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Abstract
With the development of diffusion-based customization methods
like DreamBooth, individuals now have access to train the models
that can generate their personalized images. Despite the conve-
nience, malicious users have misused these techniques to create
fake images, thereby triggering a privacy security crisis. In light
of this, proactive adversarial attacks are proposed to protect users
against customization. The adversarial examples are trained to dis-
tort the customization model’s outputs and thus block the misuse.
In this paper, we propose DisDiff (Disrupting Diffusion), a novel ad-
versarial attack method to disrupt the diffusion model outputs. We
first delve into the intrinsic image-text relationships, well-known
as cross-attention, and empirically find that the subject-identifier
token plays an important role in guiding image generation. Thus,
we propose the Cross-Attention Erasure module to explicitly "erase"
the indicated attention maps and disrupt the text guidance. Besides,
we analyze the influence of the sampling process of the diffusion
model on Projected Gradient Descent (PGD) attack and introduce
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a novel Merit Sampling Scheduler to adaptively modulate the per-
turbation updating amplitude in a step-aware manner. Our DisDiff
outperforms the state-of-the-art methods by 12.75% of FDFR scores
and 7.25% of ISM scores across two facial benchmarks and two
commonly used prompts on average.
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1 Introduction
In the era of pre-trained generative AI, individuals wield the power
of creating multi-media contents that appears genuinely authentic
with just a single click. Despite the success of GAN- and VAE-based
image synthesis methods[19, 25, 29, 33, 41, 49], more impressive
and controllable results are achieved by recently proposed diffusion
models, such as DALL-E[32], Imagen[38] and Stable Diffusion[40].
These diffusion model based text-to-image generation methods can
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Figure 1: Comparison of DreamBooth, Anti-DreamBooth
with DisDiff. The first row shows the unprotected Dream-
Booth, which learns from the subjects and generates them
into different scenes. The second row shows the protected
results. Protected by Anti-DreamBooth, the face is still identi-
fied. Our DisDiff achieves unidentified or even unrecognized
outputs, boosting the protection performances.

generate almost any style of image by a simple corresponding text
instruction, and show the unprecedented capacity for producing
high-quality images across various applications.

With the users’ desire for image synthesis of their subjects,
e.g., daily supplies, pets or family members, customized image
generation steps onto the stage, with representatives like Textual
Inversion[11] and DreamBooth[37]. Leveraging the pre-trained
text-to-image diffusion models, Textual Inversion learns a pseudo-
word in the well-editable word embedding space of text encoder,
i.e., 𝑆∗, to represent the newly provided concept. DreamBooth fine-
tunes the diffusion models with a small set of subject images and a
subject-identifier token (e.g., sks) included prompt, such as "a photo
of sks dog". Iteratively training large amounts of model parameters,
DreamBooth achieves superior performance compared to Textual
Inversion. More recently, Custom Diffusion[21] fine-tunes the se-
lected parameters in the attention layers to reduce the memory
overhead, achieving efficient customization.

Despite the convenient editing of users’ specified subjects, these
methods present a dual-edged dilemma. Malicious users exploit this
customization to fabricate synthetic images or videos and spread
them on the internet. The generated fake products[6, 20, 51] en-
gender potential security and privacy vulnerabilities for individu-
als. In response to defend against this, both passive and proactive
protections have been proposed for safeguarding privacy. Passive
protections, commonly known as DeepFake detection[12, 18, 24,
46, 53, 54], are employed to determine the authenticity of images.
The detecting models are trained to discriminate whether the im-
ages are real or fake. However, fake images have been spread be-
fore detected and these methods often struggle with novel syn-
thetic techniques[45]. Regarding this matter, proactive protections
are proposed with adversarial attacks to disrupt the fake image
synthesis[48, 50]. These applications distort the fake image genera-
tion with noticeable artifacts, thereby providing cues for detection.

As diffusion-based customization methods emerge, the urgency
of protecting users’ privacy against these techniques becomes para-
mount. As one of the pioneering works, Anti-DreamBooth[42]
aims to disrupt the generation of images produced by DreamBooth.
Specifically, Anti-DreamBooth tries to alternatively learn a sur-
rogate diffusion model (or utilize a fine-tuned fixed one) and the
adversarial perturbations to improve the attack performances. De-
spite the destruction of the visual quality of generated images by
Anti-DreamBooth, the face still exists. This is obvious not only
for human observers (visually) but also for detection algorithms
(quantitatively). As illustrated in Figure 1, the generated images of
both DreamBooth and Anti-DreamBooth are recognized, i.e., there
exists an evident face in the image. Besides, the generated face can
even be correctly identified, i.e., being classified as the same identity
by a face recognition algorithm. These undesired issues of privacy
information leakage become the motivation of our work.

In this paper, we propose DisDiff, a novel adversarial attack
method against diffusion-based customization. We first delve into
the training process of DreamBooth through the lens of the atten-
tionmechanism. As training proceeds, the diffusionmodel gradually
establishes the association between "sks person" and the target indi-
vidual. This association can be reflected by the cross-attention maps
in the UNet[35], which serves as the core guidance of text-image
generation. In light of this, we propose a novel Cross-Attention Era-
sure module (CAE), to diminish the cross-attention’s guiding effects.
On the other hand, we explore the impact of the sampling proce-
dure of diffusion models on adversarial attacks inspired by [44]. We
compute Hybrid Quality Scores (HQS) for different timesteps to
measure the importance of these steps on adversarial learning. Then,
we introduce the Merit Sampling Scheduler (MSS) to adaptively
modulate the PGD step sizes during attack, i.e., at the steps where
HQS is large, PGD step size is magnified by MSS and vice versa.
Both CAE and MSS modules are empirically proven to boost the
adversarial attack performances on diffusion-based customizations.

In brief, our contributions are summarised as follows:
1) We propose DisDiff, a proactive adversarial attack method

against diffusion-based customization, to protect users’ privacy.
2) We delve into the image-text relationship and justify its im-

portance on generation guidance. On this basis, we propose a novel
Cross-Attention Erasure module to "erase" the subject-identifier
token-related attention map.

3) Observing the diffusion sampling process and PGD, we intro-
duce a Merit Sampling Scheduler, which restricts the perturbation
updating step length in a step-aware manner.

4) Experiments show that DisDiff outperforms the SOTAmethod
by 12.75% of FDFR scores and 7.25% of ISM scores across two facial
benchmarks and commonly used prompts on average.

2 RELATEDWORK
2.1 Text-to-image Diffusion
As latent-variable generative models, diffusion models establish
a Markov chain of continuous timesteps to gradually introduce
Gaussian noise into the training data. Afterward, themodels learn to
reverse the diffusion process and reconstruct data samples from the
induced noises. In response to the growing demand for multimedia
generation, considerable research efforts have been devoted to
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exploring text-to-image diffusion models. Stable Diffusion (SD)[40],
rooted in the Latent Diffusion Models[34], significantly amplifies
the scope of text-to-image synthesis applications.

With the input of Gaussian noises and user-elaborated prompts,
SD generates diversified images through the denoising process. It
has been demonstrated that the text prompts serve as an essen-
tial controller for image generation, with even minor modifications
leading to significantly different outcomes. A body of works focuses
on the role of image-text relationships in the generation, which is
known as attention maps. For precise SD text-to-image generation,
Prompt-to-Prompt[14] explores cross-attention layers during the
diffusion backward inference process. Attend-and-Excite[5] modi-
fies the latent codes by maximizing the dominant attention values
for each subject token.

2.2 Diffusion based Customization
Despite the diversity of generated images by diffusion models, users
often seek to synthesize specific concepts for their personal sub-
jects. This task is named user customization[3, 22, 31, 47] and has
been widely studied. LoRA[16] enables the diffusion models for
specific styles or tasks by fine-tuning the extra parameters. This
technique allows the model to associate image representations with
the prompts describing them effectively. Textual Inversion[11] har-
nesses the diffusion models to reflect a novel concept to a pseudo-
word, denoted as 𝑆∗, within the malleable word embedding space
of the text encoder. It allows for the seamless integration of unique
concepts into the generative process, enhancing the model’s ability
to produce tailored and specific imagery.

DreamBooth[37] fine-tunes the diffusion model with a subject-
identifier token consisting prompt (e.g., "a photo of sks person")
and several images of the indicated subject. Through this process,
the model becomes "familiar" with recognizing features associated
with "sks person," enabling it to generate various representations in
response to different prompts. Despite the convenience of diffusion-
based customization, there exist some potential risks. Malicious
users may misuse these tools to invade privacy, for instance, gener-
ating illicit pornographic images or harmful content. Such misuse
highlights the importance of ethical considerations and robust safe-
guards in the development of text-to-image synthesis technologies.

2.3 Adversarial Attacks on Image Generation
Recognizing the urgency for privacy protection, researchers have
introduced adversarial attacks to defend against malicious image
manipulations. Inspired by adversarial attacks against classifica-
tion tasks[1, 9, 27, 55], Yeh et al.[52] and Ruiz et al.[36] aim at
distorting or neutralizing image editing DeepFake techniques. He
et al.[13] harness the StyleGAN inversion technique, encoding the
protected images into latent space and adding perturbations. CMUA-
Watermark[17] and TAFIM[2] further train universal watermarks
against various image manipulations.

Within the realm of diffusion-based customization for privacy
protection, GLAZE[39] and AdvDM[23] employ invisible pertur-
bations on personal images, protecting users from style theft and
painting imitation. Differently, Anti-DreamBooth devises to gen-
erate adversarial noises and distort the outputs of customized dif-
fusion methods, especially DreamBooth. SimAC[43] further takes

a sense of the perception in the frequency domain of images and
leverages a greedy algorithm to select timesteps. Different from
them, our DisDiff sets out from the image-text relationship and
disrupts the internal textual guidance. Besides, we take into con-
sideration the integration of diffusion sampling and adversarial
learning and introduce the Merit Sampling Scheduler to adaptively
restrict the perturbation updating amplitude.

3 Method
3.1 Preliminaries
Stable Diffusion consists of an autoencoder and a conditional
UNet[35] denoiser. Firstly, the encoder E(·) is devised to map a
given image 𝑥 ∈ 𝑋 into a spatial latent code 𝑧 = E(𝑥). The decoder
D is then trained to map the latent code back to the input image
such that D(E(𝑥)) ≈ 𝑥 . Secondly, the conditional denoiser 𝜖𝜃 (·) is
performed to predict the added noises guided by the text prompt
𝑦. At this time, a pre-trained CLIP[30] text encoder 𝑐 (·) is used to
generate text embeddings. Representing the prompt 𝑦 as a condi-
tioning vector denoted by 𝑐 (𝑦), the diffusion model 𝜖𝜃 is trained to
minimize the loss function:

𝐿𝐷𝑀 = E𝑧∼𝐸 (𝑥 ),𝑦,𝜖∼N(0,I),𝑡 ∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐 (𝑦))∥22 . (1)

During inference, latent 𝑧𝑇 is sampled from N(0, I) and progres-
sively denoised to yield the latent 𝑧0. Subsequently, 𝑧0 is fed into
the decoder to generate the image 𝑥 ′ = D(𝑧0).

DreamBooth fine-tunes the diffusion model parameters for user
customization. The training dataset consists of a subject-specific
set 𝑋𝑠 and a class-specific set 𝑋𝑐 , accompanied by corresponding
prompts𝑦𝑠 and𝑦𝑐 , e.g., "a photo of sks [class noun]" and "a photo of
[class noun]", respectively. 𝑋𝑠 comprises various personal images,
while 𝑋𝑐 serves to mitigate model overfitting. Therefore, Dream-
Booth utilizes a two-part loss to train the diffusion models:

𝐿𝐷𝐵 = E𝑧∼𝐸 (𝑥𝑠 ),𝜖∼𝑁 (0,I),𝑡 ∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐 (𝑦𝑠 ))∥
2
2

+𝜆𝐷𝐵E𝑧∼𝐸 (𝑥𝑐 ),𝜖∼𝑁 (0,I),𝑡 ∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐 (𝑦𝑐 ))∥
2
2 ,

(2)

where 𝜆𝐷𝐵 represents a balanced hyper-parameter. In the inference
process, users modify the subject-specific prompt to their desire,
e.g., "a photo of sks [class noun] on the mountain". The model then
generates this specific subject on the mountain as described.

Adversarial attacks manipulate model 𝑓 by introducing imper-
ceptible perturbations to the input data. As to the image generation,
the attacker aims to distort or nullify the generation model’s out-
puts by an optimal perturbation 𝛿 . The perturbations are bounded
within an 𝜂-ball according to distance metric ℓ𝑝 , where 𝜂 represents
the maximum allowed perturbation magnitude. The goal of adver-
sarial attacks is to maximize the loss function, ensuring the outputs
are different from the ground truth 𝑦𝑡𝑟𝑢𝑒 . 𝛿𝑎𝑑𝑣 is optimized by:

𝛿adv = arg max𝐿(𝑓 (𝑥 + 𝛿), 𝑦true), 𝑠 .𝑡 .∥𝛿 ∥𝑝 ≤ 𝜂. (3)

Projected Gradient Descent (PGD)[27] is a widely used method for
adversarial attacks. The perturbations are computed by disrupting
the input along the direction of Eq.3 iteratively. Every iteration
process of PGD updates the adversarial example 𝑥 ′ as follows:

𝑥 ′0 = 𝑥, (4)

𝑥 ′
𝑘
= Π𝑥,𝜂 (𝑥 ′𝑘−1 + 𝛾 · sgn(∇𝑥𝐿(𝑓 (𝑥

′
𝑘−1), 𝑦true))), (5)
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Figure 2: The overview framework of Disrupting Diffusion.
The prompt "a photo of sks person" is used for training. At
every denoising process, we acquire the attention maps of
the subject to calculate 𝐿𝐷𝐵 and 𝐿𝐶𝐴𝐸 . Then, the gradients
are aggregated and fed into the Merit Sampling Scheduler,
which is used for PGD attack to update 𝑥𝑎𝑑𝑣 .

where Π𝑥,𝜂 (𝑧) confines the pixel values of 𝑧 within the 𝜂-ball, 𝛾
represents the step size, and 𝑘 denotes the number of iterations.

3.2 Cross-Attention Erasure
Motivation. As in the literature[5, 14], cross-attention maps rep-
resent the influence of tokens on image pixels, which control the
text-guided image generation in the diffusion model. Thus, we first
delve into the training process of DreamBooth through the lens of
attention maps. Specifically, given a textual guidance composed of
sequence𝑊 = {𝑤1,𝑤2, ...,𝑤𝑛}, we derive the corresponding atten-
tion maps 𝑀 = {𝑚1,𝑚2, ...,𝑚𝑛}, where n is the word number. At
timestep 𝑡 ,𝑚𝑡 is computed through the diffusion forward process
with latent code 𝑧𝑡 :

𝑚𝑡 = Softmax
(
𝑄𝐾⊤
√
𝑑

)
, (6)

where query 𝑄 is equal to𝑊𝑄 · 𝑐 (𝑦), key 𝐾 is equal to𝑊𝐾 · 𝑐 (𝑦).
𝑊𝑄 and𝑊𝐾 are weight parameters of the query and key projection
layers and 𝑑 is the channel dimension of key and query features.

Notably, we aggregate these attention maps by averaging across
all 16 × 16 attention layers and heads, as they are proved to convey
the most semantic information[14]. Besides, it is observed that the
original attention maps may not fully reflect whether an object is
generated in the image[5]. In other words, a single patch with high
attention value might originate from partial information passed

train set a photo of sks person output

DreamBooth

DisDiff

Figure 3: Visualizations of cross-attention maps from unpro-
tectedDreamBooth andDisDiff. For the unprotected ones, the
diffusion model captures the subject-identifier token "sks"
(highlighted red areas on the face) and generates customized
images. However, DisDiff erases the model’s attention on
that token and dramatically distorts the model’s outputs.

from the token. To mitigate this, we further apply a Gaussian filter
over𝑚𝑡 , which ensures that the attention value of the maximally-
activated patch depends on its neighboring patches, facilitating a
smoother attention distribution across the image.

Figure 3 shows the visualizations of attention maps. As the cus-
tomization prompt is characterized by a subject-identifier token
𝑤𝑠 ("sks") and a class-identifier token𝑤𝑐 ("person"), we maintain our
focus on their related attention maps. The red highlighted areas
reveal high relativity between the token and the generated image.
Clearly, for unprotected subjects, the fine-tuned diffusion model
successfully associates the subject-identifier token "sks" with faces.
However, the class-identifier token "person" becomes less promi-
nent. That is, "sks" actually stands on the subject. We compute the
relative energy of the subject-identifier token by:

𝐸 (𝑚𝑠 ) =
∑
𝐴∈𝑚𝑠

𝐴2∑
𝑚𝑖 ∈𝑀

∑
𝐴∈𝑚𝑖

𝐴2 , (7)

where 𝑚𝑠 is the attention map of 𝑤𝑠 and 𝐴 stands on the pixel
value in the maps. 𝐸 (𝑚𝑠 ) reflects the energy weight percentage
of the subject-identifier token. To protect personal privacy from
customization, we thereby try to "erase" the energy associated with
the values in𝑚𝑠 . Concretely, the proposed Cross-Attention Erasure
loss is as follows:

𝐿𝐶𝐴𝐸 = (1 − 𝐸 (𝑚𝑠 ))2 . (8)

Our adversarial attack focuses on maximizing 𝐿𝑐𝑎𝑒 , and the optimal
perturbation 𝛿 can be learned by training procedure in Section 3.4.

The intuition of our CAE module is that after erasing the cross-
attention map of the subject-identifier token (with eliminated high-
lighted areas), the model would lose the direction of text guidance.
As a result, the generated images would exclude the identity infor-
mation or even the subjects themselves. The protecting results are
shown in the last two rows in Figure 3. Compared with highlighted
red areas of unprotectedDreamBooth(the first two rows), the impact
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HQS

Timestep

Figure 4: Analysis of varying timesteps. As the timestep be-
comes larger, not only does the HQS metric significantly
decrease but also the model pays more attention to identity-
irrelevant information, illustrating that the steps in the for-
mer are more important for perturbation training.

of the subject-identifier token on image generation dramatically
decreases. In light of this, the learned perturbations distort image-
text correlations of the diffusion model, affecting unidentified or
unrecognized inference outputs.

3.3 Merit Sampling Scheduler
Note that in the adversarial learning procedure of DisDiff, the
timestep sampling process of diffusion models is included. Thus, to
evaluate the importance of steps for adversarial learning, we adopt
the Hybrid Quality Score (HQS) metric inspired by [44]. Assuming
that 𝐺𝑡 is the computed gradients on images, we first calculate the
L1 norm of the gradients by:

𝑁𝑡 =
∑︁
𝑖

|𝐺𝑖𝑡 |. (9)

𝐺𝑡 is then converted by a softmax function to the confident map
𝑝𝑡 . The entropy is computed by:

𝐻𝑡 = −
∑︁
𝑖

𝑝𝑖𝑡 log𝑝
𝑖
𝑡 . (10)

Afterward, the sequences 𝑁 = {𝑁1, 𝑁2, ..., 𝑁𝑇 } and 𝐻 = {𝐻1, 𝐻2,
..., 𝐻𝑇 } are normalized to [0,1] and the HQS metric is computed as:

HQS(𝑡) = norm(𝑁𝑡 ) − norm(𝐻𝑡 ) . (11)

Figure 4 shows the HQS evaluation of various timesteps. High HQS
stands on high values of gradient norm and low entropy, indicating
that the model pays more attention at this timestep and mainly
focuses on identity-related areas (such as faces). During early iter-
ations when HQS is high, larger PGD steps may be beneficial for
adversarial attacks. Conversely, as the HQS decreases, smaller PGD
steps can help fine-tune the generated adversarial samples, as well
as avoid excessive deviation from the original input distribution.

Besides, we also visualize the cross-attention map of the subject-
identifier token for different timesteps. As can be seen, when the
timesteps are large, the model pays more attention to the irrele-
vant information of the identity. As the timestep gets smaller, the
attention gradually moves to the identity’s faces. Observations on
HQS and attention maps both empirically justify that the timesteps
sampling is essential to adversarial attacks.

Algorithm 1 Disrupting Diffusion Step
1: Input: Stable Diffusion model 𝑆𝐷 , protected image 𝑋𝑎𝑑𝑣 , clean

images batch 𝑋𝑐𝑙 , prompt𝑊 = {𝑤1,𝑤2, ...,𝑤𝑛}, scheduler ℎ(𝑡),
surogate model steps 𝑡1, PGD steps 𝑡2

2: procedure DBSTEP(SD, X,W )
3: Random sample timestep 𝑡
4: 𝑋 ′, _← 𝑆𝐷 (𝑋,𝑊 , 𝑡)
5: 𝐿𝐷𝐵 ← 𝑀𝑆𝐸 (𝑋 ′𝑠 , 𝑋𝑠 )
6: 𝑆𝐷 ← 𝑆𝐷 − 𝛼𝐷𝐵∇𝐿𝐷𝐵
7: return 𝑆𝐷
8: end procedure
9: For 𝑡 in {1, 2, ..., 𝑡1} :
10: 𝑆𝐷 ← 𝐷𝐵𝑆𝑇𝐸𝑃 (𝑆𝐷,𝑋𝑐𝑙 ,𝑊 )
11: For 𝑡 in {1, 2, ..., 𝑡2} :
12: 𝑋 ′

𝑎𝑑𝑣
, 𝑀𝑡 ← 𝑆𝐷 (𝑋𝑎𝑑𝑣, 𝑡,𝑊 )

13: 𝑀𝑡 ← Softmax(𝑀𝑡 )
14: 𝐿𝐷𝑖𝑠𝐷𝑖 𝑓 𝑓 ← 𝑀𝑆𝐸 (𝑋 ′

𝑎𝑑𝑣
, 𝑋𝑎𝑑𝑣) + 𝜆 · 𝐿𝐶𝐴𝐸 (𝑀𝑡 )

15: 𝑋𝑎𝑑𝑣 ← 𝑋𝑎𝑑𝑣 + 𝛾 · ℎ(𝑡) · sgn(∇𝑋𝑎𝑑𝑣
𝐿𝐷𝑖𝑠𝐷𝑖 𝑓 𝑓 )

16: For 𝑡 in {1, 2, ..., 𝑡1} :
17: 𝑆𝐷 ← 𝐷𝐵𝑆𝑇𝐸𝑃 (𝑆𝐷,𝑋𝑎𝑑𝑣,𝑊 )

Therefore, we resort to adopting a time-dependent function as
the Merit Sampling Scheduler (MSS) to adjust the perturbation
updating steps in PGD adaptively. We empirically design the time-
aware decreasing function as:

ℎ(𝑡) = 1
2
(𝑐𝑜𝑠 ( 𝜋𝑡

𝑇
) + 1), (12)

where𝑇 is the max timestep to sample so that the amplitude of ℎ(𝑡)
is limited in [0,1]. In this regard, our proposed MSS dynamically
adjusts the step size of the perturbation updating. The scheduler is
then used to be an enhancement for PGD attacks. Given the overall
loss 𝐿, PGD process in Eq.5 is modified as:

𝑥 ′
𝑘
= Π𝑥,𝜂 (𝑥 ′𝑘−1 + 𝛾 · ℎ(𝑡) · sgn(∇𝑥𝐿(𝑓 (𝑥

′
𝑘−1), 𝑦true))) . (13)

By incorporating MSS, we associate adversarial learning with the
diffusion model sampling process. The modified PGD updates the
perturbations precisely, contributing to better attack performances.

3.4 Training Procedure
To sum up, the proposed DisDiff combines the DreamBooth loss
with the Cross-Attention Erasure loss as the overall loss:

𝐿𝐷𝑖𝑠𝐷𝑖 𝑓 𝑓 = 𝐿𝐷𝐵 + 𝜆𝐿𝐶𝐴𝐸 , (14)

where 𝜆 is a trade-off hyper-parameter. To conduct the adversarial
attack, we utilize modified PGD (Eq.13) and maximize the loss
function to train the perturbations:

𝛿 = argmax
𝛿

𝐿𝐷𝑖𝑠𝐷𝑖 𝑓 𝑓 . (15)

We conduct an alternative training strategy similar to [42]: at each
epoch, we first adopt a clean image set 𝑋𝑐 to train the surrogate
model for 𝑡1 steps. The adversarial example 𝑥 ′ is then updated by
PGD attack for 𝑡2 steps and the model is once again trained by the
adversarial examples. The training process of DisDiff is illustrated
in Algorithm 1. For convenience, we omit the class-specific datasets
and prompts of the DreamBooth procedure.
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Table 1: The comparison of attack performances on VGGFace2 and CelebA-HQ datasets.

Dataset Method “a photo of sks person” “a dslr portrait of sks person”
FDFR↑ ISM↓ FID↑ BRISQUE↑ FDFR↑ ISM↓ FID↑ BRISQUE↑

VGGFace2

w/o Protect[37] 0.06 0.56 236.37 20.37 0.21 0.44 279.05 7.61
AdvDM[23] 0.10 0.38 359.65 17.39 0.11 0.29 397.64 27.97
Anti-DB[42] 0.62 0.32 462.12 37.10 0.72 0.27 448.98 38.89
DisDiff 0.77 0.27 476.28 42.46 0.95 0.06 473.38 41.26

CelebA-HQ

w/o Protect[37] 0.07 0.63 154.63 13.15 0.30 0.46 221.89 8.75
AdvDM[23] 0.06 0.59 197.59 24.55 0.30 0.42 235.47 16.88
Anti-DB[42] 0.56 0.44 386.06 41.58 0.48 0.33 384.80 35.86
DisDiff 0.62 0.40 412.19 44.98 0.55 0.34 400.38 38.35

a close-up 
photo of 
sks person, 
high details

a photo of 
sks person
looking at 
the mirror

a photo of 
sks person
on the 
mountain

DisDiffDreamBooth Anti-
DreamBoothAdvDM

a photo of 
sks person
with an 
angry face

Figure 5: Comparison under other inference prompts. Four
rows show different image edit prompts: distance, expression,
action, and location, respectively.

4 EXPERIMENTS
4.1 Experimental Setup
EvaluationBenchmarks.Wequantitatively evaluate our approach
on two benchmarks: CelebA-HQ[26] and VGGFace2[4]. For each
dataset, we choose 50 identities as the protecting subjects. 8 differ-
ent images are prepared for each subject and divided equally into
two subsets: the clean image set and the target protection set. All
images undergo center-cropping and resizing procedures, resulting
in a uniform resolution of 512 × 512.

DreamBooth and Adversarial Attack Procedures. We ad-
dress three versions of pre-trained SD from HuggingFace[10]: v1.4,
v1.5 and v2.1. For DreamBooth, the text-encoder and UNet model
are trained with a batch size of 2 and the learning rate of 5×10−7 for
1,000 training steps. The prompt is "a photo of sks person" for the
subject images and "a photo of person" for class-specific datasets.
The PGD attack is configured with 𝛾 = 0.005 and a default noise
budget 𝜂 = 0.05 for VGGFace2 and 0.07 for CelebA-HQ respectively.
We train the perturbations by 50 iterations, each containing 3 steps

0

0.5

1

1.5

ISM↓ FDFR↑

Anti-DB MSS CAE DisDiff

(a) (b)

0

0.5

1

1.5

2

ISM↓ FDFR↑

MSS   logarithm��

Figure 6: Ablation study of (a) the proposed module CAE and
MSS, (b) different schedulers.

of surrogate model training and 6 steps of perturbation training.
The hyper-parameter 𝜆 in 𝐿𝐷𝑖𝑠𝐷𝑖 𝑓 𝑓 is set to 0.1 for both datasets.

Evaluation Metrics. We utilize two widely used image quality
metrics, FID[15] and BRISQUE[28], to test the disrupting results.
Besides, images generated from these models may lack detectable
faces, which we quantify as the Face Detection Failure Rate (FDFR),
measured by the RetinaFace detector[7]. We also extract face recog-
nition embeddings using the ArcFace recognizer[8] and compute
the cosine distance to the average face embedding of the entire
user’s clean image set, referred to as Identity Score Matching (ISM).

4.2 Comparison with SOTAs
We conduct comparisons with two SOTA anti-customization base-
lines: AdvDM[23] and Anti-DreamBooth[42]. For a fair comparison,
we reproduce their source codes and train adversarial examples
with equivalent noise budgets. These protected examples are then
used to fine-tune the diffusion models (DreamBooth), with prompt
"a photo of sks person." Then, the trained diffusion models are tested
by prompts "a photo of sks person" and "a dslr portrait of sks per-
son". As can be seen in Table 1, our method demonstrates notable
performances across four metrics and two prompts. Specifically,
higher FDFR rates signify a decreasing number of detected faces,
while lower ISM rates indicate less similarity with the original sub-
ject. Increased FID and BRISQUE rates emphasize the lower image
quality, resulting in significant distortions of the outputs.

To further verify the efficacy, we also test our method under
various prompts with distance, expression, action, and location
descriptions, respectively. As shown in Figure 5, DreamBooth edits
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portrait detected

Figure 7: Visualizations of identity images, attention maps, and generated images before and after protecting.

the images as the prompts describe. AdvDM pushes the outputs to
the target image so that the results show a similar texture to that
image. Although Anti-DreamBooth distorts the output images, the
identity is still recognizable. Our proposed DisDiff leads to more
unrecognized faces and unidentified subjects by directly disrupting
the cross-attention module, which greatly boosts the performances.

4.3 Ablation Study
Impact of Cross-Attention Erasure. To testify to the impacts of
our proposed Cross-Attention Erasure, we visualize the attention
maps and the corresponding generated images. As shown in the
first row of Figure 7, highlighted red areas occur on the identity
face for the token "sks", which indicates that the diffusion model
pays much more attention to the learned identity with "sks". This
is intuitive since DreamBooth progressively makes the token "sks"
and the special person connected closely. This situation still exists
when the identity is protected by AdvDM and Anti-DreamBooth,
which is undesired for privacy protection. Compared with them,
DisDiff successfully erases the impact of "sks". That is, the diffusion
model ignores the token "sks" and its guidance on generation, thus
has no idea about whom to generate. The images protected with
our method thus exhibit greater blurriness and indistinctiveness.

Module and Scheduler Selection. We conduct the ablation
study of the proposed Cross-Attention Erasure (CAE) and Merit
Sampling Scheduler (MSS) modules. As shown in Figure 6(a), we
set the metrics of baseline method Anti-DreamBooth as 1 and cal-
culate the relative magnitude of DisDiff. Clearly, when utilizing
CAE or MSS, the lower ISM and higher FDFR illustrate that the
customization outputs become unidentified and unrecognized, in-
dicating DisDiff’s effectiveness. Also, we apply two widely used
decreasing functions to serve as the scheduler in MSS: the logarithm
decreasing function1 and diffusion models sampling sequence 𝛼𝑡 .
We set the scheduler in Eq.12 as the baseline and compare the attack
performances in Figure 6(b). Finally, we select the cosine function
in Eq.12 as the default, which achieves the lowest ISM rate.

1The logarithm decreasing function is 1− 𝑙𝑜𝑔 (𝑡+1)
𝑙𝑜𝑔 (𝑇+1) , where T is the max sampling step.

Table 2: Attack performances with different noise budget 𝜂
and * indicates the default setting.

𝜂 LPIPS FDFR↑ ISM↓ FID↑ BRISQUE↑

0 - 0.06 0.56 236.37 20.37
0.01 ≈ 0 0.08 0.53 271.92 33.93
0.03 0.01 0.59 0.37 426.68 40.20
0.05∗ 0.03 0.77 0.27 476.28 42.46
0.07 0.07 0.82 0.26 485.02 43.63
0.09 0.11 0.85 0.16 494.51 40.83

Noise Budget. The noise budget 𝜂 represents the permissible
magnitude of perturbations, and a large noise budget is easily per-
ceptible by humans. LPIPS is used to measure the image quality
before and after attack. As shown in Table 2, DisDiff shows high FID
and BRISQUE scores when the budget is as small as 0.03. Besides,
LPIPS is still low when we set 𝜂 = 0.05(default), meaning that the
perturbation is still invisible. Moreover, the attack performances
become stronger as the budget increases, which is also reasonable
since the larger the perturbation is, the greater the attack perfor-
mances can be achieved.

4.4 Robust Analysis
Attacks on different generators. Considering the potential ma-
licious uses of DreamBooth across different diffusion model gen-
erators, we conduct experiments to assess the impact. As shown
in Table 3, we first test under the self-surrogate setting (indicated
"self"), where the perturbation training and DreamBooth models
are the same version. Experiments show that DisDiff achieves better
performances than Anti-DreamBooth and generalizes well on SD
v1.4 and v1.5. Then, we test the generated perturbations robust-
ness under different generators (indicated "v2.1"). We employ the
adversarial examples generated with SD v2.1 to train DreamBooth
under v1.4 and v1.5. The FDFR approaches 1.0 and ISM approaches



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Yisu Liu et al.

Table 3: Attack performances on different generator versions on VGGFace2. "Self" means the perturbation training and
DreamBooth process share the same surrogate model, while "SD v2.1" means the perturbation training with SD v2.1 and
DreamBooth with other versions.

Surrogate Method SD v1.4 SD v1.5
FDFR↑ ISM↓ FID↑ BRISQUE↑ FDFR↑ ISM↓ FID↑ BRISQUE↑

w/o Protect 0.09 0.56 231.13 19.79 0.09 0.55 217.22 18.33

self Anti-DB 0.88 0.07 511.59 42.77 0.93 0.07 517.03 46.09
DisDiff 0.96 0.04 522.57 46.26 0.99 0.05 512.70 55.90

v2.1 Anti-DB 0.89 0.10 495.50 38.25 0.90 0.12 506.64 44.02
DisDiff 0.99 0.02 505.66 44.60 0.96 0.08 510.93 50.83

Table 4: Attack performances on VGGFace2 when the DreamBooth training prompt and subject-identifier token are different
from the perturbation training stage. 𝑆∗ is "t@t" for the first row and "sks" for the second row.

DreamBooth prompt Method "a photo of 𝑆∗ person" "a dslr portrait of 𝑆∗ person"
FDFR↑ ISM↓ FID↑ BRISQUE↑ FDFR↑ ISM↓ FID↑ BRISQUE↑

"a dslr portrait of sks person" Anti-DB 0.01 0.16 279.37 19.74 0.57 0.30 459.65 39.25
DisDiff 0.05 0.20 270.47 21.95 0.85 0.21 476.27 40.14

"sks"→ "t@t" Anti-DB 0.60 0.34 454.53 40.61 0.41 0.31 396.92 34.50
DisDiff 0.73 0.28 464.09 42.24 0.71 0.25 414.26 38.87

0, indicating minimal faces generated. These results illustrate that
the adversarial examples perform well against different generators.

Attacks while prompt or subject-identifier mismatching.
Assuming that the adversarial learning prompts differ from the
ones used to train DreamBooth, we conduct experiments to test
the robustness, as illustrated in Table 4. In the first row, we em-
ploy "a photo of sks person" for adversarial learning and "a photo
of a dslr portrait of sks person" for DreamBooth, conducting in-
ference for both. DisDiff and Anti-DreamBooth perform poorly
when confronted with the prompt "a photo of sks person" due to
prompt mismatching. However, when presented with the prompt
"a dslr portrait of sks person", DisDiff demonstrates superior perfor-
mances. This is partially due to that the training prompt becomes
more complicated and the models are overfitting.

We also evaluate the results by changing theDreamBooth subject-
identifier token to "t@t", as in the second row. Our DisDiff remains
well-generalized to "t@t". The reason is that we apply the softmax
function in CAE. The summary of all the softmax attention maps
for every pixel is 1. After erasing the attention map of "sks", the
values of other tokens become larger. As a result, the attention map
of substitute token "t@t" is erased even though it is not involved
in perturbation training. To sum up, DisDiff is robust to different
DreamBooth prompts and subject-identifier tokens.

Attacks on different customization methods. To verify our
protection generality across various generation methods, we re-
produce wildly used customization methods: Low-rank Adaptation
(LoRA)[16] and Textual Inversion (TI)[11]. We train customiza-
tion with LoRA and TI and conduct adversarial attacks with Anti-
DreamBooth and DisDiff. As can be seen in Table 5, compared to
unprotected DreamBooth, both Anti-DreamBooth and DisDiff suc-
cessfully attack these two customization methods. DisDiff shows

Table 5: Attack performances on other diffusion customiza-
tion methods on VGGFace2.

Method FDFR↑ ISM↓ FID↑ BRISQUE↑

LoRA
w/o Protect 0.11 0.43 248.05 17.31
Anti-DB 0.68 0.36 403.38 44.38
DisDiff 0.73 0.21 418.70 44.70

TI
w/o Protect 0.04 0.42 222.70 7.59
Anti-DB 0.09 0.27 289.66 39.37
DisDiff 0.14 0.24 308.77 41.23

better evaluation scores, indicating the robustness of protection
ability across different customization methods.

5 Conclusion
In this paper, we propose a novel adversarial attackmethod, Disrupt-
ing Diffusion (DisDiff). We track the cross-attention maps and pro-
pose a Cross-Attention Erasure module to disrupt these maps. We
also introduce a time-aware Merit Sampling Scheduler to adaptively
adjust the PGD steps. DisDiff successfully disrupts customization’s
outputs as unrecognizable and unidentifiable.
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