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Abstract

Tractable probabilistic models such as cutset networks which admit exact linear
time posterior marginal inference are often preferred in practice over intractable
models such as Bayesian and Markov networks. This is because although tractable
models, when learned from data, are slightly inferior to the intractable ones in terms
of goodness-of-fit measures such as log-likelihood, they do not use approximate
inference at prediction time and as a result exhibit superior predictive performance.
In this paper, we consider the problem of improving a tractable model using a large
number of local probability estimates, each defined over a small subset of variables
that are either available from experts or via an external process. Given a model
learned from fully-observed, but small amount of possibly noisy data, the key idea
in our approach is to update the parameters of the model via a gradient descent
procedure that seeks to minimize a convex combination of two quantities: one
that enforces closeness via KL divergence to the local estimates and another that
enforces closeness to the given model. We show that although the gradients are NP-
hard to compute on arbitrary graphical models, they can be efficiently computed
over tractable models. We show via experiments that our approach yields tractable
models that are significantly superior to the ones learned from small amount of
possibly noisy data, even when the local estimates are inconsistent.

1 Introduction

A major issue with probabilistic graphical models (PGMs) [3, 8] such as Bayesian and Markov
networks is that in most real-world domains, exact inference is computationally infeasible. As a result,
approximate inference algorithms are often used in practice, but these algorithms can be inaccurate
and may exhibit high variability. Thus, even if a PGM performs well on goodness-of-fit measures such
as test set log-likelihood, its predictive performance, because of the use of approximate inference
methods, can be quite poor.

To combat this problem, the field of tractable probabilistic models (TPMs) or probabilistic circuits
(PCs) [9, 11, 20] seeks to learn probabilistic models that admit polynomial time exact inference
algorithms. TPMs are more biased or less expressive than general probabilistic models (because they
enforce tractability) and as a result may yield a slightly inferior (model) fit. But, the hope is that
because no approximations are used at prediction time the slight drop in goodness-of-fit measures is
offset by superior predictive performance. This hope is often realized in practice, and demonstrated
in numerous empirical studies in literature (for example, see [18, 20]).

To date, algorithms for learning the structure and parameters of tractable probabilistic models such
as cutset networks [17], sum-product networks [14] and probabilistic sentential decision diagrams
[9] assume access to either full data which has no missing values or almost full data in which only a
few variables have missing values. Often in the real world, however, the following scenario is quite
common. The learning algorithm has access to a small amount of full, possibly noisy data and a large
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number of local marginal probability estimates that are derived from some combination of local data,
imperfect domain knowledge and local, independent predictive models. For instance:

• Due to privacy concerns in application domains such as social networks [7, 22], only
limited global data is available. But local statistics, such as information about a person’s
contacts/connections can be retrieved easily.

• In lazy learning of generative models [18, 26, 27], we derive sufficient statistics needed for
inducing a probabilistic model at test time (when a query is made) from various sources
such as local classifiers for each statistic or via a query made to a large database.

• In active learning [23], the learning algorithm interactively solicits a user for labels or in
general local marginal probability distributions for certain variables that the user is an expert
at given observations.

A hallmark of all the scenarios just outlined is that the local marginal estimates are often inconsistent,
namely, there may not exist a joint probability distribution that is consistent with the local estimates.
For example, in the active learning case, consider two pairwise marginal estimates PA(x1, x2)
and PB(x2, x3) over three random variables X1, X2, X3 derived by querying two users A and B
respectively. A joint probability distribution P (x1, x2, x3) over the three variables that is consistent
with the two estimates exists iff PA(x2) = PB(x2) where PA(x2) =

∑
x1

PA(x1, x2) and PB(x2) =∑
x3

PB(x2, x3). Unfortunately, because of factors such as precision errors and user bias, PA(x2)

will not be equal to PB(x2).

In this paper, we focus on the following learning problem over TPMs. We assume that the learner has
access to: (1) a TPM learned from a small dataset having few or no missing variables, and (2) a set
containing local estimates where each estimate is a marginal probability distribution over a small
subset of variables given observations.

Contributions. We propose to express the above learning task as the following minimization problem:
update the parameters of the given tractable model such that a linear combination of the following
two KL distances is minimized: (1) the distance between the distribution represented by the original
parameters and the one represented by the updated parameters; and (2) the sum of the distances
between the given local, possibly inconsistent estimates and the ones computed using the updated
distribution. We derive a gradient-based method for solving this optimization task. Since the gradients
require computation of marginal distributions over subsets of variables, they are NP-hard in general
on arbitrary probabilistic models but can be computed efficiently on tractable models [24]. This
shows the virtue of using tractable models in our learning settings.

We performed a controlled empirical evaluation of our proposed method using 20 popular datasets
that have been used in numerous studies on tractable models [10]. Our results show that our approach
that leverages local estimates yields significant improvements in both generative and predictive
performance over the original model learned from small amount of training data, even when the local
estimates are inconsistent. Moreover, since the optimization problem is smooth, our procedure is
guaranteed to reach a local optima under mild conditions.

2 Related Work

Vomlel [25] studied the problem of integrating probabilistic knowledge bases where a joint probability
distribution is constructed from low-dimensional probability distributions (local estimates). Vomlel
used a classic optimization method called iterative proportional fitting procedure (IPFP) [6] and pro-
posed a variant called the generalized expectation maximization algorithm (GEMA) for solving this
problem. Vomlel provided convergence proofs for these methods; showing that IPFP converges when
the local estimates are consistent and GEMA converges even if the local estimates are inconsistent.
Unfortunately, Vomlel’s approach has high computational complexity (is exponential in the treewidth
of the graph defined over the local estimates) and is not practical. The method proposed in this paper
does not have this limitation. Peng and Ding [13] proposed two polynomial time approximations for
IPFP and applied them to Bayesian networks. However, their preliminary experimental study demon-
strates that the error due to their approximations is quite high and convergence is not guaranteed if
the local estimates are inconsistent. In contrast, our proposed method makes very few approximations
and leverages tractable inference to yield a practical scheme.
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3 Notation and Background

We use the following notation. Bold upper-case letters (e.g., X , Y , U , etc.) are used to denote sets
of discrete random variables while bold lower-case letters (e.g., x, y, etc.) denote an assignment
of values to all variables in the corresponding set denoted by bold upper case letters (thus x and y
denote an assignment to all variables in the set X and Y respectively). We use upper-case letters (e.g.,
X , U , V , etc.) to denote the variables. For simplicity of exposition, we assume that all variables are
binary taking values from the set {0, 1}. A lower case letter (e.g., x, y, etc.) denotes an assignment of
a value to the corresponding variable denoted by the upper case letter.

For simplicity of exposition, we present our algorithm and experimental results on a specific type of
tractable model called cutset networks [17] which combines Bayesian networks and AND/OR graphs
[5], noting that the algorithm in this paper can be easily extended to other tractable models such as
sum-product networks [14], thin junction trees [1], and arithmetic circuits [2].

3.1 Bayesian Networks

Bayesian networks (BNs) [3, 12] use directed acyclic graphs (DAGs) and conditional probability
tables (CPTs) to compactly represent joint probability distributions over a set of random variables.
Each node in the DAG denotes a random variable and is associated with a conditional probability
distribution of the corresponding variable given its parents in the DAG. Formally, a Bayesian network
is a triple ⟨X, G, F ⟩ where X = {X1, . . . , Xn} is a set of random variables; F = {F1, . . . , Fn} is
a set of conditional probability tables (CPTs); and G(V,E) is a directed acyclic graph such that each
vertex Vi ∈ V is associated with the variable Xi ∈ X and E is the set of directed edges. Each node
Vi is associated with the CPT Fi = Pi(Xi|Ui) that represents the conditional probability distribution
of the variable Xi given its parents Ui ⊆ X \Xi.

Let x = (x1, . . . , xn) be an assignment of values to all variables in the set X and let ui ∼ x
denote the value assignment to all variables in the set Ui that is compatible with x, namely ui is
the projection of x on Ui. We will parameterize the Bayesian network using a set of parameters Θ
where each θxiui

∈ Θ is equal to the conditional probability P (Xi = 1|Ui = ui). Note that since
P (Xi = 1|Ui = ui) + P (Xi = 0|Ui = ui) = 1, we do not need to have a separate parameter for
P (Xi = 0|Ui = ui). Under this parameterization, the probability distribution represented by the
Bayesian network can be written as:

P (x) =

n∏
i=1

ui∼x

(θxiui)
xi(1− θxiui)

1−xi (1)

The two main reasoning tasks over Bayesian networks are most-probable explanation (MPE) and
posterior marginal inference (MAR). The former seeks to find an assignment of values to all variables
given evidence such that the probability is maximized. Formally, let E ⊂ X be a set of evidence
variables, let Z = X \E, and e be an assignment to all variables in E, then the MPE task is given
by argmax

z
P (z, e). The MAR task seeks to find the marginal probability distribution over each

non-evidence variable given e, namely compute P (zj |e) for each variable Zj ∈ Z. Both tasks are
known to be NP-hard in general but can be solved efficiently in practice on Bayesian networks having
small treewidth using bucket (or variable) elimination and propagation algorithms [4]. Specifically,
given a Bayesian network having treewidth w, the time and space complexity of these exact inference
algorithms is bounded by O(n2w+1) and O(n2w) respectively.

3.2 Cutset Networks

Cutset networks (CNs) [15, 17] are tractable probabilistic models that combine two well-known
classes of tractable models: AND/OR graphs [5] and tree Bayesian networks. Formally, a CN defined
over a set of variables X (X may include latent variables) is defined recursively using the following
three conditions: (1) A tree Bayesian network over X is a CN; (2) An OR node labeled by a variable
Xi ∈ X such that |X| > 1 with two child CNs, each defined over the set X \ {Xi} is a CN. We
follow the convention that the left child of the OR node labeled by Xi represents conditioning over
Xi = 0 and the right child represents conditioning over Xi = 1. The edges from the OR node to its
child nodes are labeled with probability values in R+ such that they sum to 1; and (3) Let (X1,X2)
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be a partition of X such that |X| > 1. Then, an AND node with two child CNs, one defined over X1

and the second defined over X2 is a CN.
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X6 X8
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P (X1 = 1) = 0.4P (X1 = 0) = 0.6

P (X2 = 0|X1 = 0) = 0.3 P (X2 = 1|X1 = 0) = 0.7

P (X6 = 0|X1 = 1) = 0.2 P (X6 = 1|X1 = 1) = 0.8

Figure 1: A cutset network defined over eight binary vari-
ables {X1, . . . , X8}. OR nodes are labeled with variables
and denoted by circles, AND nodes by cross mark in cir-
cles and leaf nodes (tree Bayesian networks T1, . . . , T7) by
shadowed dotted rectangles. Left and right edges emanating
from an OR node correspond to an assignment of 0 and 1
respectively to the corresponding variable and are labeled
with conditional probabilities. For instance, the nodes and
edges highlighted in red show the sub-tree consistent with
the assignment {X1 = 0, X2 = 1}.

Fig. 1 shows a CN defined over eight
variables. In general, a full assign-
ment x yields a rooted sub-graph in a
CN.

Following our notation for Bayesian
networks, let Θ denote the set of pa-
rameters of the cutset network, such
that θxiui

∈ Θ is equal to the con-
ditional probability P (Xi = 1|Ui =
ui). Given an assignment x, when Xi

is an OR node, ui denotes the assign-
ment along the path from the root of
the CN to Xi. Alternatively, when Xi

belongs to a tree Bayesian network
in the CN, ui denotes the assignment
formed by composing the assignment
along the path from the root of the CN
to the tree Bayesian network with the
assignment to the parent of Xi (if Xi

has a parent in the network). Given
this parameterization, the probability
distribution associated with the cutset
network is given by

P (x) =

n∏
i=1

ui∼x

(θxiui
)xi(1− θxiui

)1−xi (2)

A distinguishing feature of CNs is that when they have no latent variables, both MAR and MPE
inference can be performed over them in time that scales linearly with the size of the network. This
can be accomplished by converting the CN in linear time to an AND/OR graph [5] or an arithmetic
circuit [2] and performing two-passes over these circuits. When latent variables are present, CNs
admit linear time MAR inference only while MPE inference is intractable in general.

4 Our Approach

In this section, we define the optimization problem for learning the parameters of a cutset network
from local estimates and present a gradient-based algorithm for solving it.

4.1 The Learning Problem

The high-level goal of this paper is to improve the prediction quality and model fit of an existing model
that is induced using global information or full data alone by leveraging local information. The latter
is often available in practice from various sources such as prior knowledge, expert domain knowledge,
external sensors or processes and (local) data over a small subset of features. A distinguishing
property of local information is that it is typically available in large quantities and thus more robust
as compared to global information/full data. However, because of various issues such as user bias
(e.g., when information is obtained from different experts), locality and privacy constraints, local
information is often noisy and inconsistent. Therefore, our specific goal is to learn cutset networks
such that they optimally combine both local and global information, regularizing the two appropriately
based on background knowledge.

We begin by describing required notation and simplifying assumptions. We assume that we have access
to local information that can be summarized via pairwise distributions. Note that our algorithm can be
easily extended to arbitrary (non-pairwise) local marginal distributions and we make the assumption
for clarity of presentation only. Let D denote the KL divergence (distance) between two probability
distributions defined over the same set of variables. Namely, D(A,B) =

∑
x A(x) logA(x) −
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∑
x A(x) logB(x) where A and B are two distributions defined over X . The first term equals the

negative entropy of the distribution A and the second term equals the negative cross-entropy between
A and B.

Let E denote a subset of pairs of random variables, namely E ⊆ {(Xj , Xk)|Xj , Xk ∈ X and j < k}.
Definition 1. We say that a set of local estimates {Pjk(Xj , Xk)|(Xj , Xk) ∈ E} is consistent iff there
exists a probability distribution P such that each estimate Pjk(Xj , Xk) is a marginal probability
distribution of P . Otherwise, we say that the set is inconsistent.

Given a set of local estimates and data, the learning problem is given by:

Given: A cutset network structure with parameters Θ representing a probability distribution R, a
set of pairwise local distributions Pjk(Xj , Xk) where (Xj , Xk) ∈ E and a fully observed
dataset X = {x(1), . . . ,x(m)}.

To do: Find an assignment of values to all parameters in Θ such that the negative log-likelihood
of X w.r.t. RΘ is minimized and the KL distance between Pjk(Xj , Xk) and RΘ(Xj , Xk)
equals zero for all (Xj , Xk) ∈ E .

Mathematically, we can express it as:

argmin
Θ

−
∑

x(d)∈X

logRΘ(x
(d)) s.t. ∀ (Xj , Xk) ∈ E , D(Pjk(Xj , Xk), RΘ(Xj , Xk)) = 0 (3)

Unfortunately, if the set {Pjk(Xj , Xk)|(Xj , Xk) ∈ E} is inconsistent (see Def. 1), then the above
constrained optimization problem is infeasible.1 To address this issue, we propose to use a linear
combination of the objective and constraints (which is akin to Lagrange relaxation). Mathematically,

argmin
Θ

λ1

∑
(Xj ,Xk)∈E

D(Pjk(Xj , Xk), RΘ(Xj , Xk)) − λ2

 ∑
x(d)∈X

logRΘ(x
(d))

 (4)

where λ1 ≥ 0 and λ2 ≥ 0 are hyperparameters (technically, we only need one hyperparameter;
we use two for convenience) that model the relative importance of the local and global statis-
tics respectively. Here, D(Pjk(Xj , Xk),RΘ(Xj , Xk)) =

∑
xj ,xk

Pjk(xj , xk) logPjk(xj , xk) −∑
xj ,xk

Pjk(xj , xk) logRΘ(xj , xk)

4.2 Simplifying the Learning Problem

We simplify the optimization problem given in Eq. (4) by making the following observation. Since∑
xj ,xk

Pjk(xj , xk) logPjk(xj , xk) is constant, we can remove it from the objective function and
replace each term D(Pjk(xj , xk), RΘ(xj , xk)) in Eq. (4) by −

∑
xj ,xk

Pjk(xj , xk) logRΘ(xj , xk).

Negating the objective and making the substitutions described above yields the following maximiza-
tion problem:

argmax
Θ

λ1

∑
(Xj ,Xk)∈E

∑
xj ,xk

Pjk(xj , xk) logRΘ(xj , xk) + λ2

 ∑
x(d)∈X

logRΘ(x
(d))

 (5)

The optimization problem given in Eq. (5) is not concave in the parameters Θ but it is smooth.
Therefore, it can be solved using an iterative, gradient ascent algorithm. However, a drawback of
this algorithm is that the gradient of the second term in Eq. (5) requires us to go over the whole
data at each iteration yielding a slow algorithm. Although, stochastic gradient descent or mini-batch
approaches can be used to address this issue, their convergence is quite slow in practice. Therefore, in
order to reduce the computational complexity, we propose the following moment-matching approach.

Let Q denote the distribution associated with the cutset network having the same structure as R.
Thus, there is a one-to-one correspondence between the parameters of Q and R. Let Π denote the set

1Note that this condition is sound but not complete. For example, the problem is inconsistent if the estimates
are consistent but the cutset network does not have enough representation power to faithfully represent the
constraints given in Eq. (3).
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of parameters of Q. Thus, given a parameter πxi,ui ∈ Π, there is a corresponding parameter θxi,ui

in Θ. Let the set of parameters Π be learned from data X by maximizing the log-likelihood. Since
the parameters of cutset networks are conditional probability distributions, given Q learned from
data, we can use negative cross-entropy between parameters of Q and R in lieu of the second term
(log-likelihood) of Eq. (5). Mathematically,

argmax
Θ

λ1

∑
(Xj ,Xk)∈E

∑
xj ,xk

Pjk(xj , xk) logRΘ(xj , xk) +

λ2

∑
θxi,ui

∈Θ

πxi,ui log θxi,ui + (1− πxi,ui) log(1− θxi,ui)
(6)

4.3 Solving the Learning Problem via Gradient Ascent

We propose to solve the optimization task given in Eq. (6) using gradient ascent methods. To this end,
we derive the gradients w.r.t. each parameter θxi,ui . The partial derivative of the second term w.r.t.
θxi,ui is straight-forward and given by

λ2

(
πxi,ui

θxi,ui

− 1− πxi,ui

1− θxi,ui

)
(7)

The partial derivative of the first term of Eq. (6) is more involved and we summarize it in the following
proposition. (Proofs are given in the appendix.)
Proposition 2. The partial derivative of

λ1

∑
(Xj ,Xk)∈E

∑
xj ,xk

Pjk(xj , xk) logRΘ(xj , xk)

w.r.t. θxi,ui is given by

λ1

∑
(Xj ,Xk)∈E

∑
xj ,xk

Pjk(xj , xk)

(
RΘ(ui, Xi = 1|xj , xk)

θxi,ui

− RΘ(ui, Xi = 0|xj , xk)

1− θxi,ui

)
(8)

5 Formal Algorithm

Next, we formally present an algorithm that leverages the gradient equations given in Eqs. (7)–(8)
(see Algorithm 1) for solving the learning problem given in Eq. (6). The algorithm, which we call
learning cutset networks with local inconsistent statistics (LCN-LIS), takes as input training dataset
X , local statistics Pjk(Xj , Xk), two hyperparameters λ1 and λ2 (real numbers) and an integer bound
T on the number of iterations. It begins by learning a cutset network Q from the dataset X (step
2) and initializes R to have the same structure as Q (step 3). In steps 4–19, the algorithm runs the
gradient ascent steps. The gradient ascent begins by setting all parameters to a random number
between 0 and 1. Then, at each iteration t, for each pair (Xj , Xk) ∈ E and its possible assignments
(xj , xk), it sets Xj = xj and Xk = xk as evidence and runs a two-pass inference algorithm over the
cutset network [5] to compute the required conditional probabilities RΘt(ui, Xi = 1|xj , xk) and
RΘt(ui, Xi = 0|xj , xk) (step 9). The algorithm then updates the gradient for each parameter θxi,ui

(steps 10–13; also see Eqs. (7)–(8)) given the assignment Xj = xj and Xk = xk. In steps 15–17,
the algorithm updates the parameters using the gradient estimates gxi,ui

and learning rate α. The
algorithm terminates the gradient ascent on convergence or when the bound T on the number of
iterations is reached. At termination, the algorithm returns R with parameters Θt.

The main virtue of our algorithm is that it has polynomial computational complexity. The time
(and space) complexity of step 9 is O(|Θ|) using a two-pass algorithm over the CN that calculates
the conditional probabilities of the parameters given evidence (see [2, 5]). The time complexity of
updating the gradients (steps 10-13) is also O(|Θ|). Thus, the time complexity of steps 9–13 is O(|Θ|).
Since these steps can be executed a maximum of O(|E| × T ) times (step 8 and step 6 respectively),
where T is the bound on the number of iterations, the overall complexity is O(|E| × T × |Θ|).
Remarks. Note that a feasible solution to the optimization problem given in Eq. (6), and thus the one
returned by Algorithm 1 filters inconsistency in the local estimates {Pjk(Xj , Xk)|(Xj , Xk) ∈ E}
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Algorithm 1: LCN-LIS (X , E , {Pjk(Xj , Xk)|(Xj , Xk) ∈ E}, λ1, λ2, T )
Input : (1) Training examples X defined over a set of variables X; (2) a set of inconsistent pairwise

marginal statistics Pjk(Xj , Xk) where (Xj , Xk) ∈ E and
E ⊆ {(Xj , Xk)|Xj , Xk ∈ X and j < k}; (3) Two hyper parameters λ1 ≥ 0 and λ2 ≥ 0, and
(4) a bound T on the number of iterations

Output :A Cutset Network R
1 begin
2 Learn a Cutset Network Q from Data X using learning algorithms from literature (cf. [15–17]).
3 Initialize cutset network R to have the same structure as Q. Let Θ = {θxi,ui} and Π = {πxi,ui}

denote the set of parameters of R and Q respectively.
4 Initialize: all parameters θxi,ui of R to a random number between 0 and 1. Let θ0xi,ui

denote the initial
value of θxi,ui

5 Initialize: t = 0
6 repeat
7 Initialize: gxi,ui = 0 for each θxi,ui ∈ Θ
8 for each possible value assignment Xj = xj and Xk = xk where (Xj , Xk) ∈ E do
9 Set Xj = xj and Xk = xk as evidence in R and compute the conditional probabilities

RΘt(ui, xi|xj , xk) for each θxi,ui ∈ Θ
10 for each parameter θxi,ui ∈ Θ do
11 Let:

δ+ =
RΘt(ui, Xi = 1|xj , xk)

θtxi,ui

and δ− =
RΘt(ui, Xi = 0|xj , xk)

(1− θtxi,ui)

12 Update:

gxi,ui = gxi,ui + λ1Pjk(xj , xk)(δ
+ − δ−) + λ2

(
πxi,ui

θtxi,ui

− 1− πxi,ui

1− θtxi,ui

)
13 end
14 end
15 for each parameter θxi,ui ∈ Θ do
16 θt+1

xi,ui
= θtxi,ui

+ α× gxi,ui // α: learning rate
17 end
18 t = t+ 1
19 until convergence or t ≥ T ;
20 return R with parameters Θt

21 end

because it yields a globally consistent model RΘ. Unlike previously proposed techniques for solving
the optimization task in Eq. (3) such as the iterative proportional fitting procedure (IPFP) [6, 25]
which will not converge when the local estimates are inconsistent 2, Algorithm 1 will converge to a
local optimum (because the objective is smooth).

To summarize, we derived and presented a gradient-based algorithm for learning the parameters
of cutset networks in presence of local estimates (see Algorithm 1) and showed that the algorithm
requires time and space that scales linearly with the number of given local statistics. Note that
Theorem 2 can be easily extended to Bayesian and Markov networks. However, the problem is
that computing the terms in the numerator in Eq. 8 will be NP-hard in general on Bayesian and
Markov networks. This highlights another virtue of tractable models, local information, even if it is
inconsistent can be efficiently integrated into a tractable model.

6 Experiments

We performed a detailed, controlled experimental study to evaluate the impact of using inconsistent
local statistics on the quality of the learned model. Specifically, we used the following controls: (1) the

2IPFP and its extension called GEMA proposed by Vomlel [25] are computationally infeasible unless the
treewidth of the primal graph obtained by combining the edges corresponding to E and the cutset network Q is
bounded by a small constant and the cutset network is an I-map (cf. [8]) of a Markov network whose potentials
are given by E . The second requirement is particularly difficult to satisfy in practice.
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accuracy of the cutset network Q learned from data X in Algorithm 1; (2) the strength/level of incon-
sistency in the local statistics Pjk(Xj , Xk); (3) the cutset network architecture; and (4) the number
of evidence variables or observations available at test time (to test discriminative performance).

We used 20 benchmark datasets that have been widely used in previous studies [20, 21] to evaluate
our new approach. The number of variables in these datasets vary from 16 to 1556, and all variables
are binary. We ran Algorithm 1 for a maximum of 48 hours or 1000 iterations (namely T = 1000)
or convergence,whichever was earlier. We used 5-fold cross-validation to select the values of the
hyperparameters λ1 and λ2.

Table 1: Generative (0% evidence) performance measured
using the negative cross entropy between P and Q, and
between P and R on three models: CLTs, CNs, MCNs.

Datasets #var
Negative cross-entropy with 0% Evidence

CLTs CNs MCNs
Q R Q R Q R

nltcs 16 -7.62 -6.85 -6.86 -6.17 -7.32 -6.03
msnbc 17 -7.01 -6.58 -6.99 -6.36 -7.08 -6.08

kdd 64 -5.20 -2.80 -5.86 -2.77 -5.52 -2.69
plants 69 -18.64 -17.23 -17.70 -15.55 -17.04 -15.05
audio 100 -47.16 -45.52 -47.15 -44.01 -44.20 -42.57
jester 100 -60.95 -59.62 -61.08 -57.45 -57.92 -56.70
netflix 100 -62.98 -61.46 -63.85 -60.93 -58.31 -57.73

accidents 111 -38.00 -34.21 -37.06 -33.14 -35.72 -32.43
retail 135 -15.54 -11.59 -17.22 -11.61 -16.68 -11.61

pumsb* 163 -37.23 -32.86 -33.25 -27.61 -38.55 -30.46
dna 180 -103.18 -95.89 -124.06 -99.41 -98.53 -90.58

kosarek 190 -21.04 -12.98 -19.46 -12.45 -18.23 -10.68
msweb 294 -24.57 -12.28 -24.37 -12.33 -22.48 -11.05
book 500 -58.07 -41.80 -56.28 -41.46 -51.81 -34.49
movie 500 -97.27 -77.21 -94.39 -70.00 -64.99 -34.14
webkb 839 -207.12 -172.65 -199.76 -162.30 -181.05 -126.06
reuters 889 -152.53 -113.42 -146.47 -109.21 -149.49 -111.29

20newsg 910 -194.55 -157.70 -181.47 -155.48 -177.83 -152.65
bbc 1058 -325.51 -270.74 -265.46 -210.53 -243.87 -223.60
ad 1556 -112.01 -47.27 -93.96 -41.34 -96.79 -53.70

Total AVG -79.81 -64.03 -75.14 -59.01 -69.67 -55.43

Local estimates: For each dataset,
we learned a mixture of cutset net-
works [16, 17] and used it as the
true model P . We generated local
statistics from P as follows. Since
P is a tractable model, we can ef-
ficiently (in linear time) compute
Pjk(Xj , Xk) for all Xj , Xk ∈ X .
To make them inconsistent, we added
a value ϵ that is randomly sam-
pled from a normal distribution with
0 mean and standard deviation σ.
We experimented with five values
of σ : {0.001, 0.01, 0.05, 0.1, 0.2}.
Note that after adding ϵ, we have to
normalize the distributions to ensure
that they are valid.

Data model: We used 10% of the ran-
domly chosen examples in the train-
ing set to learn Q. Thus, the dataset
used by Algorithm 1 has 90% fewer
examples than the one used for learn-
ing P . We did this to ensure that Q,
learned from a much smaller amount
of data, differs significantly from the
true model P , which in turn will help
us evaluate how local information im-
proves the quality from an inferior
starting point. We further controlled
the quality of Q using a parameter h
which we call the perturb rate. h lies
between 0 and 100, and given a value for h, we replaced h% of the parameters in Q with a random
number. We normalized Q to ensure that it is a valid probability distribution.

We used three types of cutset network architectures: (1) cutset networks with depth 0 which are
equivalent to Chow-Liu trees (CLTs); (2) cutset networks with no latent variables (CNs); and (3)
mixtures of cutset networks (MCNs). The latter is a state-of-the-art model [19]. We learned both
discriminative and generative cutset networks. In discriminative networks, we set L% of random
variables as evidence E and learn a probability distribution over the variables X \ E given an
assignment e to the evidence variables. We used 4 values for L : {0, 20, 50, 80}. When L = 0, we
get a generative model while the remaining models are discriminative.

As our evaluation criteria, we used negative cross-entropy between the true P and the learned model.
The higher the negative cross-entropy, the better the model.

6.1 Results

Improved Model Quality. For lack of space, we present plots showing the impact of the level of
noise in Q, controlled by h; and the level of inconsistency in the pairwise estimates Pjk(Xj , Xk),
controlled by σ on one randomly chosen dataset. We present the plots for the remaining datasets in
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Figure 2: Negative Cross Entropy between P and Q, and between P and R with evidence of 0%,
20%, 50%, and 80% on three different models: CLT, CN, and MCN, as a function of perturb rate for
a randomly chosen dataset: movie.
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Figure 3: Negative Cross Entropy between P and Q, and between P and R, with evidence of 0%,
20%, 50%, and 80% on three different models: CLT, CN, and MCN, as a function of standard
deviation σ (of Gaussian noise that is applied to the local statistics Pjk(Xj , Xk)) on one randomly
chosen dataset: pumsb*.

the supplementary material. Figure 2 presents the negative cross-entropy scores achieved by CLTs,
CNs, and MCNs as a function of the perturb rate (h) for a randomly chosen dataset ‘movie’, and
for different values of L (the percentage of evidence variables). These plots help us evaluate the
impact that the quality of Q has (namely the impact of the starting point) on the model learned by
Algorithm 1. We observe that as the perturb rate increases, there is a substantial drop in the negative
cross-entropy between P and Q. However, the negative cross entropy between P and R remains
relatively flat. This shows that the use of local statistics significantly improves the model quality,
especially when the model based on global data alone is inaccurate.

Figure 3 shows the negative cross-entropy scores achieved by CLTs, CNs and MCNs as a function of
the standard deviation σ ∈ {0.001, 0.01, 0.05, 0.1, 0.2} of the Gaussian noise that is applied to the
local statistics Pjk(Xj , Xk) for the dataset ’pumsb*’, and for different values of L (the percentage
of evidence variables). The figure clearly shows that when the local statistics contain more noise,
the performance degrades as expected. When the σ is large (σ > 0.2), there is a non-zero chance
that the final model R will be worse than Q. Thus, based on our experimental results, our proposed
algorithm is more likely to yield a better model than the one based on global information alone when
the Gaussian noise has standard deviation ≤ 0.1.

Improved Generative and Discriminative Performances. Tables 1 and 2 show the generative
and discriminative (L = 50 and L = 80) performances of Q and R respectively. We present the
results for L = 20 in the supplement. We used σ = 0.1 and h = 0 to generate the experimental
data given in the tables. Each value in the tables is an average over 5 runs. To avoid clutter, we do
not report the standard deviation because it was fairly small over all the runs. These results help
us analyze the impact of the cutset network architecture and the number of evidence variables on
our evaluation criteria. We observe that, on average, using local inconsistent statistics improves the
negative cross entropy of each architecture by 17-23%. MCNs are the best performing model overall
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Table 2: Discriminative (50% and 80% evidence) performance of Q and R as measured using negative
cross-entropy on three models: CLTs, CNs, MCNs.

Dataset
50% Evidence 80% Evidence

CLTs CNs MCNs CLTs CNs MCNs
Q R Q R Q R Q R Q R Q R

nltcs -4.14 -3.53 -4.03 -3.86 -3.53 -3.18 -0.45 -0.27 -0.42 -0.33 -0.44 -0.29
msnbc -5.14 -4.68 -5.34 -5.30 -5.03 -2.14 -4.02 -2.77 -3.24 -2.84 -3.36 -2.70

kdd -4.28 -2.97 -5.12 -2.89 -3.82 -2.19 -3.51 -1.94 -3.02 -1.67 -2.99 -1.68
plants -16.07 -8.75 -16.32 -9.72 -15.15 -8.28 -10.27 -7.20 -10.23 -7.70 -9.35 -6.64
audio -32.14 -26.68 -31.59 -30.76 -28.83 -25.93 -27.23 -25.88 -21.55 -17.76 -21.02 -18.20
jester -49.55 -45.73 -49.1 -48.08 -44.55 -42.27 -44.68 -29.78 -35.07 -34.24 -35.51 -27.13
netflix -56.43 -56.14 -51.97 -48.84 -48.28 -46.68 -55.29 -53.86 -47.55 -46.98 -46.38 -45.28

accidents -34.27 -31.73 -33.03 -29.3 -30.1 -28.34 -34.19 -28.96 -32.36 -27.84 -29.53 -25.56
retail -11.75 -9.02 -12.44 -11.27 -11.07 -9.32 -8.86 -6.08 -8.09 -5.95 -7.38 -4.98

pumsb* -29.69 -25.78 -25.57 -21.92 -25.18 -22.10 -16.75 -15.62 -13.88 -11.22 -12.31 -11.32
dna -90.48 -82.46 -107.81 -88.33 -85.73 -74.24 -79.33 -65.40 -99.28 -82.15 -75.45 -60.68

kosarek -12.62 -9.00 -11.95 -5.73 -9.23 -4.17 -10.38 -8.63 -8.82 -4.40 -7.87 -5.22
msweb -12.28 -8.18 -11.97 -9.89 -10.27 -9.35 -11.66 -5.66 -7.72 -6.87 -7.72 -6.31
book -23.42 -15.05 -20.42 -18.05 -20.49 -13.96 -17.36 -15.17 -15.83 -13.05 -14.54 -11.72
movie -77.15 -59.46 -62.22 -54.47 -55.2 -36.89 -59.2 -46.65 -52.7 -39.36 -39.65 -21.40
webkb -167.71 -152.22 -155.01 -139.86 -134.67 -123.38 -105.83 -72.08 -91.48 -61.68 -90.19 -55.65
reuters -113.17 -91.79 -105.21 -85.56 -110.26 -89.12 -83.56 -68.86 -74.57 -62.59 -77.75 -65.24

20newsg -157.03 -128.89 -143.25 -139.89 -144.61 -121.72 -93.59 -85.91 -87.6 -74.44 -79.68 -48.44
bbc -247.79 -209.23 -243.75 -174.1 -241.93 -184.89 -171.31 -163.04 -164.16 -148.02 -167.02 -158.23
ad -88.33 -34.38 -65.31 -34.53 -72.13 -34.78 -80.7 -26.19 -57.95 -30.09 -55.6 -27.13

Avg -61.67 -50.28 -58.07 -48.12 -55 -44.15 -45.91 -36.5 -41.78 -33.56 -39.19 -30.19

and Chow-Liu trees (CLTs) are significantly worse. There was no significant difference in the amount
of improvement as we increased the number of evidence nodes. This suggests that our approach is
equally useful for both discriminative and generative models.

7 Conclusion

In this paper, we presented a new method for learning the parameters of cutset networks in presence
of inconsistent local estimates. Unlike conventional algorithms which use full i.i.d. data during the
learning process, we proposed a novel approach that uses noisy local information to learn a more
accurate and robust model. The key advantage of using local estimates is that they are often readily
available as compared to full i.i.d. data. We also showed via experiments on benchmark datasets that
our new algorithm greatly improves the quality of the initial model learned from i.i.d. data, even
when the local estimates are inconsistent and noisy.

Future work includes: (1) developing new structure learning algorithms that use local inconsistent
statistics; (2) applying our approach to other tractable models such as sum-product networks and
probabilistic sentential decision diagrams; (3) improving human feedback to improve explanation
quality; (4) developing lazy learning algorithms; etc.
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