
Tensor Decomposition Based Memory-Efficient Incremental Learning

Yuhang Li 1 Guoxu Zhou 1 2 Zhenhao Huang 1 Xinqi Chen 1 Yuning Qiu 3 Qibin Zhao 3 1

Abstract
Class-Incremental Learning (CIL) has gained con-
siderable attention due to its capacity to accommo-
date new classes during learning. Replay-based
methods demonstrate state-of-the-art performance
in CIL but suffer from high memory consumption
to save a set of old exemplars for revisiting. To
address this challenge, many memory-efficient
replay methods have been developed by exploit-
ing image compression techniques. However, the
gains are often bittersweet when pixel-level com-
pression methods are used. Here, we present a
simple yet efficient approach that employs tensor
decomposition to address these limitations. This
method fully exploits the low intrinsic dimension-
ality and pixel correlation of images to achieve
high compression efficiency while preserving suf-
ficient discriminative information, significantly
enhancing performance. We also introduce a hy-
brid exemplar selection strategy to improve the
representativeness and diversity of stored exem-
plars. Extensive experiments across datasets with
varying resolutions consistently demonstrate that
our approach substantially boosts the performance
of baseline methods, showcasing strong general-
ization and robustness.

1. Introduction
In recent years, deep learning has achieved remarkable ad-
vancements, with neural networks reaching or even surpass-
ing human-level performance in many domains (Silver et al.,
2016; Jumper et al., 2021). Traditionally, deep networks
rely heavily on offline training, requiring multiple epochs
over a static, pre-collected dataset. However, in the open

1School of Automation, Guangdong University of Technol-
ogy, Guangzhou, CHINA 2Key Laboratory of Intelligent Detection
and the Internet of Things in Manufacturing, Ministry of Educa-
tion, Guangdong University of Technology, Guangzhou, China
3RIKEN AIP, Tokyo, JAPAN. Correspondence to: Guoxu Zhou
<gx.zhou@gdut.edu.cn>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

world, data is continuously generated and constantly chang-
ing (Gomes et al., 2017), resulting in a consistent delay
in incorporating new knowledge by those advanced mod-
els (e.g., large language models such as GPT-4 (Achiam
et al., 2023)). To address this, researchers have turned to
a promising approach known as “Class-Incremental Learn-
ing” (CIL) (Masana et al., 2022; Zhou et al., 2023b). CIL
aims to learn from streaming data continually without for-
getting previously learned. Despite this vision, when the
model directly trains on new data, it tends to forget a sub-
stantial amount of previously captured knowledge, leading
to irreversible performance degradation—a phenomenon
known as catastrophic forgetting (McCloskey & Cohen,
1989; Robins, 1993). Therefore, effectively combating catas-
trophic forgetting is the central challenge in developing CIL
methods.

Replay-based methods (Rebuffi et al., 2017; Lopez-Paz &
Ranzato, 2017; Isele & Cosgun, 2018; Zhao et al., 2020;
Bang et al., 2021; Wang et al., 2022a), inspired by human
learning processes (Robins, 1993; Kumaran et al., 2016;
Kudithipudi et al., 2022), have demonstrated state-of-the-
art performance in various incremental learning scenarios.
These methods explicitly store a subset of previously en-
countered data (exemplars) in memory. When training on
new tasks, the model can revisit these exemplars to help
mitigate catastrophic forgetting. While intuition suggests
that storing more old exemplars could enhance performance,
practical constraints, e.g., fixed memory capacity (Krempl
et al., 2014; Rebuffi et al., 2017), restrict only a few data can
be kept for replay. Consequently, there is a severe imbalance
between new and old data, with the training process always
dominated by new ones.

To alleviate the above problem, various Memory-Efficient
Replay Methods (Wang et al., 2024) have been proposed.
For instance, MECIL (Zhao et al., 2021) proposes using
low-fidelity samples instead of the original ones to transfer
old class knowledge. CIM (Luo et al., 2023) suggested
downsampling non-discriminative pixels (e.g., background)
while retaining discriminative pixels (e.g., foreground) in the
original image. MAE-CIL (Zhai et al., 2023) demonstrates
that Masked Autoencoders (MAE) (He et al., 2022) are
efficient incremental learners, which store random image
patches as exemplars and they can reconstruct high-quality
images from only partial information for replay. Although

1

Tensor Decomposition Based Memory-Efficient Incremental Learning

these methods achieve notable performance, they struggle
to reconcile data-friendliness and model-friendliness (see
Sec. 2 for more details).

Pixel-level compression methods, such as MECIL and CIM,
directly compress images in the original high-dimensional
pixel space, overlooking the fact that natural images typi-
cally have low intrinsic dimensionality (Levina & Bickel,
2004) and exhibit local connectivity. To illustrate, in im-
age reconstruction tasks, Masked Autoencoder (He et al.,
2022) divides an image into multiple patches and recon-
structs the complete image by randomly masking a certain
proportion of these patches. Experimental results show that
with 75% of the patches masked, the original image can still
be reconstructed. Similarly, low-rank tensor decomposition-
based completion methods can recover images with high
fidelity, even when over 80% of their data is missing (Yokota
et al., 2016; Qiu et al., 2024). Additionally, the Maximum
Likelihood Estimation of the intrinsic dimensionality of im-
ages on the ImageNet (Deng et al., 2009) indicates that,
although each image contains 150,528 pixels, its intrinsic
dimension is only between 26 and 43 (Levina & Bickel,
2004). These results suggest that compressing data directly
in high-dimensional pixel space is inefficient, and it can be
represented or approximated with much less complexity.

Building on these insights, we propose introducing low-
rank tensor decomposition (TD) (Kolda & Bader, 2009) for
image compression. This method takes full advantage of
natural images’ local correlation and low intrinsic dimen-
sionality. Not only can it achieve considerable compression
efficiency, but it also effectively captures the internal multi-
dimensional structure of the image (e.g., the spatial distribu-
tion of pixels and the correlation between channels) (Kilmer
et al., 2021) so that more discriminative information can
be retained after compressed, which is an attribute crucial
for memory-efficient replay methods. Furthermore, recog-
nizing the importance of balancing the quality and quantity
of exemplars for this kind of method (Zhao et al., 2021;
Wang et al., 2022b), we propose a novel exemplar selection
strategy to enhance the representativeness and diversity of
the exemplars.

To evaluate the proposed method, we integrate it into several
advanced CIL methods (i.e., iCaRL (Rebuffi et al., 2017),
FOSTER (Wang et al., 2022a), DER (Yan et al., 2021),
MOME (Zhou et al., 2022)) and perform extensive experi-
ments on different-scale datasets. The results demonstrate
that our proposed method consistently delivers substantial
improvements. To summarize, our contributions are as fol-
lows: 1) We propose a memory-efficient CIL method based
on TD. To the best of our knowledge, tensor methods have
not been used in CIL to mitigate catastrophic forgetting. Our
work represents a new attempt, and we anticipate that intro-
ducing the tensor approach will yield valuable insights and

solutions to the challenges posed by CIL. 2) Distinguished
from most existing memory-efficient methods, our approach
can be effectively applied to data of various resolutions and
easily integrated with other rehearsal methods as a plug-and-
play solution, serving as a model-friendly and data-friendly
method. 3) In the context of memory-efficient CIL meth-
ods, we introduce an innovative exemplar selection strategy
that effectively balances the quantity and quality of samples
and improves performance to some extent. This strategy
is adaptable and can be generalized to other similar meth-
ods. 4) Extensive experiments consistently indicate that the
proposed method achieves excellent performance across di-
verse experimental settings while exhibiting low sensitivity
to parameter variations, underscoring the method’s strong
generalization and robustness.

2. Related Works
There are three principal strategies to mitigate catastrophic
forgetting in incremental learning (Van de Ven et al., 2022;
Zhou et al., 2023b). Regularization-based Methods (Kirk-
patrick et al., 2017; Wang et al., 2022c) introduce additional
regularization terms into the loss function to penalize signif-
icant changes in the weights crucial for previously learned
tasks. This ensures that the model retains its performance
on old tasks while learning new ones. Architecture-based
Methods (Yan et al., 2021; Zhou et al., 2022) aims to miti-
gate catastrophic forgetting by dynamically modifying the
network architecture. A fundamental concept here is to
preserve the knowledge of past tasks by freezing the pa-
rameters of previously trained sub-networks (called “old
model”). New network structures are then introduced to ac-
commodate new knowledge from incoming tasks. Replay-
based Methods (Rebuffi et al., 2017; Lopez-Paz & Ranzato,
2017; Wang et al., 2022a) maintain a memory buffer with
a fixed budget to store a few examples from previous tasks.
When training on new tasks, the model can revisit these
examples to reinforce its memory of old knowledge, thereby
preventing forgetting.

Beyond this, some Memory-Efficient Replay Methods
seek to improve storage efficiency by compressing raw im-
ages or storing feature-level data, achieving impressive per-
formance. Works centred on feature storage (Iscen et al.,
2020; Hayes et al., 2020; Toldo & Ozay, 2022), referred
to as feature replay (Wang et al., 2024), offer considerable
efficiency and privacy benefits by preserving feature-level
distributions rather than raw data. However, a major hurdle
is representation drift resulting from the feature extractor’s
sequential updating, a phenomenon indicative of feature-
level catastrophic forgetting (Wang et al., 2024). Knowledge
Distillation (KD) (Hinton et al., 2015) and the partially fixed
feature extractor (Hayes et al., 2020) are compromised solu-
tions for this problem.

2

Tensor Decomposition Based Memory-Efficient Incremental Learning

Another work line improves storage efficiency by compress-
ing images (Caccia et al., 2020; Wang et al., 2022b; Luo
et al., 2023; Zhai et al., 2023). For example, MECIL (Zhao
et al., 2021) employs an additional auto-encoder to trans-
form high-fidelity images into lower-fidelity ones and in-
troduces an adaptive training scheme to mitigate perfor-
mance degradation caused by domain shifts. CIM (Luo
et al., 2023) suggests downsampling non-discriminative pix-
els (e.g., background) while retaining discriminative pixels
(e.g., foreground) in the original image and introduces addi-
tional Paué Activation Units (PAU) (Molina et al., 2019) to
determine the activation areas at each incremental stage dy-
namically, but this method is not efficient for low-resolution
datasets, such as CIFAR (Krizhevsky, 2009). MAE-CIL
(Zhai et al., 2023) stores random image patches as exem-
plars, and they can reconstruct high-quality images from
only partial information for replay. This method achieved
state-of-the-art performance, but the reconstruction heavily
depends on MAE (He et al., 2022).

Although these methods achieve notable performance, they
necessitate the introduction of well-crafted additional struc-
tures or strategies to compensate for the negative impacts
of compression. In contrast, tensor decomposition-based
compression methods characterize the image using a set
of factors with fewer parameters. These factors are stored
and can be reconstructed during subsequent task training.
Thanks to the images’ low-rank property, the reconstruction
error remains minimal, ensuring that the reconstructed im-
ages retain the same quality as the originals. This method
serves as a training plugin, significantly boosting the perfor-
mance of existing replay-based CIL techniques.

3. Methodology
This section introduces the basic concepts and notations,
presents the classical incremental learning setup, and then
describes how our proposed Tensor Decomposition-based
Memory-Efficient Replay (TDMER) works. Fig. 2 illus-
trates the framework of our methods.

3.1. Preliminary

Incremental Learning aims to train a model on a sequence
of tasks, represented by their datasets

{
D1,D2, · · · ,DT

}
,

and achieve good performance on unseen test data from
those tasks. The training set of task t contains Nt distinct
data-label pairs, Dt = {(xt

n, y
t
n)}

Nt
n=1, where xt

n ∈ Xt

and ytn ∈ Yt represent the input instance and their corre-
sponding label, respectively. The goal is to let the model,
parameterized by θ, learn a mapping from the whole input
space XT =

⋃T
t=1 Xt to the label space Y =

⋃T
t=1 Yt, i.e.

fθ : X −→ Y . At the test stage, the model should be able to
predict the correct label y for a new unseen sample x drawn
from any of the previous tasks.

 + + +

(1)

1a

(2)

1a

(3)

1a

(1)

2a

(2)

2a
(1)

Ra

(2)

Ra

(3)

Ra
(2)

3a

Figure 1. Illustration of a CP decomposition of third-order tensor
A into a sum of rank-1 tensors

There are three common kinds of incremental learn-
ing scenarios: Domain-incremental learning (DIL), Task-
Incremental Learning (TIL), and Class-Incremental Learn-
ing (CIL) (Van de Ven et al., 2022; Zhou et al., 2023b).
In the DIL setting, all tasks share the same label space,
the training data distributions for different tasks may differ
(e.g., various image styles), and the model does not receive
information about which task the test sample belongs to
during inference. For TIL and CIL settings, the label spaces
for different tasks are disjoint; the model receives informa-
tion about task identity during testing for TIL but not for
CIL. In this paper, we focus on the more representative and
challenging CIL.

Tensor Decomposition is a mathematical technique for ana-
lyzing multidimensional data represented by tensors (Kolda
& Bader, 2009). It breaks down a complex, higher-order ten-
sor into a combination of simpler, lower-order tensors. Here,
we briefly introduce the CANDECOMP/PARAFAC (CP)
(Carroll & Chang, 1970) decomposition for an N th-order
tensor A ∈ RI1×I2×···×IN . Formally, the CP decomposi-
tion decomposes A into a sum of R rank-one factor tensors:

A =

R∑
r=1

a(1)r ◦ a(2)r ◦ · · · ◦ a(N)
r

= JA(1), . . . ,A(N)K,

(1)

where rank R is a predefined positive integer, the symbol “◦”
represents the vector outer product, and a

(1)
r ∈ RI1 ,a

(2)
r ∈

RI2 , . . . ,a
(N)
r ∈ RIN for r = 1, . . . , R. These vectors can

be grouped into N matrices, i.e. {A(n) ∈ RIn×R}Nn=1,
where A(n) = [a

(n)
1 ,a

(n)
2 , · · · ,a(n)R] for n = 1, . . . , N ,

and J·K is defined as the CP decomposition operator (Kolda
& Bader, 2009). Elementwise, the CP decomposition is
written as:

ai1,i2,...,iN ≈
R∑

r=1

a(i1)r a(i2)r · · ·a(iN)
r . (2)

For better clarity, a schematic representation of the CP de-
composition of a third-order tensor is shown in Fig. 1

3.2. TD-Based Memory-Efficient Replay Method.

We introduce TD methods to factorize the images into a
set of factor matrices or tensors. By selecting an appro-

3

Tensor Decomposition Based Memory-Efficient Incremental Learning

Memory

Write

Memory

2-nd learning stage

Read

Training

Training

......

Write

t-th learning stage

Read

Training

Training

Write

1-st learning stage

Training

Figure 2. Illustration of the proposed tensor decomposition-based memory-efficient CIL method with two-stage exemplar selected strategy.
We use Dt to represent the training data of t-th task, D̃t represent the partial reconstructed data of Dt, Dt

M represent the exemplar stored
in memory, and D̃t

M represent the exemplar reconstructed by the stored factor. The notion of “Write”, “Read,” and “Training” refers
to writing raw samples and factors obtained from other sample decomposition into memory, reading exemplars and factors set from
memory, and training the model using new task data, stored exemplars, and reconstructed samples from the factors, respectively. All these
exemplars are chosen by our exemplars selection strategy.

priate rank (crucial for balancing the fidelity and compact-
ness of the factors), we can significantly reduce the size
of these components while preserving crucial information.
We first investigate two widely used TD methods: CAN-
DECOMP/PARAFAC (Carroll & Chang, 1970) and Tucker
(Tucker, 1966). However, maintaining decomposition accu-
racy with Tucker decomposition results in component sizes
close to the original data for low-resolution datasets such
as CIFAR-10/100 (Krizhevsky, 2009), which are not effec-
tively handled by many memory-efficient replay methods
(Wang et al., 2022c; Luo et al., 2023). This is not desirable
for our purposes. To ensure generalizability, we chose to
use CP decomposition exclusively.

From CP Decomposition to Image Compression. For
the data xt

n ∈ RC×H×W in Dt , given a rank R, the CP
decomposition factorizes it into a sum of R rank-1 tensor
factors. According to Eq. (1), we can infer the size of these
components (be grouped into matrices) is A(1) ∈ RC×R,
A(2) ∈ RH×R, A(3) ∈ RW×R, respectively. Therefore,
the compression ratio η of this process can be defined as

follows:

η =
(C +H +W)×R

C ×H ×W
. (3)

Note that with Tensorly (Kossaifi et al., 2019) for tensor
decomposition, we first transform the original image (in
integer format) to float-point format. As a result, the factors
from the decomposition are in floating-point format. To
ensure the Eq. (3) holds, we need to convert these float-point
factors to 8-bit. By doing this, we can consistently achieve
a compression ratio of less than 1, where 1 represents the
memory required to store the raw image. Therefore, within
the same memory budget, we can store more decomposed
factors.

Adaptive Training. Following the above concepts out-
lined, we focus on the CIL setting, where for all t ̸= t′,
Xt ∩ Xt′ = ∅ and Yt ∩ Yt′ = ∅. The goal is to conduct
continuous training without forgetting previous knowledge.
Specifically, for conditioning the current task t, the setting
with CIL remains rather tricky. The model must maintain
stability for retaining the knowledge from all previous tasks

4

Tensor Decomposition Based Memory-Efficient Incremental Learning

(1, 2, . . . , t− 1), also requiring continuous learning to adapt
to the new task t. This results in the stability-plasticity
dilemma. To overcome this bottleneck, replay-based meth-
ods employ a small-sized memory buffer, denoted as DM .
Old tasks’ exemplars are sampled, stored, and updated after
completing training on each task. Data from the current
task t is presented along with the exemplar set to the model.
Thus, the objective function for replay-based CIL methods
can be written as:

argmin
θ

∑
(x,y)∈Dt

l (fθ(x), y) + λLreg,

Lreg :=
∑

(x,y)∈Dt−1
M

lreg (fθ(x), y) ,
(4)

where lreg denotes the regularization terms based on the
old exemplars, and λ is a hyperparameter controlling the
strength of the regularization.

Note that both the tensor decomposition and the data type
conversion introduce some minor errors. To mitigate these
effects, we adopt an adaptive training strategy. The objective
function is as follows:

argmin
θ

∑
(x,y)∈Dt

⋃
D̃t

l (fθ(x), y) + λLreg. (5)

Namely, in each training epoch, we select a subset of
Dt, denoted as{xt

1, x
t
2, · · · , xt

N}, and decompose each
data to low-rank factors, which can be reconstructed as
{x̃t

1, x̃
t
2, · · · , x̃t

N} = D̃t. This allows the model to emulate
training with processed images and learn to overcome the
effects of error.

Exemplar Selection Strategy. We notice that existing meth-
ods almost always keep only compressed samples, but not
all compressed samples have a positive effect; on the con-
trary, some have a negative impact (as shown in Fig. 3). It
means that emphasizing quantity at the expense of quality
is counterproductive in memory-efficient CIL. To achieve
a better trade-off, we propose a two-step hybrid sample
selection strategy.

Specifically, in the first step, we use a common strategy
called herding (Rebuffi et al., 2017) to select a part of raw
data {xt

1, x
t
2, · · · , xt

i}, denoted as Dt−1
M . Herding helps

identify and choose the samples that best represent the char-
acteristics of their respective classes, meaning focus on
quality.

In the second step, we randomly select a portion of the sam-
ples that were not chosen in the first stage, e.g. D̂t−1

M =

{x̂t
1, x̂

t
2, · · · , x̂t

j}, and Dt−1
M ∩ D̂t−1

M = ∅, get their de-
composition factors and store them, denoted as D̃t−1

M . In
the training, factors in D̃t−1

M can be reconstructed flexibly,
which denoted as {x̃t

1, x̃
t
2, · · · , x̃t

j}. We use relative error to

evaluate the quality of reconstruction, which is denoted as:

REj =
||x̂t

j − x̃t
j ||2F

||x̂t
j ||2F

. (6)

To ensure the quality of the reconstructed data, we intro-
duce a hard threshold τ ; if the reconstruction error is larger
than this threshold, which means that most of the critical
information may have been lost, this data is discarded, and
another one is re-selected. Thus, the final objective function
is formulated as:

argmin
θ

∑
(x,y)∈Dt

⋃
D̃t

[l (fθ(x), y)] + λ1Lreg + λ2L̃reg,

L̃reg :=
∑

(x,y)∈D̃t−1
M

lreg (fθ(x), y) ,

(7)
where λ1 and λ2 is the hyperparameter making a trade-off
between Dt−1

M and D̃t−1
M , lreg means the same regularization

function.

We introduce a parameter ϵ to control the proportion of
samples between these two stages. When ϵ is equal to 0,
which means that we only use the exemplars in D̃t−1

M , and
λ1 is set to 0; when ϵ is equal to 1, it means that we only
use the exemplars in Dt−1

M , and λ2 is equal to 0. Notably,
the number of samples selected in the first stage typically
constitutes only a modest part, meaning a focus on quantity.

4. Experiments
4.1. Experimental Settings

Datasets. We conducted experiments on two widely used
datasets. CIFAR-100 (Krizhevsky, 2009) is a low-resolution
and widely used dataset for image classification tasks. It
comprises 60,000 32×32 RGB images categorized into 100
classes, each containing 500 training and 100 testing im-
ages. ImageNet-100 (Deng et al., 2009) is a subset of the
larger ImageNet-1000 containing 100 randomly selected
categories. Each category has approximately 1,300 training
samples and 50 test samples, all high-resolution but varying
in spatial size.

Protocols. We conduct our experiments following two pro-
tocols: learning from scratch (LFS) and learning from half
(LFH), which are two different ways to split the classes into
incremental phases. LFS: divides all the classes equally
in each incremental stage. For example, if there are M
stages and N classes, each task has N/M classes for train-
ing. LFH: the first increment task divides half of the total
classes, and the rest are equally divided among the subse-
quent stages. Namely, the N/2 classes are distributed as the
first task, and the N/2(M − 1) classes are distributed as the
remaining tasks.

5

Tensor Decomposition Based Memory-Efficient Incremental Learning

Table 1. average accuracy (%) and last accuracy (%) of four baseline methods on CIFAR-100, with or without our TDMER plugged-in,
the memory budget M = 2k.

Method Base0 Inc10 Base0 Inc20 Base50 Inc10
Avg Last Avg Last Avg Last

iCaRL 60.83 42.99 62.85 46.67 55.99 46.67
iCaRL w/ ours 67.22 (+6.39) 51.98 (+8.99) 68.05 (+5.20) 56.07 (+9.40) 61.59 (+5.60) 53.37 (+6.70)
FOSTER 66.67 54.24 69.50 60.11 66.75 58.76
FOSTER w/ ours 70.61 (+3.94) 58.25 (+4.01) 72.16 (+2.66) 62.41 (+2.30) 69.17 (+2.42) 61.79 (+3.03)
MEMO 69.57 58.13 69.61 60.60 65.95 58.45
MEMO w/ ours 72.67 (+3.10) 62.44 (+4.31) 72.47 (+2.86) 64.40 (+3.80) 68.61 (+2.66) 63.28 (+4.83)
DER 71.05 59.64 71.14 63.17 69.37 62.71
DER w/ ours 73.69 (+2.64) 63.21 (+3.57) 73.57 (+2.43) 66.14 (+2.97) 70.79 (+1.42) 65.16 (+2.45)

Both protocols are widely adopted in the current CIL com-
munity (Yan et al., 2021; Wang et al., 2022a; Zhou et al.,
2022; Luo et al., 2023). To better distinguish, we use ‘Base-
b, Inc-c’ to denote different data splits, where b represents
the number of classes in the first stage and c represents the
number of courses in each incremental task. For example,
“Base 0, Inc 10” indicates that the LFS protocol is followed,
and ten classes are assigned to each incremental task.

Baseline Methods. We incorporate our method into four
baseline CIL methods, and they are listed as: iCaRL (Re-
buffi et al., 2017) combines knowledge distillation and pro-
totype rehearsal with several innovative components, i.e.,
nearest-mean-of-exemplars classifier and prioritized exem-
plar selection; DER (Yan et al., 2021) first freeze previously
learned representation and expand a new feature extractor
when new tasks come, then use a linear layer to aggregate
the feature; MEMO (Zhou et al., 2022) proposes extending
only the deeper layers specific to the task, sharing a more
generalized shallow network for enabling model expansion
with the least budget cost; FOSTER (Wang et al., 2022a)
utilize a new module to fit the residuals between the target
and the output of the original model, after which it removes
redundant parameters and feature dimensions via a perfor-
mant distillation strategy to maintain the single backbone
model.

Evaluation Metrics. We use two metrics to evaluate the
performance. First, Last Accuracy (Last) is used to estimate
the final performance of CIL models, which calculates the
classification accuracy for all seen classes up to the current
task. However, reporting only the final accuracy ignores per-
formance varying over the entire learning process. Hence,
we employ Average Accuracy (Avg) to reflect the histori-
cal performance, which is defined as AAt =

1
t

∑t
i=1 at,i,

where at,i ∈ [0, 1] denotes the accuracy of task i after learn-
ing task t (i ≤ t). We shall report the final average accuracy,
i.e., AAT . This metric considers the performance over the
entire learning trajectory. Note that we only report the top-1
accuracy in all experimental results.

Table 2. average accuracy (%) and last accuracy (%) on CIFAR-
100 of MEMO and DER with or without our TDMER integrated,
under two memory budgets,M = 1k,M = 500.

Budget Method Base0 Inc10
Avg Last

M = 500

MEMO 60.53 45.67
MEMO w/ ours 67.61 55.76
DER 64.74 50.95
DER w/ ours 69.47 56.89

M = 1k

MEMO 65.15 52.08
MEMO w/ ours 70.51 59.30
DER 68.50 55.86
DER w/ ours 71.57 61.02

Implementation Details. Our implementation is based on
the deep learning library PyTorch (Paszke et al., 2019), the
CIL toolbox PyCIL (Zhou et al., 2023a), and the tensor
development library Tensorly (Kossaifi et al., 2019). Fol-
lowing (Yan et al., 2021; Wang et al., 2022a; Zhou et al.,
2022; Luo et al., 2023), we employ the same backbone, i.e.,
18-layer ResNet (He et al., 2016) for ImageNet-100 and 32-
layer ResNet for CIFAR-100, with a fully-connected layer
as the classifier across all our experiments, and all training
hyperparameters remain the same with PyCIL. More details
will be provided in the appendix. A.

4.2. Results and Analyses

We evaluate the performance of our proposed method in-
tegrated into four baseline methods on CIFAR-100 and
ImageNet-100. More results will be provided in the ap-
pendix. B.

Results on CIFAR-100. From Tab.1, we have the follow-
ing observations: (1) Our TDMER, when integrated into
the four baseline methods, substantially improves both last
accuracy and average accuracy across different data splits.

6

Tensor Decomposition Based Memory-Efficient Incremental Learning

Table 3. average accuracy (%) and last accuracy (%) of four baseline methods on ImageNet-100, with or without our TDMER plugged-in,
the memory budget M = 2k.

Method Base0 Inc10 Base0 Inc20 Base50 Inc10
Avg Last Avg Last Avg Last

iCaRL 60.24 41.40 66.83 50.12 55.20 43.32
iCaRL w/ ours 64.38 (+4.14) 47.34 (+5.94) 69.38 (+2.55) 54.40 (+4.28) 58.80 (+3.60) 47.12 (+3.80)
FOSTER 69.91 60.60 76.57 69.74 70.07 63.85
FOSTER w/ ours 74.51 (+4.60) 66.40 (+5.80) 78.59 (+2.02) 72.30 (+2.56) 75.05 (+4.98) 69.58 (+5.73)
MEMO 72.41 62.56 76.14 68.42 70.09 63.42
MEMO w/ ours 74.97 (+2.56) 66.94 (+4.38) 77.21 (+1.07) 71.10 (+2.68) 70.63 (+0.54) 65.38 (+1.96)
DER 77.08 66.84 78.56 72.10 77.57 71.10
DER w/ ours 79.75 (+2.67) 73.26 (+6.42) 79.69 (+1.13) 73.90 (+1.80) 79.96 (+2.39) 75.46 (+4.36)

Table 4. average accuracy (%) and last accuracy (%) on ImageNet-
100 of MEMO and DER with and without our TDMER integrated,
under two memory budgets,M = 1k,M = 500.

Budget Method Base0 Inc10
Avg Last

M = 500

MEMO 63.78 50.68
MEMO w/ ours 67.64 57.66
DER 69.86 55.86
DER w/ ours 72.66 62.54

M = 1k

MEMO 68.99 57.92
MEMO w/ ours 71.77 62.26
DER 72.41 62.22
DER w/ ours 74.95 65.36

Specifically, the highest observed increases are 6.39 % for
average accuracy and 8.99 % for last accuracy under 10-
task setting; (2) Although our improvements are signifi-
cant across all baseline methods, the extent of enhance-
ment varies, with the largest gains observed for the iCaRL
baseline, while the performance boost for the already high-
performing DER is comparatively smaller; (3) Furthermore,
as the number of tasks increases, the improvements provided
by our method also grow, indicating that our approach be-
comes increasingly beneficial in more complex incremental
learning scenarios.

Tab. 2 shows the results of MEMO and DER for two mem-
ory budgets on the CIFAR-100. We can see that our method
consistently boosts MEMO and DER, achieving higher per-
formance growth with a tighter memory budget. Specifically,
it improves the last accuracy of MEMO by 10.09% when
M = 500, with an increment of 7.28% when M = 1k (the
increment is 4.31% when M = 2k). DER also shows simi-
lar results, but with a slightly smaller increase compared to
MEMO, namely, for the three memory budgets M = 500,
M = 1k, and M = 2k, the increments are 5.94%, 5.16%,
and 3.57%, respectively.

Table 5. Comparison of our method with other memory-efficient
replay methods on the ImageNet-100 under the ‘Base0 Inc10’
setting.

Budget Method Base0 Inc10
Avg Last

M = 2k

MRDC (ICLR’22) 76.02 -
CIM (CVPR’23) 77.94 -

MAE-CIL (ICCV’23) 79.54 70.29
Ours 79.75 73.26

Results on ImageNet-100. Keeping the same experimental
settings as CIFAR-100, we report the best average accu-
racy and last accuracy on ImageNet-100 in Tab.3, and Tab. 4
shows the average accuracy and last accuracy of MEMO and
DER for two memory budgets on the ImageNet-100. The
experimental results on ImageNet-100 corroborate the find-
ings from CIFAR-100. Our proposed method consistently
improves the performance of various baseline methods, with
the magnitude of improvement varying across methods, in-
creasing with the number of tasks and achieving higher
improvement on a stricter memory budget. These consistent
trends across different datasets underscore the robustness
and effectiveness of our approach.

Comparing with other efficient replay methods. We com-
pare our method with a variety of memory-efficient replay
methods, such as MRDC (Wang et al., 2022b), CIM (Luo
et al., 2023), and MAE-CIL (Zhai et al., 2023). All these
methods use the same amount of storage, i.e., 20 original
images per class. Tab. 5 shows the results on the ImageNet-
100 under the ‘Base0 Inc10’ setting. Our method achieves
consistently higher performance.

Effectiveness of Compression Methods. Memory-efficient
replay methods improve storage efficiency by retaining more
compressed data, and the quality of the compressed samples
is critical to whether such methods work. To evaluate the
compression techniques, we processed the CIFAR-100 train-

7

Tensor Decomposition Based Memory-Efficient Incremental Learning

0.0 0.1 0.2 0.3 0.4 0.5
Proportion

68

69

70

71

72

73
AI

A
(%

)

0.0 0.1 0.2 0.3 0.4 0.5
Proportion

68

69

70

71

72

73

AI
A

(%
)

0.0 0.1 0.2 0.3 0.4 0.5
Proportion

68

69

70

71

72

73

AI
A

(%
)

0.0 0.1 0.2 0.3 0.4 0.5
Proportion

68

69

70

71

72

73

AI
A

(%
)

MEMO w/ ours
MEMO w/o ours

Rank 10 Rank 12 Rank 14 Rank 16

(a) Results on CIFAR-100.

0.2 0.3 0.4 0.5 0.6
Proportion

71

72

73

74

75

76

AI
A

(%
)

0.2 0.3 0.4 0.5 0.6
Proportion

71

72

73

74

75

76

AI
A

(%
)

0.2 0.3 0.4 0.5 0.6
Proportion

71

72

73

74

75

76

AI
A

(%
)

0.2 0.3 0.4 0.5 0.6
Proportion

71

72

73

74

75

76

AI
A

(%
)

MEMO w/ours
MEMO w/o ours

Rank 70 Rank 80 Rank 90 Rank 100

(b) Results on ImageNet-100.

Figure 3. Results of different ranks R and proportion ϵ on average accuracy (Avg %) with our methods integrated into MEMO. (a)
CIFAR-100, (b) ImageNet-100.

Table 6. Classification accuracy on CIFAR-100 processed with
different compression methods. “Accu.” means the accuracy (%),
“Comp.” means the compressed ratio. “Down Sample” means
setting the downsampling rate to 2.56, and “CIM” means keeping
the 16*16 centre region as the original image, and the other parts
of the image with a downsampling rate of 4.

Method Upper
Bound

Down
Smaple CIM TDMER

12 16

Accu. 72.3 44.1 66.9 67.8 69.9
Comp. 1.0 0.39 0.56 0.26 0.35

ing set using various compression methods, then trained a
32-layer ResNet from scratch on the original (upper bound)
and processed training sets, respectively. The original test
set was used for classification evaluation. As shown in
Tab. 6, the TD-based compression method achieves con-
siderable compression efficiency, and the gap between its
performance and the upper bound is small. This indicates
that our method retains sufficient discriminative information,
allowing it to perform comparably to the original training
set.

Sensitivity Analyses. We conducted experiments with dif-
ferent ranks and ϵ, which controls the proportion of the
raw and compressed data. As shown in Fig. 3 (a), different
ϵ yield varying performance on the CIFAR-100, with the
best performance observed around ϵ of 0.1 or 0.2. Simi-

larly, Fig. 3 (b) presents the results on the ImageNet-100.
We observe that ImageNet-100 exhibits relatively stable
performance across different ϵ. However, the model’s per-
formance improves with increasing ϵ, requiring a larger ϵ
to achieve optimal performance. We attribute the different
performances of the two datasets to their complexity and di-
versity. Overall, our exemplar selection strategy effectively
balances the quality and quantity of exemplars, thereby en-
hancing performance. This approach provides a flexible
mechanism to adapt to different dataset characteristics, en-
suring optimal memory use and maintaining high model
performance.

5. Conclusion
In this work, we propose a data-friendly and model-
friendly memory efficient replay method based on CAN-
DECOMP/PARAFAC (CP) decomposition. This method
effectively leverages the local correlation and low intrin-
sic dimensionality natural images exhibit, achieving high
compression efficiency while preserving discriminative in-
formation. Additionally, we introduced an innovative exem-
plar selection strategy to balance the quality and quantity
of examples further. Extensive experiments consistently
demonstrate that our methods significantly improve replay-
based methods. Overall, our work represents a novel attempt
to integrate tensor methods with CIL. We expect that the in-
troduction of tensor methods will provide valuable insights
and solutions to the challenges faced by the CIL community.

8

Tensor Decomposition Based Memory-Efficient Incremental Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
This work is supported in part by the Natural Science
Foundation of China (NSFC) under Grant 62203124 and
62406077. We also thank the anonymous reviewers for their
helpful comments.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Bang, J., Kim, H., Yoo, Y., Ha, J.-W., and Choi, J. Rainbow
memory: Continual learning with a memory of diverse
samples. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8218–8227,
2021.

Caccia, L., Belilovsky, E., Caccia, M., and Pineau, J. Online
learned continual compression with adaptive quantiza-
tion modules. In International conference on machine
learning, pp. 1240–1250. PMLR, 2020.

Carroll, J. D. and Chang, J.-J. Analysis of individual differ-
ences in multidimensional scaling via an n-way general-
ization of “eckart-young” decomposition. Psychometrika,
35(3):283–319, 1970.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dosovitskiy, A. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Douillard, A., Ramé, A., Couairon, G., and Cord, M. Dytox:
Transformers for continual learning with dynamic token
expansion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9285–
9295, 2022.

Gomes, H. M., Barddal, J. P., Enembreck, F., and Bifet, A. A
survey on ensemble learning for data stream classification.
ACM Computing Surveys (CSUR), 50(2):1–36, 2017.

Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M., and
Kanan, C. Remind your neural network to prevent catas-
trophic forgetting. In European conference on computer
vision, pp. 466–483. Springer, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Iscen, A., Zhang, J., Lazebnik, S., and Schmid, C. Memory-
efficient incremental learning through feature adaptation.
In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVI 16, pp. 699–715. Springer, 2020.

Isele, D. and Cosgun, A. Selective experience replay for
lifelong learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. nature, 596(7873):583–589,
2021.

Kilmer, M. E., Horesh, L., Avron, H., and Newman, E.
Tensor-tensor algebra for optimal representation and com-
pression of multiway data. Proceedings of the National
Academy of Sciences, 118(28):e2015851118, 2021.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Kolda, T. G. and Bader, B. W. Tensor decompositions and
applications. SIAM review, 51(3):455–500, 2009.

Kossaifi, J., Panagakis, Y., Anandkumar, A., and Pantic, M.
Tensorly: Tensor learning in python. Journal of Machine
Learning Research, 20(26):1–6, 2019.

Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E.,
Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S.,
Spiliopoulou, M., et al. Open challenges for data stream
mining research. ACM SIGKDD explorations newsletter,
16(1):1–10, 2014.

9

Tensor Decomposition Based Memory-Efficient Incremental Learning

Krizhevsky, A. Learning multiple layers of features from
tiny images. Master’s thesis, University of Tront, 2009.

Kudithipudi, D., Aguilar-Simon, M., Babb, J., Bazhenov,
M., Blackiston, D., Bongard, J., Brna, A. P.,
Chakravarthi Raja, S., Cheney, N., Clune, J., et al. Biolog-
ical underpinnings for lifelong learning machines. Nature
Machine Intelligence, 4(3):196–210, 2022.

Kumaran, D., Hassabis, D., and McClelland, J. L. What
learning systems do intelligent agents need? complemen-
tary learning systems theory updated. Trends in cognitive
sciences, 20(7):512–534, 2016.

Levina, E. and Bickel, P. Maximum likelihood estimation
of intrinsic dimension. Advances in neural information
processing systems, 17, 2004.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. Advances in neural information
processing systems, 30, 2017.

Luo, Z., Liu, Y., Schiele, B., and Sun, Q. Class-incremental
exemplar compression for class-incremental learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11371–11380, 2023.

Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov,
A. D., and Van De Weijer, J. Class-incremental learning:
survey and performance evaluation on image classifica-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(5):5513–5533, 2022.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

Molina, A., Schramowski, P., and Kersting, K. Pad\’e
activation units: End-to-end learning of flexible ac-
tivation functions in deep networks. arXiv preprint
arXiv:1907.06732, 2019.

Oseledets, I. V. Tensor-train decomposition. SIAM Journal
on Scientific Computing, 33(5):2295–2317, 2011.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Qiu, Y., Zhou, G., Zhao, Q., and Xie, S. Noisy tensor
completion via low-rank tensor ring. IEEE Transactions
on Neural Networks and Learning Systems, 35(1):1127–
1141, 2024.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001–2010, 2017.

Robins, A. Catastrophic forgetting in neural networks: the
role of rehearsal mechanisms. In Proceedings 1993 The
First New Zealand International Two-Stream Conference
on Artificial Neural Networks and Expert Systems, pp.
65–68. IEEE, 1993.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Toldo, M. and Ozay, M. Bring evanescent representations to
life in lifelong class incremental learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16732–16741, 2022.

Tucker, L. R. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3):279–311, 1966.

Van de Ven, G. M., Tuytelaars, T., and Tolias, A. S. Three
types of incremental learning. Nature Machine Intelli-
gence, 4(12):1185–1197, 2022.

Wang, F.-Y., Zhou, D.-W., Ye, H.-J., and Zhan, D.-C. Foster:
Feature boosting and compression for class-incremental
learning. In European conference on computer vision, pp.
398–414. Springer, 2022a.

Wang, L., Zhang, X., Yang, K., Yu, L., Li, C., Hong, L.,
Zhang, S., Li, Z., Zhong, Y., and Zhu, J. Memory re-
play with data compression for continual learning. arXiv
preprint arXiv:2202.06592, 2022b.

Wang, L., Zhang, X., Su, H., and Zhu, J. A comprehen-
sive survey of continual learning: theory, method and
application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Wang, Z., Liu, L., Duan, Y., and Tao, D. Continual learning
through retrieval and imagination. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 8594–8602, 2022c.

Yan, S., Xie, J., and He, X. Der: Dynamically expandable
representation for class incremental learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 3014–3023, 2021.

Yokota, T., Zhao, Q., and Cichocki, A. Smooth parafac
decomposition for tensor completion. IEEE Transactions
on Signal Processing, 64(20):5423–5436, 2016.

10

Tensor Decomposition Based Memory-Efficient Incremental Learning

Zhai, J.-T., Liu, X., Bagdanov, A. D., Li, K., and Cheng, M.-
M. Masked autoencoders are efficient class incremental
learners. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19104–19113, 2023.

Zhao, B., Xiao, X., Gan, G., Zhang, B., and Xia, S.-T. Main-
taining discrimination and fairness in class incremental
learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 13208–
13217, 2020.

Zhao, H., Wang, H., Fu, Y., Wu, F., and Li, X. Memory-
efficient class-incremental learning for image classifica-
tion. IEEE Transactions on Neural Networks and Learn-
ing Systems, 33(10):5966–5977, 2021.

Zhao, Q., Zhou, G., Xie, S., Zhang, L., and Cichocki,
A. Tensor ring decomposition. arXiv preprint
arXiv:1606.05535, 2016.

Zhou, D.-W., Wang, Q.-W., Ye, H.-J., and Zhan, D.-C. A
model or 603 exemplars: Towards memory-efficient class-
incremental learning. arXiv preprint arXiv:2205.13218,
2022.

Zhou, D.-W., Wang, F.-Y., Ye, H.-J., and Zhan, D.-C. Pycil:
A python toolbox for class-incremental learning, 2023a.

Zhou, D.-W., Wang, Q.-W., Qi, Z.-H., Ye, H.-J., Zhan, D.-C.,
and Liu, Z. Deep class-incremental learning: A survey.
arXiv preprint arXiv:2302.03648, 2023b.

11

Tensor Decomposition Based Memory-Efficient Incremental Learning

A. Implementation Details
A.1. Training Details

Our implementation is based on the deep learning library PyTorch (Paszke et al., 2019) and the class-incremental learning
toolbox PyCIL (Zhou et al., 2023a). Following (Yan et al., 2021; Wang et al., 2022a; Zhou et al., 2022; Luo et al., 2023), we
employ the same backbone, i.e., 18-layer ResNet (He et al., 2016) for ImageNet-100 and 32-layer ResNet for CIFAR-100,
with a fully-connected layer as the classifier across all our experiments. We utilize the Stochastic Gradient Descent (SGD)
optimizer for training with the following hyperparameters:

• Base stage: We used SGD with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 0.0005. The
training epoch for all datasets is set to 200 with a batch size of 128. The learning rate is scheduled to decay by 0.1 at
epochs 60, 120, and 170.

• Incremental stage: We maintain the training epoch at 170, with a learning rate and momentum that remain constant
concerning the base stage. Yet the learning rate decays with factor 0.1 at epochs 80 and 120, and the weight decay is
adjusted to 0.0002. The learning rate decayed one more time in epoch 150 for MEMO.

Note that all hyperparameters remained consistent for FOSTER, except that it utilized a cosine annealing strategy for
learning rate decay. Besides, for all baseline methods, we kept other hyperparameters consistent with those in PyCIL (Zhou
et al., 2023a). Regarding the parameter of the CP decomposition in the main results, Tab. 7 lists them.

A.2. The Details of Decomposition

This study presents a memory-efficient replay method based on Tensor Decomposition (Kolda & Bader, 2009). Specifically,
we intend to introduce the tensor decomposition method, factorizing the raw image (a third-order tensor) as a set of factor
matrices or tensors, and with the hyperparameter called ‘Rank’ to balance the quantity and quality of the decomposition.
Hence, we need to solve two problems, i.e., the selection of the decomposition method and the Rank. Here, we briefly
introduce several common tensor decomposition methods (taking a third-order tensor as an example).

First is the CANDECOMP/PARAFAC (CP) (Carroll & Chang, 1970), which expresses a tensor as a sum of rank-one
tensors, each represented by a column vector from corresponding factor matrices along each mode. For a third-order tensor
X ∈ RI×J××K , the CP decomposition decomposes X into a sum of R rank-one factor tensors:

X ≈
R∑

r=1

ar ◦ br ◦ cr (8)

where ar ∈ RI , br ∈ RJ , cr ∈ RK , R is the rank, and ‘◦’ is the outer product. The advantage of CP decomposition
is its low storage complexity (only requires O(dnr) parameters) and computational complexity. Tucker decomposition
(Tucker, 1966), which generalizes CP by allowing factor matrices to have different sizes, factorizes the tensor as a core
tensor multiplied by a set of factor matrices along each mode. Formally, we can express it as:

X ≈ G ×1 A×2 B×3 C (9)

where G ∈ RR1×R2×R3 is the core tensor, A ∈ RI×R1 , B ∈ RJ×R2 , C ∈ RK×R3 is the factor matrices, ‘×n’ represent
the n-mode product, R1, R2, R3 is a set of rank. Compared with CP decomposition, Tucker Decomposition provides a
more flexible way to represent the data but needs more parameters, i.e., O(dnr + rd). Tensor-Train (TT) Decomposition
(Oseledets, 2011) decomposes a tensor into a series of chained products of third-order core tensors, which requires O(dnr2)
parameters. It can be represented as:

X (i, j, k) ≈
∑

R1,R2

G1(i, r1) · G2(r1, j, r2) · G3(r2, k) (10)

where G1 ∈ RI×R1 , G2 ∈ RR1×J×R2 , G3 ∈ RR2×K is the core tensors, R1, R2 is the rank. TT decomposition is widely
used for high-dimensional data compression. The last one is the Tensor-Ring (TR) Decomposition (Zhao et al., 2016). TR is

12

Tensor Decomposition Based Memory-Efficient Incremental Learning

a generalization of the TT decomposition, which decomposes a tensor into a series of cyclic products of third-order core
tensors with the same parameter complexity as TT decomposition. Formally, it can be expressed as:

X (i, j, k) ≈
∑

R1,R2,R3

G1(r3, i, r1) · G2(r1, j, r2) · G3(r2, k, r3) (11)

where G1 ∈ RR3×I×R1 , G2 ∈ RR1×J×R2 , G3 ∈ RR2×K×R3 is the core tensor, R1, R2, R3 is the rank.

All of these methods can be used for compression, but we mainly consider two points: storage complexity and universality. It
is obvious that CP decomposition has the lowest storage complexity. About the universality, although Tucker decomposition,
TT decomposition, and TR decomposition offer greater flexibility, for low-resolution datasets like CIFAR-10/100, the size
of the components will approach the original size to maintain the accuracy of the decomposition, which is undesirable in our
case. To ensure generality, we opt to use only CP decomposition.

A.3. The Details of Memory Information

About the detailed memory information, for CIFAR-100, when R = 12, ϵ = 0.2, M = 2k, according to Eq. 3 compression
rate η ≈ 0.26, which means we saved 400 original samples and about 6100 sets of sample factors. Similarly, for ImageNet-
100, when R = 80, ϵ = 0.4, M = 2k, the compression ratio η ≈ 0.24, which means we saved 800 original samples and
about 5000 sets of sample factors

B. More Experimental Results
As an extension of replay-based methods (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Wang et al., 2022a), memory-
efficient methods (Caccia et al., 2020; Zhao et al., 2021; Wang et al., 2022b; Luo et al., 2023; Zhai et al., 2023) improve
storage efficiency by compressing the original image. Ideally, such methods should be fully adaptable to baseline methods.
However, as mentioned earlier, it is often challenging for them to balance model-friendliness with data-friendliness. For
example, CIM (Luo et al., 2023) only works well on high-resolution datasets but struggles with low-resolution ones (e.g.,
32x32 CIFAR-100). MAE-CIL (Zhai et al., 2023) heavily dependent on MAE (He et al., 2022) for the image reconstruction.
Here we provide more results to demonstrate further that our method is data-friendly and model-friendly. Tab. 7 lists the
details of the datasets.

Table 7. Details of the three datasets. R is the rank of decomposition, τ is reconstruction error threshold, and ϵ is the proportion of raw
samples between decomposition factors.

Dataset Classes Training images Test images Size R τ ϵ

CIFAR-100 100 50000 10000 32x32 12 0.07 0.2
Tiny-ImageNet 200 100000 10000 64x64 24 0.07 0.2
ImageNet-100 100 129395 5,000 224×224 80 0.08 0.4

B.1. Results on Tiny-ImageNet

We evaluate our method on three datasets with low, medium, and high resolutions, respectively. In the main text, we provide
results on CIFAR-100 and ImageNet-100 (low and high ones), and Tab. 8 presents results on Tiny-ImageNet (M = 2k,
10-tasks setting, i.e., ‘Base 0 Inc 20’). As shown, our method consistently improves baseline performance across datasets of
various resolutions.

Table 8. average accuracy (%) and last accuracy (%) of four baseline methods on Tiny-ImageNet, with or without our TDMER plugged-in.

Method iCaRL FOSET MEMO DER

Avg Last Avg Last Avg Last Avg Last

w/o ours 35.84 15.38 50.86 39.90 50.22 37.91 52.51 41.01
w ours 39.40 18.35 54.32 41.20 57.85 48.81 58.48 50.54

13

Tensor Decomposition Based Memory-Efficient Incremental Learning

B.2. Results on ImageNet-1k

Here we provide the numerical incremental performance of DER (Yan et al., 2021) on ImageNet-1k, Tab. 9 lists the
incremental and average accuracy. Note that the parameter configurations of ImageNet-1k remain the same as ImageNet-100,
except that we set the memory budget M = 20k.

Table 9. Incremental and average accuracy comparison of DER under ImageNet1000 Base0 Inc100 setting, the memory budget M = 20k.

Method Accuracy in each session (%) Avg1 2 3 4 5 6 7 8 9 Last

DER 83.16 78.64 74.21 71.44 68.13 65.80 62.90 61.21 59.84 58.30 68.36
DER w ours 83.24 77.55 74.89 72.84 71.23 68.57 66.12 64.97 63.76 62.98 70.62

B.3. Combine With Vision Transformer Based Methods

In recent years, the Vision Transformer (ViT) (Dosovitskiy, 2020) has garnered significant attention within the computer
vision community, with many approaches to Class-Incremental Learning (CIL) being based on ViT. DyTox (Douillard et al.,
2022) is a pioneering work that explores the use of ViT in CIL, which dynamically expands Transformer tokens to allocate
independent representations for each task, effectively addressing catastrophic forgetting. Here, we combine our method
with DyTox, and the results are shown in Tab. 10. As demonstrated, our method consistently improves DyTox performance
across all settings, achieving greater improvements compared to the ViT-based efficient replay method MAE-CIL (Zhai
et al., 2023).

Table 10. Results on CIFAR-100 in average accuracy (%) and last accuracy (%) on 10-, 20- and 50-task scenarios.

Method N =10 N =20 N =50

Avg Last Avg Last Avg Last

Dytox 77.10 64.53 76.57 62.44 75.45 58.76
MAE-CIL 79.12 68.40 78.76 65.22 76.95 63.12
Dytox w ours 80.21 70.56 81.41 70.68 80.51 66.80

B.4. Comparing with Other Compression Methods.

Supplementary to Tab. 6. To evaluate the effectiveness of the TD-based compression method, we processed the training set
of CIFAR-100 (Krizhevsky, 2009) with different compression methods and tested it with the original test set. Specifically,
for downsampling (Zhao et al., 2021), it can be implemented using the resize() function, “2.56” and “4” represent the
different downsampling ratio. For CIM (Luo et al., 2023), we did not take a dynamic determination of the activation region.
We directly selected a 16*16 region in the centre and down-sampled the rest, settling the downsampling ratio to 4. More
detailed results are shown in Tab. 11.

Method Upper Bound Down-Sample CIM TDMER

2.56 4.0 10 12 16 20

Accu. 72.3 44.1 33.1 66.9 66.1 67.8 69.9 70.8
Comp. 1.00 0.39 0.25 0.56 0.22 0.26 0.35 0.44

Table 11. Classification accuracy on CIFAR-100 processed with different compression methods. “Accu.” means the accuracy (%), “Comp.”
means the compressed ratio.

B.5. Reconstructed Image visualization

Fig. 4 illustrates 15 randomly selected images from the original dataset (ImageNet-100) and the reconstructed images under
different rank parameters.

14

Tensor Decomposition Based Memory-Efficient Incremental Learning

(a) Original Image.

(b) Reconstructed Image, R = 80.

(c) Reconstructed Image, R = 100.

Figure 4. ImageNet-100 image visualization. (a) Randomly selected 15 original images. (b), (c) Showing the reconstructed image at CP
rank R = 80 and R = 100, respectively.

15

