reach the final answer. For example, variant 1 requires one
matrix operation, variant 2 requires two, and variant 30 requires thirty, with the identical operation
applied repeatedly. By design, a larger number of steps directly corresponds to higher complexity.
(3) Program-based Generation and Manual Verification. All variants are generated through
Python scripts to ensure correctness and scalability. To prevent unintended shortcuts such as periodic
patterns, we manually verify each seed question and review sampled variants. We provide detailed
seed questions and variants for each domain in Appendix [E]

We use the Spearman correlation coefficients p € [—1, 1] to measure how the variant index, which
directly determines the constructed question’s complexity, relates to two quantities: reasoning
compute and log accuracy. A high correlation with reasoning compute indicates that compute grows
monotonically with complexity (Property [T), while a negative correlation with log accuracy indicates
that accuracy tends to degrade as complexity increases (Property 3)).

3.2 LoRE-CoMPO

In contrast, assessing compositionality is more straightforward: it only requires taking any two
independent questions as sub-questions and constructing their composition. We build LORE-COMPO
from MATHS500 (Lightman et al., [2023)), where each question is labeled by subject (e.g., Algebra,
Geometry). Specifically, we randomly sample a pair of questions (z1, x2) from distinct pre-defined
subjects to ensure independence, and concatenate them into a composite question x12. Each original
question is used at most once yielding 250 triplets, each with two sub-questions and their composition:

Dl oRe-Compo = {(x1 ,:c2 ,.1112 )}250 Recall that for a function fy(-) (either Cy(-) or log Ag()),
compositionality implies that fy(z12) = fo(z1) + fo(z2). We therefore quantify the degree to which
a model follows this property using the mean absolute deviation (MAD):

MAD; = 3 |fo(z12) = (fo(z1) + fo(x2))]

("El ;L2 7312)6DL0R3-C0mp0

A smaller MAD indicates stronger adherence to the compositionality property. However, MAD is
scale-dependent. To address this, we adopt the Normalized MAD (nMAD):

MAD
nMAD; = 5 L, Sp= > [fo(z1) + fol(x2)].

(z1,%2,212) €DLoRe-Compo
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3.3 FINDINGS AND ANALYSIS

Evaluation Setups. We examine 6 LRMs on LORE-MONO and LORE-COMPO: four standard
models— DeepSeek-R1-Distill (Qwen-1.5B, Qwen-7B, Llama-8B) (Guo et al.,|2025)) and Phi-4-mini-
reasoning (Xu et al., 2025a)—and two models that apply reasoning length control, Thinkless-1.5B-
RL-DeepScaleR (Fang et al.,|2025) and AdaptThink-7B-delta0.05 (Zhang et al.| 2025a)). For each
question, we sample 8 outputs per model with a fixed decoding temperature (0.6 for the DeepSeek
family and 0.8 for the Phi-4 family from their technical reports) and a maximum length of 20480
tokens. For LORE-MONO, at each variant index we first average reasoning computeﬂ and log accuracy
across the 40 questions, and then compute the Spearman correlation.

Table 1: Monotonicity Results on LORE-MONO. We examine whether reasoning compute and
log accuracy of 6 popular LRMs satisfy the monotonicity property across four domains. Spearman
correlations are reported for reasoning compute and log accuracy. Lang. stands for Language.

Reasoning Compute 1 Log Accuracy |
Math Science Lang. Code All Math Science Lang. Code All

DeepSeek-R1-1.5B 0.861 0.910 -0.346 0.151 0.875 -0.795 -0.864 -0.210 -0.487 -0.868
Thinkless-1.5B 0943  0.961 0.648 0.794 0.976 -0.951 -0.934 -0.556 -0.539 -0.960

3.8B Phi-4-mini 0980 0973 0.936 0.922 0988 -0.965 -0.802 -0911 -0.822 -0.954

DeepSeek-R1-7B 0.956 0975 0.901 0.970 0.991 -0.946 -0.876 -0.899 -0.818 -0.978
AdaptThink-7B 0984 0.995 0950 0.984 0.995 -0.963 -0.949 -0.904 -0.888 -0.972

8B  DeepSeek-R1-8B 0982 0962 0.864 0.963 0.988 -0.944 -0.796 -0.924 -0.843 -0.947

Size Models

1.5B

7B

Math Science Language Code
3
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Variant Index Variant Index Variant Index Variant Index
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Figure 4: Visualizations of Monotonicity Results on DeepSeek-R1-1.5B. For each domain, we
plot reasoning compute and log accuracy as a function of variant index. The curves report the mean
accuracy across 10 questions series, and the shaded regions denote the standard deviation.

xmeeepSeek-Rl-l.SB 100 DeepSeek-R1-8B
Table 2: Compositionality Results on LORE- nMAD =10.528 5 ol nMAD = 0.423
CoMPO. We calculate nMAD for reasoning 2 '
compute (Cp) and log accuracy (log Ag). E R
31 Lo
Models nMADca 1 nMADlOg Ag 1 " |y ox 0.5 ey in
DeepSeek-R1-1.5B 0.528 2.368 % 1 2 008 1 2
Thinkless-1.5B 0.339 0.694 Colx1) + Colx2) Colx1) + Colxz) 1"
Phi-4-mini 0.322 0.732
DeepSeek-R1-7B 0.337 1.170 Figure 5: Visualizations of Compositional-
AdaptThink-7B 0.327 0.791 ity Results on Reasoning Compute. We plot
DeepSeek-R1-8B 0.423 0.818 Cy(z1 @ x2) against Cp(x1) + Cy(x2). Further

results are provided in Appendix

Current LRMs Largely Satisfy Monotonicity. On LORE-MONO, all LRMs exhibit a strong
positive correlation between reasoning compute and the variant index, which directly reflects question
complexity, with most overall Spearman correlations close to 1, as shown in Tab. [T} The only
exception is DeepSeek-R1-Distill-Qwen-1.5B, which has the weakest reasoning ability among the six

*We apply max—min normalization to the reasoning compute of each question to prevent any single item
from dominating the results.
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models and yields a lower overall correlation (0.875). As illustrated in Fig. ] notably, in the language
domain its correlation between reasoning compute and complexity is negative (—0.346), while in the
code domain, it is near zero (0.151). This indicates that in some domains, the reasoning compute for
this model does not systematically increase with complexity, and may even decrease. We provide a
case study as additional analysis along with visualization results for other models in Appendix[E.2]
Meanwhile, most LRMs exhibit a negative correlation between log accuracy and the variant index, as
expected. For DeepSeek-R1-Distill-Qwen-1.5B, however, this trend appears noticeably weaker.

Current LRMs Fail to Exhibit Compositionality. The nMAD is large for both reasoning compute
and log accuracy (Tab. [2), indicating that current LRMs do not satisfy compositionality. Fig. [5|further
plots Cy(x1 @ x2) against Cy(x1) + Cy(x2) for two representative LRMs. If an LRM adhered to the
compositionality law, most points would align closely with the y = x line. In practice, however, the
majority of points deviate substantially. Notably, even models equipped with reasoning length control
mechanisms (Thinkless-1.5B and AdaptThink-7B) exhibit considerable deviations, suggesting that
such techniques do not inherently promote compositional behavior.

4 IMPROVING REASONING VIA ENFORCING COMPOSITIONALITY

In Section 3] we showed that while most LRMs generally satisfy monotonicity, they often fail to
satisfy compositionality. Based on Hypothesis|I] this observation motivates a natural question: can
enforcing compositionality lead to stronger reasoning capacity? In response, we propose a simple
yet effective supervised fine-tuning (SFT) method to promote compositional behavior in LRM:s.
Importantly, we focus on enforcing compositionality specifically with respect to reasoning compute,
as it provides a more direct and actionable criterion for selecting supervision examples

Proposed Method: SFT-Compo Specifically, let My be an LRM and Dy,;, a training dataset.
Following the construction in Section we select question pairs (1, %2) € Dy from distinct
categories and form composite questions x12 = x1 @ xo. For each triplet (x1, x2, x12), we sample
K model outputs o = (r,y) € O from an LRM (either the current model My or a stronger teacher
model) , where r € R is a reasoning path and y € ) is the corresponding final answer:

k k) (k) K k k) (R K k k) (k)N K
{Og ) = (TE ),y§ ))}kzl for 2y, {O; )= (7”5 )vyé ))}kzl for z, {052) = (r§2)1y£2))}k:1 for z15.
Since compositionality is defined over reasoning paths, among the K3 combinations (01,02, 012),
we consider only those where all three reasoning paths r1, 72, 12 lead to correct answers, and select
the combination that best satisfies the compositionality condition:
(r1,r3,775) = argmin [€(r1) + £(rz) — £(r12)]
T1,72,712

s.t. r1, 72,712 €ach yielding a correct final answer. €))

Each triplet thus yields three supervised examples: (z1,07), (z2,03), and (z12,0},), where

*

of = (rf,yf) with y} the final answer paired with r} in the sampled outputs. Ag-
gregating across all triplets, we construct the compositional supervision dataset Deomp =
{(z1,07), (22,03), (x12,072) | (1,22) € Dyain} - We then perform SFT on Deomp to encourage

My to internalize compositional reasoning behavior.

5 EXPERIMENTS

We now empirically evaluate SFT-Compo, addressing two research questions: (1) whether it effectively
enforces compositionality, and (2) whether it further improves the reasoning capacity of LRMs. We
also provide additional insightful findings in our analysis.

5.1 EXPERIMENTAL SETUP

Model, Dataset and SFT Recipe. We evaluate three LRMs: DeepSeek-R1-Distill (Qwen-1.5B,
Qwen-7B, Llama-8B) (Guo et al., 2025). We construct a dataset of sub-question and composite-

3 Accuracy compositionality is not easy to enforce directly, as it does not specify which reasoning path should
be selected for supervision.
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question triplets using a subset of DeepScaler (Luo et al.,[2025b)). For each question (either sub-
question or composite), we use DeepSeek-R1-Distill-Qwen-14B as a stronger teacher model to
sample K = 8 model outputs. We then construct the compositionality-enforced dataset Deomp as
described in Eqn. [T} which contains approximately 3.9K question-output pairs. We fine-tune each
LRM on Deomp for 5 epochs using a batch size of 16. Additional implementation details are provided
in Appendix |ﬁ

Evaluation. To evaluate compositionality, we use LORE-COMPO. For general reasoning capacity,
we consider six benchmarks: GSM8K (Cobbe et al.,[2021), MATHS500 (Lightman et al.}[2023), AIME
2024, AIME 2025 (Mathematical Association of America) [2025), AMC 2023 (AI-MO, [2024), and
OlympiadBench (He et al.,[2024). We set the maximum generation length to 10240 tokens.

5.2 MAIN RESULTS

Base

s SFT-Compo

DeepSeek-R1-1.5B
104

10§FT—Compo-1.SB (Ours)

0.528 nMAD = 0.528 2.04 nMAD = 0.314
0.423 2]
0.314 93379317 0.328 = ~1.51
3 X
S S 1.0
0.5
_ — y=x — y=x
* «.00‘“90 o ?«,60‘“90 ?’35:«»00‘“90 % 1 2 0-05 1
1758 78 ] Co(x1) + Col(x)  x10° Co(x1) + Colxp)  ¥10*

(a) nMAD¢, on LORE-COMPO. (b) Visualizations of Reasoning Compute Compositionality.

Figure 6: Comparison of Reasoning Compute Compositionality on LORE-CoMPO for Base and
SFT-Compo models. (a) SFT-Compo consistently achieves a lower nMAD¢, across 1.5B, 7B, and 8B
models compared to the base model. (b) We visualize Cy(x1 @ x2) against Cy(z1) + Cp(z2) for
1.5B models. SFT-Compo aligns more closely with the y=z line than the base model.

Does SFT-Compo Effectively Enforce Compositionality Compared to the Base Model? We
compare LRMs before and after SFT using the nMAD of reasoning compute on LORE-COMPO.
As shown in Fig.[6a] SFT-Compo consistently reduces nMAD compared to the base model. On the
1.5B model, SFT-Compo achieves a reduction from 0.528 to 0.314 (a 40.5% reduction), and on the
8B model, from 0.423 to 0.328 (a 22.5% reduction). We further visualize the results on the 1.5B
model in Fig. [6b] where SFT-Compo aligns much more closely with the y=z line. Therefore, the
compositionality of reasoning compute can be effectively enforced in a simple manner via SFT-Compo.

Does Enforcing Compositionality Lead to Stronger Reasoning Capabilities? As shown in Tab.
SFT-Compo consistently improves performance across all six benchmarks and all three model sizes.
For instance, on the 8B model, it yields a notable gain of +5.0 in average Pass@1. To rule out the
possibility that performance gains stem solely from leveraging outputs generated by a stronger teacher
model, we introduce a control baseline, SFT, which constructs the training dataset by uniformly
sampling one correct reasoning path for each question in the triplet:

(ri,r5,1m79) ~ Unif ({(r1,72,712) | 71,72, r12 each yield a correct final answer}) .

Notably, SFT-Compo outperforms SFT in all cases, showing that the gains are not just from distilling
a stronger model but from better compliance with compositionality. This supports our Hypoth-
esis 1—that stronger models better follow reasoning laws—and demonstrate that encouraging
compositionality further enhances the reasoning capabilities of LRMs.

5.3 SYNERGISTIC EFFECT ANALYSIS

Enforcing Compositionality in Reasoning Compute Improves Its Monotonicity. Recall from
Section [3.3| that DeepSeek-R1-Distill-Qwen-1.5B initially exhibits relatively weak monotonicity in
reasoning compute. Fig. [7a] shows SFT-Compo significantly improves this property, increasing the
overall Spearman correlation from 0.875 to 0.977. Specifically, in the code domain, it rises from
0.151 to 0.914. This indicates that enforcing compositionality can implicitly enhance monotonicity.
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Table 3: General Reasoning Evaluation Results. We evaluate Base (pre-SFT), SFT, and SFT-Compo
(Ours) on mathematical and science reasoning benchmarks. All numbers report Pass@ 1 accuracy (%)
computed over 8 sampled outputs. Pass@1 denotes the average across the six benchmarks. Numbers
in orange indicate improvements relative to the base model.

MATH SCIENCE
Base Model Method Pass@1
AIME24 AIME25 AMC23 MATHS500 GSMS8K Olympiad
Base 18.8 20.4 59.7 71.6 81.2 33.8 47.6
DeepSeek-R1-1.5B SFT 204416 215,11 59.64, 764,48 81.7,05 36.1423 493,17
SFT—Compo (Ours) 26.24,7'4 21.7+1'3 65.04,5'3 77.6#,'0 85.14,3.9 38.74,4'9 52.4+4'3
Base 36.3 27.5 79.0 86.8 91.0 48.1 61.5
DeepSeek-R1-7B SFT 40.0437 325,50 80.4,14 88.0412 91.6,06 48.4.03 63.5:00
SFT—Compo (OUI‘S) 43.3+7,0 33.245,7 80.6”,(, 88.8+3,0 91.6+(;,(, 50.5+2,4 64.7+3_2
Base 28.3 22.9 71.9 76.4 86.5 40.9 54.5
DeepSeek-R1-8B SFT 30.445, 242,15 75243 82.6462 88.0415 447,38 57.5:430

SFT—Compo (OUI‘S) 31.34.3,0 29.2+(,_3 76.94.;,0 83.0.,,(,,(, 89.54.3,0 46.84.5}) 59.5.5_1)
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Figure 7: Synergistic Effects Among Different Reasoning Properties and Laws. (a) Enforcing
compositionality in reasoning compute improves its monotonicity. (b) Enforcing compositionality in
reasoning compute also improves the compositionality of log accuracy, measured by nMAD) 4 4, .

Enforcing Compositionality in Reasoning Compute Improves Compositionality in Accuracy.
Interestingly, though SFT-Compo is designed to enhance compositionality in reasoning compute, it
improves the compositionality of log accuracy. Fig. [7b]shows that the nMAD of log accuracy drops
from 2.368 to 0.685 on the 1.5B model (a 71.1% reduction), and from 1.170 to 0.756 on the 7B
model (a 35.4% reduction). This suggests a possible interplay among different reasoning laws.

6 RELATED WORK

LRMs have emerged as a family of foundation models (Wiggins & Tejani, [2022])). Since the advent of
OpenAl ol (Jaech et al.| 2024)), the “thinking-then-answering” paradigm has been widely adopted,
with notable follow-ups such as DeepSeek-R1 and Phi-4-Reasoning (Abdin et al., [2024; |Guo et al.}
20255 |Qwen Team), 2025). Our framework builds upon the contemporary paradigm of adaptive
reasoning, wherein the model’s reasoning budget is dynamically controlled either through post-
training interventions (Luo et al., |2025a;|Zhou et al., 2025b) or at test time (Muennighoff et al., |2025;
Xu et al.|[2025b; [Zhang et al.l[2025b). Specifically, one line of work explores post-training techniques
that modulate when and how long a model should reason (Chen et al., [2024a; | Yong et al., [2025)),
while another frontier focuses on dynamically adjusting reasoning behavior during inference (Qiao
et al.| 2025; [Liu & Wang, [2025)). Refer to Appendix [B|for additional related work.

7 CONCLUSIONS

As a comprehensive study from theoretical hypotheses to empirical validation, we advance a theoreti-
cal perspective grounded in human reasoning for improving reasoning in LRMs. We hope LORE can
inspire more potential strategies that guide models toward their optimal paradigms of thinking.
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A LLM USAGE

LLMs were used solely for language polishing.

B ADDITIONAL RELATED WORK

Large Reasoning Models. Large Reasoning Models (LRMs) have emerged as a family of foun-
dation models (Wiggins & Tejani, |2022). Since the advent of OpenAl ol (Jaech et al., 2024)), this
“thinking-then-answering” paradigm has been widely adopted. Notably, ol-like Reasoning Mod-
els can solve increasingly complex reasoning problems through elaborate reasoning chains (Wei
et al.,|2022;|Yao et al.;, 2023} |Besta et al., |2024). Numerous efforts replicating o1’s success include
DeepSeek-R1 and Phi-4-Reasoning (Abdin et al.|[2024}|Guo et al.| [2025; Qwen Teaml [2025)). Despite
impressive progress, the internal mechanisms and behavioral patterns of reasoning in LRMs remain
underexplored. |Shojaee et al. (2025) take a step in this direction by examining reasoning through the
lens of problem complexity, though their analysis is limited to a constrained puzzle-solving setting.

Reasoning Length Control. Our framework builds upon the contemporary paradigm of adaptive
reasoning, in which the reasoning budget of the model is controlled either during post-training (Luo
et al.,2025a} |Zhou et al.,2025b)) or at test time (Muennighoft et al., 2025} Xu et al.,[2025b; |Zhang
et al.l |2025b). One line of work develops post-training techniques that modulate when and how
long a model should reason (Chen et al., 2024a; |Yong et al.,|2025). This is achieved through two
primary strategies: one involves supervised fine-tuning on variable-length CoT with concise yet
sufficient reasoning (Aggarwal & Welleck] 2025} [Team et al.,2025)); the other utilizes RL through
length penalty (Zhang et al., 2025a; Fang et al., |2025; Liu et al., [2025). Beyond these, another
frontier involves implementing dynamic control over reasoning during inference. For example, some
approaches allocate inference budget via confidence (Qiao et al., 2025} |Liu & Wang] |2025)), while
others employ a secondary controller to modulate (Li et al., 2025).

C LIMITATIONS AND FUTURE WORK

We acknowledge several limitations. First, our LORE-MONO currently includes only 40 seed ques-
tions in total. Expanding its topic diversity and coverage is an important direction for future work.
Second, we operationalize independence through disjoint sets of mathematical concepts. Although
this proxy is not rigorous, it is motivated by the practical difficulty of formalizing independence
between questions in an actionable and general way. We leave more refined treatments of indepen-
dence to future work. Finally, due to budget constraints, we focus on strong open-source LRMs, as
evaluating closed-source models would require substantial additional cost.

D PROOFS AND COROLLARIES

We first restate Proposition[T]and Proposition 2| formally and provide a complete proof, along with
corresponding corollaries.

Proposition 1 (Formal Version). Fix a question space X, a complexity map x : X — N U {oo}, and
a reasoning compute map Cy : X — R>(. Let & be a binary composition operator. For m > 3 and
jointly independent x4, . .., x,,, define 1 @ - - - @ z,,, by a fixed bracketing (e.g. right-associated).
Define

Xon = {2 € X : k(z) < o0}, K = r(Xsn) CN.

All assumptions below are imposed on Xgy,.
(A1) Monotonicity. If k() < k(y) then Cy(z) < Cy(y).

(A2) Additivity under composition of independent questions. If x, y are independent, then
ke @y)=r(r) +r(y),  Co(z®dy) = Co(x) + Co(y).

(A3) Forevery u € K and every m € N, there exist x1, ..., Z,, € X5, such that

k(x;) = u forall 7, {z1,..., 2} is jointly independent.
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Consequently, z; & - - - @ x,, is valid and

kX1 @ Dxy) =mu € K, Ce(mEB-“Eme):ZCe(wi).

Then there exists a constant ccg > 0 such that

Cy(x) = ag k() for all z € Xgy,.

Proof. Define an equivalence relation x ~ y <= k(x) = k(y). By (A1), x(z) < k(y) and
k(y) < k(z) imply Cyp(z) < Cy(y) and Cy(y) < Cp(z), hence Cy(z) = Cy(y) whenever x ~ y.
Thus there is a well-defined f : K — R>( with f(n) = Cy(x) for any x such that x(x) = n.

Fix v € K and m € N. By (A3) choose jointly independent x1, . . ., z,, with k(z;) = u. By (A2)
and the fixed bracketing,

K1 @ @) =mu,  Co(r1 @+ @ am) =Y Cola;) =m f(u),
i=1
$O
f(mu) =m f(u) Vue K, YVm e N).

If K = {0} then Cp = 0 and the claim holds with cty = 0. Otherwise take u, v € K with u,v > 0
and let £ = lem(u, v). Then

O =f(u- ) =S wa s =10 1) =" ),

(%

hence f(u)/u = f(v)/v, independent of u,v. Write this common ratio as oy > 0. Therefore
f(n) = agnforalln € K, and Cyp(z) = f(k(x)) = ag k(x) for all z € Xgy,. O

Corollary D.1 (Asymptotic version with sublinear overhead). If the compositional compute holds up
to a sublinear overhead, i.e., for independent x, y,

Co(z ®y) = Co(x) + Co(y) + o(k(x) + K(y)) ,
and the same (A3) assumption holds, then the above proof yields
Co(x) = ag k() + o(k(x)) (k(z) = 00).

Proposition 2 (Formal Version). Let Xan, = {z € X : k(x) < oo}. Assume the setting and
independence notion of Property [3] Property 4 and Assumption (A3). Then there exists Ag > 0 such
that for all € Xg, with 0 < Ag(z) <1,

Ag(z) = exp( — Mg k(2)).

Proof. Define an equivalence relation © ~ y iff k(z) = k(y). By (Al), if z ~ y then both
k(z) < k(y) and k(y) < k(x) hold, hence Ag(z) > Ay(y) and Ag(y) > Ag(x), so Ag(x) = Ag(y).
Therefore there exists a well-defined map

f: K —(0,1], f(n) := Ag(z) forany x € Xy, with s(x) = n.
Let g : K — R be g(n) := —log f(n).
Fix u € K and m € N. By (A3), choose jointly independent z1, . . ., z,, with k(z;) = u. By (A2)
and the fixed bracketing,

k(1 @ D Tyy) = mu, Ag(x1® - D ap) = HA6’<-75i> = (f(u))m'

Hence
glmu) = —log Ag(z1 @ - ® zp,) = myg(u) (Vu € K, Vm € N). )
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If K = {0} then Ap = 1 and the claim holds with A\g = 0. Otherwise, let u,v € K with u,v > 0
and set £ = lem(u, v). Applying Eqn. twice gives

14 14 14 1
9(f) = g(u- ;) =—g(u) and g(f) = g(v : ;) =~ 9(v),
so g(u)/u = g(v)/v. This ratio is independent of u, v > 0 in K; denote it by Ag > 0.

For any n € K, if n = 0 then g(n) = 0 = Xgn; if n > 0 pick any u € K \ {0} and write
n = 2 u to get from Eqn.that g(n) = Zg(u) = Agn. Therefore g(n) = Agn forall n € K, i.e.
f(n) = exp(—Agn), and for any © € Xgy,,

Ag(z) = f(k(z)) = exp(— Mg k().
O

Corollary D.2 (Asymptotic version with sublinear coupling). If for independent x,y the multiplica-
tivity holds up to a sublinear deviation in the exponent,

log Ag(z @ y) = log Ag(x) +log Ag(y) + ok(x) + K(y)),
and (A3) holds, then
log Ag(z) = —Xg k(z) + o(k(x)) (K(x) = o0),
equivalently Ag(z) = exp( — Ak (z) + o(k())).

E ADDITIONAL DETAILS AND RESULTS OF LORE-BENCH

E.1 ADDITIONAL DETAILS OF LORE-MONO
E.1.1 EXAMPLE SEED QUESTIONS OF LORE-MONO

Here we provide one representative seed question example for each domain.

Math - Example seed question

Given an integer n = { N}, consider the order-2 recurrence over integers modulo M with an
alternating update rule and a mild nonlinear term. You are given the initial values

o =20, x1=xl.

We update the sequence one step at a time. Let ¢ = 1,2, 3,...,n denote the update index,
where ¢t = 1 is the update that produces x from (x1,xo). At each update ¢, compute x4
from (zy, z;_1) using the parity of ¢:

- Define the nonlinear map () = (z + 1)2. (You may reduce intermediate values modulo M
at any time.)

- Odd step (t odd):

Tpy1 = Az + Brgp_1 + Cp(xr) (mod M).
- Even step (t even):
i1 = Az — Bxp—1 + Co(zr—1) (mod M).
For clarity, the first two updates are:

t=1:29= Az + Bzg+ Cp(x1) (mod M),
t=2:23=Axy — Bz + Co(z;) (mod M).

Apply exactly n — 1 updates starting from z, 21 to reach z,,(n = n), and **return z,,** as a
single non-negative integer in [0, M — 1].

Conventions: - All modular reductions are taken modulo M and return a non-negative remainder.
- The alternating rule depends on the **update index** ¢. - Output only the integer value of z,,
(no extra text).
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Code - Example seed question

You are given runnable Python 3.10 code. Execute it exactly as-is in a clean environment (no
extra imports). This is a Code Execution task: run the program, do not rewrite it. The loop
counter i is 0-based. Return only the value of ANSWER (no other text, no formatting).
Code:

N = {N}; s = {init_state!r}

def f(s, i):
if len(s) ==
return s
L = len(s); r = (i % L) + 1; s1 = s[r:] + s[:r]
trans = str.maketrans({'a':'e','e':"'i",;'i':'0",'0"':'u','u':"a'})

return s1.translate(trans)

for i in range(N):
s = f(s, 1)

ANSWER = s

Science - Example seed question

You are modeling a **batch bioreactor** where an enzyme E converts substrate A to product
B, but each catalytic event requires a recyclable **cofactor token** C (e.g., NAD*/NADH).
Let A, By, C; be the nonnegative integer counts of A, B, and C **after** completing tick .
You are given fixed initial counts and a regeneration period: - Ay = args.A0, By = args.B0,
Cy = args.CO - Regeneration period k = k

For **each discrete tick** ¢t = 1,2, ..., n (withn = {N}), apply the following **biochemical
rule order**:

1) **Reaction (consumes cofactor)** — if both substrate and cofactor are available: - If
Ay_1 > 0 **and** C,_; > 0, then one catalytic turnover occurs:

A=A 1 -1, Bi=DB; 1+1, Ci=Ci;—1
- Otherwise, no reaction this tick:
A=A, By=DB;_1, Cy =Cy_.

2) **Cofactor regeneration (post-reaction)** — models an external respiratory/oxidative cycle
returning the cofactor to its usable form at fixed intervals: - If £ mod k = 0, then **after** the
reaction stage:

Cy+ Cy + 1.

All updates are integer and at most £1 per tick (“min/+=1" granularity). **Output** the
product count B,, after completing exactly n = { N} ticks (i.e., after applying the regeneration
rule at tick n).
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Language - Example seed question

You are given a letter maze and a number of moves n={N}. The maze is a rectangular grid of
letters G with h={H} rows and w={W} columns:

{grid_block}

Start at the cell (r0, c0) = ({RO}, {CO}). Build a string S as you move:

1) First, write down the starting letter G[r0][cO] into S. (This is done before any moves.)
2) Then repeat the following exactly n={step} times (t = 1..n):

* Let (1, ¢) be your current cell BEFORE moving, and let ch = G[r][c].

* Move one step based on ch (case-insensitive):

—Ifch € {a, e, i, 0,u} (a vowel): move RIGHT — ¢ < (c + 1) mod {W}
— Otherwise (a consonant): move DOWN — r < (r + 1) mod {H}

* After moving to the destination cell (r, ¢), append its letter G[r][c] to S.
» Now mutate the grid based on ch (the letter you moved FROM):

—If ch is a vowel: cyclically rotate COLUMN c upward by 1.

(Formally, for all i: G[i][c] < old G[( + 1) mod H][c].)

— Otherwise (ch is a consonant): cyclically rotate ROW r left by 1.
(Formally, for all j: G[r][j] < old G[r][( + 1) mod W].)

Important: The mutation happens AFTER appending G[r][c] to S, and it affects the grid used
for the NEXT iteration. Indices are 0-based and the maze wraps around like a torus.
Thus, after n moves, S has length n + 1 (because the starting letter was included).

Let k = {K}. Your task is to return the word W made by the LAST k letters of S (in order).
Output W as a plain string.

E.1.2 POTENTIAL SHORTCUT FAILURES

A basic requirement of LORE-MONO is that the complexity of question variants increases mono-
tonically with the variant index. However, certain seed questions may violate this requirement. For
instance, if answers follow a periodic pattern (e.g., when all even-indexed variants have the answer 1
and all odd-indexed variants have the answer 0), a model could exploit prior patterns to guess the
correct answer without performing the intended computation. To ensure benchmark reliability, we
manually reviewed all variants and excluded those exhibiting periodic answer patterns.

E.2 ADDITIONAL RESULTS OF LORE-MONO

E.2.1 ADDITIONAL VISUALIZATION RESULTS

Visualizations of monotonicity results for the remaining 5 LRMs are provided in Fig.[8]
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Figure 8: Visualizations of Monotonicity Results on remaining 5 LRMs.
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E.2.2 "FAIL TO THINK" CASE STUDY

We observe that the weakest model, DeepSeek-R1-Distill-Qwen-1.5B, occasionally produces no
reasoning tokens on certain code questions. For example, on variant 1 of a seed code question, the
generated output is simply <think>\n</think>, corresponding to a reasoning length of 0.

""Fail to think'' - Example model output

<think>\n</think>\n\n To solve this problem, we need to simulate the execution of a given
Python code and determine the final value assigned to the variable ‘ANSWER®. The code
involves string manipulation and state transitions, which we will simulate step by step.\n\n###
Approach\nl. **Initialization**:\n - We start with ‘N = 1° iteration, ‘s =\"01938\"*, and
a function ‘f* that processes the string ‘s‘.\n\n2. **Function Definition**:\n - The function
‘f° takes a string ‘s‘ and processes each character based on its position in the string. The
position determines whether the count of ’0’, ’1°, ’2’, or ’3’ is incremented modulo 5.\n\n3.
**Processing Each Character**:\n - For each character in ‘s, we count the occurrences of *0’,
’1°,°2’, and ’3’..... (omitted ...)

E.3 ADDITIONAL DETAILS OF LORE-COMPO

For all composite questions, a fixed connector links the sub-questions, ensuring they are answered in
sequential order. An illustrative example is provided below.

Example composite question

Answer the following questions in order:
Ql. Jim and Martha are standing together at the corner of a rectangular field. Jim walks
diagonally across the field. Martha gets to the same location by walking along its length and

width. The field is 300 feet wide and 400 feet long. How many feet less than Martha does Jim
walk?

Q2. Find all values of z that satisfy the equation x =+/11 — 2z + 4.

E.4 ADDITIONAL RESULTS OF LORE-COMPO

Visualizations of compositionality results for the remaining 4 LRMs are provided in Fig.[0]
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Figure 9: Visualizations of Compositionality Results on Remaining 4 LRMs.

F EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

F.1 IMPLEMENTATION DETAILS

Since DeepScaler does not come with predefined categories, we first annotate each question using
GPT-4.1-mini to assign it to one of the following categories: Algebra (Prealgebra), Counting &

19



Under review as a conference paper at ICLR 2026

Probability, Geometry, Number Theory, or Calculus (Precalculus). Based on these annotations, we
construct sub-question and composite-question triplets by pairing questions from different categories.

For SFT, we perform a grid search over learning rates in {1e-6, 5e-6, Se-5}, using a batch size of 8,
gradient accumulation of 2, and a warmup ratio of 0.

F.2 ADDITIONAL EXPERIMENTAL RESULTS

In Fig. we further compare the reasoning compute compositionality of DeepSeek-R 1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Llama-8B before and after SFT-Compo. With SFT-Compo, the
nMAD decreases, and the results align more closely with the y = x line compared to their base
counterparts.
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Figure 10: Visualizations of Reasoning Compute Compositionality on DeepSeek-R1-Distill-
Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
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