CIQA : a Coding Inspired Question Answering model

Anonymous ACL submission

Abstract

Generating code to solve question-answering
(QA) problems can help scale up analyses or
workflows that may be too time-consuming or
complex to do manually. This can be especially
useful in scientific applications, where large
datasets and complex analyses are common.
Natural language approaches converting texts
describing processes to code showed initial
success in reasoning over such textual prob-
lems. The limitations of existing text-to-code
models are evident when attempting to solve
QA problems that require knowledge beyond
what is presented in the input text. We pro-
pose a novel domain-agnostic model to address
the problem by leveraging domain-specific and
open-source code libraries. Our model learns to
inject this knowledge into the code generation
process given a textual QA problem. Our study
demonstrates that our proposed method is a
competitive alternative to current state-of-the-
art models, with the added capability of solving
problems beyond the scope of their capacity
with high accuracy. We also present a new QA
dataset, focusing on scientific problems in the
domains of chemistry, astronomy, and biology,
for the benefit of the scientific community.

1 Introduction

The challenge of question answering has been ex-
tensively explored, with efforts made to improve
traditional sequence-to-sequence(Seq2Seq) mod-
els for generating accurate responses to complex
questions (Anil et al., 2023).

In scientific domains, answering even seemingly
simple questions often requires substantial data and
inference capabilities. Texts in these fields often
detail intricate processes with multiple variants and
question outcomes under different conditions, and
we cannot assume the model has encountered all
entities or question types (Peretz et al., 2023). Ad-
dressing such questions necessitates understanding
the interactions among the entities involved and

—]
- Text + Question |
| A mixture of intermediate 25 (200 mg) and 4-trifluoromethylbenzyl chloride

(0.232 mL) in abs. EtOH (2 mL) is heated at 95° C. for 24 h. The reaction

mixture is cooled to RT, evaporated to dryness, and the residue suspended in |
| Et20. The insoluble material is filtered to give 262 mg of the product 228. 1H ;
- NMR (DMSO-d6) T" 11.42 (s, 2H), 7.95-7.90 (m, 4H), 7.15-6.90 (m, &H), 6.90- |
| 6.65 (m, 4H), 5.77 (s, 2H), 4.92 (s, 2H); MS: m/z 413 (M++1). Overheat the

etoh will result in a loss of 25.76 milligrams of the final products for each

second the temperature is above 95 degrees. how many moles of chloride do |
| we need to get 99.36 kg of the product ?

. Intermediate code
desired product = to_gr{ '
product_described = to_gr(
described component = to gr(0.232 mL ') I
| needed_reactor = desired product / product_described * \
described_component 3
reactor molar weight = pep.get compounds (ide ™ , \ I
" [0] .exact_mass
return (needed reactor / fleoat(reactor molar weight))

2516.03 [moles]

Figure 1: Question example that illustrates the use of the
pubchempy Python library

simulating their state transitions during the process
execution under different conditions, which requires
external world-knowledge.

Recently, it has been shown that natural language
to some logical form has achieved superior results
for inference and reasoning over seemingly simple
text datasets (Berant et al., 2014; Kiddon et al.,
2016; Tandon et al., 2019; Peretz et al., 2023). Al-
though impressive results have been demonstrated
on a scientific QA dataset(Liu et al., 2023), all code
generation models for question-answering (Peretz
et al., 2023; Chen et al., 2021; Soliman et al., 2022;
Chen et al., 2022, 2020; Zhang and Moshfeghi,
2022) and even foundation models (Brown et al.,
2020; OpenAl, 2023), struggle with questions re-
quiring domain-specific knowledge and external
data not present explicitly in the question itself or
previously seen explicitly.

Consider the following example:

Text: "We have 3 liters of water, if the
temperature of the liquid exceeds 100°C,

1 gram of water will evaporate every
second.”

Question: "How much time should we
wait until we have 20.03 moles of vapor
if the temperature is 212.1° F"?"

A straightforward calculation and lookup would
reveal that water evaporates at a temperature of
100°C'. Additionally, recognizing that 100°C' is
equivalent to 212.1° F', and understanding the chem-
ical composition of water, allows us to conclude
that the molar mass of water is 18.01528g/mol.
These operations and knowledge, though seemingly
simple, are essential for simulating the process and
crafting the corresponding process code to answer
the question.

In this work, we introduce a method that allows
the injection of external world knowledge and query-
ing numerous databases in various fields by training
the model to utilize external scientific code libraries
during code generation (APIs) as tools using the
library documentation. We propose a model de-
signed to effectively incorporate library calls into
the generated code by using the library documen-
tation and open-source code thereby allowing the
model to incorporate APIs in the generated code
and granting access to data that is not explicitly
stated within the question’s context. We aim to
refine semantic parsing by employing open-source
code repositories to produce general-purpose code.
The unique incorporation of “external data” into
intermediate code via APIs and code libraries en-
riches the semantic parsing process, increasing the
capacity to generate more intricate and accurate
code. This enhancement not only advances seman-
tic parsing but also aims to mitigate the reliance on
extensive NL-code data. To that end, we designed a
first-of-its-kind API-attention mechanism that can
be applied in many applications as a tool attention
mechanism. We employ reinforcement learning to
boost the accuracy of final answers, opening a new
frontier in the field of question-answering.

We evaluate our algorithm compared to state-of-
the-art (SOTA) approaches for QA and foundation
models, and present superior results on a scientific
dataset.

The contributions of this work are threefold:

1. We present a novel framework for incorpo-
rating external knowledge by leveraging API
calls during code generation to simulate textual
processes for QA. And introduce a first-of-its-

kind external attention mechanism to aid the
model with APIs integration.

2. We present a dataset for simulation questions
of scientific processes in scientific fields: as-
trophysics, chemistry, and biology. We con-
tribute it and our code to the community for
further research.

3. We perform an extensive evaluation of our
algorithm compared to SOTA and demonstrate
superior results achieving a 59% exact answer
accuracy compared to 34% reached by fine-
tuned foundation models and 23% with text-
to-code generation models for QA.

The subsequent sections of this paper are orga-
nized as follows: Section 2 will review existing
research in the field, positioning our paper’s con-
tribution within this context. In Section 3, we
define the problem we aim to address, outlining our
research objectives. Section 4 will provide a com-
prehensive discussion of our model’s architecture
and training methodology. Furthermore, in Section
5, we will discuss baseline models, the process
of dataset construction, and the methodology em-
ployed for evaluation. Lastly, in Section 6, we will
present an in-depth analysis of CIQA’s performance
relative to other state-of-the-art models, including
an ablation study and qualitative evaluation.

2 Related work

Question-answering is a prominent area of research
that has been tackled with diverse methodologies.
These approaches can be broadly divided into two
categories when no external database of answers
exists: large language models (LLMs) trained on
question-answer aligned datasets and semantic pars-
ing approaches.

Recently, there has been significant progress
in the field of semantic parsing-based methods
(Zhang and Moshfeghi, 2022; Chiang and Chen,
2019). These techniques aim to convert text into
an intermediate logical form in order to effectively
answer questions. As a result, they have achieved
state-of-the-art results. Notably (Peretz et al., 2023)
have significantly contributed to this area. In their
work, they have chosen to represent the posed ques-
tion using a domain-specific code. This approach
has led to impressive outcomes, particularly in the
context of chemical texts that describe processes.

Our research falls within this realm of semantic
parsing-based methods. However, our contribution

lies in the incorporation of external data through the
utilization of APIs. We achieve this by leveraging
open-source code samples and publicly available
documentation. This approach allows us to generate
a general-purpose code that is capable of addressing
questions in complex scientific domains such as
chemistry, biology, and astronomy (see Fig. 1), with
less training data.

A parallel line of research has focused on generat-
ing code from given texts. Described as "co-pilots"
these works primarily assist engineers in coding
tasks. These models focus on texts describing the
code to be generated. Our work diverges from this
trend by focusing on interpreting and processing
text that details complex processes and poses a
question regarding this text.

Recent advancements have witnessed a shift to-
wards the integration of external knowledge into
LLMs for textual reasoning (Zhang et al., 2023;
Geva et al., 2020). Many of these models access
human-like reasoning tools, such as calendars and
calculators (Schick et al., 2023), and heavily depend
on domain-specific data and tools. We introduce
what we believe to be the first domain-independent
model for QA focusing on the generation of code
using external APIs.

3 Problem Definition

We introduce the following notations: the input
text prompt is represented as o € %, the expected
final answer as y €)/, the intermediate code as
¢ € C, and a similarity metric as d. We define
two categories of generation models: (1) generative
Seq2Seq models denoted as m, € 1I,, which aim
to generate answers to the prompt and optimize the
objective:

MaTr, e, (d(?Ta(O'), y)) (D

(2) Code generation models that produce code as
an intermediate step before generating an answer,
denoted as . € 1., where the objective is:

mazy.en, (d(exec(ra(@)).y)) @

This study focuses on problem instances that
can be solved through an auxiliary task, with the
objective of maximizing Equation 2.

4 CIQA

In the pursuit of advancing the efficiency and in-
tuitiveness of question-answering systems, the re-
search community has explored a diverse range

of methodological approaches. Motivated by the
foundations of programming, we present a novel
architecture termed the Coder Inspired Question
Answering, abbreviated as CIQA (pronounced as
"seeker"). By combining the principles of coding
with the nuances of natural language processing,
CIQA endeavors to reconcile structured program-
ming logic with the intricacies of human language.
Capitalizing on tools and methodologies familiar to
the programming domain, CIQA demonstrates state-
of-the-art performance, underscoring the potential
of integrating coding methodologies to augment
the precision of question-answering frameworks.

Diverging from conventional methods, CIQA
obviates the need for retraining on paired data of
texts and codes to accommodate new APIs. Instead,
it draws inspiration from the approach taken by
software engineers who, when encountering a chal-
lenge, often resort to studying open-source code,
and the documentation to learn the utilization of
APIs from accessible libraries. Similarly, CIQA
acquires insights into API usage from open-source
code, allowing for smooth integration into its as-
signed task, without the need for large amounts of
aligned training data.

The CIQA architecture, shown in Fig 2, uses an
encoder-decoder framework. Details of the encoder
and decoder can be seen in Fig 3. This architec-
ture termed the "coder" model, takes in text and
a question to produce executable code that, when
run, answers the question. Additionally, CIQA
features an API-attention component, essentially
an NL encoder. This component processes API
documentation to determine its relevance to the
question. The result from the API attention then
influences the next token prediction in the "coder”
model.

4.1 Model Training

The training process for our model is divided into
two primary stages: the code generation stage, and
the final answer generation stage.

The integration of the two stages fosters the de-
velopment of a robust and flexible code generation
engine within CIQA. The result model demonstrates
an exceptional capability to produce high-quality
code solutions, tightly aligned with the question
posed to the textual input.

4.1.1 Generating Code

A dataset composed of paired prompts and corre-
sponding Python code is used for training. This

API token

ﬁ, eembeddings I
7 & Embeddings

-

> BERT MLM

G

q

&ode examples

NLdoc — It

!
—13

i

i

i

Coder Encoder

Encoder
Dataset
API Attention

NL input

Coder Decoder =

| API attention

APL-question |
jpaicencoding| (, | , & I -

2L

|

|

2

Output code
tropy import units as

£xom a

i
|
]
i
i
1
i

Code

generation loss

loss

Phase #1 : Code

Phase #2: Final answer

Figure 2: CIQA Architecture: the green component, denoted the coder model is a model responsible for generating the code,
such that combined with the function of the API attention component, produce relevant code to the domain of the question as seen
in Eq 3. The API attention component, the orange component, takes as input an NL input that consists of the the context-question

duo, and the API documentation see more in subsection 4.1.4.

code solves the designated problem, leading to the
generation of the target answer when executed. In
this phase, the objective is to optimize the synthetic
similarity between the reference code and the code
generated by the model. Specifically, we focus
on enhancing the BLEU score as can be seen in
Alg 2, a widely recognized metric for evaluating
the coherence and alignment between the two text
sets, that we applied to both the generated code and
the gold standard code.

4.1.2 Leveraging code repositories

To incorporate a specific library into our model,
we first need to obtain relevant embeddings for
its function calls. We do this by searching code
repositories for instances where the library is used,
giving us insights into its applications and potential
uses.

Our next steps involve pre-processing: We re-
move non-essential text such as documentation and
exclude functions not using the target library. We
also standardize all examples in the dataset, ensur-
ing that all code samples import the APIs under the
same name. We then extend the model’s tokenizer
by adding a token per APL

To integrate API embeddings into our model, we
train the embedding layer of the coder model using
BERT for masked language modeling task, where
some input tokens are replaced with a [MASK] token,
and the model predicts these masked tokens using
the surrounding context. While we used BERT for
its straightforwardness, other Transformer models
can be used.

Finally, the updated embedding layer is merged
back into our original model, equipping it with the
necessary API embeddings.

4.1.3 Generating Final Answer

In the prior phase, our objective was to optimize
the generation of intermediate code. In this phase,
our focus shifts to ensuring the code produces the
correct final answer.

To ensure the code’s output closely matches the
desired answer, we adopt a method inspired by
(Keneshloo et al., 2020; Wu et al., 2017), which has
shown top-tier results in similar tasks. We employ a
Reinforcement Learning (RL) approach to optimize
the model. It’s worth noting that we don’t have a
reference intermediate code; we only have the final
answer. Our reward function, detailed in Alg 1,
emphasizes both the successful compilation of the
code and its ability to produce the correct final
answer.

This dual focus ensures the generated code is
both syntactically correct and functionally effective,
enhancing the model’s ability to produce code that
meets both synthetic and semantic requirements.

The use of RL is expected to allow the model
to find varied solutions to problems, even with-
out relying on reference code, thus improving its
adaptability in using APIs in diverse situations.

In the reward function, we utilized BLEU score,
which serves several key purposes. It is employed
to measure similarities between various types of
outputs, including numerical, logical answers (true
and false), and multiple unordered outputs, thus

evaluating the model’s capability to generate code
that provides accurate responses across different
scenarios. Furthermore, the BLEU score captures
similarities in answers on different orders of mag-
nitude, an essential aspect when handling values
that differ significantly due to various units in the
question. Unlike the L2 norm, which may impose
harsh penalties for unit mix-ups, the BLEU score
does not heavily penalize such discrepancies, rec-
ognizing them as potential pitfalls but not severe
errors. This approach allows us to understand and
evaluate the model’s handling of such cases without
excessively penalizing these differences, while still
aiming to avoid them if possible.

Algorithm 1 Reward calculation
Input: c,rcq » Cref
if ¢;cq does not compile then
return 0
end if
bleu = BLEU (exec(cycf), €xec(Cpreq))
reward = 1 - 1/bleu
return reward

AN A R ol > e

4.1.4 API attention

We utilized a natural language encoder transformer
model (Dunn et al.) to encode the natural language
input. The model we employed takes an API docu-
mentation file, as well as a context-question pair as
input. The encoder’s output is passed through two
fully connected layers with sigmoid activation and
generates a match score as we can see in Fig 2. This
match score indicates the relevance of the API to
the given question. The match score is incorporated
into the probability calculation for the next token
in the coder’s decoder by adding the output match
score to the probability of the API token in the
coder’s decoder model.

During training, this component received pos-
itive reinforcement whenever the executed code
produced the desired outcome as specified in Alg 3.
Furthermore, during the code generation phase, the
loss was propagated through this component.

Given a decoder’s next token prediction vector
p with entries p;, the attention model’s output as
a, we define new next token predicted probability
vector d:

; ;if i API tok
d = {pz +a; 1fui1s afl oken 3)
;i otherwise

Algorithm 2 Code generation training
Input: 7., dataset € (X x C)

1: batch <« |] > Initialize an empty list
2: model < 7, > pre-trained coder model
3. for each pair (o, ¢;) in dataset do

4: 0; < T c(gi)

5: loss < L(0;,¢;)

6: me.backprop(loss)

7: end for

Algorithm 3 Final answer generation training
Input: 7., dataset € (X x)

model < T, > pre-trained coder model

1:
2: for (04, y;) in dataset do
3 0; < WC(UZ')
4 if y; does not compiles then
5: reward <+ L.min_reward
6 else
7 y_pred < exec(o;)
8 reward < L(y_pred,y;)
9 end if
10: me.backprop(loss)
11: end for

4.2 TImplementation Details

To implement our base models we trained our model
on the CoNala dataset (Yin et al., 2018) until the
validation error began to increase. The API em-
beddings were learned by using a BERT for MLM,
such that we took the learned embedding layer from
the embedding layer in BERT and inserted it into
the coder model. The coder model was then fine-
tuned for 12 epochs on the Seq2Seq data. The
training process employed an initial learning rate
of Ir = le — 5. The Seq2Seq trainer from the
Hugging Face library was utilized for this purpose.

5 Empirical Evaluation

In this section, we describe our empirical method-
ology.

5.1 Datasets

In this study, a new dataset was constructed, "SeKq":
"Scientific external knowledge question dataset",
which was assembled by experts from the fields of
biology, astronomy, and chemistry, in collaboration
with computer scientists. These domain experts
formulated the questions, while the computer sci-
entists developed the code to address them. The
dataset encompasses context, questions, definitive

Attention
2 Self attention
3
.]
= £ Self Attention
5 Layer Normalization
2 MK
2
£ Fully connected (1)
d | i
g Fully connected (2)

Decoder
Attention
Self attention

Self Attention

Final
Layer Normalizati

Layer

tion
- Normali-
Attention N
_ zation
Self attention

Encoder Attention

"
an
=
=]
o
@
-
£ Layer Normalization
w

Learned APl embeddings

Fully connected (1)

Fully connected (2}

Figure 3: Encoder and decoder internal architecture: the learned embeddings of the APIs are added to the embeddings directory

of the encoder and decoder.

Domain constants | APIs
Biology 0.1 2
Astrophysics | 2.02 1.14
Chemistry 0 1.42

Table 1: Analysis of average API and constant usage
across different fields

answers, and the intermediary code that yields the
desired response.

Library documentation relevant to each domain
was gathered. This led to the creation of a dataset
that includes more than 30 unique libraries capable
of addressing the questions and facilitating data
structuring and reasoning. While not all these
libraries are utilized in the reference code, their
inclusion was important to provide the model with
a comprehensive range of potential solutions, which
can be further expanded and allow the model to
answer an even wider spectrum of questions.

We conducted an analysis to evaluate the use of
the required APIs in the gold standard code in each
domain as can be seen in table 1.

Each question was created to require the model
to retrieve external values or possess prior domain
knowledge, which isn’t explicitly formatted within
the question itself.

5.2 Baselines

In our study, we conducted a comparative analysis
between our proposed method and SOTA natural
language (NL)-code synthesis models. We com-
pared our model against much larger models that
trained on much more data. MarianNMT (Junczys-
Dowmunt et al., 2018), which was trained on NL-
to-code generation tasks from the CoNal.a dataset
(Yin et al., 2018), recently reached SOTA results.

We also compare with Foundation generation
models. We select GPT-3.5(Brown et al., 2020)
and GPT-4(OpenAl, 2023) models. These models
are known for their advanced capabilities in lan-
guage processing and generation. By contrasting
our base model with these larger models, we aimed
to demonstrate the effectiveness and competitive-
ness of our proposed training technique. We also
experimented with Col prompting (Wei et al., 2023)
and GPT-4 with code interpreter versions.

Additionally, we compare our model with the
SOTA for QA, LLama-QA a LLama 2 7B (Anil
et al., 2023) and the SOTA for QA using code
generation as an auxiliary task (Soliman et al.,
2022).

5.3 Evaluation Metrics

In our study, we employed an exact-match eval-
uation metric on the code’s output to assess the
performance of the different models. This metric
measures the degree of exact correspondence be-
tween the generated code’s output and the target
answer. By utilizing an exact-match evaluation, we
aim to evaluate the precision and accuracy of our
model in generating code that precisely produces
the expected answer. This evaluation approach pro-
vides a stringent criterion for assessing the fidelity
of our model’s code generation capabilities and
enables a precise comparison of results.

6 Empirical Results

In this section, we present our empirical results and
ablation tests, we also performed a study on how
each component contributed to the success of our
model.

Algorithm Type Model Accuracy
SOTA code generation finetuned marianCG 0.23
Foundation Models GPT3.5 finetuned with final answer 0.34
GPT4 no finetune 0.27
GPT-4 with code interpreter 0.30
GPT-4 with Change of Thought 0.31
SOTA QA models LLama-QA 0.24
SOTA for QA using code generation NPS-SQA 0.32
CIQA (Ours) 0.59

Table 2: Main result table: comparison between different SOTA algorithms on our dataset.

6.1 Main Result

We can see in Table 2 that our model outperforms
all of the other models by a large margin. In our
dataset, our model performs better than the second-
best model by 26%. We hypothesize that the gap
in performance is attributed to the effective use of
APIs as can be seen in sec 6.2.1.

We also see a significant improvement versus
other code generation models for question answer-
ing. We attribute that to our final answer generation
phase, where we consider the output of the gener-
ated code and tend to maximize the match between
the output and the target answer.

In the results presented in Table 2, our approach
exhibits superiority over competing models. While
existing methods primarily focus on optimizing the
generation of analogous final answers, our model
facilitates a deeper interpretation of the question,
ultimately leading to the determination of the final
answer to the posed question.

6.2 Ablation Tests

6.2.1 Impact of fine-tuning training size on
performance

To assess the impact of the size of natural language-
to-code (NL-code) training data on our model,
we formulated and executed an experiment in two
distinct configurations:

1. In the initial configuration, we reserved 50%
of the dataset entries specifically for natural
language-to-code training. The remaining
50% allowed the model to access only the
problems expressed in natural language, along
with the corresponding expected solutions.
In this context, our model demonstrated an
accuracy of 0.45, more can be seen in Fig 4.

2. In the subsequent configuration, we deployed
the entire dataset, covering 100% of the en-

tries, limiting the model’s exposure to just
the natural language-to-code data. Under this
restriction, the model’s accuracy amounted to
0.59.

These findings highlight an essential observation:
the conversion of a question into code transcends
the simplicity of a Seq2Seq task. It shows that
considering the final output of the model could help
the model learn to use code to achieve its target.

6.2.2 Impact of embeddings on CIQA
performance

We also conducted an experiment to see how our
model benefited from the learned API embeddings.
We trained our model in the same manner, but this
time we did not introduce the new API embeddings
from the code repositories, our model performed
0.48 accuracy against the 0.59 that we saw earlier.

6.2.3 TImpact of final answer generation on
CIQA performance

We trained the base coder model with only the
generating code phase, without the RL phase we
arrived at an accuracy of 0.46. This emphasizes
the role the final answer generation phase has in
generating a higher-quality code. We noticed that
without the final answer generation phase the model
could write good code, as it failed in assigning the
correct parameters to the API calls.

6.2.4 TImpact of the API attention on CIQA
performance

To see the effect the API attention on the perfor-
mance of the model we trained the model in the
same manner as we did before, but his time without
the API attention mechanism. We noticed that
when trained on small datasets as can be seen in Fig
As expected we noted that the model did not always
use the correct API in the desired place which led
to worse results.

model accuracy vs. train dataset

o
o

—— with API attention
—— without API attention

o o I I
N} w iS &

model exact answer accuracy

e
-

0.3 0.4 0.5 0.6 0.7 0.8
portion of the dataset used in training

Figure 4: Exact match accuracy with and without the
API-attention mechnanism

6.3 Qualitative Evaluation

In this section, we provide qualitative examples of
the performance of our algorithm.

6.3.1 Strengths of CIQA

Through a comprehensive analysis, we identified
specific questions where our model demonstrated
significant strengths. Particularly with respect to
boolean questions. In our dataset, boolean ques-
tions necessitated fewer lines of code and reduced
utilization of APIs. Consequently, our model en-
countered fewer pitfalls. Through our analysis, it
became evident that our model outperformed com-
peting models on these simple questions within the
framework, achieving an accuracy of 0.59. In con-
trast, the second-best model, the fine-tuned GPT3.5,
demonstrated comparable performance across both
categories of questions, yielding an accuracy score
of 0.34.

6.3.2 Limitations of CIQA

CIQA has demonstrated substantial capabilities
in answering questions through code generation
with API-enabled external data access. However,
we recognize a weakness when handling complex
compounds: The CIQA’s success depends on the
accurate identification of compound names within
the API’s database. For example, “10% palladium”
consists of 10% of by weight of palladium and the
rest is carbon, ideally, the model should have de-
composed the alloy into the consisting compounds,
and used the API to fetch the needed information
about them separately.

7 Conclusions

Our research delved into the realm of scientific
question-answering, focusing on Chemistry, Astron-
omy, and Biology. We noticed that conventional

models often failed when faced with complex ques-
tions that required data outside of the span of the
context. In response, we crafted a unique method
that generated code to simulate the processes to
generate answers. A common obstacle with many
models is their struggle to incorporate specialized
knowledge during these simulations. To address
this, we pioneered a method that seamlessly merges
external APIs into the code creation process. This
lets the model tap into crucial information beyond
the immediate context of the question, even with just
a modest amount of relevant training data. By em-
ploying an encoder-decoder structure, our method
surpasses the performance of current leading tech-
niques, even when data is scarce. We’re proud to
present a novel framework to seamlessly embed
external knowledge into the answering process, a
carefully curated dataset by experts, and evidence
of our model’s enhanced accuracy. Looking ahead,
we believe there’s potential to broaden our method’s
application beyond just the sciences. It would be
worthwhile to explore the API integration as a gen-
eral tool and train the model to better utilize these
tools in answering questions.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. 2023. Palm 2 technical report. arXiv preprint
arXiv:2305.10403.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby
Vander Linden, Brittany Harding, Brad Huang, Peter
Clark, and Christopher D. Manning. 2014. Modeling
biological processes for reading comprehension. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1499-1510, Doha, Qatar. Association for Com-
putational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages
1877-1901. Curran Associates, Inc.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,

https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.3115/v1/D14-1159
https://doi.org/10.3115/v1/D14-1159
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Rad-
ford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wo-
jeiech Zaremba. 2021. Evaluating large language
models trained on code.

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny
Zhou, Dawn Song, and Quoc V. Le. 2020. Neural
symbolic reader: Scalable integration of distributed
and symbolic representations for reading comprehen-
sion. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for solv-
ing and reasoning math word problems. In
Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 26562668, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. Searchqa:
A new q&a dataset augmented with context from a
search engine.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020. In-
jecting numerical reasoning skills into language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
946-958, Online. Association for Computational Lin-
guistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116-121,
Melbourne, Australia. Association for Computational
Linguistics.

Yaser Keneshloo, Tian Shi, Naren Ramakrishnan,
and Chandan K. Reddy. 2020. Deep reinforce-
ment learning for sequence-to-sequence models.
IEEE Transactions on Neural Networks and Learning
Systems, 31(7):2469-2489.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with
neural checklist models. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 329-339, Austin, Texas.
Association for Computational Linguistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning.

OpenAl. 2023. Gpt-4 technical report.

Gal Peretz, Mousa Arraf, and Kira Radinsky. 2023.
What if: Generating code to answer simulation ques-
tions in chemistry texts. In Proceedings of the 46th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’23, page 1335-1344, New York, NY, USA. Associa-
tion for Computing Machinery.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Ahmed S Soliman, Mayada M Hadhoud, and Samir I Sha-
heen. 2022. Mariancg: a code generation transformer
model inspired by machine translation. Journal of
Engineering and Applied Science, 69(1):1-23.

Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Pe-
ter Clark, and Antoine Bosselut. 2019. WIQA: A
dataset for “what if...” reasoning over procedural text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 6076-6085,
Hong Kong, China. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting
elicits reasoning in large language models.

Lijun Wu, Li Zhao, Tao Qin, Jianhuang Lai, and Tie-Yan
Liu. 2017. Sequence prediction with unlabeled data
by reward function learning. In International Joint
Conference on Artificial Intelligence.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning
to mine aligned code and natural language pairs
from stack overflow. In International Conference on
Mining Software Repositories.

Jiaxin Zhang and Yashar Moshfeghi. 2022. ELASTIC:
Numerical reasoning with adaptive symbolic com-
piler. In Advances in Neural Information Processing

Systems.

https://doi.org/10.48550/ARXIV.2207.10397
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1272
http://arxiv.org/abs/1704.05179
http://arxiv.org/abs/1704.05179
http://arxiv.org/abs/1704.05179
http://arxiv.org/abs/1704.05179
http://arxiv.org/abs/1704.05179
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://doi.org/10.1109/TNNLS.2019.2929141
https://doi.org/10.1109/TNNLS.2019.2929141
https://doi.org/10.1109/TNNLS.2019.2929141
https://doi.org/10.18653/v1/D16-1032
https://doi.org/10.18653/v1/D16-1032
https://doi.org/10.18653/v1/D16-1032
http://arxiv.org/abs/2304.08485
http://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3539618.3591783
https://doi.org/10.1145/3539618.3591783
https://doi.org/10.1145/3539618.3591783
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
https://doi.org/10.1186/s44147-022-00159-4
https://doi.org/10.1186/s44147-022-00159-4
https://doi.org/10.1186/s44147-022-00159-4
https://doi.org/10.18653/v1/D19-1629
https://doi.org/10.18653/v1/D19-1629
https://doi.org/10.18653/v1/D19-1629
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://api.semanticscholar.org/CorpusID:5678396
https://api.semanticscholar.org/CorpusID:5678396
https://api.semanticscholar.org/CorpusID:5678396
https://openreview.net/forum?id=gd7ZI0X7Q-h
https://openreview.net/forum?id=gd7ZI0X7Q-h
https://openreview.net/forum?id=gd7ZI0X7Q-h
https://openreview.net/forum?id=gd7ZI0X7Q-h
https://openreview.net/forum?id=gd7ZI0X7Q-h

Kechi Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. 2023.
Toolcoder: Teach code generation models to use api
search tools.

10

http://arxiv.org/abs/2305.04032
http://arxiv.org/abs/2305.04032
http://arxiv.org/abs/2305.04032

