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Abstract

Large Language Models (LLMs) prompted to
generate chain-of-thought (CoT) exhibit im-
pressive reasoning capabilities. Recent at-
tempts at prompt decomposition toward solv-
ing complex, multi-step reasoning problems
depend on the ability of the LLM to simulta-
neously decompose and solve the problem. A
significant disadvantage is that foundational
LLMs are typically not available for fine-
tuning, making adaptation computationally pro-
hibitive. We believe (and demonstrate) that
problem decomposition and solution genera-
tion are distinct capabilites, better addressed in
separate modules, than by one monolithic LLM.
We introduce DaSLaM, which uses a decomposi-
tion generator to decompose complex problems
into subproblems that require fewer reasoning
steps. These subproblems are answered by a
solver. We use a relatively small (13B parame-
ters) LM as the decomposition generator, which
we train using policy gradient optimization to
interact with a solver LM (regarded as black-
box) and guide it through subproblems, thereby
rendering our method solver-agnostic. Evalu-
ation on multiple different reasoning datasets
reveal that with our method, a 175 billion pa-
rameter LM (text-davinci-003) can produce
competitive or even better performance, com-
pared to its orders-of-magnitude larger succes-
sor, GPT-4. Additionally, we show that DaSLaM
is not limited by the solver’s capabilities as
a function of scale; e.g., solver LMs with di-
verse sizes give significant performance im-
provement with our solver-agnostic decompo-
sition technique. Exhaustive ablation studies
evince the superiority of our modular finetuning
technique over exorbitantly large decomposer
LLMs, based on prompting alone.

1 Introduction

In recent years, an astounding variety of text and
NLP tasks have been accomplished by language
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models (LMs) (Devlin et al., 2019) — in essence,
fitting continuous feature vectors to tokens and
modeling smooth conditional distributions over
thousands of token positions with multi-task ob-
jectives. The next generation of large LMs (LLMs)
such as T5, GPT4 and Bard (Raffel et al., 2020;
OpenAI, 2023) developed protean capabilities, ex-
tending to mathematical and logical ability, based
on prompting and in-context learning. Chain-of-
thought (CoT) prompting has been a key enabler
(Wei et al., 2022; Feng et al., 2023). LLMs can
solve middle-school word problems and equations
reasonably well. It has also acquired the ability to
invoke specialized external tools such as Wolfram
Alpha (Wolfram, 2023; Schick et al., 2023).

Recent advances in LLMs have arisen largely
from cleverly-engineered, ever-growing training
data, rather than any significant change in network
structure, which remains relatively regular, but with
rapidly increasing network size and number of pa-
rameters. One outcome of such giant monolithic
LLMs is unsustainable levels of hardware and en-
ergy (Dhar, 2020) to train them. Meanwhile, neu-
rologists and brain scientists have known, via fMRI
scans, inter alia, that cerebral functions are special-
ized and spatially localized (Fedorenko and Varley,
2016; Mahowald et al., 2023).

Many recent complex reasoning challenges
thrown at LLMs have a two-level character – the
input task needs to be decomposed into subtasks,
then the subtasks need to be solved, and finally,
subtask solutions have to be consolidated and com-
bined to solve the input task. Existing approaches
use the same LLM to both decompose and solve
the task, sometimes in tangled and uninterpretable
ways. Because the sharing of an LLM across these
functions cannot be closely controlled, very large
models are needed for this double ability (decom-
pose and solve) to emerge.

Staying entirely inside the LLM regime, and
avoiding the possibility of specialized tools, we
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Figure 1: Working example of DaSLaM on a mathematical reasoning question from the JEEBench dataset (Arora
et al., 2023). In this example, the solver LM is text-davinci-003. In step 1 , the solver is prompted to answer
the question (blue textbox) and it fails to answer correctly (red textbox). A problem decomposing LM generates
subproblems (violet textboxes) conditioned on the original question and the initial response of the solver in step
2 . In step 3 , the solver answers these subproblems iteratively and appends to the prompt. Finally, the original

problem is appended to the prompt in step 4 , and the solver answers it correctly (green textbox).

ask a simple question – is it possible to offload the
ability of problem decomposition to a dedicated,
relatively smaller scale model, which is specialized
and can act in synergy with any solver model of
choice? To incorporate flexibility and better gen-
eralization, an immediate requirement of such a
setup would be to enable a model-agnostic commu-
nication between the decomposer and the solver.

Our contributions. To study this research ques-
tion, we develop DaSLaM (Decomposition And So-
lution LAnguage Models), in which we separate
the decomposer from the solver, as shown in Fig-
ure 1. The solver LM can be conventionally trained
or fine-tuned. In the illustration, when it answers
a question incorrectly, the decomposer LM takes
over to produce sub-questions. The partial solu-
tions are appended and resubmitted to the solver
LM, which solves the question correctly. The de-
composer LM regards the solver as a black box,
and uses reinforcement learning (RL) to become a
specialized expert at decomposition, informed by
the solver’s mistakes.

Extensive experiments with three reasoning
datasets (MATH, AQuA, and JEEBench) show that
the proposed specialization improves the perfor-

mance of OpenAI GPT-3 text-davinci-003 to
outperform GPT-3.5 and even begins to compete
with GPT-4, outperforming other similar methods.
DaSLaM boosts text-davinci-003 from an exact
match accuracy of 41.6 to 54.5 in zero-shot regime,
which is 3.9 points higher than few-shot GPT-4.
Similarly, on Physics problems from JEEBench
dataset, DaSLaM-augmented text-davinci-003
scores only 0.58 points short of GPT-4 while out-
performing GPT-3.5. The decomposer LM in
DaSLaM reduces decomposition errors, and general-
izes well across diverse small-scale LMs. It is also
more robust in the face of difficult datasets, where
the solver gives near-random performance.

These results support our founding hypothesis
that heterogeneous functional specialization im-
proves model efficiency and robustness of LLMs.
A crucial findings from our experiments is that
finetuning the decomposer is much more powerful
choice than finetuning the solver. Moreover, a fine-
tuned decomposer is largely superior compared to
an orders of magnitude larger LLM prompted to
act as a decomposer. Given the prohibitive cost of
finetuning LLMs like GPT 3, 3.5, or 4, we hope this
method would provide us a promising direction to-



wards future development of task-expert models.1

2 Related Work

Eliciting superior reasoning abilities in LM through
specially designed prompts has found its popu-
larity through CoT prompting (Wei et al., 2022)
– asking the LM to explain the reasoning steps
improves overall performance. Decomposing a
complex reasoning requirement into multiple, sim-
ple steps results in superior reasoning capabili-
ties across modalities other than free-form natural
language text as well, e.g., reasoning over tabu-
lar data (Ye et al., 2023), visual question answer-
ing (Lu et al., 2022), etc. These methods generally
solicit a single run of LM inference with no inter-
mediate prompting interactions. Consequently, the
LM often misses key reasoning steps or halluci-
nates irrelevant ones.

On the other hand, a prototypical prompter, se-
quentially interacting with the LM, has shown im-
pressive performance. Progressive Hint Prompting
(Zheng et al., 2023) uses such a setting; first, the
LM is asked to provide a base answer. The prompt
then uses the answer as a hint to the LM that pro-
gressively guides it to the final answer. Zhou et al.
(2023) followed a similar direction by breaking
down the problem itself. Their method, Least-to-
most prompting, asks the LM to generate simpler,
related problems from a complex problem. The
final solution to the original question is generated
by the LM conditioned upon the solution of the sub-
problems. A major bottleneck then becomes the
solver’s ability to identify the critical subproblems.
Decomposing a complex task and then solving each
task via multiple LLMs with their own in-context
examples have been attempted as well (Dua et al.,
2022; Khot et al., 2023). Recently, Shridhar et al.
(2022) explored subquestion generation from com-
plex questions as means of distilling reasoning abil-
ities from larger LMs to smaller ones.

Our proposed method, DaSLaM makes a depar-
ture from these mentioned approaches in three par-
ticular features: (i) we seek to separate out the de-
composer from the solver to get rid of the solver’s
limitations affecting decomposition, (ii) the decom-
poser acts as a plug-and-play module that can gen-
eralize to any solver, and (iii) the decomposition
actuates with complete knowledge of the solver’s
actions.

1The codebase is given at: https://github.com/
LCS2-IIITD/DaSLaM

3 A General Overview of DaSLaM

Given an LM θ and a question Q as a sequence
of tokens, a standard zero-shot prompting can be
described as,

Â = argmax
A∈A

pθ(A|Q)

where Â is the inferred answer, and A is the set of
possible answers (e.g., numerical values, multiple-
choice options, True/False, etc.). With a CoT
prompting, the LM generates a sequence of tokens
explaining the steps S to reach the answer given the
question. The modified process can be described
as,

Â = argmax
A∈A

[
pθ(A|S,Q) argmax

S
pθ(S|Q)

]
(1)

When answering Q requires multistep reasoning,
one can conceptualize S as a sequence of smaller
steps {S′

1, S
′
2, · · · , S′

n} such that the LM iteratively
answers a sequence of subproblems {Q′

1, · · · , Q′
n}

to finally reach the desired answer to the original
question. Eq. 1 can then be rewritten as,

Â = argmax
A′

n∈A

∏
i

pθ(A
′
i|S′

i, Q
′
i) argmax

S′
i

pθ(S
′
i|Q′

i) (2)

where A′
i is the answer to the subproblem Q′

i. In
the usual regime of CoT, the subproblems Q′

i are
implicit; the LM discovers them on its own and
generates the reasoning steps and the answers. Due
to the repeated multiplication in Eq. 2, any error
in the initial stages quickly propagates along the
chain of steps.

In DaSLaM, we seek to alleviate this problem by
offloading the task of inferring the subproblems
{Q′

i} to a decomposer LM ϕ. For a more guided
problem decomposition, DaSLaM uses the answer
and the steps generated by the solver LM, θ in the
naive CoT regime as described in Eq. 1 to generate
a set of subproblems {Q̂i}i=1,...,n as follows:

Q̂i = argmax
Q′

i

pϕ(Q
′
i|{Q̂j : j ∈ [1, i− 1]},

Q, Â0, S0), (3)

for i ∈ [1, n], where Â0 and S0 are the initial an-
swer and reasoning steps, respectively generated by
θ. The solver LM θ then solves the subproblem set
one-by-one similar to Eq. 2. However, instead of
seeking to generate the final answer as a response
to the last subproblem Q̂n, we append the origi-
nal question at the end and let θ answer it directly
given the context generated by the subproblems,
their answers, and the corresponding CoTs. The
four stages of workflow with DaSLaM, as described

https://github.com/LCS2-IIITD/DaSLaM
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in Figure 1, can then be summarized as follows:

Â0 = argmax
A∈A

[
pθ(A|S0, Q) argmax

S0

pθ(S0|Q)

]
Q̂i = argmax

Q′
i

pϕ(Q
′
i|{Q̂j}j∈{1,i−1}, Q, Â0, S0)

Âi = argmax
Ai∈A

[
pθ(Ai|Si, Q̂i) argmax

Si

pθ(Si|Q̂i)

]
Â = argmax

A∈A

[
pθ(A|S,Q)

argmax
S

pθ(S|{Âi, Si, Q̂i}i∈{1,N}, Q)

]
(4)

4 Learning to Decompose from Feedback

Typical LMs are not suitable to reliably perform
the problem decomposition stage in Eq. 3. We
seek to finetune the decomposer LM, ϕ for this
task. Specifically, we use the LLaMA 13 billion
model. Instead of full LM-tuning, we use LoRA
adapters (Hu et al., 2022) for parameter-efficient
training. For brevity, we will denote the adapter-
augmented LM as ϕ, although only the adapter
weights are being updated while training. The
whole process of teaching the LM to perform the
problem decomposition comprises two successive
stages: (i) subproblem construction from the origi-
nal question and CoT, and (ii) policy optimization
in conjunction with the solver LM. Details of the su-
pervised data curation required for these three steps
are described in Section 5. Each data sample in
the supervised dataset D can be conceptualized as
a sequence of triplets ⟨Qgold, Sgold, Agold,Q

′
gold⟩,

where Qgold denotes the original question, Sgold de-
notes reasoning steps in form of CoT, Agold denotes
the answer to the question, and Q′

gold is a sequence
of subproblems generated by decomposing Qgold
(see Section 5 and Appendix A for further details
on supervised data curation process).

The first stage is straightforward with the decom-
poser LM being finetuned using language modeling
objective. In the first stage, we seek to optimize the
following objective:

min
ϕ

[− log(pϕ(Q
′
gold|Q,S))] (5)

This step is somewhat similar to instruction tuning,
where an LM is asked to generate some text condi-
tioned on a context, instead of following the usual
sentence completion-style behavior of the LM. In-
tuitively, the role of this stage is to align the LM to
the task of the decomposer.

Decomposition via policy network. The previ-
ous stage inculcates the ability to decompose a

problem within ϕ. However, it is still blind to the
actual errors made by the solver LM. In the next
stage, we seek to make the decomposer LM work
in synergy with any solver LM of choice. This
solver agnosticism restrains ϕ to observe the inter-
nal representations computed by θ while solving
the problem. To handle this imposed blackbox
characteristics of the solver, we resort to policy gra-
dient optimization of ϕ assuming θ to be part of the
environment. We formalize the setup as follows.

Elements of the environment: The solver LM θ
constitutes the core component of the environment.
Given a question Q, the solver-generated CoT S
and the answer A as sequences of tokens define the
observation of the policy.

State and action space: We define the state
space as S. The initial state, s0 ∈ S, is defined
by the original question Q and the initial response
from the solver, S0, A0, that are provided to the
decomposer LM ϕ as input. A single timestep is
defined on generation of a single token, i.e., the
action at at time t. Given the autoregressive na-
ture of LM, we define the state at t-th timestep as
st = (st−1, {at−1}), i.e., the token generated at
t − 1 appended to the tokens generated till t − 1.
Trivially, the action space is the same as V , the
vocabulary of ϕ.

Policy: The decomposer LM is conceptualized
as a policy network πϕ : S −→ V , i.e., it generates
a token given the inputs and the token generated
hitherto, till the end of episode T . Inspired by the
recent success in Reinforcement Learning from Hu-
man Feedback (RLHF) with autoregressive LMs,
we choose the Proximal Policy Optimization (PPO)
algorithm to train the policy πϕ(a|s). In a typical
PPO setup, we define the advantage function as
follows:

Ĝt =

T−t+1∑
i=0

(γλ)i [rt+i + γV (st+i+1)− V (st+i)] (6)

where rt is the reward at step t, V (st) : S −→ R is
the value function determining the reward associ-
ated to state st, and γ, λ are hyperparameters. We
use the policy model augmented with a randomly
initialized feedforward layer as the value function.
A crucial component in on-policy learning regime
is the reward function rt. While the end goal of the
learning is to have the solver answering correctly,
the decomposer LM should receive some incremen-
tal signal aligned to its generation as well for it to
stably converge to the optimal policy. With this



goal in mind, we construct the reward function as,
rt = R1 +R2 +R3 +R4 +R5 (7)

where R1 to R5 are defined as follows (see Ap-
pendix B for a detailed treatment on the reward
computation method). Here cos-sim represents co-
sine similarity. I(x) = 1 if x is true is the indicator
function.
Entity coverage: R1 =

|EQ′ |
|EQ| , where EQ′ and EQ

are the sets of distinct entities in the generated
subproblems and the original question, respec-
tively.

Consistency of answers to subproblems:
R2 =

∑
i

(
I(ei = êi) + cos-sim(Q′

i, Ai)
)

(8)

where êi is the entity whose value has been asked
in the subproblem Q′

i, and ei is the entity an-
swered. This reward penalizes the decomposer
LM for generating questions whose answers are
not consistent.

Order of operations: R3 = l
m , where l is the

number of operations matched in order between
S and Sgold, and m is the total number of opera-
tions in Sgold.

CoT proximity: To ensure that the distance of rea-
soning produced by the model after prompting
S to the gold reasoning Sgold is less than the
distance of reasoning produced without prompt
S0 to the gold reasoning steps Sgold, we design
a reward based on the cosine similarity of each
step of Sgold. We break S and S0 at new-line
token to form reasoning steps. At each step
j, we compute c1j = cos-sim(Sj , Sj

gold) and

c2j = cos-sim(Sj
0, S

j
gold). The reward is

R4 =

m∑
j=0

I(c1j > c2j)c1j + I(c2j > c1j)(−1− c2j),

(9)

Correctness of final answer: R5=I(Â=Agold).
Now, we can define the PPO objective as follows:

max
ϕ

(
Et

[
πϕ(at|st)
πref(at|st)

Ĝt

]
− βEt [Kt]

)
(10)

where πref is the reference model that is ini-
tialized with supervised finetuned ϕ. Kt =
KL[πref(·|st), πϕ(·|st)] is the KL-divergence be-
tween the reference model and the policy model.

The resulting decomposer LM ϕ optimized using
the above mentioned three stages of finetuning can
then be used with DaSLaM.

5 Experiments

Training data curation. The training process of
DaSLaM consists of two stages as mentioned previ-

ously. In the first stage, we require the subproblems
along with the reasoning steps for a given prob-
lem. We use samples from four existing datasets —
MATH (Hendrycks et al., 2021), AQuA (Ling et al.,
2017), GSM8K (Cobbe et al., 2021), and Strate-
gyQA (Geva et al., 2021). Each question in these
four datasets contains a question Qgold, a step-by-
step illustration of the reasoning process Sgold, and
the final answer Agold. We sample 7, 000 examples
from the training splits of these datasets and employ
OpenAI’s text-davinci-003 model to generate
the corresponding subquestions. We provide the
model with one-shot example illustrating how to
decompose a question into subquestions based on
the reasoning. In the second stage of training, we
utilize the remaining training data from MATH and
AQuA datasets to conduct the policy optimization
since this step does not require any supervised ex-
amples of subproblems.

LMs used. We use LLaMA 13 billion (Touvron
et al., 2023) as the decomposer LM. For the solver
LM, we primarily use text-davinci-003 (hence-
forth, we denote it as GPT-3.5 for brevity). We
also experiment with the LLaMA 13 bilion and
LLaMA 33 billion models as solvers to test the
model-agnostic generalizability of DaSLaM.

Baselines. We compare DaSLaM with four ex-
isting methods of prompting: Chain-of-thought
prompting (CoT) (Wei et al., 2022), Least-to-most
prompting (L2M) (Zhou et al., 2023), Progressive
Hint Prompting (PHP) (Zheng et al., 2023), and,
Demonstrate-Search-Predict (DSP) (Khattab et al.,
2022a). The original setting of PHP requires an
8-shot prompting; however, since all other methods
including DaSLaM predict in the zero-shot setting,
we use PHP in 1-shot for a fairer comparison. Addi-
tionally, we experiment with three ablation variants:
DaSLaM-NF does not take the solver feedback into
account while generating the subproblems; Fine-
tuned is the solver LM (LLaMA 13B in this case,
we could not finetune 33B variant due to compu-
tational constraints) finetuned without any decom-
poser; GPT-3.5 decomposer does away with the
finetuned LLaMA 13B decomposer and uses pre-
trained GPT-3.5 as the prompted decomposer.

Test datasets. For evaluation purposes, we use
three datasets – MATH (Hendrycks et al., 2021),
AQuA (Ling et al., 2017), and JEEBench (Arora
et al., 2023). For the first two datasets, only the
test splits are used during evaluation since their



Dataset
Method

CoT L2M PHP DSP GPT3.5 Decomposer DaSLaM-NF DaSLaM

PnC 16.4 16.0 10.2 16.2 16.0 20.0 21.4
NT 14.4 11.0 9.8 20.3 14.2 18.4 26.1
ALG 27.6 22.4 24.0 15.3 32.1 31.6 33.4
I-ALG 16.4 16.8 10.0 17.0 18.4 20.8 24.8
Calc. 14.0 14.58 14.28 18.8 12.0 15.1 18.2
P-ALG 32.3 28.0 26.5 28.0 35.5 38.0 44.0
Geom. 14.2 12.5 14.0 5.2 22.0 19.04 21.4

AQuA 41.6 44.7 44.4 44.0 45.4 53.2 54.5

Table 1: Performance comparison on MATH and AQuA datasets using GPT-3.5 as the solver LM. See Section 5 for
abbreviations.

training splits are used while finetuning the decom-
poser. The MATH dataset contains mathematical
problems on multiple different domains. We report
the results on each of them separately and use the
following abbreviations – ALG, I-ALG, and P-
ALG for Algebra, Intermediate Algebra, and Pre-
Algebra, respectively; Calc for Calculus, Geom
for Geometry, PnC for Probability and Combina-
torics, NT for Number theory. From the JEEBench
dataset, we use the problems in Physics (Phy)
and Mathematics (Math). Each of these two sub-
jects has three types of problems – single-answer
multiple-choice questions (MCQ), numerical prob-
lems (Num), and multi-answer multiple-choice
questions (Multi). For all these datasets, we use
exact match criteria to evaluate the correctness of
the model-inferred answers. Details of training and
inference hyperparameters and compute resource
usage are provided in Appendix C.

6 Experimental Results

The tasks used to evaluate the performance of
DaSLaM contain questions that can be answered
either of the three types – numerical, single correct
answer MCQ, and multiple correct answer MCQ.
DaSLaM is better than pure prompting We start

with DaSLaM augmented with GPT-3.5 as the solver
LM on MATH and AQuA datasets (see Table 1).
The improvement achieved with DaSLaM prompting
compared to standard CoT is staggering across all
types of problems in the MATH dataset: +11.7 on
Pre-Algebra, +8.4 on Intermediate Algebra, +7.7
on Number Theory, +7.2 on Geometry, +5.0 on
Probability and Combinatorics, +5.8 on Algebra,
and +4.2 on Calculus. The absolute improvement
is even larger on the AQuA dataset, i.e., +12.9 over
CoT. It is noticeable that the effects of DaSLaM are

stronger across tasks containing algebraic reason-
ing (AQuA, Pre- and Intermediate-Algebra, etc.)
compared to Probability and Combinatorics or Cal-
culus, which require more implicit knowledge. The
performance gain achieved via DaSLaM is signif-
icantly better compared to methods like L2M or
PHP. The latter methods often fail to improve over
standard CoT (e.g., on Probability and combina-
torics, Number Theory, and Algebra problems,
L2M shows a drop in accuracy). Even when im-
proving over CoT, their improvement is meager
compared to DaSLaM. This trend entails our earlier
argument in support of offloading the problem de-
composition task to a specialized LM; methods that
prompt the solver LM to decompose the problem
lack the expertise achieved via dedicated finetuning
in DaSLaM.

Finetuned decomposer is essential. Despite
being orders of magnitude smaller, a finetuned
LLaMA 13B model delivers better performance
compared to GPT-3.5 as a decomposer (DaSLaM
vs. GPT-3.5 generator in Table 1 and 2). This fur-
ther justifies our choice of separately finetuning the
decomposer and the added flexibility that it offers.
In fact, finetuning the decomposer is far effective
compared to finetuning the solver (DaSLaM vs
Finetuned solver in Table 2).

Feedback from the solver is important. In
the preceding paragraph, we attributed the superi-
ority of DaSLaM over other methods to the usage
of a specialized LM for problem decomposition.
However, manipulating the problem decomposi-
tion upon feedback from the solver is also an im-
portant factor here. None of the existing methods
does so, and therefore, remains blind towards what
reasoning (and possible errors) is followed by the
solver model. This is further manifested when we



Method Dataset
PnC NT ALG iALG Geom Cal Palg AQuA

LLaMA 13 billion
CoT 2.05 4.0 3.12 2.4 3.2 2.08 5.0 17.7
L2M 1.66 3.2 3.33 2.8 2.0 3.33 4.54 16.6
Finetuned 2.8 3.6 3.57 3.2 4.1 3.05 6.04 19.4
GPT3.5 Decomposer 2.05 5.0 4.68 2.8 2.08 4.0 6.66 20.4
DaSLaM-NF 2.93 4.8 4.68 3.2 4.0 3.9 6.2 21.6
DaSLaM 4.0 5.6 4.70 3.4 4.3 4.1 8.33 22.0

LLaMA 33 billion
CoT 2.4 4.16 4.54 3.7 4.0 4.0 5.2 20.0
L2M 2.38 4.16 4.2 6.0 4.25 5.71 5.55 21.6
DaSLaM-NF 3.2 5.83 5.6 5.6 5.1 5.71 5.2 22.5
DaSLaM 4.0 7.36 9.09 6.02 5.3 6.03 8.44 26.8

Table 2: Performance on
MATH and AQuA with
LLaMA 13 billion and
LLaMA 33 billion as solvers.
PHP is not reported as
one-shot PHP generated
randomly with both LLaMA
variants. DaSLaM provides
consistent improvement
across all the tasks while
other baseline methods
mostly fail.

Method Dataset
Phy MCQ Math MCQ Phy Multi Math Multi Phy Num Math Num Phy Int Math Int

CoT 33.33 21.9 6.25 12.0 3.03 1.69 12.5 20.0
PHP 22.22 17.07 6.25 7.59 3.03 1.69 0* 4.0
L2M 22.22 21.9 6.25 12.5 3.03 3.38 10.0 20.0
DaSLaM-NF 20.8 31.7 7.5 10.12 3.03 3.38 12.5 16.0
DaSLaM 55.55 36.5 18.75 16.0 6.06 10.16 22.5 24.0
GPT-4 55.55 34.14 27.5 21.5 15.15 11.8 25.0 20.0

Table 3: Performance comparison on the JEE benchmark dataset with GPT-3.5 as the solver LM. 0* signifies that
the model was not able to answer any problem in the task correctly.

compare DaSLaM with itself without the feedback
module, DaSLaM-NF. While DaSLaM-NF is able to
improve upon basic CoT and other prompting meth-
ods, it falls short of a decomposer LM that has
access to the initial response of the solver.

DaSLaM generalizes to smaller solvers. An im-
portant aspect of a prompting method is its ability
to work with LMs of different scales. Despite be-
ing finetuned with GPT-3.5 responses only, DaSLaM
is able to improve upon the base performance of
smaller scale LLaMA models as well (see Table 2).
L2M prompting generally fails with both LLaMA
13 billion and 33 billion variants. On the other hand,
DaSLaM, with or without feedback, almost doubles
the performance of the base CoT across multiple
tasks of the MATH dataset. It shows substantial
improvement on AQuA as well. The importance
of feedback from the solver LM usually manifests
strongly in proportion to the scale of the solver.

DaSLaM generalizes to harder problems. Since
the decomposer LM ϕ is trained using a subset of
the training data of MATH and AQuA, we opt for a
harder (in terms of benchmark performance of dif-
ferent LMs) reasoning evaluation on the JEEBench
dataset. Table 3 summarizes the performance of the
baselines and DaSLaM with GPT-3.5 as the solver
LM on Mathematics and Physics questions of the
JEEBench dataset. We notice that the superiority
of DaSLaM manifests even more profoundly on this
task compared to the former ones. Both PHP and
L2M prompting absolutely fail to improve upon

basic CoT prompting, often with a sharp fall in per-
formance (e.g., Physics MCQ questions). On the
other hand, DaSLaM boosts the LMs performance,
very often over 100% relative improvement (all
three types of problems in Physics and numeri-
cal problems in Mathematics). Aggregated across
question types, DaSLaM boosts the performance of
GPT-3.5 to 22.420 in Physics and 22.07 in Math-
ematics. It is noteworthy that the same LM in
its base setting performs near-random, i.e., 10.4
and 10.7 in Physics and Mathematics, respectively,
whereas a random selection baseline gives scores
of 9.6 and 10.3, respectively (Arora et al., 2023).
Furthermore, GPT-3.5 with DaSLaM outperforms a
better optimized candidate of the GPT series, GPT-
3.5 on both these subjects (note that Arora et al.
(2023) reported 18.9 and 15.7 scores with GPT-3.5
on Physics and Mathematics, respectively). Com-
parison with GPT-4. The colossal compute used
by GPT-4 makes the comparison with any of its
predecessors like GPT-3.5 quite unfair. However,
it is tempting to observe that DaSLaM boosts the
performance of GPT-3.5 often to the level of GPT-
4. For example, on arithmetic problems of the
AQuA dataset, DaSLaM surprisingly outperforms
both zero-shot and few-shot GPT-4 (40.6 and 50.4
respectively, compared to 54.5 with GPT-3.5 and
DaSLaM). On MATH dataset, DaSLaM augmented
GPT-3.5 scores an aggregate of 30.23, which is
better than ChatGPT (26.4) and close to GPT-4
(35.7). On JEEBench Mathematics problems, GPT-



Figure 2: An example case study on a problem from the MATH dataset. GPT-3.5 is used as the solver LM with
three different methods of prompting – standard CoT, Least-to-most, and DaSLaM. Only DaSLaM is able to guide the
model to the correct answer.

4 comes up with an aggregate score of 23.1, which
is pretty close to our 22.42. In Physics and Math
MCQ questions, DaSLaM with GPT-3.5 outperforms
GPT-4. These results definitely do not claim any
assumed superiority of DaSLaM-boosted GPT-3.5
over GPT-4 since there are multiple other cases that
state otherwise. Instead, we seek to demonstrate
how much leftover potential these LMs possess
that can be unleashed via our proposed method
of feedback-guided automatic problem decomposi-
tion.

7 Case Study

To this point, we have compared the numbers pro-
duced by DaSLaM-boosted models across different
datasets. While they provide an overall assess-
ment, deeper analyses are needed to comprehend
the actual reasoning steps adopted by these differ-
ent methods. Figure 2 shows the reasoning steps
generated by GPT-3.5 given an example problem
from the MATH dataset with three different prompt-
ing methods – vanilla CoT, L2M, and DaSLaM. Note
that DaSLaM uses the CoT output to decompose the
problem.

Both CoT and L2M end up with the model an-

swering incorrectly. With CoT, the solver wrongly
assumes that the given equation must have two real
roots though it should not have any real roots. Also,
it mistakes the value of a2 as a. The effect is promi-
nent in the subproblems generated by DaSLaM as it
asks to find the value of a explicitly. Furthermore,
the solver LM specifically announces that y ≤ 0 to
answer the first subproblem generated by DaSLaM.
This helps to correct the reasoning about the sign
of the discriminant.

With L2M, the confusion around the value of a
and a2 persists, as the solver LM substitutes a in
the given equation by 49 (which is the value of a2)
twice in the answering process. Although it substi-
tuted the correct value of a once while answering
the second question, it is not explicitly declared
like in DaSLaM. We observe multiple similar failure
cases with L2M. It is quite likely that prompting
the model to generate the final answer after each
subproblem accumulates the erroneous reasoning
steps that the model falls prey to.

With DaSLaM, the reasoning steps followed by
the solver remains robust throughout. It reaches
the final answer much earlier (third and fourth sub-
problems). In the final answer, the solver simply



reiterates the steps that it earlier generated to an-
swer the subproblems. This is a common behavior
that we observed across multiple problems from
multiple datasets. In Appendix D (see Figures 3
and 4), we provide similar case studies on LLaMA
13B and 33B with different prompting methods.
With reduced solver capacity, the difference be-
tween Least-to-most and CoT generated reasoning
steps further diminishes with both leading to in-
correct answers; DaSLaM, on the other hand, still
guides the solver through correct steps.

An interesting observation can be made by com-
paring how the solver behaves with CoT vs. with
DaSLaM. With DaSLaM, we do not provide any new
knowledge to the solver. Yet, the same model can
rectify its errors made in CoT response. This may
point to the intuition that current LLMs are actu-
ally underutilized, and one can unfold even more
impressive performance with cleverly composed
guidance.

We further provide case analyses with when
DaSLaM fails to guide the model (GPT 3.5 in this
case) to successful final answers, in Appendix E.
While we do not find any obvious pattern of er-
rors, one can see that the decomposer generates
questions that are not readily answerable within
that context. DaSLaM does not use any method to
trace back the error or generate subproblems based
on the answers to the previous subproblems. This
might raise such issues where the subproblems gen-
erated are not actually helping the solver in the
right order.

8 Conclusion

We challenged the design of ever-larger monolithic
LLMs as homogeneous network structures, where
diverse aspects of problem decomposition and solu-
tion are stored in a tangled and opaque manner. The
formidable general-purpose problem-solving capa-
bilities of LLMs are exceedingly resource-hungry,
dependent on immense data engineering. Inspired
by brain science, we took a first step toward hetero-
geneity — let two different LLMs evolve indepen-
dently and adapt to their roles of decomposing and
solving complex reasoning problems. Through ex-
tensive experiments on several benchmarks, we
showed that such a heterogeneous network can
match or exceed some of the largest contemporary
LLMs, at a much smaller parameter count.

Limitations

A potential limitation of DaSLaM, as with many sys-
tem that uses an LLM-as-a-service API charging
per token exchange, is the increased token usage
because of the RL exploration. Asserting a token
budget on the decomposer LM is left as an avenue
for future exploration. Ideally, the decomposer LM
should seamlessly invoke solvers of many forms,
such as retrievers (Khattab et al., 2022b) or mathe-
matical calculators (Schick et al., 2023; Wolfram,
2023). Future work may extend DaSLaM to such
tools. DaSLaM is limited to purely text-based sub-
problem decomposition; it is not possible at present
to incorporate reasoning through other modalities
(e.g., visual inputs for geometric reasoning) into
DaSLaM in its current form.
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Small Language Models Fine-tuned to Coordinate Larger Language
Models improve Complex Reasoning

(Appendix)

A Supervised Fine-tuning Dataset

The training data for supervised fine-tuning stage
was generated using text-davinci-003. Each
data point in the dataset consisted of a tuple
⟨Qgold, Sgold, Q

′
gold⟩, where Qgold represents the

reasoning question, Sgold represents the gold rea-
soning steps, and Q′

gold represent the sub-questions
generated by text-davinci-003 in a one-shot set-
ting. An example of a single data point is given
below.

Qgold

John borrowed 3 soccer boots from Jake, and forgot them
on the field, if peter came across a total of 15 boots on the
field Jake’s boots inclusive, and he took 4 boots at random,
what is the probability that Jake’s boots were not amongst
the 4 taken?. (A) 12

91
, (B) 3

15
, (C) 12

15
(D) 33

91
, (E) 3

91

Sgold

Since Jake owns 3 of the boots, the subset from which the 4
boots should be chosen are the 12 boots not owned by Jake
from the universe of 15.The first boot can be one of the 12
from the 15 with probability 12

15
. The second boot can be

one of the 11 from the 14 remaining with probability 11
14

.The
third boot can be one of the 10 from the 13 remaining with
probability 10

13
. The fourth boot can be one of the 9 from the

12 remaining with probability 9
12

.The total probability will
be 12

15
· 11
14

· 10
13

· 9
12

. On cancellation, this comes to 33
91

Q′
gold

1. How many boots did Jake own?
2. How many boots were on the field?
3. How many boots did Peter take?
4. What is the probability of choosing one of the 12 boots

not owned by Jake from the universe of 15?
5. What is the probability of choosing the second, third

and fourth boots not owned by Jake?
6. What is the total probability?

B Reward Calculation

During policy gradient optimization of the decom-
poser LM ϕ, rewards were provided in an incremen-
tal fashion so that the generated sub-questions align
well with the initial question, the answer generated
by the solver LM θ and the sub-question solving
capabilities of θ. For this, the reward was designed
as a combination of five terms. The definitions of
these terms are given in Section 4. Here we provide
an example of the reward calculation.

Entity coverage Reward (R1). Here, we find
distinct nouns and numbers in the question and the
sub-questions using the nltk library. The reward
is calculated using R1 =

|EQ′ |
|EQ| , where EQ′ and

EQ are the sets of distinct nouns and numbers in
the sub-questions and questions, respectively. An
example of the same is shown below.

Qgold:
Each good worker can paint my new house alone in 12
hours. Each bad worker can paint my house alone in 36
hours. I need my house painted in 3 hours. If I can only
find 3 good workers, how many bad workers must I also
find in order to have my house painted on time?

Q′
gold:
1. How many good workers are needed to paint the house

in 3 hours?
2. How many bad workers are needed to paint the house

in 3 hours?
3. What is the total number of workers needed to paint

the house in 3 hours?

|EQ′ | = 4 + 1 = 5 (11)
|EQ′ | = 6 + 3 = 9 (12)

R1 =
|EQ′ |
|EQ|

=
5

9
= 0.55 (13)

Consistency of answers to subproblems re-
ward (R2). To ensure that the sub-question is
such that the solver LLM ϕ does not produce
random answers, we compare the entity in the
solution to the entity asked in the subquestion
along with the cosine similarity of the embed-
dings of sub-question and sub-answers. To find
the embeddings, we use the pre-trained model
in the spacy library. R2 =

∑
i(I(ei = êi) +

cosine-similarity(Q′
i, Ai)), where I(x) = 1 if x is

true, êi is entity whose value has been asked in the
subproblem Q′

i, and ei is the entity answered. An
example for the reward calculation is given below.



Q′
1: How many good workers are needed to paint the house

in 3 hours?
A1: We can calculate the amount of work done in 3 hours
by a good worker by dividing 12 hours by 3 hours. We get
4 as the answer. We know that a bad worker can paint the
house in 36 hours. We can calculate the amount of work
done in 3 hours by a bad worker by dividing 36 hours by 3
hours. We get 12 as the answer. We need to find out how
many good workers are needed to paint the house in 3 hours.
We can calculate the number of good workers needed by
dividing 12 by 4.
Answer: 3 good workers can paint the house in 3 hours.
cos-sim(Q′

i, Ai) = 0.70457435
I(ei = êi) = 1
R2 = 1 + 0.70457435 = 1.70457435

Order of operations reward (R3). To evaluate
the correctness of the mathematical solution pro-
duced by the model, we compare the order of opera-
tions. R3 =

l
m , where l is the number of operations

matched in order between S and Sgold, and m is
the total number of operations in Sgold. Below is
an example of R3 calculation.

Smodel:
Original Price = x
Discounted Price = 0.78x
Price after coupon = 0.78x - 20
Price paid = 0.78x - 20 + 1.90
0.78x - 20 + 1.90 = 0.5x
0.28x = 21.90
x = 78.21
Sgold : Let x be the original price of item
Discounted price = 0.78x
Payment made by the customer after using the $20 coupon
= 0.78x - 20
0.78x - 20 = x/2 + 1.9
x = 78.20
operations in Smodel: [-, -, +, -, +]
operations in Sgold: [-, -, /, +]
R3 = 3

4
= 0.75

CoT Proximity reward (R4). As defined in Sec-
tion 4, R4 =

∑m
j=0 I(c1j > c2j)c1 + I(c2j >

c1j)(−1−c2j), where I(·) is the indicator function.
Here we present an example to illustrate the same.

Sgold

1. : We first consider the possible neighbors of the
chief’s mother, one must be the chief, the other is
one of the remaining 5 natives. That native can, in
turn, have one of 4 neighbors in addition to the chief’s
mother

2. Continuing around, there are 5! = 120 possible ar-
rangements

3. The chief can be on his mother’s left or right, for a
total of 2 · 120 = 240 arrangements

4. Alternatively, we know that the seating arrangement
is the same if it is rotated, once the chief’s spot is
chosen, the rotations are eliminated

5. There are 2 ways to seat his wife and his mother, and
then there are 5 distinct positions for the remaining
5 natives, which makes for 2 · 5! = 240 possible
arrangements

S0:
1. We can see that the chief must be seated between his

mother and his wife.
2. This means that there are 3 possible positions for the

chief, and 5 possible positions for the other 6 people.
3. Therefore, there are 3! · 5! = 1800 different seating

arrangements.
S:

1. The chief must sit between his mother and his wife.
2. There are 8 people in the tribe.
3. So, the chief’s mother and wife can be arranged in 2!

ways.
4. The remaining 5 people can be arranged in 5! ways.
5. Therefore, the total number of possible seating ar-

rangements after removing rotation = 5! = 240
Cosine similarity calculation per step:

1. c1j = 0.47673503, c2j = 0.44773823
2. c1j = 0.45063934, c2j = 0.47917843
3. c1j = 0.5173945, c2j = 0.20383504
4. c1j = 0.46866685, c2j = 0
5. c1j = 0.47825924, c2j = 0

Hence, R4 = 0.47673503 + (−1 − 0.47917843) +
0.5173945 + 0.46866685 + 0.47825924 = 0.46187719

Correctness of final answer(R5), R5 = I(Â =
Agold). This reward checks if the final answer
matches the gold answer. A negative example of
the same is given below.



Qgold:
Three friends Alan, Roger and Peter attempt to answer a
question on an exam. Alan randomly guesses the answer,
giving him a 1

5
probability of guessing correctly. Roger

cheats by looking at the paper of the student in front of him,
giving him a 2

3
probability of answering correctly. And Peter

dutifully performs the calculations, then marks the answer,
giving him a 5

6
probability of a correct answer. What is the

probability that the question is answered correctly, but not
via cheating?
Sgold :
Prob(Alan) = 1

5

Prob(Roger) without cheating = 2
3
− 1 = 1

3

Prob(Peter) = 5
6

Total Probability = 1
5
· 1
3
· 5
6
=

1

18

Smodel :
Alan has a 1

5
chance of getting the answer correct.

Roger has a 2
3

chance of getting the answer correct.
Peter has a 5

6
chance of getting the answer correct.

The probability that the question is answered correctly is
1
5
+ 2

3
+ 5

6
= 13

12
.

The probability that the question is answered correctly, but

not via cheating is1− ( 1
5
+ 2

3
+ 5

6
) = 1− 13

12
=

−1

12

Agold: 1
18

Amodel: −1
12
R5 = 0

C Hyperparameter Selection

We performed hyperparameter tuning on a subset
of 250 examples from the training dataset. Based
on the improvement in accuracy and compute re-
sources, we converged at the following values.

For the supervised fine-tuning stage, we used
LoRA r = 16, LoRA α = 32, LoRA droput = 0.05.
For the RLMF stage, we finetuned the last 3 layers
of LoRA adapters, using a batch size of 8, gradient
accumulation steps=8, init kl coef=0.01, target=4.
For inference, we used the following generation
parameters: temperature = 0.95, top p=0.18, pad
token id = 0, do sample = False, number of beams
= 1, maxi length = 2048.

All the models were implemented using Hug-
gingface with PyTorch, and loaded in int_8 preci-
sion. For solver-LLaMA 13B model, we instruc-
tion finetuned the LLaMA13B model using the
Alpaca dataset by stanford (Taori et al., 2023).
For solver-LLaMA 33 billion model, we used an
instruction-finetuned version of LLAMA-33 billion
from Huggingface. To implement the PPO algo-
rithm, we used the TRL library. We used a single
NVIDIA A100 (80GB) GPU for all training and
inference purposes.

D Case Study on LLAMA Models

Similar to Figure 2, we performed example-wise
case study on the answering process of the LLaMA
solvers (13 billion and 33 billion models) with dif-
ferent prompting methods (see Figures 3 and 4).
The example problem was selected from the MATH
dataset. As we can see, with relatively small scale
solvers like LLaMA, Least-to-most fails to add any
improvement over basic CoT prompting. DaSLaM
is able to guide the model to the correct answer in
both cases.



As n ranges over the positive
integers, what is the maximum
possible value that the greatest
common divisor of 80n + 49

and 18n + 11 can take?

What is the greatest common divisor of 8n+ 5 and 2n+ 1?
The greatest common divisor of 8n+ 5 and 2n+ 1 is the greatest common divisor of 8n+ 5
and 8n+ 5− 2n− 1 = 6n+ 4.
The greatest common divisor of 8n+ 5 and 2n+ 1 is the greatest common divisor of 8n+ 5
and 6n+ 4− 2n− 1 = 4n+.
The greatest common divisor of 8n+ 5 and 2n+ 1 is the greatest common divisor of 8n+ 5
and 4n+ 3− 2n− 1 = 2n+ 2.
The greatest common divisor of 8n+ 5 and 2n+ 1 is the greatest common divisor of 8n+ 5
and 2n+ 2− 2n− 1 = 1.
Hence, The greatest common divisor of 8n+ 5 and 2n+ 1 is 1
What is the greatest common divisor of 18n+ 11 and 8n+ 5?
The greatest common divisor of 18n + 11 and 8n + 5 is the greatest common divisor of
8n + 5 and 18n + 11 − 8n − 5 = 10n + 6 = greatest common divisor of 8n + 5 and
10n+ 6− 8n− 5 = 2n+ 1 = 1
What is the greatest common divisor of 80n+ 49 and 18n+ 11?
The greatest common divisor of 80n + 49 and 18n + 11 is the greatest common divisor of
18n + 11 and 80n + 49 − 18n − 11 = 62n + 38is greatest common divisor of 18n + 11 and
62n+38−18n−11 = 44n+27 is greatest common divisor of 18n+11 and 44n+27−18n−11 =
26n+ 16 is greatest common divisor of 18n+ 11 and 26n+ 16− 18n− 11 = 8n+ 5 = 1

What is the greatest common divisor of 80n+49 and 18n+11?
The greatest common divisor of two numbers is the largest
number that divides both of them. Therefore, the greatest
common divisor of 80n+49 and 18n+11 is the largest number
that divides both of them. The largest number that divides
both of them is the largest number that divides 80n + 49 and
the largest number that divides 18n+ 11. The largest number
that divides 80n + 49 is 80n + 49 itself. The largest number
that divides 18n+ 11 is 18n+ 11 itself. Therefore, the greatest
common divisor of 80n + 49 and 18n + 11 is 80n + 49 and
18n+ 11 themselves.

The greatest common divisor of two numbers is the largest
number that divides both of them. Therefore, the greatest
common divisor of 80n+49 and 18n+11 is the largest number
that divides both of them. The largest number that divides
both of them is the largest number that divides 80n + 49 and
the largest number that divides 18n+ 11. The largest number
that divides 80n + 49 is 80n + 49 itself. The largest number
that divides 18n+ 11 is 18n+ 11 itself. Therefore, the greatest
common divisor of 80n + 49 and 18n + 11 is 80n + 49 and
18n+ 11 themselves.

DaSLaM

Least to Most

COT

Figure 3: A case study on LLAMA-13B.

The product of three consec-
utive integers is 120. That

product divided by the mean
of the three integers is 24.
What is the largest of the
three consecutive integers?

What is the product of three consecutive integers?
The product of three consecutive integers is 120.
What is the mean of the three integers?
The product of three consecutive integers is 120.
That product divided by the mean of the three integers is 24.
So, 120/mean = 24
Mean = 120/24 = 5
What is the largest of the three consecutive integers?
The product of three consecutive integers is 120.
That product divided by the mean of the three integers is 24.
So, 120/mean = 24
Mean = 120/24 = 5
So, the three consecutive integers are 4, 5, 6.
The largest of the three consecutive integers is 6

The product of three consecutive integers is 120. That product
divided by the mean of the three integers is 24. The mean of
the three integers is the sum of the three integers divided by
3. The sum of the three integers is 120. Therefore, the mean
of the three integers is 40. The product of the three integers is
120, so the product of the three integers divided by the mean
of the three integers is 3. This means that the largest of the
three consecutive integers is 40.

The product of three consecutive integers is 120.
That product divided by the mean of the three integers is 24.
The mean of the three integers is the sum of the three integers
divided by 3.
The sum of the three integers is 120.
Therefore, the mean of the three integers is 40.
The largest of the three consecutive integers is 40 + 24 = 64.
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Figure 4: A case study on LLaMA-33B as solver model.



E Failure cases with DaSLaM

E.1 Case I
Question A train running at a speed of 100
miles/hour, takes 10 hours to reach its destination.
After covering quarter of the distance, it starts
raining and the train has to be slowed to speed of
75 miles/hour. What is the total journey duration?
A)10 B)11.5 C)12.5 D)13.5 E)15

Initial Answer The train covers the first quarter
of the distance at a speed of 100 miles/hour.
So, the time taken to cover the first quarter of the
distance = (1/4) x 10 hours = 2.5 hours
The train covers the remaining three quarters of
the distance at a speed of 75 miles/hour.
So, the time taken to cover the remaining three
quarters of the distance = (3/4) x 10 hours = 7.5
hours
Therefore, the total journey duration = 2.5 + 7.5 =
10 hours

Sub problem 1 What is the total distance to be
covered?

Sub Answer 1 Let the total distance to be
covered be d.
Time taken to cover the first quarter of the distance
= (1/4)d/100 = 10/400 hours
Time taken to cover the remaining distance =
(3/4)d/75 = 300/400 hours
Total time taken = 10/400 + 300/400 = 10/4 hours
= 2.5 hours
Since the train takes 10 hours to reach its destina-
tion,
Total distance to be covered = 10 x 100 = 1000
miles

Sub problem 2
What is the speed of the train?

Sub Answer 2
After covering quarter of the distance, the train has
to be slowed to speed of 75 miles/hour.

Let the remaining distance be x.
Therefore, x = d - (d/4) = 1000 - (1000/4) = 750

miles.
The time taken to cover the remaining distance x

= 750 miles at a speed of 75 miles/hour = (750/75)
hours = 10 hours.

Therefore, the speed of the train = x/time taken
= 750/10 = 75 miles/hour.

Sub problem 3 What is the time taken to cover
the distance?
Sub Answer 3
Time taken to cover the first quarter of the distance
= (d/4)/100 hours = d/400 hours

Time taken to cover the remaining distance =
(3d/4)/75 hours = d/300 hours

Total time taken = d/400 + d/300 = (5d +
4d)/1200 hours = 9d/1200 hours.

Putting d=1000,
Final answer: The time taken to cover the dis-

tance is 9 x 1000/1200 hours.
Sub problem 4 What is the total duration of the

journey?
Sub Answer 4 Time taken to cover the first quarter
of the distance = (d/4)/100 hours = d/400 hours

Time taken to cover the remaining three quarters
of the distance = (3d/4)/75 hours = 4d/300 hours

Total time taken = d/400 + 4d/300 = (5d +
4d)/(400 + 300) = 9d/700 hours

Total duration of the journey = 9d/700 hours = 9
hours and (d/700) hours = 9 hours and (100/700)
hours = 9 hours and 14.29 minutes

Final Answer Step 1: The train covers the first
quarter of the journey at a speed of 100 miles/hour.
Step 2: The time taken to cover the first quarter
of the journey is given by: Time = Distance/Speed
Time = (1/4) x 100/100 Time = 1/4 hour Step 3:
The train covers the remaining three quarters of the
journey at a speed of 75 miles/hour. Step 4: The
time taken to cover the remaining three quarters
of the journey is given by: Time = Distance/Speed
Time = (3/4) x 75/100 Time = 3/4 hour Step 5: The
total duration of the journey is the sum of the time
taken to cover the first quarter and the remaining
three quarters of the journey. Total Time = 1/4 +
3/4 Total Time = 4/4 Total Time = 1 hour Therefore,
the total duration of the journey is 1 hour.



E.2 Case II
Question Consider there is an staircase elevator
and you are coming down. If you walk 20 steps
and stop, then you reach bottom in 10 minutes. If
you walk 10 steps and stop, you reach to the ground
in 20 minutes. What is the speed of the elevator?
A)1 step/minute B)2 step/minute C)3 step/minute
D)4 step/minute E)None of the above
Initial Answer .
Sub Question 1 What is the total number of steps
in the elevator?
.
Sub Question 2 What is the speed of the elevator?
.
Sub Question 3
What is the time taken to cover 20 steps?
Sub Answer 3
Time taken to cover 20 steps is 10 minutes
Sub Question 4
What is the time taken to cover 10 steps?
Sub Answer 4
Time taken to cover 10 steps is 20 minutes
Final Answer Let the speed of the elevator be x.
Time taken to reach the bottom when walking 20
steps and stopping = 10 minutes
Time taken to reach the bottom when walking 10
steps and stopping = 20 minutes
Therefore,
20x = 10
10x = 20
x = 2
Therefore, the speed of the elevator is 2 step-
s/minute.

E.3 Case III
Question Let −π

6 < θ < − π
12 . Suppose α1 and β1

are the roots of the equation x2 − 2x sec θ+1 = 0
and α2 and β2 are the roots of the equation x2 +
2x tan θ − 1 = 0. If α1 > β1 and α2 > β2, then
α1 + β2 equals

(A) 2(sec θ − tan θ)
(B) 2 sec θ
(C) −2 tan θ
(D) 0
Initial Answer

We can solve the equations for alpha1 and alpha2
to get
alpha1 = sec θ + tan θ
alpha2 = − sec θ + tan θ
Since α1β1 and α2β2, we have
sec θ + tan θ > − sec θ
sec θ + tan θ > − tan θ
Adding the two equations, we get
2 sec θ > 0
Therefore, α1β2 = 2 sec θ.
The correct answer is (B) 2 sec θ.
What is the equation of the line

x2 − 2x sec θ + 1 = 0?
Given, −π

6 < θ < − π
12 We need to find the

equation of the line x2−2x sec θ+1 = 0 We know
that the equation of a line is given by y = mx+ c
Now, let us substitute the given equation in the
equation of a line. x2 − 2x sec θ + 1 = 0
y = mx+ c
x2 − 2x sec θ + 1 = mx+ c
mx+ c− x2 + 2x sec θ − 1 = 0
mx− x2 + 2x sec θ = 1
Comparing the coefficients of x on both sides,
m = 2 sec θ
Comparing the constant terms on both sides,
c = 1
Therefore, the equation of the line
x2 − 2x sec θ + 1 = 0 is given by
y = 2 sec θx+ 1
Hence, the answer is y = 2 sec θx+ 1.

What is the equation of the line
x2 + 2x tan θ − 1 = 0?
Given, −π

6 < θ < − π
12

We know that,
sec θ = 1

cos θ

tan θ = sin θ
cos θ

Therefore,
x2 − 2x sec θ + 1 = x2 − 2x 1

cos θ + 1 = 0

x2 + 2x tan θ − 1 = x2 + 2x sin θ
cos θ − 1 = 0



Hence, the equation of the line x2+2x tan θ−1 =
0 is x2 + 2x sin θ

cos θ − 1 = 0.
Final Answer: x2 + 2x sin θ

cos θ − 1 = 0

What is the equation of the line
x2 − 2x sec θ + 1 = 0 minus the equation
of the line x2 + 2x tan θ − 1 = 0?
The equation of the line x2 − 2x sec θ + 1 = 0 is
given by x2 − 2x sec θ + 1 = 0
The equation of the line x2 + 2x tan θ − 1 = 0 is
given by x2 + 2x tan θ − 1 = 0
Subtracting the two equations, we get
x2 − 2x sec θ + 1− x2 − 2x tan θ + 1 = 0
Simplifying the equation, we get
−2x(sec θ + tan θ) = 0
Therefore, the equation of the line
x2−2x sec θ+1 = 0 minus the equation of the line
x2 + 2x tan θ − 1 = 0 is −2x(sec θ + tan θ) = 0
Hence, the answer is −2x(sec θ + tan θ) = 0.

What is the equation of the line
x2 − 2x sec θ + 1 = 0 plus the equation
of the line x2

Given, −π
6 < θ < − π

12
α1 and β1 are the roots of the equation
x2 − 2x sec θ + 1 = 0
α2 and β2 are the roots of the equation
x2 + 2x tan θ − 1 = 0
α1 > β1 and α2 > β2
We need to find the value of α1 + β2
Let us consider the equation x2− 2x sec θ+1 = 0
α1 and β1 are the roots of the equation.
Therefore,
α1 + β1 = −2 sec θ
Let us consider the equation x2+2x tan θ−1 = 0
α2 and β2 are the roots of the equation.
Therefore,
α2 + β2 = 2 tan θ
Now,
α1 + β2 = α1 + β2 + α2 + β2 − α2 − β2
= α1 + β1 − α2 − β2
= −2 sec θ + 2 tan θ
= 2(sec θ − tan θ)
Hence, the answer is (A) 2(sec θ − tan θ).

Final Answer Given,
−π

6 < θ < − π
12

α1 and β1 are the roots of the equation x2 −
2x sec θ + 1 = 0
α2 and β2 are the roots of the equation x2 +
2x tan θ − 1 = 0

α1 > β1 and α2 > β2
We need to find the value of α1 + β2
Let us consider the equation x2− 2x sec θ+1 = 0
α1 and β1 are the roots of the equation.
Therefore,
α1 + β1 = −2 sec θ
Let us consider the equation x2+2x tan θ−1 = 0
α2 and β2 are the roots of the equation.
Therefore,
α2 + β2 = 2 tan θ
Now,
α1 + β2 = α1 + β2 + α2 + β2 − α2 − β2
= α1 + β1 − α2 − β2
= −2 sec θ + 2 tan θ
= 2(sec θ − tan θ)
Hence, the answer is (A) 2(sec θ − tan θ).


