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ABSTRACT

DNA-Encoded Libraries (DEL) are combinatorial small molecule libraries that
offer an efficient way to characterize diverse chemical spaces. Selection experi-
ments using DELs are pivotal to drug discovery efforts, enabling high-throughput
screens for hit finding. However, limited availability of public DEL datasets hin-
ders the advancement of computational techniques designed to utilize such data.
To bridge this gap, we present KinDEL, one of the first large, publicly available
DEL datasets on two kinases: Mitogen-Activated Protein Kinase 14 (MAPK14)
and Discoidin Domain Receptor Tyrosine Kinase 1 (DDR1). Interest in this data
modality is growing due to its ability to generate extensive supervised chemi-
cal data that densely samples around select molecular structures. Demonstrat-
ing one such application of the data, we benchmark different machine learning
techniques to develop predictive models for hit identification; in particular, we
highlight recent structure-based probabilistic approaches. Finally, we provide bio-
physical assay data, both on- and off-DNA, to validate our models on a smaller
subset of molecules. Data and code for our benchmarks can be found at https:
//kin-del-2024.s3.us-west—-2.amazonaws.com/kindel.zip.

1 INTRODUCTION

DNA-Encoded Libraries (DEL) have emerged as a powerful tool in drug discovery, enabling
highly efficient screens of small molecule libraries against therapeutically relevant targets (Yuen
& Franzini, |2017; |Gironda-Martinez et al., 2021; Kunig et al., 2021} [Peterson & Liu, 2023). These
massive libraries are efficiently constructed through combinatorial synthesis of chemical building
blocks, or synthons, with each resulting molecule being assigned a DNA barcode (see Figure [T).
DELSs are then used in selection experiments against proteins of interest, wherein multiple rounds of
washing are conducted to remove any weak binders, and the DNA tags of surviving molecules are
sequenced as a measure of binding affinity. Despite the highly efficient throughput of DELSs, data
generated through these experiments are intrinsically noisy with various sources of bias arising from
the DEL synthesis and selection processes, necessitating modern machine learning methods to learn
signal from the data. Unfortunately, there is still a lack of large, publicly available DEL datasets and
benchmarking tasks to drive this important research area.

The growing interest within the scientific community for utilizing DEL data for modeling is evi-
denced by the many recent efforts to advance this area (Igbal et al [2024; Blevins et al., |2024; |Gu
et al., [2024). One of the primary reasons for this interest is that selection experiments using DELs
alleviate some of the data limitations typical of the field; most chemistry problems in the machine
learning domain lack consistent and sufficiently high-quality labels. In particular, DELs can con-
tain billions of compounds, and require fewer resources to run compared to more traditional high-
throughput screens (Peterson & Liul [2023). However, the process of DEL synthesis and selection
introduces various sources of bias that can add noise to the observed data. For instance, DEL exper-
iments measure the affinity of molecules while they are attached to a DNA barcode (hence, on-DNA
binding). In contrast, during a real therapeutic campaign, drug-like molecules are tested without a
DNA tag (off-DNA), meaning the DEL data is biased by the DNA and the molecule’s attachment to
it. Moreover, uncertainties in reaction yields and biases in polymerase chain reaction (PCR) ampli-
fication add additional noise to the process. These difficulties have fueled an increasing enthusiasm
within the community for developing structured computational models to more effectively interpret
the data signals.
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Figure 1: (Top) DELs are synthesized in a sequential manner; at every step, the DNA codon specifies
the next building block (synthon) to be attached. (Bottom) An example of a fully synthesized DEL
molecule, with the building blocks and codons colored-coded for visualizability. Typically, there is
also a linker that connects the molecule to the DNA, which here is a 6-carbon chain.

Despite these challenges, several efforts have demonstrated successful applications of machine
learning to DEL data (McCloskey et al.,2020). These early successes suggest that there is still much
to explore in this domain. Currently, most methods have focused purely on discriminative modeling,
which plays a crucial role in drug discovery campaigns by ranking prospective compounds in order
to select potential hits. These prediction methods typically utilize established architectures, building
upon both molecular fingerprints and more sophisticated graph convolutional networks (Duvenaud
et al., |2015)). More recently, efforts have been made to pose the problem in a probabilistic manner,
directly incorporating experimental uncertainty in the model structure (Chen et al.l 2024). These
models leverage the fact that, while individual data points may be noisy, it is generally expected
that groups of molecules with the same synthons or substructures will show enrichment, or signal,
when analyzed collectively. Additionally, DEL data can be employed for generative modeling, pro-
viding weak supervision to navigate the complex chemical landscape, which is valuable for lead
optimization steps of drug discovery.

To demonstrate the advantages of DEL data and promote development of the methods described
above, we release KinDEL (Kinase Inhibitor DNA-Encoded Library) as library of 81 million small
molecules tested against two kinase targets, MAPK14 and DDR1. Our dataset, distinguished by
its high consistency across experimental replicates (see Appendix [B), provides a large amount of
supervised data for the machine learning community to develop methods for solving small molecule
chemistry problems in drug discovery.

In addition to the KinDEL dataset, we provide a set of benchmark tasks validated using biophys-
ical assay data, which we also release publicly. A major challenge in driving research in this area
has been the dearth of benchmark tasks to demonstrate the efficacy of using DEL data in deriving
therapeutic insights. By releasing these benchmarks, we aim to facilitate the comparison of various
modeling techniques currently applied to DELs. To seed these benchmarks, we survey computa-
tional methods from the literature and build predictive models, validated through biophysical data
from compounds independently resynthesized both on- and off-DNA. Since DEL data primarily
captures on-DNA binding events, but our interest lies in off-DNA binding affinity, these additional
data are crucial for assessing the models’ generalizability to diverse biophysical data. Our studies
show that models built on DEL data can effectively characterize both on- and off-DNA affinities,
highlighting the usefulness of DEL data in drug discovery. We hope that KinDEL serves as a public
resource that can facilitate the iterative refinement of chemical models by providing supervised data
in densely sampled chemical spaces.

2 DATASET

We first introduce a high level summary of the dataset generation, and then provide an overview
of the data that we publicly release. The data generation is divided into roughly 3 experimental
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processes, which are the synthesis of the DEL, the subsequent selection experiments against proteins
of interest, and the biophysical assays to collect validation data. Specific experimental details can
be found in Appendix [A]

2.1 DATA GENERATION

DEL Synthesis The DEL is built as a trisynthon library with 378 synthons in the A position, 1128
synthons in the B position, and 191 synthons in the C position. The synthesis is a sequential process,
with each synthon specified by the DNA tag and added one at a time. Notably, each molecule does
not have only a single encoding; instead, multiple encodings of DNA map to the same final molecular
structure. These redundant encodings help mitigate potential biases during the subsequent DNA
sequencing step. Rather than counting the total number of amplified DNA associated with a single
molecule (which is subject to PCR noise), we count the number of different redundant encodings
observed for each molecule. Lastly, this library was designed to enhance scaffold uniqueness and
chemical diversity, thereby exploring a broader region of chemical space. A simplified diagram of
synthesis can found in Figure[T]

DEL Selection DEL Selection was performed by combining the DEL with the target proteins, which
were immobilized on beads, as well as a negative control without any protein. Multiple rounds of
washes removed any weak binders in the solution. The molecules were then extracted via elution,
and the subsequent samples were then amplified via PCR and sequenced to obtain the count data.
Each selection was performed in triplicate with each protein. This process is visualized in Figure 2]

Biophysical Assay Validation Additional biophysical data on a small subset of molecules were
collected both on- and off-DNA. For on-DNA data, we use Fluorescence Polarization (FP), which
utilizes polarized light to quantify binding affinity by measuring the dissociation constant (K p). For
off-DNA data, we use Surface Plasmon Resonance (SPR), which also relies on light to measure the
dissociation constant. The reason we collect both types of data is because on-DNA K, data reveals
insights about the actual binding of the molecule in the DEL selection experiment, while off-DNA
K p focuses on interactions of the molecules without a DNA-barcode, which is the relevant setting
for an actual drug candidate.
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Figure 2: DEL selection experiments are conducted by combining the DEL with the protein target
of interest immobilized onto Streptavidin beads. After multiple rounds of washing, the tight binders
are eluted off of the protein, and their corresponding DNA are sequenced to obtain the count data.

2.2 DATA OVERVIEW

DEL Data KinDEL contains count data for more than 81M unique molecules used in selection
experiments with two proteins MAPK14 and DDRI1. Typically, DEL experiments are run with a
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negative control without the protein, so that non-specific binding events (such as binding directly
to bead) can be captured. In our dataset we provide three (3) replicates of data for each of the
control and the protein target conditions. As mentioned earlier, raw DNA counts can be noisy due
to PCR amplification bias (Aird et al., 2011} [Kebschull & Zador, [2015)), so we use the sequence
count information as data, which measures the number of unique DNA sequences observed for each
molecule.

Pre-selection Data Additionally, we provide data about the sequenced library itself, called pre-
selection data, which provides a rough estimate of the relative abundance of each molecule prior to
any experimental run. Due to the size of the library, it is too costly to sequence the library deeply
enough for an extremely accurate pre-selection estimate. However, because there is always some
amount of synthesis noise, for instance using impure reactants or having incomplete reaction yields,
achieving a precise measurement of the pre-selection data is not imperative.

Biophysical Assay Data We have collected data from 30-50 molecules using the aforementioned
biophysical assays, FP and SPR, to validate our models. For molecules on-DNA, we have re-
synthesized molecules both from within and from outside our library. For off-DNA compounds,
we have only resynthesized molecules that are within the DEL itself. These molecules were primar-
ily selected from the top hits predicted from models trained on the DEL data (see Appendix |C|for
more details).

Figure [3|illustrates various properties of the molecules in our dataset, comparing them to those of
typical drug-like molecules. From this, we can see that KinDEL is well-posed within typical drug-
like distributions according to an analysis by [Shultz (2018). Notably, over 30% of the molecules in
our library fall within the property ranges of already approved drugs, as outlined by Schultz. While
certain synthon combinations may result in compounds that fall outside these preferred ranges, DEL
molecules primarily serve to provide initial hits for drug discovery campaigns. These initial hits
undergo iterative refinement during the hit-to-lead optimization process.

3 BENCHMARKING

3.1 EXPERIMENTAL SETUP

One primary use-case of DEL data is building predictive models of binding affinity. To that end,
we investigate commonly used models in DEL literature as benchmark models and compare their
performance in modeling binding affinity. In this benchmark, all models were trained using the top
IM compounds with the highest counts from our KinDEL dataset. We publish the full library to
enable construction of further benchmarks.

Held-out Test Set The observed count data in DEL experiments are an approximation of the true
on-DNA binding affinity (K p). The count data are influenced by multiple sources of noise (see
Section 4). Since we ultimately wish to rank molecules by binding affinity, we use biophysical
assays to acquire additional measurements of true on- and off-DNA Kp. We use this data as a
held-out test set. By validating our models against this data, we can assess if the models correctly
rank compounds by K p. This can be viewed as measuring how well models can remove the noise
resulting from typical DEL problems like sequencing errors or competition between molecules in
binding.

For both our targets, MAPK14 and DDRI1, the selected compounds contained in the DEL library
were resynthesized on- and off-DNA to create an in-library held-out test set. While the primary goal
in hit identification is predicting off-DNA binding, which often presents a challenge, predicting on-
DNA binding is easier, as the binding pose is expected to resemble that seen in DEL experiments.
This is because, in on-DNA experiments, the compounds are attached to DNA strands in the same
way as during the DEL experiment. A few additional compounds were added from outside the
library to create an additional held-out test set that we refer to as "Extended”. The K p data from
these biophysical assays are also released with our dataset. A UMAP visualization of the DEL
including the in-library and external test set compounds is depicted in Figure [5b]

Data Splits We split our datasets using three strategies, ensuring that all held-out compounds are
placed in the test set and not used for training. The first type of data split is a random split, where
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Figure 3: The distributions of chemical properties in the KinDEL dataset. These selected properties
are often used to assess the druglikeness of molecules. The light blue areas mark the 10th and 90th
percentiles computed for all the FDA approved oral new chemical entities, as reported by

(2018). QED: quantitative estimate of druglikeness (Bickerton et al., [2012).
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Figure 4: The 3D cube visualization of the dataset, where each axis corresponds to a different
synthon in the DEL. Points in the plot are the most enriched compounds (measured using Poisson
enrichment). The linear patterns can be interpreted as enriched disynthons, i.e. combinations of two
synthons that often bind to the protein target.
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Figure 5: (a) Testing data preparation includes the selection of the held-out testing compounds
for the on- and off-DNA resynthesis (top) to perform binding assays and two types of data splits
(bottom) used to prepare the internal testing set. (b) UMAP visualization of KinDEL constructed
using Tanimoto distances between compounds. The compounds selected for the held-out testing set
are depicted as orange diamonds (in-library) and green triangles (external).

a randomly selected 10% of compounds are placed in the validation set, and another randomly se-
lected 10% are placed in the test set. The second type of data split is a disynthon split, where we
sample disynthon structures (molecules with the same 2 synthons), and put all compounds contain-
ing these sampled structures in the same subset using the same 80-10-10 ratio between the training,
validation, and test sets. This data partitioning method is more challenging for the machine-learning
models because some synthon combinations tend to have a binding profile distinct from the individ-
ual synthons they consist of (see Figure[d). The third approach is a cluster split based on compound
similarity. The details about the clustering algorithm can be found in Appendix [E]} The two types of
data splits are illustrated in Figure[5al Each dataset is split five times for each splitting strategy, and
the reported performance of the models is aggregated over five training runs.

Evaluation Metrics Models trained on DEL data typically predict an enrichment score, which can
be regarded as a measure of binding affinity. To evaluate different baselines, we compare how well
each method’s predicted enrichment scores correlate with experimental K p values for the molecules
in the held-out test set. Since different models are trained with different losses, this is a consistent
way to compare model performance. Here, we use Spearman correlation, because we are primarily
concerned with the ability of a model to rank order molecules by their binding affinity.

3.2 BENCHMARK MODELS

In this benchmark, we compare models commonly used for DEL data in the literature. These meth-
ods follow a similar paradigm, in which the models try to learn the protein binding signal in the
target data by subtracting out noise from the control data. Two baselines are included to gauge the
alignment in the actual data, between the DEL counts and validation K p values. The first baseline,
count enrichment, computes an enrichment score by subtracting the average control counts from the
average target counts. The second baseline, Poisson enrichment, computes a ratio of fitted Poisson

distributions of the target and control data 2019).
Next, we compare ML models trained on the data to predict the aforementioned Poisson enrichment

using a mean-squared error (MSE) loss. These models include: random forest (RF) (Breiman|

[200T), XGBoost (Chen & Guestrinl 2016), k-nearest neighbors (kNN) (Fix & Hodges| [1989), and
a deep neural network (DNN) using Morgan fingerprints (radius=2, length=2048) (Rogers & Hahn),




Under review as a conference paper at ICLR 2025

Table 1: Model performance evaluation for MAPK14. The test loss column contains values of the
loss function computed on test split. The performance for the on- and off-DNA “In-Library” is
the negative Spearman correlation between model predictions and experimental K p for compounds
resynthesized from the DEL. The performance for on-DNA “Extended” set includes additional com-
pounds resynthesized on-DNA but not in the original DEL.

In-Library Extended
on-DNA off-DNA on-DNA
Spearman’s p T Spearman’s p T | Spearman’s p T
Split Model Test Loss | n =30 n =33 n =41
Counts - 0.778 0.353 -
Poisson - 0.737 0.166 -
RF 0.064 £ 0.003  0.694 £ 0.030 0.370 £0.111 0.453 £0.028
XGBoost o 0.056+0.002 0477 £+ 0.009 0.345 £ 0.036 0.196 £ 0.074
= kNN ©v  0.072+0.002  0.649 £ 0.041 0.466 £ 0.103 0.464 £ 0.040
-§ DNN = 0.139 £0.010  0.582 £ 0.062 0.514 £ 0.071 0.351 £ 0.058
s GIN 0.062 £ 0.004  0.511 £ 0.038 0.492 £ 0.139 0.174 £ 0.067
Chemprop 0.121 £ 0.008  0.693 £ 0.039 0.504 £ 0.093 0.462 £ 0.063
DEL-Compose ™) - 3.017 £0.005  0.448 £+ 0.054 0.756 £ 0.011 0.569 + 0.048
DEL-Compose'®  Z 31924 0.167  0.420 +£0.050  0.760 + 0.018 -
RF 0.063 £0.015  0.697 £ 0.033 0.313 + 0.071 0.472 + 0.048
XGBoost m 005940013 0486+ 0.032 0.378 £ 0.091 0.176 £ 0.069
5 kNN E 0.080 £ 0.018  0.575 £ 0.034 0.435 + 0.094 0.421 + 0.032
Z DNN 0.065 £0.011  0.565 £ 0.089 0.592 £ 0.065 0.284 £0.114
S GIN 0.072 £0.015  0.411 £ 0.209 0.369 + 0.054 0.123 +0.171
Chemprop 0.131 £0.047  0.713 £ 0.013 0.532 £ 0.070 0.485 £ 0.036
DEL-Compose ™) j 3.038 £0.053  0.440 £ 0.045 0.730 £ 0.009 0.583 £ 0.032
DEL-Compose'®  Z 33394 0.114  0.369 + 0.050 0.766 + 0.012 -
RF 0.154 £0.016  0.157 £0.138 0.505 £ 0.062 0.302 £ 0.096
- XGBoost i 0.148+£0.015 0377 £0.054 0.482 + 0.045 0.212 + 0.126
S kNN E 0.165 £ 0.014  0.402 £+ 0.074 0.266 £ 0.078 0.367 £ 0.043
‘i DNN 0.160 £ 0.017  0.275 £ 0.135 0.429 + 0.118 0.184 £ 0.146
RZ GIN 0.153 £0.011  0.090 £ 0.084 0.483 £ 0.151 -0.080 £+ 0.071
~ Chemprop 0.216 £ 0.007  0.390 £ 0.091 0.506 £ 0.093 0.228 £ 0.121
DEL-Compose ™) = 3.177£0.028  0.120 £ 0.070 0.716 £ 0.052 0.421 £ 0.054
DEL-Compose!®  Z 3351 £0.040  0.128 £ 0.049 0.748 £ 0.024 -

2010) from RDKit (Landrum| 2010) as input features. We also tested two molecular graph models,
Graph Isomorphism Network (GIN) (Xu et al., 2018)) and Chemprop DMPNN (Heid et al., [2023).
DEL-Compose (Chen et al., [2024) is a probabilistic model that uses Morgan fingerprints as input
and predicts the parameters of a zero-inflated Poisson distribution to maximize the likelihood of the
observed count data. We train two variants of DEL-Compose, one with only full molecule structures

(DEL—Compose(M )y, and one with synthon structures (DEL—Compose(S )). The hyperparameters of
all the models used in this study are presented in Appendix D}

The architectures of the neural network models follow the implementation in the original publica-
tions. The DNN architecture contains multiple linear layers with ReLLU activation, batch normaliza-
tion, and dropouts after each layer except for the last one (see Appendix [D) . All neural networks
were trained using the Adam optimizer until convergence with early stopping when the validation
loss does not improve for more than 5 epochs.

3.3 BENCHMARK RESULTS

Tables [1] and [2] show the performance of various models on MAPK14 and DDRI, respectively.
The count and Poisson enrichment baselines serve as an estimate of the alignment between DEL
screening results and experimental K computed directly from the sequence count data, measuring
how well the DEL data itself predicts the Kp in the follow-up assays. For DDR1, we see that
DEL-Compose, which views the data from a probabilistic perspective, is the most performant model
in all but the “Extended on-DNA” set. For MAPKI14, relatively simple models (RF and kNN)
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Table 2: Model performance evaluation for DDR1. The test loss column contains values of the
loss function computed on test split. The performance for the on- and off-DNA “In-Library” is
the negative Spearman correlation between model predictions and experimental K p for compounds
resynthesized from the DEL. The performance for on-DNA “Extended” set includes additional com-
pounds resynthesized on-DNA but not in the original DEL.

In-Library Extended
on-DNA off-DNA on-DNA
Spearman’s p T Spearman’s p T | Spearman’s p T
Split Model Test Loss | n =39 n =49 n = b4
Counts - 0.695 0.355 -
Poisson - 0.779 0.441 -
RF 0.685 £ 0.011 0.578 £0.034 0.267 £0.022 0.608 £ 0.021
XGBoost m  0519+0011 05534 0.032 0.252 £ 0.031 0.587 £ 0.025
= kNN ©v  0.748 £0.010  0.599 £ 0.025 0.316 £ 0.026 0.508 £ 0.036
-§ DNN = 1261 +£0.057  0.703 =+ 0.025 0.335 £ 0.009 0.668 £ 0.033
s GIN 0454 £0.012  0.572 £ 0.044 0.283 £0.028 0.579 £ 0.037
Chemprop 1.391 £0.043  0.729 £ 0.017 0.335 £ 0.004 0.680 + 0.021
DEL-Compose ™’ = 2873£0003 0.731:+0.016  0.509+£0.024  0.646 +0.024
DEL-Compose'®  Z 29184+ 0.057  0.689 & 0.048 0.483 £ 0.044 -
RF 0.641 £0.190  0.586 £ 0.025 0.273 £ 0.017 0.615 + 0.019
XGBoost m 058940164 0569 +0.024 0.262 £ 0.009 0.599 £ 0.013
5 kNN E 0.887 £0.189  0.581 £ 0.061 0.329 + 0.063 0.489 £ 0.049
Z DNN 0.519 £0.150  0.708 £ 0.015 0.330 £ 0.022 0.673 £0.014
S GIN 0.633 £0.142  0.524 + 0.081 0.137 + 0.047 0.599 + 0.047
Chemprop 1.507 £0.363  0.732 £ 0.028 0.326 £ 0.014 0.690 £ 0.023
DEL-Compose ™) j 2.891 £0.079  0.737 £ 0.041 0.467 £ 0.025 0.540 £ 0.037
DEL-Compose'®  Z 29934 0.065  0.686 & 0.027 0.482 + 0.019 -
RF 1.1I51 £0.151  0.481 £0.120 0.330 £ 0.081 0.557 £ 0.082
- XGBoost 0989 £0.131 0.523 £0.071 0.241 £ 0.031 0.572 £ 0.046
S kNN E 1.109 £ 0.088  0.663 + 0.043 0.363 £ 0.038 0.523 £ 0.036
‘i DNN 0.977 £0.104  0.572 £ 0.063 0.265 £ 0.051 0.598 £ 0.055
RZ GIN 0.966 £ 0.090  0.410 £ 0.020 0.070 £ 0.031 0.546 £ 0.023
~ Chemprop 1.690 +0.192  0.558 + 0.061 0.310 £ 0.038 0.579 £ 0.037
DEL-Compose ™) = 3.184 £0.025  0.663 £ 0.022 0.463 £ 0.023 0.492 £ 0.049
DEL-Compose®  Z  3.110 & 0.041 0.563 £ 0.084 0.429 £ 0.069 -

perform best for the in-library on-DNA validation while DEL-Compose performs better off-DNA.
Recall that off-DNA is the task more reflective of the setting for selecting actual drug candidates.
Interestingly, we find that DEL-Compose rank orders the validation compounds off-DNA better than
using enrichment metrics of the DEL data itself. This is true for both targets, and on both splits of
the data. As mentioned earlier, DEL data is only indirectly correlated to off-DNA data, so this
demonstrates that these structure-based models may have regularization properties that can denoise
the DEL data. Most models perform similarly in the cluster split compared to the random split,
indicating that the cluster split created based on fingerprint cluster is not too much more challenging.
However, we observe that almost all models perform worse on the disynthon split compared to the
random split. In particular, this change in performance is quite significant for the MAPK14 data,
which might suggest that these models are overfitting to certain features. The disynthon split is a
more challenging task, since we remove structures entirely from the training data, and the models
have to infer based on chemical structures (out-of-distribution inference). Overall, these results
demonstrate that models trained on DEL data can be used for hit selection, since models can predict
enrichment scores that correlate well with on- and off-DNA biophysical data.

4 DISCUSSION

Data Applicability and Limitations Our data and benchmarking tasks were designed to evaluate
the ability to predict compounds within the DEL. Although we incorporated challenging splits of the
data, such as disynthon splits, we have not evaluated the usefulness of this particular data for truly
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out-of-distribution sets. While we do include an extended held-out set with molecules from outside
of the DEL, this extended set is limited in size. We envision that models trained on this data can
be used to make predictions for molecules from purchasable catalogues, but such applications will
require further exploration, especially being cognizant of problems in this space such as domain of
applicability (Weaver & Gleeson) 2008)).

One limitation of DEL data is that it only measures on-DNA binding events, and on- and off-DNA
binding are only loosely correlated (Hackler et al., 2019). While we have shown in our experiments
that machine learning models can have nice regularization properties and learn some correlations to
off-DNA binding, DEL data needs to be combined with additional 3-D structural data to fully under-
stand these different binding modalities. To that end, we also publicly release docked 3-D poses of
our library molecules to the target proteins to aid future model development by the community (see
Appendix [F). Additionally, DEL screens are sometimes run with an additional experimental con-
dition to distinguish potential allosteric binders from orthosteric binders (Gironda-Martinez et al.,
2021). This is usually achieved by running the experiment with a known inhibitor doped in at high
concentrations. Because our data lacks this condition, it can be difficult to discern non-specific bind-
ing modes. We also recognize that one limitation of is dataset is that the two targets we provide are
kinases. In order to make this dataset more broadly applicable for modeling DEL data, we addition-
ally release our data on another well studied target, Bovine Carbonic Anhydrase (BCA), using the
same library.

Challenges and Future Directions DEL data is powerful in that it specifically densely samples
particular chemical spaces, which can be leveraged to learn more powerful representations. How-
ever, DEL data suffers from experimental noise to compensate for the scale of data this technology
can generate. In particular, there are unobserved factors such as synthesis noise that makes it difficult
to separate out signal from noise in the data (Zhu et al., [2021)). Additionally, since our observations
are sequencing read counts rather than actual binding affinity, the measurements also suffer from
PCR bias (Aird et al., 2011). While we have presented several benchmark methods that try to learn
a denoised enrichment from structure-based models, this is still an open question in the field, and
we hope that our dataset release will enable the development of more denoising methods.

Furthermore, our benchmark primarily focuses on building purely predictive models, which en-
capsulates most of the published work in this field currently. However, KinDEL holds significant
potential for use in generative frameworks. Many generative modeling approaches in the small-
molecule space lack sufficient supervised data to learn interesting sampling distributions. However,
this is exactly the data that DEL provides, densely sampling around particular synthons or di-synthon
structures. Therefore, we hope that DEL data can be used to train or fine-tune generative models on
specific protein targets.

5 RELATED WORK

5.1 CURRENT DATASETS

To the best of the authors’ knowledge, only a limited number of DEL datasets have been released
publicly. While KinDEL is not the largest library tested, our dataset is evaluated on two distinct tar-
gets in the Kinase family and contains comprehensive and consistently replicated raw experimental
data (see Appendix [B) in addition to orthogonal, non-DEL based binding affinity data for validation.

Igbal et al.|(2024) released three DEL datasets tested against two targets, Casein Kinase 1a/d. Their
libraries span a range of chemical size and diversity, and they demonstrated the efficacy of a suite of
machine learning methods to model binding affinities. Like our work, they experimentally validated
some of their machine learning derived molecule predictions with biophysical assay data. However,
they only tested off-DNA binding affinities, whereas we have synthesized our compounds both on-
and off-DNA. Having both kinds of data is important because on-DNA data bridges the gap between
DEL data and off-DNA data. Additionally, they have not investigated probabilistic models in their
benchmarking tasks, which we find to be empirically useful.

Another recent dataset release is from Leash Bio, who released their data as a Kaggle competition
(Blevins et al.| 2024). Their dataset has a single DEL screened against on three different proteins,
but their data has been preprocessed from raw count to a binary label. This process is often used to
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denoise DEL data, but it removes information from the data. We show through our experiments that
it is possible to learn over discrete count data through probabilistic approaches.

Gerry et al.| (2019) and Hou et al.| (2023) have released libraries tested against well-studied targets
Horseradish Peroxidase and members of the Carbonic Anhydrase family. In both cases, the DELs
were synthesized with specific chemotypes known to bind to their targets. As a result, evaluation
in each is primarily limited to comparing relative enrichment for compounds containing known
binders. These papers serve as excellent case-studies but with their targeted library construction and
limited library size ~100k (Gerry et al., [2019) and ~7M (Hou et al., 2023), they are unlikely to
serve as generalizable benchmarks for DEL ML methods.

5.2 COMPUTATIONAL METHODS ON DEL DATA

Computational efforts on DEL data have evolved over time. One of the major concerns with DEL
data is its intrinstic noisiness. Firstly, the synthesis of a DEL is optimized for scale, and not precision,
which results in uncertainty in the composition of the library. For instance, DEL synthesis will result
in forming partial or truncated products (Gironda-Martinez et al.| 2021; Binder et al., 2022), which
has some causal effect on the observed data that cannot easily be measured. Additionally, the final
data measurement is obtained by sequencing PCR-amplified DNA barcodes; however, the PCR
process itself does not uniformly sample from the surviving members of the selection experiment
(Aird et al., [2011).

Computational methodology for DEL data is still a nascent area, largely due to a lack of publicly
available data. Current works typically directly apply fingerprint and graph neural network ap-
proaches that are popular within property prediction models. Due to the noisiness intrinsic to the
data, many methods bin the labeled data into a binary classification to avoid overfitting on the raw
data. For instance, [McCloskey et al.|(2020) trained classification models on disynthons using vari-
ants of typical graph neural networks. This approach was applied by |Ahmad et al.| (2023)) to find
first-in-class WD Repeat Domain 91 ligands, using molecules from buyable catalogues. [Torng et al.
(2023) follows up on this work and uses Weave GCN for hit identification of CA-IX. However, the
true binding process is observed on a discrete scale, so more recent works have focused on building
probabilistic models of binding. [Lim et al.| (2022) proposed a new uncertainty-based loss function
for training regression models, and demonstrated the efficacy of their method using various graph
neural network models. Shmilovich et al.| (2023) takes this process one step further and incorporates
3-D docked poses to leverage the scale of DEL data by using multiple-instance learning to learn
over poses. Other works exploit compositionality of DELs as inductive biases of the models. Binder
et al.[ (2022) tries to explicitly model the partial products, while |(Chen et al.| (2024) computes a hi-
erarchical representation of DEL molecules and incorporates a probabilistic loss. |Koziarski et al.
(2024) explores generative models of DEL molecules using GFlowNets. Many of these develop-
ments are relatively new, and we hope that KinDEL will enable the further development of these
methodologies in the field.

6 CONCLUSION

DELs have emerged as a high-throughput technology that enables screenings of large combinatorial
small molecule libraries. However, DEL data has many sources of intrinsic noise stemming from
synthesis and selection experiments, necessitating the right machine learning tools to extract the
correct signal in the data. We introduce KinDEL as a 81M molecule dataset with selection data
from two targets, MAPK14 and DDRI, in order to highlight the ability to model DEL data to find
potent binders. Our DEL is built with chemical diversity in mind, and many of the molecules in the
library have properties within the range of approved drugs. We additionally release biophysical data
for molecules synthesized both on- and off-DNA to validate our models trained on DEL data. We
hope that our public data release and benchmarking will engender more interest in DEL data as an
important chemical modality for machine learning research in the future.
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7 REPRODUCIBILITY STATEMENT

We have included both experimental details of the data generation as well as all the model details
for our benchmarking tasks in Appendix [A]and [D] The code to replicate our experiments and data
can be found at: https://kin-del-2024.s3.us—-west—-2.amazonaws.com/kindel.
zipl. See the README file in the code for more details.

REFERENCES

Shabbir Ahmad, Jin Xu, Jianwen A Feng, Ashley Hutchinson, Hong Zeng, Pegah Ghiabi, Aiping
Dong, Paolo A Centrella, Matthew A Clark, Marie-Aude Guie, et al. Discovery of a first-in-
class small-molecule ligand for wdr91 using dna-encoded chemical library selection followed by
machine learning. Journal of Medicinal Chemistry, 66(23):16051-16061, 2023.

Josep Aiguadé, Cristina Balagué, Inés Carranco, Francisco Caturla, Maria Dominguez, Paul East-
wood, Cristina Esteve, Jacob Gonzalez, Wenceslao Lumeras, Adelina Orellana, et al. Novel tri-
azolopyridylbenzamides as potent and selective p38« inhibitors. Bioorganic & medicinal chem-
istry letters, 22(10):3431-3436, 2012.

Daniel Aird, Michael G Ross, Wei-Sheng Chen, Maxwell Danielsson, Timothy Fennell, Carsten
Russ, David B Jaffe, Chad Nusbaum, and Andreas Gnirke. Analyzing and minimizing pcr ampli-
fication bias in illumina sequencing libraries. Genome biology, 12:1-14, 2011.

Guy W. Bemis and Mark A. Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of Medicinal Chemistry, 39(15):2887-2893, 1996. doi: 10.1021/jm9602928. URL
https://doi.org/10.1021/9m9602928. PMID: 8709122.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90-98, 2012.

Polina Binder, Meghan Lawler, LaShadric Grady, Neil Carlson, Sumudu Leelananda, Svetlana
Belyanskaya, Joe Franklin, Nicolas Tilmans, and Henri Palacci. Partial product aware machine
learning on dna-encoded libraries. arXiv preprint arXiv:2205.08020, 2022.

Andrew Blevins, Ian K Quigley, Brayden J Halverson, Nate Wilkinson, Rebecca S Levin, Agastya
Pulapaka, Walter Reade, and Addison Howard. Neurips 2024 - predict new medicines with belka,
2024. URL https://kaggle.com/competitions/leash—BELKA.

Leo Breiman. Random forests. 45(1):5-32, 2001. doi: 10.1023/A:1010933404324.

Darko Butina. Unsupervised data base clustering based on daylight’s fingerprint and tanimoto
similarity: A fast and automated way to cluster small and large data sets. Journal of Chemi-
cal Information and Computer Sciences, 39(4):747-750, 1999. doi: 10.1021/ci9803381. URL
https://doi.org/10.1021/ci9803381l

Benson Chen, Mohammad M Sultan, and Theofanis Karaletsos. Compositional deep probabilistic
models of dna-encoded libraries. Journal of Chemical Information and Modeling, 64(4):1123—
1133, 2024.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

R.K.Y. Cheng, J. Barker, and M. Whittaker. Structure of human p38alpha with n-[4-methyl-3-(6-
[2-(1-methylpyrrolidin-2-yl)ethylJaminopyridine-3-amido)phenyl]-2-(morpholin-4-yl)pyridine-
4-carboxamide. https://doi.org/10.2210/pdb3kqg7/pdb, 2009.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/f9%e311e65d81a%9ad8150a60844bb94c—-Paper.pdfl

11


https://kin-del-2024.s3.us-west-2.amazonaws.com/kindel.zip
https://kin-del-2024.s3.us-west-2.amazonaws.com/kindel.zip
https://doi.org/10.1021/jm9602928
https://kaggle.com/competitions/leash-BELKA
https://doi.org/10.1021/ci9803381
https://doi.org/10.2210/pdb3kq7/pdb
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf

Under review as a conference paper at ICLR 2025

Evelyn Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimination: Consistency
properties. International Statistical Review / Revue Internationale de Statistique, 57(3):238-247,
1989. ISSN 03067734, 17515823. URL http://www. jstor.org/stable/1403797.

Christopher J Gerry, Mathias J] Wawer, Paul A Clemons, and Stuart L Schreiber. Dna barcoding a
complete matrix of stereoisomeric small molecules. Journal of the American Chemical Society,
141(26):10225-10235, 2019.

Adrian Gironda-Martinez, Etienne J Donckele, Florent Samain, and Dario Neri. Dna-encoded chem-
ical libraries: a comprehensive review with succesful stories and future challenges. ACS Pharma-
cology & Translational Science, 4(4):1265-1279, 2021.

Chunbin Gu, Mutian He, Hanqun Cao, Guangyong Chen, Chang-yu Hsieh, and Pheng Ann Heng.
Unlocking potential binders: Multimodal pretraining del-fusion for denoising dna-encoded li-
braries. arXiv preprint arXiv:2409.05916, 2024.

Amber L Hackler, Forrest G FitzGerald, Vuong Q Dang, Alexander L Satz, and Brian M Paegel.
Off-dna dna-encoded library affinity screening. ACS combinatorial science, 22(1):25-34, 2019.

Esther Heid, Kevin P Greenman, Yunsie Chung, Shih-Cheng Li, David E Graff, Florence H Ver-
meire, Haoyang Wu, William H Green, and Charles J McGill. Chemprop: a machine learning
package for chemical property prediction. Journal of Chemical Information and Modeling, 64(1):
9-17, 2023.

Rui Hou, Chao Xie, Yuhan Gui, Gang Li, and Xiaoyu Li. Machine-learning-based data analysis
method for cell-based selection of dna-encoded libraries. ACS omega, 8(21):19057-19071, 2023.

Sumaiya Igbal, Wei Jiang, Eric Hansen, Tonia Aristotelous, Shuang Liu, Andrew Reiden-
bach, Cerise Raffier, Alison Leed, Chengkuan Chen, Lawrence Chung, et al. Del+ ml
paradigm for actionable hit discovery—a cross del and cross ml model assessment. ChemRxiv
doi:10.26434/chemrxiv-2024-2xrx4, 2024.

Ryne C Johnston, Kun Yao, Zachary Kaplan, Monica Chelliah, Karl Leswing, Sean Seekins, Shawn
Watts, David Calkins, Jackson Chief Elk, Steven V Jerome, et al. Epik: p k a and protonation
state prediction through machine learning. Journal of chemical theory and computation, 19(8):
2380-2388, 2023.

Akira Kaieda, Masashi Takahashi, Takafumi Takai, Masayuki Goto, Takahiro Miyazaki, Yuri Hori,
Satoko Unno, Tomohiro Kawamoto, Toshimasa Tanaka, Sachiko Itono, et al. Structure-based
design, synthesis, and biological evaluation of imidazo [1, 2-b] pyridazine-based p38 map kinase
inhibitors. Bioorganic & Medicinal Chemistry, 26(3):647-660, 2018.

Justus M Kebschull and Anthony M Zador. Sources of pcr-induced distortions in high-throughput
sequencing data sets. Nucleic acids research, 43(21):e143-e143, 2015.

Michat Koziarski, Mohammed Abukalam, Vedant Shah, Louis Vaillancourt, Doris Alexandra
Schuetz, Moksh Jain, Almer van der Sloot, Mathieu Bourgey, Anne Marinier, and Yoshua Bengio.
Towards dna-encoded library generation with gflownets. arXiv preprint arXiv:2404.10094, 2024.

Verena BK Kunig, Marco Potowski, Mateja Klika gkopié, and Andreas Brunschweiger. Scanning
protein surfaces with dna-encoded libraries. ChemMedChem, 16(7):1048-1062, 2021.

Greg Landrum. RDKit: Open-source cheminformatics. http://www.rdkit.org, 2010.

Katherine S Lim, Andrew G Reidenbach, Bruce K Hua, Jeremy W Mason, Christopher J Gerry,
Paul A Clemons, and Connor W Coley. Machine learning on dna-encoded library count data using

an uncertainty-aware probabilistic loss function. Journal of chemical information and modeling,
62(10):2316-2331, 2022.

Chao Lu, Chuanjie Wu, Delaram Ghoreishi, Wei Chen, Lingle Wang, Wolfgang Damm, Gregory A
Ross, Markus K Dahlgren, Ellery Russell, Christopher D Von Bargen, et al. Opls4: Improving
force field accuracy on challenging regimes of chemical space. Journal of chemical theory and
computation, 17(7):4291-4300, 2021.

12


http://www.jstor.org/stable/1403797
http://www.rdkit.org

Under review as a conference paper at ICLR 2025

Kevin McCloskey, Eric A Sigel, Steven Kearnes, Ling Xue, Xia Tian, Dennis Moccia, Diana
Gikunju, Sana Bazzaz, Betty Chan, Matthew A Clark, et al. Machine learning on dna-encoded
libraries: a new paradigm for hit finding. Journal of Medicinal Chemistry, 63(16):8857-8866,
2020.

Leland Mclnnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering.
Journal of Open Source Software, 2(11):205, 2017. URL https://doi.org/10.21105/
J0ss.00205.

Leland MclInnes, John Healy, Nathaniel Saul, and Lukas GroBberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861, 2018. URL https:
//doi.org/10.21105/joss.00861k

Alexander A Peterson and David R Liu. Small-molecule discovery through dna-encoded libraries.
Nature Reviews Drug Discovery, 22(9):699-722, 2023.

Hans Richter, Alexander L Satz, Marc Bedoucha, Bernd Buettelmann, Ann C Petersen, Anja
Harmeier, Ricardo Hermosilla, Remo Hochstrasser, Dominique Burger, Bernard Gsell, et al. Dna-
encoded library-derived ddrl inhibitor prevents fibrosis and renal function loss in a genetic mouse
model of alport syndrome. ACS chemical biology, 14(1):37-49, 2018.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical Infor-
mation and Modeling, 50(5):742-754, 2010. doi: 10.1021/ci100050t. URL https://doi.
org/10.1021/c1100050t. PMID: 20426451.

Sandra Rohm, Benedict-Tilman Berger, Martin Schroder, Apirat Chaikuad, Rob Winkel, Koen FW
Hekking, Jorg JC Benningshof, Gerhard Muller, Roberta Tesch, Mark Kudolo, et al. Fast itera-
tive synthetic approach toward identification of novel highly selective p38 map kinase inhibitors.
Journal of medicinal chemistry, 62(23):10757-10782, 2019.

Kirill Shmilovich, Benson Chen, Theofanis Karaletsos, and Mohammad M Sultan. Del-dock:
Molecular docking-enabled modeling of dna-encoded libraries. Journal of Chemical Informa-
tion and Modeling, 63(9):2719-2727, 2023.

Michael D Shultz. Two decades under the influence of the rule of five and the changing properties of
approved oral drugs: miniperspective. Journal of Medicinal Chemistry, 62(4):1701-1714, 2018.

Wen Torng, Ilaria Biancofiore, Sebastian Oehler, Jin Xu, Jessica Xu, lan Watson, Brenno Masina,
Luca Prati, Nicholas Favalli, Gabriele Bassi, et al. Deep learning approach for the discovery of
tumor-targeting small organic ligands from dna-encoded chemical libraries. ACS omega, 8(28):
25090-25100, 2023.

Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455-461, 2010.

Yanli Wang, Yuze Sun, Ran Cao, Dan Liu, Yuting Xie, Li Li, Xiangbing Qi, and Niu Huang. In
silico identification of a novel hinge-binding scaffold for kinase inhibitor discovery. Journal of
Medicinal Chemistry, 60(20):8552-8564, 2017.

Shane Weaver and M Paul Gleeson. The importance of the domain of applicability in gsar modeling.
Journal of Molecular Graphics and Modelling, 26(8):1315-1326, 2008.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yuejiang Yu, Chun Cai, Jiayue Wang, Zonghua Bo, Zhengdan Zhu, and Hang Zheng. Uni-dock:
Gpu-accelerated docking enables ultralarge virtual screening. Journal of chemical theory and
computation, 19(11):3336-3345, 2023.

Lik Hang Yuen and Raphael M Franzini. Achievements, challenges, and opportunities in dna-
encoded library research: An academic point of view. ChemBioChem, 18(9):829-836, 2017.

Hongyao Zhu, Timothy L Foley, Justin I Montgomery, and Robert V Stanton. Understanding data
noise and uncertainty through analysis of replicate samples in dna-encoded library selection. Jour-
nal of Chemical Information and Modeling, 62(9):2239-2247, 2021.

13


https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL PROTOCOLS

A.1 DEL SYNTHESIS

Library Design The design of DNA-encoded libraries (DELs) often grapples with limited diversity
and availability of bifunctional building blocks compared to their monofunctional counterparts. In
order to expand structural diversity of the first two synthons of a three-step linear library, we im-
plemented a hybrid design that combines trifunctional and monofunctional building blocks within
one step of synthesis, to form a bifunctional synthon, by using DEL synthesis on solid supports.
This strategy significantly expands the chemical space and diversity of our DELSs, offering a robust
pathway to discovering novel compounds with enhanced biological activity.

Library Build The DEL is built as a trisynthon library, comprised of 378 synthons in the A po-
sition, 1128 synthons in the B position (the terminal, capping step), and 191 synthons in the C
position. This resulted in a DNA encoded library comprised of roughly 81 million unique members.
The first two steps are done either by acylation with N-protected (Boc or Fmoc) amino acid, fol-
lowed by deprotection, or by immobilization of the DNA to a solid support (DEAE sepharose resin)
followed by a series of chemical transformations: acylation with trifunctional building block (Boc-
amino acid with protected side chain: Fmoc-amine, ester or ketone), deprotection (if necessary) of
the side chain protecting group, reaction (amide coupling, reductive amination/alkylation) with the
monofunctional building block (amine, aldehyde or acid), and lastly eluting the DNA off the DEAE
sepharose and cleavage of the Boc group. In the final step, the downstream amino groups were
reacted with monofunctional acids or aldehydes. Each of the steps described herein is encoded by
the attached DNA strand allowing for ready deconvolution of the sequence of chemical steps taken
for any given member.

A.2 DEL SELECTION

The DEL selection was performed using an Agilent Bravo for all handling steps. To immobilize
the protein 1 nanomole of the protein of interest (Avi-tagged MAPK14 or DDR1) . were incubated
through gentle aspiration through streptavidin-coated beads housed within PhyTips (Cat. #PTV-92-
20-05). This was performed in technical triplicate for each protein. Following immobilization, any
unbound proteins were washed away using Buffer A (45 mM HEPES, 45 mM Tris-HCI, 150 mM
NaCl, 5 mM MgCls, pH 8.1).

Subsequently, the immobilized proteins were incubated through gentle aspiration and dispension
over a period of 30 minutes with the Naive DEL library (at 500K copies of each member) in solution
of Buffer A supplemented with 0.1 mg/ml sheared salmon sperm DNA to minimize non-specific
binding. To eliminate noise and unbound library compounds, the Phynexus tips were washed six
independent times with Buffer B (45 mM HEPES, 45 mM Tris-HCI, 425 mM NaCl, 5 mM MgCls,
pH 8.1, 0.03% Tween).

Post-washing procedure. Any compounds remaining (the binders) were eluted by 5x aspiration
through the tip of hot water at 90°C. The material eluted is termed ‘Elution Round 1°. Following
this the used Phytips were disposed, and fresh streptavidin PhyTip were used to capture a fresh 1
nanomole of avi-tagged protein of interest, and the process described above repeated, but, the Naive
DEL Library is instead the 90% of the eluent from Round 1 (Elution Round 1) as the source of
library. This procedure is repeated a final time with the Elution Round 2 sample to generate an
Elution Round 3 sample.

From the 10% of eluates conserved from round 2 and the round 3 eluate were taken 5 pL of sample
that was subsequently PCR amplified in 50 pL reactions using New England BioLabs 2x Q5 mas-
termix (Cat. #M0492S) and custom designed barcode primers to differentiate both the round, target
and experiment. Following this 1 uL of the amplified material is transferred to a 25 uL PCR reaction
with Q5 and custom P5 and P7 primers to install the relevant sequencing primers. The PCR mixture
is purified using a QIAquick PCR Purification Kit (Cat. #28104), this sample is then further purified
to remove any DNA products of incorrect size using a PippenHT. The purified samples are submitted
to next-generation sequencing utilizing the Novaseq platform with a 2x150 BP S4 kit. The sequenc-
ing depth (number of read counts/sequence counts) is 514.5M/65.8M for MAPK 14, 296.5M/49.8M
for DDR1, and 440.7M/52M for BCA in all three replicates.
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A.3 BIOPHYSICAL ASSAYS

A.3.1 MOLECULAR BIOLOGY

hMAPK14-1 (1-360, WT) gene was cloned into pET-28a expression vector (Novagen) by
polymerase chain reaction (PCR). An N-terminal His-TEV-Avi tag was added by using
the forward primer 5’-CTTTAAGAAGGAGATATACCATGGGCCATCATCACCATCACCAC-3’
and the reverse primer 5’ -TTCGTGCCATTCAATTTTCTG-3’. The forward primer included
the restriction site Ncol. The hMAPKI14 (1-360, WT) gene was cloned using the forward
primer 5°-CTCAGAAAATTGAATGGCACGAAATGTCTCAGGAGAGGCCCACG-3’ and the re-
verse primer 5’-GTGGTGGTGGTGGTGGTGCTCGAGTTAGGACTCCATCTCTTCTTGGTCA-
3°. The reverse primer included the restriction site Xhol. This generated plasmid pET28a-His-TEV-
avi-hMAPK14-1 (1-360, WT).

hMAPK14-2 (1-360, WT) gene was cloned into pET-28a expression vector (Novagen)
by PCR. An N-terminal His-TEV tag was added by using the forward primer 5’-
CTTTAAGAAGGAGATATACCATGGGCCATCATCACCATCACCAC-3’ and the reverse primer
5’-GCCCTGGAAGTACAGGTTCTC-3’.  The forward primer included the restriction site
Ncol. The hMAPKI14 (1-360, WT) gene was cloned using the forward primer 5’-
GAGAACCTGTACTTCCAGGGCATGTCTCAGGAGAGGCCCACG-3’ and the reverse primer
5’-GTGGTGGTGGTGGTGGTGCTCGAGTTAGGACTCCATCTCTTCTTGGTCA-3’. The re-
verse primer included the restriction site Xhol. This generated plasmid pET28a-His-TEV-
hMAPK14-2 (1-360, WT).

hDDR1-1 (593-913, A730-735) gene was cloned into pFastBacl expression vector
by PCR. An N-terminal His-TEV tag was added by using the forward primer 5’-
GGTCCGAAGCGCGCGGAATTCACCATGCACCATCACCATCACCAC-3" and the reverse
primer 5’-ACCTTGGAAGTACAGGTTCTC-3’. The forward primer included the restriction
site EcoRI. The hDDR1-1 (593-913, A 730-735) gene was cloned using the forward primer
5’-GAGAACCTGTACTTCCAAGGTCCTGGTGCTGTGGGTGACGGT-3’ and the reverse primer
5’-GGCTCTAGATTCGAAAGCGGCCGCTTACACAGTGTTCAGAGCGTC-3". The reverse
primer included the restriction site Notl. This generated plasmid pFastBacl-His-TEV-hDDR1-1
[593-913 (A730-735), WTI.

hDDR1-2 (593-913, A730-735) gene was cloned into pFastBacl expression vector by
PCR. An N-terminal His-TEV-Avi tag was added by using the forward primer 5’-
GGTCCGAAGCGCGCGGAATTCACCATGCATCATCACCATCACCAC-3’ and the reverse
primer 5’-TTCGTGCCATTCAATTTTCTG-3’. The forward primer included the restriction
site EcoRI. The hDDR1-2 (593-913, A730-735) gene was cloned using the forward primer
5’-CTCAGAAAATTGAATGGCACGAACCTGGTGCTGTGGGTGACGGT-3" and the reverse
primer 5’-GGCTCTAGATTCGAAAGCGGCCGCTTACACAGTGTTCAGAGCGTC-3". The
reverse primer included the restriction site Notl. This generated plasmidpFastBacl-His-TEV-Avi-
hDDRI1-2 [593-913 (A730-735), WT].

BCA2-1 (1-260, WT) gene was cloned into pET28a expression vector by PCR.
An N-terminal His-TEV-Avi tag was added by wusing the forward primer 5’-
CTTTAAGAAGGAGATATACCATGGGCCATCATCACCATCACCAC-3° and the reverse
primer 5 -TTCGTGCCATTCAATTTTCTG-3’. The forward primer included the restric-
tion site Ncol. The BCA2-1 (1-260, WT) gene was cloned using the forward primer 5’-
CTCAGAAAATTGAATGGCACGAAATGAGCCATCATTGGGGCTATGGCAAAC-3’ and the
reverse primer 5’-GTGGTGGTGGTGGTGGTGCTCGAGTTATTTCGGAAAGCCGCGCACT-3".
The reverse primer included the restriction site Xhol. This generated plasmid pET28a-His-TEV-
Avi-BCA2(1-260,WT).

All cloning was performed using the Beyotime Seamless Cloning kit (D7010M). All plasmids were
amplified using DHS5« cells followed by DNA extraction. Insertion of the genes were verified by
sequencing.
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A.3.2 PROTEIN PRODUCTION

MAPK14

MAPK14 plasmid [either pET28a-His-TEV-avi-hMAPK14-1 (1-360, WT) or pET28a-His-TEV-
hMAPK14-2 (1-360, WT)] was transformed into BL21-Gold (DE3) competent cells (Agilent,
230132) and plated on LB/agar/kanamycin (50 pg/mL) medium then left to grow at 37°C. Fresh
colonies from transformed BL21-Gold cells were picked and used to inoculate 100 mL of LB
medium (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter water) supplemented with (50 ug/mL)
kanamycin and cultured overnight at 250 rpm 37°C. The overnight culture was added to 2 L
LB/kanamycin ((50 ug/mL)) and grown at 250 rpm 37°C until OD600 reached 0.600. Isopropyl
3-D-1-thiogalactopyranoside (IPTG) was then added (final concentration 0.3 mM) and the culture
was left to continue to grow at 16°C, 250 rpm overnight.

Cells were harvested the following day at 8,000 rpm at 4°C and stored at -20°C. Cell pellets were
resuspended in lysis buffer (50 mM Tris, 500 mM NaCl, 1 mM TCEP, 10% glycerol, pH 8.0 and
0.5 ul. Benzonase) and lysed using a high pressure cell homogenizer. Lysate was centrifuged at
13,000 rpm for 30 minutes at 4°C, twice, to remove cell debris. Lysate supernatant was then applied
to 6 mL of Ni-Resin (which had been pre-equilibrated with lysis buffer) and the lysate/Ni mixture
was incubated for 1 hr at 4°C. Resin was then loaded into a column and the column was washed
with wash buffer (50 mM Tris, 500 mM NaCl, 1 mM TCEP, 10% glycerol, pH 8.0) and eluted
with elution buffer (50 mM Tris, 500 mM NaCl, 1 mM TCEP, 10% glycerol, pH 8.0 and 250 mM
imidazole). Eluted protein was cleaved with TEV protease at a 1:10 (w/w) ratio and dialyzed against
dialysis buffer (50 mM Tris, 100 mM NaCl, 1 mM TCEP, 7.5 mM MgCI2, pH 8.0) at 4°C overnight.

Protein was loaded onto a Ni-resin column, pre-equilibrated with lysis buffer and the cleaved protein
was collected in the flow-through (cleaved-tag left on the column). In the case of Avi-tagged protein
(MAPK14-1), the dialyzed protein was incubated at 18°C for 4 hrs with ATP (1 mM), Biotin (0.5
mM), and BirA (200 nM), prior to loading onto Ni-resin to remove cleaved hexahistidine tags.

Protein was collected and concentrated with a 10 kDa Millipore Amicon Ultra-15 centrifugal filter
unit. Concentrated protein was loaded onto a Superdex 200 column pre-equilibrated with SEC
buffer. Protein was collected according to UV-vis signal and follow-up SDS-PAGE verification.
Protein fractions were pooled and concentrated with a 10 kDa Millipore Amicon Ultra-15 centrifugal
filter unit and exchanged into a final buffer containing 10 mM HEPES, 200 mM NaCl, 1 mM TCEP
at pH 7.5. A final purified protein yield of 19 mg/L cell culture was obtained.

DDR1

DDRI1 plasmid (either pFastBacl-His-TEV-Avi-hDDR1-2 [593-913 (A730-735), WT] or
pFastBac1-His-TEV-hDDR1-1 [593-913 (A730-735), WT]) was transformed into DH10Bac com-
petent cells (Agilent) and plated on LB/agar plates containing 50 pg/mL kanamycin, 7 ug/mL gen-
tamicin, 10 ug/mL tetracycline, 100 ug/mL X-gal and 40 pg/mL IPTG then left to grow at 37°C for
48 hours. Fresh colonies from transformed DH10Bac competent cells were picked and used to inoc-
ulate 5 mL of LB medium (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter water) supplemented
with 50 ug/mL kanamycin, 7 pug/mL gentamicin, 10 pg/mL tetracycline and cultured overnight at
37°C. An aliquot of each cell culture was verified to contain the recombinant bacmid by PCR anal-
ysis.

Transfection. In a 6-well plate, Sf9 cells were grown in 2 mL cultures to a cell density of 2 x
106 cells/mL in SF900II medium at 27°C. The culture medium was then exchanged with fresh
SFO00II medium followed by inoculation with the recombinant bacmid:lipid (Cellfectin II reagent)
complexes. The bacmid infected cells were incubated at 27°C for 5 days. The cell culture medium
was collected as P1 virus and cell pellet was used for western blot analysis.

P2 baculovirus generation and scale-up protein expression. Sf9 cells were grown in a 50 mL culture
medium to a cell density of 2 x 106 cells/mL followed by infection with P1 virus in the ratio 1:200.
Incubate the P1 infected Sf9 cells at 27°C for 3 days. The cell culture medium was collected as P2
virus and the cell pellet from 1 mL cell culture was used for western blot analysis. For scale-up
expression, Sf9 cells were grown in a 12 L culture medium to a cell density of 2 x 106 cells/mL
followed by infection with P2 virus in the ratio 1:200. For N-Avi tagged hDDR1-2, BirA was co-
expressed (infection ratio 1:500, biotin 40 uM) with the P2 infected Sf9 cells. The P2 infected Sf9
cells were incubated at 27°C for 3 days.
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Cells were harvested after 3 days at 8,000 rpm at 4°C and stored at -20°C. Cell pellets were resus-
pended in lysis buffer (50 mM HEPES, 300 mM NaCl, 2 mM TCEP, 10 mM MgCl,, 10% saccha-
rose, cocktail, 100U/mL Benzonase, pH 8.0) and Protease Inhibitor Cocktail Tablet was added until
a final concentration of 1 tablet/L. Cells were sonicated to lyse in repeating periods of 3 seconds
on, 3 seconds off for 10 minutes. This cycle was then repeated for an additional 10 minutes. A
color change of cell lysate was used to help indicate if cell lysis was sufficient, if no color change
from pre-lysed cells was observed, cell lysis was allowed to continue. Cell lysate was centrifuged
at 13,000 rpm for 30 minutes at 4°C, twice, to remove cell debris. Lysate supernatant was then
applied to 6 mL of Ni-Resin (which had been pre-equilibrated with lysis buffer) and the lysate/Ni
resin mixture was incubated for 1 hr at 4°C. Resin was then loaded into a column and the column
was washed with wash buffer (50 mM HEPES, 300 mM NaCl, 2 mM TCEP, 10 mM MgCl,, pH
8.0) and eluted with elution buffer (50 mM HEPES, 300 mM NacCl, 2 mM TCEP, 10mM MgCl,,
pH 8.0, 50 mM imidazole). Eluted protein was cleaved with TEV protease at a 1:10 (w/w) ratio and
dialyzed against dialysis buffer (50 mM HEPES, 300 mM NaCl, 2 mM TCEP, 10 mM MgCl,, pH
8.0) at 4°C overnight.

Protein was loaded onto a Ni-resin column, pre-equilibrated with lysis buffer and the cleaved pro-
tein was collected in the flow-through (cleaved-tag left on the column). Protein was collected and
concentrated with a 30 kDa Millipore Amicon Ultra-15 centrifugal filter unit. Concentrated protein
was loaded onto a Superdex 200 column pre-equilibrated with SEC buffer. Protein was collected
according to UV-vis signal and follow-up SDS-PAGE verification. Protein fractions were pooled
and concentrated with a 30 kDa Millipore Amicon Ultra-15 centrifugal filter unit and exchanged
into a final buffer containing 20 mM HEPES, 200 mM NaCl, 1 mM TCEP, 5% glycerol at pH 7.5.
A final purified protein yield of 1.8 mg/L cell culture was obtained.

BCA2

The BCA plasmid, pET28a-His-TEV-Avi-BCA2(1-260,WT), was transformed into BL21-Gold
(DE3) competent cells (Agilent, 230132) and plated on LB/agar/kanamycin (50 pg/mL) medium
then left to grow at 37°C. Fresh colonies from transformed BL21-Gold cells were picked and used
to inoculate 100 mL of LB medium (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter water)
supplemented with 50 ug/mL kanamycin and cultured overnight at 220 rpm 37°C. The overnight
culture was added to 10 L LB/kanamycin (50 pg/mL) and grown at 180 rpm 37°C until OD600
reached 0.600. Isopropyl B-D-1-thiogalactopyranoside (IPTG) was then added (final concentration
0.3 mM) and the culture was left to continue to grow at 16°C, 160 rpm overnight.

Cells were harvested the following day at 8,000 rpm at 4°C and stored at -20°C. Cell pellets were
resuspended in lysis buffer (50 mM Tris, 500 mM NaCl, 1 mM TCEP, 1 mM PMSF, 10% glycerol,
pH 8.0 and 100 U/mL Benzonase) and lysed using a high pressure cell homogenizer. Lysate was
centrifuged at 13,000 rpm for 30 minutes at 4°C, twice, to remove cell debris. Lysate supernatant
was then applied to 5 mL of Ni-Resin (which had been pre-equilibrated with lysis buffer) and the
lysate/Ni mixture was incubated for 1 hr at 4°C. Resin was then loaded into a column and the column
was washed with wash buffer (50 mM Tris, 500 mM NaCl, 1 mM TCEP, 10% glycerol, pH 8.0) and
eluted with elution buffer (50 mM Tris, 500 mM NaCl, I mM TCEP, 10% glycerol, pH 8.0 and 250
mM imidazole). Eluted protein was cleaved with TEV protease at a 1:10 (w/w) ratio and dialyzed
against dialysis buffer (50 mM Tris, 100 mM NaCl, 1 mM TCEP, 7.5 mM MgCl2, 5% glycerol, pH
8.0) at 4°C overnight.

The dialyzed protein was incubated at 18°C for 4 hrs with ATP (1 mM), Biotin (0.5 mM), and BirA
(200 nM), prior to loading onto Ni-resin to remove cleaved hexahistidine tags. Protein was loaded
onto a Ni-resin column, pre-equilibrated with lysis buffer and the cleaved protein was collected in
the flow-through (cleaved-tag left on the column).

Protein was collected and concentrated with a 30 kDa Millipore Amicon Ultra-15 centrifugal filter
unit. Concentrated protein was loaded onto a Superdex 75 column pre-equilibrated with SEC buffer.
Protein was collected according to UV-vis signal and follow-up SDS-PAGE verification. Protein
fractions were pooled and concentrated with a 30 kDa Millipore Amicon Ultra-15 centrifugal filter
unit and exchanged into a final buffer containing 25 mM HEPES, 200 mM NaCl, 1 mM TCEP at
pH 7.5. A final purified protein yield of 8.38 mg/L cell culture was obtained.

BCA used for fluorescence polarization assay was obtained from Sigma-Aldrich (Product No.
C2522).
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A.3.3 BIOPHYSICAL METHODS

Fluorescence Polarization

Annealing of DNA tagged DEL molecules. DEL small molecule hits are attached to the DNA oligo,
Za (GCAGGCGGAGACCTGCAGTCTG). Fluorescein (Integrated DNA Technologies, /3FluorT/)
tagged complementary DNA oligo Za’ (CAGACTGCAGGTCTCCGCCTG/3FluorT/) was annealed
to Za-tagged DEL compounds using a thermocycler (Bio-Rad, 1851148).

Assay setup. In a 384 well black small volume microplate (Greiner Bio-One, 784900), the annealed
compounds were dispensed using Echo650 (Labcyte) at a constant final concentration of 4 nM in
137 mM NaCl, 2.7 mM KCl, 9.8 mM Phosphate buffer, 0.01% Tween-20. MAPK14-2, DDR1-1,
and BCA were each serially diluted 1:1 starting from a top dose of 50 uM in 137 mM NacCl, 2.7 mM
KCl, 9.8 mM Phosphate buffer, 0.01% Tween-20 for a total 16-point dilution and were transferred
to the 384 well black small volume microplate containing the annealed compounds using Agilent
Bravo G5563A. The final assay concentration was 2 nM the annealed compound and 25 uM top dose
of the protein. The final assay volume was 10 uL. The serially diluted protein was incubated with the
annealed DEL compounds and then the fluorescence polarization was measured using PerkinElmer
EnVision 2105 in milli-P (mP), where mP = 1000 x (S—GP)/(S+GP) (S and P are background
subtracted fluorescence count rates, and G is an instrument and assay dependent factor). The dose-
response curves (mP vs. [Protein]) were fit in GraphPad Prism using the equation, Y = Bmax X
X/(Kp+X)+ NS x X 4+ Background, where Y is mP, X is [Protein], Bmax is the maximum
specific binding in the same units as Y, Kp is the equilibrium dissociation constant, in the same
units as X, NS is the slope of nonspecific binding in Y units divided by X units, Background is
the amount of nonspecific binding with no added radioligand.

Surface Plasmon Resonance

Compounds were tested using Surface Plasmon Resonance (SPR) using a Biacore T200 and a
Biacore S200 (Cytiva Life Sciences). N-terminally biotinylated DDR1 [593-913 (A730-735)],
MAPK14 (1-360), and BCA2-1 (1-260, WT) were immobilized to a streptavidin coated SPR chip
(Series S SA, Cytiva, 29699621). Approximately 4400 RU of hDDR1-2, 4900 RU of MAPK14-1,
and 3300 RU of BCA2-1 were immobilized for dose response assays using 1xHBS-P+ (10 mM
HEPES, 150 mM NaCl, 0.05% v/v Surfactant P20; pH 7.4). 1xHBS-P+ was prepared by mixing
10xHBS-P+ (Cytiva, BR100671) with HPLC-grade water (Fisher Scientific, W51).

Compounds were diluted in the SPR running buffer which consisted of 1xHBS-P+ supplemented
with 5% DMSO (VWR, 76177-938). Multi-cycle kinetics was used to determine compound affini-
ties. Compounds were injected in a series of increasing concentrations with a 30 uL/min flow rate,
a 60 s contact time and a 300 s dissociation time. Compound sensorgrams were processed and fit
using Biacore Evaluation software, with DMSO correction applied during sensorgram processing.
Binding and dissociation curves for each compound were globally fit to obtain an on- and off-rate
kinetic constant (k, and kg, respectively) which were used to determine the overall binding constant
(Kp) for each compound.

B EXPERIMENTAL REPLICABILITY

DEL experiments suffer from the substantial noise that stems from the large scale of combinatorial
libraries screened simultaneously within a single tube. Key sources of this noise include inconsistent
control over the quantities of each compound in the mixture, synthesis-related challenges such as
the introduction of side products and low synthetic yields, as well as errors during DNA sequencing.
Figure []illustrates the strong correlation between experimental replicates in our DEL experiments,
underscoring the reproducibility of the panning procedures we conducted.

C VALIDATION SET SELECTION

We selected validation compounds to cover a range of K p values and chemical diversity, allow-
ing us to better assess the models’ ability to rank molecules across diverse binding affinities. To
achieve this, we used an ensemble of models described in Section[3] and then clustered the molecules
based on chemical similarity via Butina clustering using Morgan fingerprints. This constituted the
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Figure 6: Correlation between experimental replicates. Binding to each target and the control was
measured in three replicates, which are included in the published dataset.



Under review as a conference paper at ICLR 2025

molecules in the “in-library” set. We also surveyed literature for tool compounds, which we also
re-synthesized on-DNA. This made up the additional molecules found in the “extended” set.

D MODEL HYPERPARAMETERS

This section describes the hyperparameters used to train the models presented in this study. Random
Forest and XGBoost used 100 decision trees trained with the squared error criterion, and the depth
of decision trees was not restricted. The k-Nearest Neighbors model used 5 nearest neighbors.

The final architecture of the DNN model consisted of 5 linear layers with the ReLLU activation
functions except for the last one. Batch norm and dropout layers (with the probability of zeroing
an element equal to 20%) were applied after each layer before the activation layers. The hidden
dimension size was set to 512 for all layers.

The GIN model has 5 GIN convolutional layers with hidden dimension size equal to 256. The graph
convolutional layers are followed by the global average pooling layer and two linear layers with a
ReLU activation layer between them. The first linear layer reduces the dimensionality from 256 to
128 before the second layer produces the model prediction.

The DEL-Compose model was used in two modes of molecule encoding: synthon-based encoding
(denoted DEL-Compose®)) and full molecule encoding (denoted DEL-Compose(™)). The full
molecule encoding uses four linear layers with ReLU activation functions to learn the encoding
of the molecule based on its Morgan fingerprint. The synthon-based mode embeds each synthon
separately using the same 4-layer MLP. Next, combinations of synthon embeddings (AB, BC, AC,
ABC) are further processed by 2-layer MLPs, and finally all embeddings are aggregated using a
4-head attention pooling. The output distribution was set to zero-inflated Poisson distribution. The
learning rate used to train DEL-Compose was Se-5, and the batch size was 64.

E DATASET SPLITTING

It is often difficult ensure that information from the test set does not leak into train. One popular
method is calculating Bemis-Murcko scaffolds (Bemis & Murcko, [1996) for each compound in
a dataset and assigning compounds to a split by scaffold. Unfortunately, this method often fails
for DEL data. Below we calculate Bemis-Murcko scaffolds for the top million compounds in the
MAPK14 dataset. There are ~300,000 unique scaffolds calculated for these compounds, implying
many compounds have a unique scaffold (see Fig. [7p). Additionally the common scaffolds are often
trivial (see Fig. [7b). The most common scaffold is a simple benzene, and the next five most common
are also extremely common molecular building blocks. Given these shortcomings, we do not use a
scaffold split.

An alternative method is a similarity split based on clustering with fingerprints. A classic method
for this is Butina Clustering (Butina, [1999). Unfortunately, it does not scale well to large datasets.
We have developed an internal method that scales to large datasets. Our two step method first uses
UMAP (Mclnnes et al., 2018)) to reduce 1024 ECFP4 fingerprints (Rogers & Hahn, |2010) to length
10 float vectors. Then HDBSCAN (Mclnnes et al., 2017) is used to cluster compounds, in a GPU
implementation from NVIDIA (cuml) this runs in a few hours on a single Tesla T4. Clusters are
assigned to splits using a waterfall method, at each step assigning the largest remaining cluster to
the smallest current split. The following settings were used:

UMAP (n_components=10, metric="jaccard", n_neighbors=30,
min_dist=0.0, n_epochs=1000)

HDBSCAN (min_cluster_size=10, min_samples=None, metric=’euclidian’,
prediction_data=True, cluster_selection_method=’'eom’)

20



Under review as a conference paper at ICLR 2025

10000

8000 +

6000 +

4000

2000

Number of occurances of scaffold in top 1M

0 25 50 75
Top 100 scaffolds sorted by number of occurances

(a) Number of occurrences for the 100 most common scaffolds in the top one million compounds for MAPK 14.
The number of compounds assigned to each scaffold declines rapidly, and many scaffolds are unique.

10061 counts 2476 counts 1927 counts

1894 counts 1859 counts 1670 counts
H
N
N\ ©/J "

(b) The top six most frequent scaffolds are common structures that are not pharmacologically “interesting”.

Figure 7: Bemis-Murcko scaffolds in KinDEL. The high number of unique scaffolds and the sim-
plicity of the most common scaffolds indicate that a scaffold-based split is not challenging enough
for our benchmark.
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(a) DDR1 (b) MAPK14

Figure 8: Example ligands from the KinDEL datasets docked to our selected kinases; (a) example
pose of a library member docked to a DFG-out conformation of DDR1 (PDB: 6FEX), forming
extensive hinge interactions. Beta-1 and -2 hidden for clarity; (b) example pose of a library member
docked to a DFG-out conformation of MAPK14 (PDB: 3KQ7), bridging the activation loop and
C-alpha glutamate.

F MOLECULAR DOCKING PROCEDURE

Ligand stereoisomer enumeration (up to 8), tautomer or protonation state selection, and coordi-
nate generation were performed with LigPrep from Schrodinger Suite 2024-4, using Epik 7 (John-|
2023) and OPLS4 force field (Lu et all, 2021) at pH 7.4. Docking was performed

using the Vina scoring function (Trott & Olson, 2010) in Uni-Dock 1.1.2 2023) with
exhaustiveness 512 and max_step 60, saving the top three poses per receptor. All of these

234k ligand states were docked against all six receptor models, using a fixed 20 A docking box
centered on the orthosteric pocket.

One receptor model represents the major conformation of DDR1 in available experimental struc-
tures, the DFG-out, C-helix-in PDB: 6FEX (Richter et al.} 2018]). Five receptor models were chosen
to represent most experimental structures of MAPK 14, with a variety of activation loop and P-loop
conformations, PDB: 3KQ7, 3S31, 5WJJ, 5XYY, and 6SFI (Cheng et al,[2009; [Aiguadé et al., 2012}
[Kaieda et all, [2018; [Wang et all, [2017; [Rohm et all, [2019). All receptors were prepared using the
Protein Preparation Wizard from Schrodinger Suite 2023-4, capping termini with neutral ends, and
aligned into a common frame.

Docked poses are provided in SDF format with “molecule_hash” and “receptor” properties. Example
poses are shown in Figure [8] where the hinge binding motif that is characteristic for kinases can be
observed.
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