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Abstract  

Knee adduction moment during walking has been reported as 
a sensitive biomechanical marker for predicting the risk of 
knee osteoarthritis. The traditional method of estimating the 
knee adduction moment relies on the inverse dynamics ap-
proach, primarily limited to laboratory settings due to it relies 
on specialized equipment and technical expertise, which pre-
vents the clinicians' access to the crucial data. Our study em-
ploys wearable sensor technology integrated with advanced 
Artificial Intelligence and Machine Learning algorithms to 
predict knee moment outcomes with high accuracy. By ana-
lyzing attention weight trends, we establish a significant cor-
relation with knee moment dynamics, validating the reliabil-
ity of our predictive model. This alignment underscores the 
biomechanical relevance of our approach, offering promising 
implications for personalized patient care and clinical prac-
tice. 

 Introduction    

Osteoarthritis (OA) is a degenerative joint disease with car-

tilage loss and decreased joint space (Sellam and Beren-

baum 2010). The knee joint is the most reported site for OA, 

with the incidence being twice of other commonly affected 

joints (Oliveria, Felson et al. 1995). Patients with knee OA 

often experience pain, swelling and loss of flexibility during 

weight-bearing activities, and stiffness after being inactive. 

Knee OA is one of the highest factors leading to global years 

lived with disability (YLD) (Vos, Flaxman et al. 2012). The 

prevalence of knee OA has doubled since the mid-20th cen-

tury, with 37.4 % of adults over 60 years old affected (Wal-

lace, Worthington et al. 2017). Potential risk factors associ-

ated with long-term knee symptomatic pain are age, sex, 

BMI, and history of joint trauma (Zhang and Jordan 2010). 

 

Knee adduction moment (KAM) during walking has been 

reported as a sensitive biomechanical marker for predicting 

the risk of knee osteoarthritis (Foroughi, Smith et al. 2009). 

The knee adduction moment is higher in individuals with 
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severe knee OA and consequently associated with a higher 

Kellgren-Lawrence (K-L) radiographic grading scale 

(Sharma, Hurwitz et al. 1998). Patients with onset chronic 

knee pain were reported with higher mean knee adduction 

moments when compared to those without symptoms in cer-

tain activities, including standing, chair rise, walking, and 

stair descent (Amin, Luepongsak et al. 2004).  

 

Conventionally, the knee adduction moment is estimated by 

using the inverse dynamics approach with kinematic data of 

body movement and ground reactions forces. The whole 

process significantly restricts testing activities to laboratory 

settings and its requirement for equipment and technical 

processing significantly limit clinicians' access to such im-

portant data. Recent advances in wearable sensor technolo-

gies offer an opportunity to bridge this gap. Moreover, an 

emerging deep learning model is capable of making predic-

tions based on time series data. Although studies have em-

ployed wearable sensors to estimate knee joint moments, 

time-series information from the input data is not accounted 

(Stetter, Krafft, et al. 2020).  

 

The primary aim of this study was to estimate knee adduc-

tion moments during walking utilizing data acquired from 

accelerometers. To achieve this, we employed Recurrent 

Neural Network-Long Short-Term Memory (RNN-LSTM) 

modeling, a sophisticated approach in the realm of artificial 

intelligence. Our focus extended beyond prediction by un-

raveling the RNN-LSTM model's decision-making pro-

cesses, employing explainable AI techniques. Through this 

exploration, our study contributed to the biomechanical dy-

namics of walking and how these advanced models predict 

and interpret KAM outcomes. The findings of this research 

hold the potential to inform not only the field of biomechan-

ics but also to advance the broader understanding of explain-

able AI applications in clinical research.  

 



Method 

2.1. Participants 

Twelve male and 12 female adults were recruited for the 

study from the university community. Individuals with any 

existing pain or musculoskeletal injuries that could poten-

tially impact their walking ability were excluded from the 

study. Prior to data collection, participants were provided 

with a detailed explanation of the study objectives and ex-

perimental procedures and signed the informed consent ap-

proved by the Institutional Review Board. 

 

2.2. Procedure 

Forty-nine retroreflective markers were placed on spe-

cific bony landmarks (Leardini, Sawacha et al. 2007, 

Leardini, Biagi et al. 2011) to capture the whole-body mo-

tion during walking. Marker trajectory data were collected 

using a 12-camera embedded motion capture system (Qual-

isys AB, Sweden). Anthropometric reference data were 

adopted from the initial work of Dempster (Dempster 1955). 

Concurrently, two tri-axial accelerometers (IMU) were 

placed at the lateral and medial sides of the femur epicon-

dyles (Trigno Avanti Sensor, Delsys Inc., Natick, MA, 

USA). To familiarize participants with the experimental 

protocol and to estimate the individual’s average walking 

speed, three self-selected speed walking trials were con-

ducted prior to formal data collection session. Two photo-

cells separated with three meters were placed to accurately 

calculate the average walking speed. 

 

𝐴𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑙𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 (𝐴𝑆𝑆𝑊𝑆) (𝑚/𝑠) =  

3 meters
time measured by phtotcells
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During all trials, participants wore the same type of shoes 

to mitigate potential biases resulting from variations in foot-

wear. Marker trajectory and IMU data from each participant 

were then recorded across three distinct walking speeds, 

with three trials for each speed. The fast speed was defined 

as 1.20 times the ASSWS, while the slow speed was set at 

0.8 times the ASSWS. This resulted in a total of nine walk-

ing trials during the formal data collection session. To main-

tain consistency in gait patterns for each participant, the 

walking speeds for all formal trials were carefully calibrated 

to fall within a range of 95% to 105% of the desired walking 

speed. 

 

2.3. Data Processing and KAM Computing 

Marker trajectory data were collected with a sampling 

rate of 240 Hz and processed using a zero-lag low-pass 

fourth-order Butterworth filter with a cut-off frequency of 

12 Hz (Winter 2009). IMU acceleration data were collected 

with a sampling rate of 128 Hz, and raw signals were fil-

tered with a 2nd order, zero-lag, and low-pass Butterworth 

filter with a 12 Hz cut-off frequency (Pitt and Chou 2019). 

The ground reaction forces are directly measured by two 

force platforms (AMTI). The knee moment was calculated 

based on the inverse dynamic theory using Visual3D (C-

Motion, Inc., MD). 
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2.4. Recurrent Neural Network Model 

Figure. 1 depicts an overview of the recurrent neural net-

work (RNN) model structure. Specifically, the model takes 

as a (55,3) shaped input data, and outputs a regression-based 

value sequence of shape (55,1). The input data is organized 

in the format of a time series, encompassing a sequence of 

55 temporal intervals. At each interval, the dataset incorpo-

rates 3 distinct features, corresponding to the latitude of x, 

y, and z from a 3-axis accelerometer measurement, respec-

tively. The output is a one-dimensional sequence within the 

same temporal interval that corresponds to the momentum 

of the participant’s movement.  

 

For this preliminary study, wearable sensor data utilized 

in the analysis was exclusively from the IMU place at the 

lateral femur epicondyle. Considering the time-based nature 

of the input data, we utilized the RNN architecture to en-

hance the accuracy and effectiveness of our predictive anal-

ysis. The constructed model consists of 4 layers, as shown 

in Figure. 1: Input, LSTM, Attention, and Output. The 

model was trained using linear acceleration data collected 

during the stance phase during walking from a sensor posi-

tioned on the lateral knee. We choose LSTM as the recurrent 

layer, given its capability of recognizing and memorizing 

key steps, therefore enhancing performance in long se-

quence predictions when compared to a simple RNN layer. 

In addition to that, we also utilized the attention mechanism 

in the form of an Attention layer in between the LSTM and 

Output layer. The attention mechanism provides a means of 

weighing the relative importance of different time steps in a 

temporal sequence. This helps to further magnify the 

model’s focus on the most impactful accelerometer readings 

in regard to predicting the knee moment. Later, we show the 

extracted attention weights from the Attention layer to ex-

plain which time frame during the input sequence made the 

highest impact in predicting the testing results. The data 

were randomly assigned to be the training (80%) and testing 

(20%) datasets. 



 

The rest of the model configurations are as follows:  

-The LSTM layer uses “sigmoid” as its activation function. 

-The Output layer uses “linear” as its activation function, 

given this is a regression-based task. 

-The model is trained with an Adam optimizer with a learn-

ing rate of 1e-3. 

-Mean Squared Error (MSE) was used to compute epoch 

loss. 

Results 

3.1 Model Prediction Results and Attention Weights 

  

Figure 2 Model Prediction Results and Attention Weights 

Figure. 2 (a) illustrates a prediction result compared to the 

ground-truth moment data. The model exhibits a high de-

gree of accuracy (overall MSE = 0.0082) in its predictions, 

closely mirroring the anticipated measurements throughout 

the stance phase.  

Figure. 2 (b) shows the extracted attention weights during 

the training phase. The model demonstrates the capability to 

identify notable shifts in moment within the time series. For 

example, in the initial phase from time steps 0 to 11, the 

model intensifies its focus in response to a rising moment. 

Likewise, in time steps [12,20], [35,43], and [48,52], where 

the input moment data formed a convex-shaped local min-

ima or maxima, the model's attention was escalated to cap-

ture these significant changes in momentum. 

 

This observation further validates that the model not only 

achieves inference with minimal loss but also does so in a 

logical, sound and reasonable manner. 

 

3.2 Explainable AI: Which features impacted the pre-

diction results? 

Figure 3 Top Ten Impactful Sensor Ranges to the Prediction Results 

 

Figure 4 Global View of the Impactful Sensor Sequences 

 

In addition to the attention weights for validating the logical 

soundness of the model, we leveraged an Explainable AI 

(XAI) tool named “Local Interpretable Model-agnostic Ex-

planations” (LIME) to provide deeper insights into the in-

ferencing outcomes derived from the model's testing phase. 

It works by perturbating the examined data and observing 

how these changes affect the model's predictions. Essen-

tially, LIME creates a simpler model that approximates the 

original model's behavior in local predictions. This simpler 

model provides insights into the factors employed by the 

complex model when making its predictions and helps to re-

veal the reason behind the model's decision for a particular 

instance. 

 

Figure. 3 shows the top 10 impactful accelerometer readings 

at a certain time frame. During our testing, we found that the 

latitude values of the z-axis at time steps 45 and 46, when 

falling within the ranges of [0.48, 0.56] and [0.54, 0.59] re-

spectively, provide the most significant influence on the 

model's output. The heatmap in Figure. 4 (a) shows the im-

pact significance of each time frame (disregard each lati-

tude’s contribution). In Figure. 4 (b), we present the expla-

nation results by LIME over the training dataset. It provides 

a clear indication of which specific axis contributed more 

towards each time step, as well as the over-interference re-

sult. 

Discussions 

 In this study, we employed wearable sensors integrated 

with advanced AI/ML algorithms to achieve high accuracy 



in predicting knee moment outcomes. By leveraging data 

collected from the IMU sensor, our models were able to an-

alyze intricate patterns and correlations, enabling precise 

forecasting of knee moment dynamics. This innovative ap-

proach not only demonstrates the effectiveness of wearable 

technology in capturing joint dynamics but also shows po-

tential of AI/ML in enhancing predictive capabilities for 

knee adduction moment estimation. The robustness and ac-

curacy of our predictions offer prospects for their utilization 

in analyzing kinetics in clinical settings. 

 

 Given the increasing focus on the integration of AI/ML 

within the domain of digital health applications, it is im-

portant to critically evaluate the reliability and trustworthi-

ness of predictions and decisions generated by ML models. 

As studied in this paper, the attention weight extraction in 

conjunction with the examination of XAI provides means 

and trust foundations to the knowledge brought by the ML 

models. The preliminary findings indicate that the model 

was able to predict knee adduction moments (KAMs) in a 

"lightweight" fashion, contrary to the conventional method 

that requires extensive wearable and environmental sensors. 

Moreover, it can also be proven that the results came from a 

reasonable, transparent (human-interpretable) decision-

making process as opposed to the pure “black box” mecha-

nism in the traditional sense. Specifically, we observed a 

consistent alignment between fluctuations in attention 

weight and corresponding variations in knee moment 

throughout the duration of the study. This observed coher-

ence suggests that the attention weight assigned by our 

AI/ML algorithms accurately reflects the biomechanical sig-

nificance of specific movement patterns or muscle activa-

tions, thereby providing a plausible explanation for the ob-

served knee moment outcomes. This enhancement in trans-

parency and interpretability could significantly strengthen 

the trust in AI/ML-enabled KAM predictions.  

 

 Nevertheless, there are still limitations to the current stage 

of using XAI to provide trust foundations over model pre-

dictions/decisions, especially in the medical/health-related 

context. For instance, standardization remains an area re-

quiring additional exploration. Within the context of KAM 

prediction, IMU data across three axes were analyzed using 

an XAI tool to understand the rationale behind prediction 

outcomes. While it is beneficial to perceive which axis and 

at what time step brings the most influence on the results at 

a macro level, the sensor range values of specific decision-

making lack clarity regarding their effectiveness. Questions 

persist about whether a universal threshold can be applied 

across all KAM scenarios, or if the sensor value ranges 

should be adjusted based on various factors such as patient 

characteristics, sensor types, and mounting positions. To 

gain a deeper understanding of the underlying rationale, fur-

ther research into these XAI outcomes is necessary. 

Significance 

To enhance the transparency and interpretability of our 

AI/ML models, we provide insights into how predictions are 

generated based on the underlying rationale. This transpar-

ency is essential for building trust and acceptance of AI-

driven tools, as it enables users to validate the reliability of 

predictions and understand the factors driving the model. 

With an AI/ML model integrated with explainable AI, clini-

cians can confidently integrate predictive analytics into their 

practice and further leverage the benefits of wearable sensor 

technology. Thus, our research not only advances the field 

of biomechanics but also promotes collaborative between 

technology and clinical expertise to better improve patient’s 

prognosis. 
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