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Abstract

Generating code to solve question-answering001
(QA) problems can help scale up analyses or002
workflows that may be too time-consuming or003
complex to do manually. This can be especially004
useful in scientific applications, where large005
datasets and complex analyses are common.006
Natural language approaches converting texts007
describing processes to code showed initial008
success in reasoning over such textual prob-009
lems. The limitations of existing text-to-code010
models are evident when attempting to solve011
QA problems that require knowledge beyond012
what is presented in the input text. We pro-013
pose a novel domain-agnostic model to address014
the problem by leveraging domain-specific and015
open-source code libraries. Our model learns to016
inject this knowledge into the code generation017
process given a textual QA problem. Our study018
demonstrates that our proposed method is a019
competitive alternative to current state-of-the-020
art models, with the added capability of solving021
problems beyond the scope of their capacity022
with high accuracy. We also present a new QA023
dataset, focusing on scientific problems in the024
domains of chemistry, astronomy, and biology,025
for the benefit of the scientific community.026

1 Introduction027

The challenge of question answering has been ex-028

tensively explored, with efforts made to improve029

traditional sequence-to-sequence(Seq2Seq) mod-030

els for generating accurate responses to complex031

questions (Anil et al., 2023).032

In scientific domains, answering even seemingly033

simple questions often requires substantial data and034

inference capabilities. Texts in these fields often035

detail intricate processes with multiple variants and036

question outcomes under different conditions, and037

we cannot assume the model has encountered all038

entities or question types (Peretz et al., 2023). Ad-039

dressing such questions necessitates understanding040

the interactions among the entities involved and041

Figure 1: Question example that illustrates the use of the
pubchempy Python library

simulating their state transitions during the process 042

execution under different conditions, which requires 043

external world-knowledge. 044

Recently, it has been shown that natural language 045

to some logical form has achieved superior results 046

for inference and reasoning over seemingly simple 047

text datasets (Berant et al., 2014; Kiddon et al., 048

2016; Tandon et al., 2019; Peretz et al., 2023). Al- 049

though impressive results have been demonstrated 050

on a scientific QA dataset(Liu et al., 2023), all code 051

generation models for question-answering (Peretz 052

et al., 2023; Chen et al., 2021; Soliman et al., 2022; 053

Chen et al., 2022, 2020; Zhang and Moshfeghi, 054

2022) and even foundation models (Brown et al., 055

2020; OpenAI, 2023), struggle with questions re- 056

quiring domain-specific knowledge and external 057

data not present explicitly in the question itself or 058

previously seen explicitly. 059

Consider the following example: 060

Text: "We have 3 liters of water, if the 061

temperature of the liquid exceeds 100◦C, 062
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1 gram of water will evaporate every063

second."064

Question: "How much time should we065

wait until we have 20.03 moles of vapor066

if the temperature is 212.1◦F ?"067

A straightforward calculation and lookup would068

reveal that water evaporates at a temperature of069

100◦C. Additionally, recognizing that 100◦C is070

equivalent to 212.1◦F , and understanding the chem-071

ical composition of water, allows us to conclude072

that the molar mass of water is 18.01528g/mol.073

These operations and knowledge, though seemingly074

simple, are essential for simulating the process and075

crafting the corresponding process code to answer076

the question.077

In this work, we introduce a method that allows078

the injection of external world knowledge and query-079

ing numerous databases in various fields by training080

the model to utilize external scientific code libraries081

during code generation (APIs) as tools using the082

library documentation. We propose a model de-083

signed to effectively incorporate library calls into084

the generated code by using the library documen-085

tation and open-source code thereby allowing the086

model to incorporate APIs in the generated code087

and granting access to data that is not explicitly088

stated within the question’s context. We aim to089

refine semantic parsing by employing open-source090

code repositories to produce general-purpose code.091

The unique incorporation of “external data” into092

intermediate code via APIs and code libraries en-093

riches the semantic parsing process, increasing the094

capacity to generate more intricate and accurate095

code. This enhancement not only advances seman-096

tic parsing but also aims to mitigate the reliance on097

extensive NL-code data. To that end, we designed a098

first-of-its-kind API-attention mechanism that can099

be applied in many applications as a tool attention100

mechanism. We employ reinforcement learning to101

boost the accuracy of final answers, opening a new102

frontier in the field of question-answering.103

We evaluate our algorithm compared to state-of-104

the-art (SOTA) approaches for QA and foundation105

models, and present superior results on a scientific106

dataset.107

The contributions of this work are threefold:108

1. We present a novel framework for incorpo-109

rating external knowledge by leveraging API110

calls during code generation to simulate textual111

processes for QA. And introduce a first-of-its-112

kind external attention mechanism to aid the 113

model with APIs integration. 114

2. We present a dataset for simulation questions 115

of scientific processes in scientific fields: as- 116

trophysics, chemistry, and biology. We con- 117

tribute it and our code to the community for 118

further research. 119

3. We perform an extensive evaluation of our 120

algorithm compared to SOTA and demonstrate 121

superior results achieving a 59% exact answer 122

accuracy compared to 34% reached by fine- 123

tuned foundation models and 23% with text- 124

to-code generation models for QA. 125

The subsequent sections of this paper are orga- 126

nized as follows: Section 2 will review existing 127

research in the field, positioning our paper’s con- 128

tribution within this context. In Section 3, we 129

define the problem we aim to address, outlining our 130

research objectives. Section 4 will provide a com- 131

prehensive discussion of our model’s architecture 132

and training methodology. Furthermore, in Section 133

5, we will discuss baseline models, the process 134

of dataset construction, and the methodology em- 135

ployed for evaluation. Lastly, in Section 6, we will 136

present an in-depth analysis of CIQA’s performance 137

relative to other state-of-the-art models, including 138

an ablation study and qualitative evaluation. 139

2 Related work 140

Question-answering is a prominent area of research 141

that has been tackled with diverse methodologies. 142

These approaches can be broadly divided into two 143

categories when no external database of answers 144

exists: large language models (LLMs) trained on 145

question-answer aligned datasets and semantic pars- 146

ing approaches. 147

Recently, there has been significant progress 148

in the field of semantic parsing-based methods 149

(Zhang and Moshfeghi, 2022; Chiang and Chen, 150

2019). These techniques aim to convert text into 151

an intermediate logical form in order to effectively 152

answer questions. As a result, they have achieved 153

state-of-the-art results. Notably (Peretz et al., 2023) 154

have significantly contributed to this area. In their 155

work, they have chosen to represent the posed ques- 156

tion using a domain-specific code. This approach 157

has led to impressive outcomes, particularly in the 158

context of chemical texts that describe processes. 159

Our research falls within this realm of semantic 160

parsing-based methods. However, our contribution 161

2



lies in the incorporation of external data through the162

utilization of APIs. We achieve this by leveraging163

open-source code samples and publicly available164

documentation. This approach allows us to generate165

a general-purpose code that is capable of addressing166

questions in complex scientific domains such as167

chemistry, biology, and astronomy (see Fig. 1), with168

less training data.169

A parallel line of research has focused on generat-170

ing code from given texts. Described as "co-pilots"171

these works primarily assist engineers in coding172

tasks. These models focus on texts describing the173

code to be generated. Our work diverges from this174

trend by focusing on interpreting and processing175

text that details complex processes and poses a176

question regarding this text.177

Recent advancements have witnessed a shift to-178

wards the integration of external knowledge into179

LLMs for textual reasoning (Zhang et al., 2023;180

Geva et al., 2020). Many of these models access181

human-like reasoning tools, such as calendars and182

calculators (Schick et al., 2023), and heavily depend183

on domain-specific data and tools. We introduce184

what we believe to be the first domain-independent185

model for QA focusing on the generation of code186

using external APIs.187

3 Problem Definition188

We introduce the following notations: the input189

text prompt is represented as σ ∈ Σ, the expected190

final answer as y ∈ Y , the intermediate code as191

c ∈ C, and a similarity metric as d. We define192

two categories of generation models: (1) generative193

Seq2Seq models denoted as πa ∈ Πa, which aim194

to generate answers to the prompt and optimize the195

objective:196

maxπa∈Πa

(
d
(
πa(σ), y

))
(1)197

(2) Code generation models that produce code as198

an intermediate step before generating an answer,199

denoted as πc ∈ Πc, where the objective is:200

maxπc∈Πc

(
d
(
exec(πa(σ)), y

))
(2)201

This study focuses on problem instances that202

can be solved through an auxiliary task, with the203

objective of maximizing Equation 2.204

4 CIQA205

In the pursuit of advancing the efficiency and in-206

tuitiveness of question-answering systems, the re-207

search community has explored a diverse range208

of methodological approaches. Motivated by the 209

foundations of programming, we present a novel 210

architecture termed the Coder Inspired Question 211

Answering, abbreviated as CIQA (pronounced as 212

"seeker"). By combining the principles of coding 213

with the nuances of natural language processing, 214

CIQA endeavors to reconcile structured program- 215

ming logic with the intricacies of human language. 216

Capitalizing on tools and methodologies familiar to 217

the programming domain, CIQA demonstrates state- 218

of-the-art performance, underscoring the potential 219

of integrating coding methodologies to augment 220

the precision of question-answering frameworks. 221

Diverging from conventional methods, CIQA 222

obviates the need for retraining on paired data of 223

texts and codes to accommodate new APIs. Instead, 224

it draws inspiration from the approach taken by 225

software engineers who, when encountering a chal- 226

lenge, often resort to studying open-source code, 227

and the documentation to learn the utilization of 228

APIs from accessible libraries. Similarly, CIQA 229

acquires insights into API usage from open-source 230

code, allowing for smooth integration into its as- 231

signed task, without the need for large amounts of 232

aligned training data. 233

The CIQA architecture, shown in Fig 2, uses an 234

encoder-decoder framework. Details of the encoder 235

and decoder can be seen in Fig 3. This architec- 236

ture termed the "coder" model, takes in text and 237

a question to produce executable code that, when 238

run, answers the question. Additionally, CIQA 239

features an API-attention component, essentially 240

an NL encoder. This component processes API 241

documentation to determine its relevance to the 242

question. The result from the API attention then 243

influences the next token prediction in the "coder" 244

model. 245

4.1 Model Training 246

The training process for our model is divided into 247

two primary stages: the code generation stage, and 248

the final answer generation stage. 249

The integration of the two stages fosters the de- 250

velopment of a robust and flexible code generation 251

engine within CIQA. The result model demonstrates 252

an exceptional capability to produce high-quality 253

code solutions, tightly aligned with the question 254

posed to the textual input. 255

4.1.1 Generating Code 256

A dataset composed of paired prompts and corre- 257

sponding Python code is used for training. This 258
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Figure 2: CIQA Architecture: the green component, denoted the coder model is a model responsible for generating the code,
such that combined with the function of the API attention component, produce relevant code to the domain of the question as seen
in Eq 3. The API attention component, the orange component, takes as input an NL input that consists of the the context-question
duo, and the API documentation see more in subsection 4.1.4.

code solves the designated problem, leading to the259

generation of the target answer when executed. In260

this phase, the objective is to optimize the synthetic261

similarity between the reference code and the code262

generated by the model. Specifically, we focus263

on enhancing the BLEU score as can be seen in264

Alg 2, a widely recognized metric for evaluating265

the coherence and alignment between the two text266

sets, that we applied to both the generated code and267

the gold standard code.268

4.1.2 Leveraging code repositories269

To incorporate a specific library into our model,270

we first need to obtain relevant embeddings for271

its function calls. We do this by searching code272

repositories for instances where the library is used,273

giving us insights into its applications and potential274

uses.275

Our next steps involve pre-processing: We re-276

move non-essential text such as documentation and277

exclude functions not using the target library. We278

also standardize all examples in the dataset, ensur-279

ing that all code samples import the APIs under the280

same name. We then extend the model’s tokenizer281

by adding a token per API.282

To integrate API embeddings into our model, we283

train the embedding layer of the coder model using284

BERT for masked language modeling task, where285

some input tokens are replaced with a [MASK] token,286

and the model predicts these masked tokens using287

the surrounding context. While we used BERT for288

its straightforwardness, other Transformer models289

can be used.290

Finally, the updated embedding layer is merged 291

back into our original model, equipping it with the 292

necessary API embeddings. 293

4.1.3 Generating Final Answer 294

In the prior phase, our objective was to optimize 295

the generation of intermediate code. In this phase, 296

our focus shifts to ensuring the code produces the 297

correct final answer. 298

To ensure the code’s output closely matches the 299

desired answer, we adopt a method inspired by 300

(Keneshloo et al., 2020; Wu et al., 2017), which has 301

shown top-tier results in similar tasks. We employ a 302

Reinforcement Learning (RL) approach to optimize 303

the model. It’s worth noting that we don’t have a 304

reference intermediate code; we only have the final 305

answer. Our reward function, detailed in Alg 1, 306

emphasizes both the successful compilation of the 307

code and its ability to produce the correct final 308

answer. 309

This dual focus ensures the generated code is 310

both syntactically correct and functionally effective, 311

enhancing the model’s ability to produce code that 312

meets both synthetic and semantic requirements. 313

The use of RL is expected to allow the model 314

to find varied solutions to problems, even with- 315

out relying on reference code, thus improving its 316

adaptability in using APIs in diverse situations. 317

In the reward function, we utilized BLEU score, 318

which serves several key purposes. It is employed 319

to measure similarities between various types of 320

outputs, including numerical, logical answers (true 321

and false), and multiple unordered outputs, thus 322
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evaluating the model’s capability to generate code323

that provides accurate responses across different324

scenarios. Furthermore, the BLEU score captures325

similarities in answers on different orders of mag-326

nitude, an essential aspect when handling values327

that differ significantly due to various units in the328

question. Unlike the L2 norm, which may impose329

harsh penalties for unit mix-ups, the BLEU score330

does not heavily penalize such discrepancies, rec-331

ognizing them as potential pitfalls but not severe332

errors. This approach allows us to understand and333

evaluate the model’s handling of such cases without334

excessively penalizing these differences, while still335

aiming to avoid them if possible.

Algorithm 1 Reward calculation
Input: cpred , cref

1: if cpred does not compile then
2: return 0
3: end if
4: bleu = BLEU

(
exec(cref ), exec(cpred)

)
5: reward = 1 - 1/bleu
6: return reward

336

4.1.4 API attention337

We utilized a natural language encoder transformer338

model (Dunn et al.) to encode the natural language339

input. The model we employed takes an API docu-340

mentation file, as well as a context-question pair as341

input. The encoder’s output is passed through two342

fully connected layers with sigmoid activation and343

generates a match score as we can see in Fig 2. This344

match score indicates the relevance of the API to345

the given question. The match score is incorporated346

into the probability calculation for the next token347

in the coder’s decoder by adding the output match348

score to the probability of the API token in the349

coder’s decoder model.350

During training, this component received pos-351

itive reinforcement whenever the executed code352

produced the desired outcome as specified in Alg 3.353

Furthermore, during the code generation phase, the354

loss was propagated through this component.355

Given a decoder’s next token prediction vector356

p with entries pi, the attention model’s output as357

a, we define new next token predicted probability358

vector d:359

di =

{
pi + ai if i is an API token
pi otherwise

(3)360

Algorithm 2 Code generation training
Input: πc , dataset ∈ (Σ× C)

1: batch← [] ▷ Initialize an empty list
2: model← πc ▷ pre-trained coder model
3: for each pair (σi, ci) in dataset do
4: oi ← πc(σi)
5: loss← L(oi, ci)
6: πc.backprop(loss)
7: end for

Algorithm 3 Final answer generation training
Input: πc, dataset ∈ (Σ× Y)

1: model ← πc ▷ pre-trained coder model
2: for (σi, yi) in dataset do
3: oi ← πc(σi)
4: if yi does not compiles then
5: reward← L.min_reward
6: else
7: y_pred← exec(oi)
8: reward← L(y_pred, yi)
9: end if

10: πc.backprop(loss)
11: end for

4.2 Implementation Details 361

To implement our base models we trained our model 362

on the CoNala dataset (Yin et al., 2018) until the 363

validation error began to increase. The API em- 364

beddings were learned by using a BERT for MLM, 365

such that we took the learned embedding layer from 366

the embedding layer in BERT and inserted it into 367

the coder model. The coder model was then fine- 368

tuned for 12 epochs on the Seq2Seq data. The 369

training process employed an initial learning rate 370

of lr = 1e − 5. The Seq2Seq trainer from the 371

Hugging Face library was utilized for this purpose. 372

5 Empirical Evaluation 373

In this section, we describe our empirical method- 374

ology. 375

5.1 Datasets 376

In this study, a new dataset was constructed, "SeKq": 377

"Scientific external knowledge question dataset", 378

which was assembled by experts from the fields of 379

biology, astronomy, and chemistry, in collaboration 380

with computer scientists. These domain experts 381

formulated the questions, while the computer sci- 382

entists developed the code to address them. The 383

dataset encompasses context, questions, definitive 384
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Figure 3: Encoder and decoder internal architecture: the learned embeddings of the APIs are added to the embeddings directory
of the encoder and decoder.

Domain constants APIs
Biology 0.1 2
Astrophysics 2.02 1.14
Chemistry 0 1.42

Table 1: Analysis of average API and constant usage
across different fields

answers, and the intermediary code that yields the385

desired response.386

Library documentation relevant to each domain387

was gathered. This led to the creation of a dataset388

that includes more than 30 unique libraries capable389

of addressing the questions and facilitating data390

structuring and reasoning. While not all these391

libraries are utilized in the reference code, their392

inclusion was important to provide the model with393

a comprehensive range of potential solutions, which394

can be further expanded and allow the model to395

answer an even wider spectrum of questions.396

We conducted an analysis to evaluate the use of397

the required APIs in the gold standard code in each398

domain as can be seen in table 1.399

Each question was created to require the model400

to retrieve external values or possess prior domain401

knowledge, which isn’t explicitly formatted within402

the question itself.403

5.2 Baselines404

In our study, we conducted a comparative analysis405

between our proposed method and SOTA natural406

language (NL)-code synthesis models. We com-407

pared our model against much larger models that408

trained on much more data. MarianNMT (Junczys-409

Dowmunt et al., 2018), which was trained on NL-410

to-code generation tasks from the CoNaLa dataset411

(Yin et al., 2018), recently reached SOTA results.412

We also compare with Foundation generation 413

models. We select GPT-3.5(Brown et al., 2020) 414

and GPT-4(OpenAI, 2023) models. These models 415

are known for their advanced capabilities in lan- 416

guage processing and generation. By contrasting 417

our base model with these larger models, we aimed 418

to demonstrate the effectiveness and competitive- 419

ness of our proposed training technique. We also 420

experimented with CoT prompting (Wei et al., 2023) 421

and GPT-4 with code interpreter versions. 422

Additionally, we compare our model with the 423

SOTA for QA, LLama-QA a LLama 2 7B (Anil 424

et al., 2023) and the SOTA for QA using code 425

generation as an auxiliary task (Soliman et al., 426

2022). 427

5.3 Evaluation Metrics 428

In our study, we employed an exact-match eval- 429

uation metric on the code’s output to assess the 430

performance of the different models. This metric 431

measures the degree of exact correspondence be- 432

tween the generated code’s output and the target 433

answer. By utilizing an exact-match evaluation, we 434

aim to evaluate the precision and accuracy of our 435

model in generating code that precisely produces 436

the expected answer. This evaluation approach pro- 437

vides a stringent criterion for assessing the fidelity 438

of our model’s code generation capabilities and 439

enables a precise comparison of results. 440

6 Empirical Results 441

In this section, we present our empirical results and 442

ablation tests, we also performed a study on how 443

each component contributed to the success of our 444

model. 445
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Algorithm Type Model Accuracy
SOTA code generation finetuned marianCG 0.23
Foundation Models GPT3.5 finetuned with final answer 0.34

GPT4 no finetune 0.27
GPT-4 with code interpreter 0.30

GPT-4 with Change of Thought 0.31
SOTA QA models LLama-QA 0.24
SOTA for QA using code generation NPS-SQA 0.32
CIQA (Ours) 0.59

Table 2: Main result table: comparison between different SOTA algorithms on our dataset.

6.1 Main Result446

We can see in Table 2 that our model outperforms447

all of the other models by a large margin. In our448

dataset, our model performs better than the second-449

best model by 26%. We hypothesize that the gap450

in performance is attributed to the effective use of451

APIs as can be seen in sec 6.2.1.452

We also see a significant improvement versus453

other code generation models for question answer-454

ing. We attribute that to our final answer generation455

phase, where we consider the output of the gener-456

ated code and tend to maximize the match between457

the output and the target answer.458

In the results presented in Table 2, our approach459

exhibits superiority over competing models. While460

existing methods primarily focus on optimizing the461

generation of analogous final answers, our model462

facilitates a deeper interpretation of the question,463

ultimately leading to the determination of the final464

answer to the posed question.465

6.2 Ablation Tests466

6.2.1 Impact of fine-tuning training size on467

performance468

To assess the impact of the size of natural language-469

to-code (NL-code) training data on our model,470

we formulated and executed an experiment in two471

distinct configurations:472

1. In the initial configuration, we reserved 50%473

of the dataset entries specifically for natural474

language-to-code training. The remaining475

50% allowed the model to access only the476

problems expressed in natural language, along477

with the corresponding expected solutions.478

In this context, our model demonstrated an479

accuracy of 0.45, more can be seen in Fig 4.480

2. In the subsequent configuration, we deployed481

the entire dataset, covering 100% of the en-482

tries, limiting the model’s exposure to just 483

the natural language-to-code data. Under this 484

restriction, the model’s accuracy amounted to 485

0.59. 486

These findings highlight an essential observation: 487

the conversion of a question into code transcends 488

the simplicity of a Seq2Seq task. It shows that 489

considering the final output of the model could help 490

the model learn to use code to achieve its target. 491

6.2.2 Impact of embeddings on CIQA 492

performance 493

We also conducted an experiment to see how our 494

model benefited from the learned API embeddings. 495

We trained our model in the same manner, but this 496

time we did not introduce the new API embeddings 497

from the code repositories, our model performed 498

0.48 accuracy against the 0.59 that we saw earlier. 499

6.2.3 Impact of final answer generation on 500

CIQA performance 501

We trained the base coder model with only the 502

generating code phase, without the RL phase we 503

arrived at an accuracy of 0.46. This emphasizes 504

the role the final answer generation phase has in 505

generating a higher-quality code. We noticed that 506

without the final answer generation phase the model 507

could write good code, as it failed in assigning the 508

correct parameters to the API calls. 509

6.2.4 Impact of the API attention on CIQA 510

performance 511

To see the effect the API attention on the perfor- 512

mance of the model we trained the model in the 513

same manner as we did before, but his time without 514

the API attention mechanism. We noticed that 515

when trained on small datasets as can be seen in Fig 516

As expected we noted that the model did not always 517

use the correct API in the desired place which led 518

to worse results. 519
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Figure 4: Exact match accuracy with and without the
API-attention mechnanism

6.3 Qualitative Evaluation520

In this section, we provide qualitative examples of521

the performance of our algorithm.522

6.3.1 Strengths of CIQA523

Through a comprehensive analysis, we identified524

specific questions where our model demonstrated525

significant strengths. Particularly with respect to526

boolean questions. In our dataset, boolean ques-527

tions necessitated fewer lines of code and reduced528

utilization of APIs. Consequently, our model en-529

countered fewer pitfalls. Through our analysis, it530

became evident that our model outperformed com-531

peting models on these simple questions within the532

framework, achieving an accuracy of 0.59. In con-533

trast, the second-best model, the fine-tuned GPT3.5,534

demonstrated comparable performance across both535

categories of questions, yielding an accuracy score536

of 0.34.537

6.3.2 Limitations of CIQA538

CIQA has demonstrated substantial capabilities539

in answering questions through code generation540

with API-enabled external data access. However,541

we recognize a weakness when handling complex542

compounds: The CIQA’s success depends on the543

accurate identification of compound names within544

the API’s database. For example, “10% palladium”545

consists of 10% of by weight of palladium and the546

rest is carbon, ideally, the model should have de-547

composed the alloy into the consisting compounds,548

and used the API to fetch the needed information549

about them separately.550

7 Conclusions551

Our research delved into the realm of scientific552

question-answering, focusing on Chemistry, Astron-553

omy, and Biology. We noticed that conventional554

models often failed when faced with complex ques- 555

tions that required data outside of the span of the 556

context. In response, we crafted a unique method 557

that generated code to simulate the processes to 558

generate answers. A common obstacle with many 559

models is their struggle to incorporate specialized 560

knowledge during these simulations. To address 561

this, we pioneered a method that seamlessly merges 562

external APIs into the code creation process. This 563

lets the model tap into crucial information beyond 564

the immediate context of the question, even with just 565

a modest amount of relevant training data. By em- 566

ploying an encoder-decoder structure, our method 567

surpasses the performance of current leading tech- 568

niques, even when data is scarce. We’re proud to 569

present a novel framework to seamlessly embed 570

external knowledge into the answering process, a 571

carefully curated dataset by experts, and evidence 572

of our model’s enhanced accuracy. Looking ahead, 573

we believe there’s potential to broaden our method’s 574

application beyond just the sciences. It would be 575

worthwhile to explore the API integration as a gen- 576

eral tool and train the model to better utilize these 577

tools in answering questions. 578
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