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Low signal-to-noise ratio (SNR) videos—such as those from Model
underwater sonar, ultrasound, and microscopy—pose sig-
nificant challenges for computer vision models, particularly Supervised
when paired clean imagery for denoising is unavailable. g 1 D""I\‘:Illsﬁam Detection
We present Spatiotemporal Augmentations and denoising s

in Video for Downstream Tasks (SAVeD), a novel self-
supervised method that denoises low-SNR sensor videos us-
ing only raw noisy data. By leveraging distinctions between
foreground and background motion and exaggerating ob-
Jjects with stronger motion signal, SAVeD enhances fore-
ground object visibility and reduces background and cam-
era noise without requiring clean video. SAVeD has a set
of architectural optimizations that lead to faster through-
put, training, and inference than existing deep learning
methods. We also introduce a new denoising metric, FBD,
which indicates foreground-background divergence for de-
tection datasets without requiring clean imagery. Our ap-
proach achieves state-of-the-art results for classification,
detection, tracking, and counting tasks and it does so with
fewer training resource requirements than existing deep-
learning-based denoising methods. Project page here,
Code: https://github.com/suzanne-stathatos/SAVeD.

1. Introduction

Motion may be the only way to identify objects in video
with low signal-to-noise-ratio (SNR), camouflage, or com-
plex textures that may hinder frame-by-frame object detec-
tion. The human visual system is excellent at capturing ob-
servable motion [15], a capability which has not yet been
reproduced by modern computer vision models. Learning
to exploit motion cues will improve models’ abilities to de-
tect and track objects of interest in noisy video.

In several scientific [18] and medical applications [10,
48], clean (noise-free) imagery are not available to train
image or video denoisers. One attractive element of self-
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Figure 1. SpatioTemporal Denoising improves classification,
detection, tracking, and counting in video. We denoise sonar
and ultrasound videos of fish in a river, lung scans, breast le-
sion scans, and cell microscopy to improve downstream classi-
fication, detection, tracking, and counting tasks. We propose a
self-supervised method to enhance the foreground signal of video
frames without manual annotations or clean imagery. Our method
works on grayscale videos with: non-stationary backgrounds, low
signal-to-noise-ratios, and a variable number of objects in a video.

supervised models is their ability to find the signal within
the noisy imagery itself. Self-supervision can, too, be more
robust and generalizable to various noise type [36, 45].
This work aims to enhance motion signals in low-signal-
to-noise (SNR) data with non-stationary backgrounds, such
as underwater, ultrasound, and sonar videos, to improve
downstream supervised classification, detection, and track-
ing. We address sensor, background, and noise challenges
with SAVeD, a self-supervised learning method to boost sig-
nal in noisy video. We exploit object motion to boost the
SNR across frames. Inspired by work on self-supervised
reconstruction [25, 47], self-supervised video understand-
ing [39], and anomaly detection [33, 59], we use an encoder
to encode appearance frames, a temporal bottleneck, and a
decoder network to reconstruct the denoised frame.
Our main contributions are:
* We propose SAVeD, a novel, state-of-the-art, resource-
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efficient self-supervised method to improve the signal in
low-SNR video with variable numbers of agents and non-
stationary background; details are in Sec. 3.

* We introduce a novel denoising metric, F'BD, that does
not rely on clean imagerys; it instead relies on background-
foreground appearance distribution differences, in Sec. 3.

* We propose a rich benchmark for low-SNR video denois-
ing consisting of a diverse collection of low-SNR video
domains (sonar video of fish, ultrasound video of lungs
and breast tissue, and microscopy video) and a diverse
collection of downstream visual tasks (classification, de-
tection, tracking, and counting), in Sec. 4.

2. Related Work

Several works in the image and video denoising space re-
quire paired clean/noisy imagery for training, evaluation,
or both, limiting their applicability in real-world denoising
scenarios [23, 30, 35, 60]. We, notably, do not, and we
focus this section on existing self-supervised and unsuper-
vised approaches.

Self-supervised and unsupervised image (frame-by-
frame) denoising. Several approaches use variants of
blind-spot networks or pixel-wise masking to denoise im-
agery, including frame-by-frame video. Noise2Self [2]
and Noise2Void (N2V) [26] train on noisy images with-
out requiring clean targets or paired data. N2V trains
a blind-spot network to predict masked pixels’ intensities
from neighboring pixels. Others [2, 22, 28] refrain from
masking pixels via structural blind-spot networks with half-
plane receptive-field U-Nets [41]. Jang et al. [22] use a
conditional blind-spot network and a loss that regularizes
denoised images without masking input pixels. Neigh-
bor2Neighbor [19] proposes a self-supervised loss between
two sub-sampled images. In general, noise in real-world
imagery, including acoustic imagery, has unknown or non-
stationary statistics that are spatially correlated, violating
assumptions of pixel-wise independence.

Video Denoising with Flow Estimation Some video de-
noising methods leverage videos’ spatiotemporal structure
by using optical flow for motion compensation [49, 56].
DVDnet [49] uses calculated flow-estimates to manually
warp frames, align their contents, and process them collec-
tively with a CNN. VDFlow [57] jointly learns video de-
blurring and optical flow. These approaches target video
where one component is moving (e.g. an object or the cam-
era). However, when objects’ motion affects the back-
ground’s motion, or when objects are small, we find that
leveraging optical flow enlarges objects’ motion and makes
it difficult to distinguish multiple closely-located objects.
An example is in Fig. 16 in the Supp Mat.

Video Restoration and Denoising with Spatial and Tem-
poral Consistency UDVD [44] uses a patch-wise noise-to-
noise training strategy to predict clean frames by estimat-

ing masked pixels from adjacent neighborhoods of noisy
frames. It relies on temporal redundancy across frames and
does not rely on clean imagery, making it appealing for in-
the-wild data. However, UDVD assumes gaussian noise,
while underwaters sonar and ultrasound videos have pink
and speckle noise [20, 37, 58]. UDVD’s patchwise nature
may cause the model to overwhelmingly learn background
when most of the video is spatially and temporally domi-
nated by background. UMVD [1] extends UDVD to focus
on microscopy data. It uses frame-level augmentations and
a reconstruction loss that predicts each frame from its noisy
temporal neighbors. It assumes that the signal is consistent
across frames while the noise is not, and it assumes smooth
object motion. However, like UDVD, it is also patch-wise.

AverNet [61], another self-supervised video restoration
model, similarly relies on temporal consistency to fix time-
varying unknown degradations. It uses two modules: 1.)
prompt-guided alignment to line up video frames at the
pixel level and 2.) prompt-conditioned enhancement, which
restores each frame by adapting to the image’s degredation.
The method was tested and performed well on videos with
varying levels of gaussian, poisson, and speckle noise, gaus-
sian and resizing blur, and jpeg and video compression.

LG-BPN [54], another patch-wise denoising method,
uses two main ideas: local guidance and internal consis-
tency. Local guidance preserves image structures like edges
or textures that are consistent even with noise. Internal con-
sistency assumes nearby patches in space and time share
similar structure. However, LG-BPN struggles with long-
range temporal dependency and highly-structured noise,
such as sensor artifacts. RVRT [31] is a transformer-based
model for denoising, deblurring, and super-resolution. It
processes videos frame-by-frame, but models long-term de-
pendencies (remembering what it learned from frames that
are further apart) using spatiotemporal attention. It, how-
ever, requires very large memory even for inference.
Denoising autoencoders (DAEs) were originally intro-
duced to learn robust representations. During training,
DAEs intentionally add noise to input data and learn to
reconstruct the original uncorrupted signal. mDAE [11],
a method for missing data imputation (replacing miss-
ing or unavailable data), improves performance on several
datasets. DAEs have also been applied to video tasks. Com-
pDAE [38] explicitly models noise from snapshot com-
pressive imaging measurements in low-light conditions to
improve edge detection and depth estimation. TADA [9]
uses an adversarial denoising autoencoder to remove EMG
noise from EEG time series data. Our work similarly ex-
tends the application of DAEs to spatio-temporal grayscale
video denoising; we uniquely combine temporal frames to
enhance signal quality while simultaneously addressing the
increased noise introduced by this process.

Sonar and Ultrasound Sonar and ultrasound present
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Figure 2. SAVeD, our approach for self-supervised denoising using spatiotemporal difference and identity reconstruction. I, I;_7,
and [;_o7 are video frames at times t (current frame), t-T, and t-2T. These frames are input to an appearance encoder ®. The resulting
feature representations are input to a spatiotemporal bottleneck © that compresses the 3 appearance features into a single spatiotemporal
feature representation. Our model then predicts the reconstruction target, defined in Eq. (2) in Sec. 3.2, using the reconstruction decoder W.
The loss, defined in Eq. (3), is calculated and backpropagated through all networks. The architecture is discussed in more detail in Sec. 3.3.

challenges to the computer vision community. Key char-
acteristics include pink noise, brighter pixel intensities for
non-cavity objects compared to the background, and lim-
ited distinctiveness from appearance features. Weld et al.
[55] address ultrasound sensor’s variability via geometric
analysis and augmentation. Unlike many computer vision
datasets based on signal from light intensity, ultrasound,
sonar, lidar, and radar rely on wave echoes. The “camera”
emits waves that reflect off objects and return to the sensor;
distance is measured by the echo’s return time. Sonar and
ultrasound use sound waves (mainly in liquids), while lidar
uses laser pulses and is common in air and land environ-
ments [7, 8, 14]. We focus on one sonar dataset and two
ultrasound datasets described in more detail in Sec. 4.1.

3. Method

The goal of SAVeD (Fig. 2) is to enhance objects’ signal
by isolating and emphasizing their motion in video with a
non-stationary, fluid background. Inspired by prior work
[21, 43, 47], we use an encoder-decoder framework. Our
contribution is twofold: (1) a reconstruction target based on
spatiotemporal differences across neighboring frames, and
(2) a denoising metric that does not require clean ground
truth. The method assumes that background spatiotemporal
statistics differ from those of the foreground.

3.1. Self-supervised denoising

In our benchmarks’ low-SNR videos, signals are distributed
across time; as such, we want to condense information from
multiple timesteps into a single frame to exaggerate the sig-
nal. We do this through the reconstruction target. For sim-
plicity, we choose to reconstruct the spatiotemporal com-
bination of 3 frames, expressed, in Eq. (2), from three in-
put frames, Iy, I;_p, and I;_o7. We explore a vanilla au-
toencoder, UNets with and without skip connections and
residual layers, and 3D convolutions (in Tab. 3), and find a

simple encoder-bottleneck-decoder framework optimal. We
also explore N > 3 input frames, 7' > 1, the target without
the DAE network as input to downstream tasks, and more
in our ablations in the Supplemental Tab. 4, 5, and Fig. 10.

We use an encoder-decoder architecture, seen in Fig. 2,
with a spatial encoder, @, a temporal hourglass network, O,
and a reconstruction decoder, . During training, spatial
encoders, ®, take Iy, I,_7, and I;_op as input to gener-
ate spatial feature embeddings, which are then used by the
hourglass network, O, to generate a spatiotemporal feature
embedding; this embedding passes to U to reconstruct the
learning objective S'LT.

Si.r = W(O(concat(®(I;), ®(I;_7), ®(I;_o7)))) (1)

3.2. Reconstruction target and loss

Target. We use the directionally-positive frame difference
with the current frame (PFDwTN) as our reconstruction
target. This combines the current frame with the positive
motion from the previous and next frames. Directionally-
positive motion of the next frame is defined: max(0, l;11 —
I,); of the previous frame, it is defined: max(0, Iy — I).
In both cases, motion is relative to the current frame I;.
Note that the previous frame I;_7 goes into the network,
while the future frame I, 7 does not. It is used only when
calculating the ground-truth target for the loss.

To handle frames where the background movement does
not differ significantly from the foreground objects’ motion
(i.e., stationary objects), we include the original frame, I,
in the reconstruction target. The overall target is:

St,T = max(O,It_T - It) + It + maX(O,IH_T - It) (2)

Other motion-augmenting targets that we tested are de-
fined/visualized in Sec. A.1 and Fig. 10 in the Supp. Mat.
Loss. We apply mean-squared-error loss for reconstructing



the current frame with augmented motion signatures:

ﬁrecon = ||St,T - St,T”Q (3)
3.3. Noise Removal Network

Appearance Encoder ®. We implement a 6-layer CNN.
Each layer consists of a convolutional block (Conv2D +
ReLU) followed by max pooling, progressively increasing
the number of feature channels while reducing the spatial
dimension, RUZ:W:1) —y R(35:33.512) We also save skip
connections (sequential max pools and 1x1 convolutions)
to be used by the hourglass network and decoder. This de-
sign uses a fraction of the parameters and FLOPs from an
off-the-shelf UNet, to let the network capture multi-scale
features efficiently. See Tab. 1 for efficiency comparisons.
Temporal Hourglass Network O is an hourglass network
with a bottleneck consisting of two 3x3 convolutional lay-
ers with 512 channels, each followed by ReLU activation.
We also have skip connections as feature combiners at each
level of the network, designed to merge information from
the provided appearance features’ skip connections.
Reconstruction Decoder ¢ has 6 upsampling stages, each
consisting of a ConvTranspose followed by convolutions
and ReLU activations. At each layer, the skip connections
from the corresponding encoder level are concatenated with
the upsampled features. The decoder reduces the number of
channels while increasing the sgatial dimension ending with
a single-channel output, R(35:35:512) _y RUHW.1),

More details on each of these modules is in the Supple-
mental materials Tab. 6.

3.4. Denoising Metric

Typically [19, 22, 26, 28, 44], denoising networks use Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM) [53] as evaluation metrics. PSNR is
the ratio of maximum signal power to noise power, and
SSIM measures perceived image quality. Both metrics
rely on having clean imagery for comparison. Our denois-
ing approach is unsupervised — we do not have clean im-
agery. As a result, we design a new metric, Foreground-to-
Background Divergence (F'BD), to evaluate denoised per-
formance when we have detection annotations, and we rely
on downstream performance as a proxy for denoised perfor-
mance on datasets with different task annotations.

3.4.1. Foreground-to-Background Divergence (FBD)
Metric for Unsupervised Denoising

Recall that we assume that our downstream models are su-
pervised. Therefore, for detection tasks, we can assume we
have bounding boxes or segmentation masks. For simplic-
ity, we call detection annotations “boxes”, though the same
approach works for segmentation masks.

FBD measures how well a denoising method makes
objects distinguishable from background by computing
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Figure 3. High-SNR visualization and calculations for /"B D and
PSNR on Fly-vs-Fly [13] with synthetic noise. In order to calcu-
late the PSNR of (B), a ‘clean’ image (A) is needed. (A) is not
needed for F'BD, though (C) is.

the KL-Divergence between a region containing an object
(foreground) and the same region at a different time with-
out it (background). An example is shown in Fig. 3. Unlike
PSNR, which requires a clean reference, F'BD does not,
which is critical in many real-world applications.

For each object’s box b in each frame I of each video, we
take the density of pixel intensity values: d, = I[b], where
b are the indices associated with the box. Then, we take
the density of pixel intensity values from a different frame
I of the same video at the same box location b where we
know there is no object, dj. If the distributions are separable
i.e., the distribution of object pixels is distinct from the dis-
tribution of background pixels, then the denoising method
works as intended. We measure the separability between
object and non-object via the Kullback-Leibler (KL) Diver-
gence [27]. KL divergence measures the distance between
two probability distributions P and Q as follows:

p(x
Die(PIQ) = [patos ™ har @
q(x)
To generate a metric for a data split, we average the D,
over all N bounding boxes to get

1 .
FBDpy, = > Drcr(do]ldy) Q)
beN

A visualization of this metric can be seen in Supplemen-
tary materials Fig. 12. A larger score (divergence) indicates
greater distinguishability of objects from background.

4. Experiments

We demonstrate that SAVeD can improve performance in
low-SNR videos across medical and ecological applications
(Sec. 5). We evaluate our processed images on downstream
tasks for detection, tracking, counting, and classification.

4.1. Datasets

Caltech Fish Counting 2022 (CFC22) [24] is designed for
detection, tracking, and counting fish in low-signal-to-noise



sonar video. This dataset contains 1,567 sonar videos from
seven different cameras on three rivers in Alaska and Wash-
ington. The videos are grayscale, their resolutions range
from 288x624 to 1,086x2,125, their frame rates range from
6.7 to 13.3 fps, and each video is on average 336 frames
(38s) in duration [24]. In total, there are 527,215 frames
with 8,254 unique fish, totaling 516k bounding boxes and
16.7 hours of video [24]. The dataset includes significant
domain shifts (e.g., background topology, occlusion, fish
densities, fish sizes, camera noise), requiring models to gen-
eralize effectively across conditions.

Breast Lesion Ultrasound Video Dataset [32] (BUV) is
designed for classifying (benign or malignant) and local-
izing breast lesions. The dataset contains 188 videos, of
which 113 are malignant and 75 are benign. These videos
collectively have 25,272 images, each with 1 detection; the
number of ultrasound images in each video range from 28
to 413. Each video has a complete scan of the abnormal
tissue. The dataset has a random train—test split of 150-38
videos respectively[32].

The Point-of-care Ultrasound dataset (POCUS) [5, 6]
contains convex and linear probe lung ultrasound images
and videos for classifying COVID-19 and pneumonia. It in-
cludes 247 videos and 59 images; we use only the videos.
Of these, 70 show COVID cases, 45 possible COVID, 51
bacterial pneumonia, 6 viral pneumonia, and 75 healthy
lungs. Videos are sampled at 10Hz, and frames are grouped
by video as in Born et al. [5, 6]. In total, we extract 9,184
frames with an average size of 499x463 pixels.
Fluorescence microscopy dataset [52] (Fluo) is a dataset
of fluorescence-microscopy recordings of live cells in [52].
We use the same videos as UDVD [44]: Fluo-32DL-MSC
(CTC-MSC), of mesenchymal stem cells, and Fluo-N2DH-
GOWT1 (CTC-N2DH), of GOWT1 cells. This dataset also
contains no ground-truth clean data. There are a total of 560
frames and four videos.

4.2. Training Procedure — Denoiser

We train SAVeD using the reconstruction objective in
Eq. (3). During training, we rescale CFC22 and POCUS im-
ages to 1024x512 and BUV and Fluo images to 1024x1024.
For POCUS, we use a sample rate of 10Hz, as that is what
the downstream process uses. For all other datasets, we use
all frames. Because SAVeD is self-supervised, when train-
ing the denoiser for each dataset, we train over all data. We
train for 20 epochs for CFC22, 120 epochs for POCUS,
40 epochs for BUV, and 1000 epochs for Fluo; we found
these numbers of epochs sufficient for training to converge.
These took 20 hours, 0.5 hours, 2 hours, and 2 hours, re-
spectively, on 2 RTX 4090 GPUs; this is less time than other
network-based denoising methods as seen in Tab. 1. Addi-
tional details, including hyperparameter configurations, are
in the Supplemental Materials Sec. B.2.

After training SAVeD, we generate denoised frames for
all splits. In the case of CFC22, we combine the denoised
image as two channels and the background-subtracted
frame, (I,); — I, as the last channel. For POCUS, BUV,
and Fluo, we combine the denoised image as two channels
and the median-filtered image as the last channel.

4.3. Evaluation procedure — Downstream Tasks

Given that none of our videos have clean (noise-free) ver-
sions, we use the downstream performance tasks’ metrics as
proxies for our denoised performance. We use F'BD from
Sec. 3.4 when detection annotations are available.

Denoising for Detection, Tracking, and Counting. For
CFC22, which has detection, tracking, and counting as
downstream tasks, we follow a simplified version of the de-
tection pipeline from Kay et al. [24] — we train a YOLOVS5
model for 5 epochs with the longest side of an image set
to 896 and no augmentations. We remove duplicate predic-
tions using non-maximal suppression. We use mAP5q [12]
to evaluate detection performance frame-by-frame. We use
a pretrained-frozen ByteTrack tracker and calculate MOTA
[4], HOTA [34], and IDF1 [40] scores for evaluation. More
details and hyperparameter settings are in the Supplemental
Materials Sec. B.3 and B.4. For counting, we use trajec-
tories from the tracks to create nMAE scores, defined in
Kay et al. [24], for each domain. The tracking and counting
pipelines are training-free.

For BUV, we follow the training procedure of Lin et al.
[32]; we also follow their final fine-tuning step and evalu-
ation to generate an AP5y metric. Note that we know that
breast lesions are darker (rather than brighter) spots in ul-
trasounds. As a result, we invert our reconstruction error to
take the minimum difference rather than the maximum:

iIlVStyT = min(O, It+T — It) +It +m1n(07 Ith - It) (6)

Denoising for Classification. For POCUS, we perform 5-
fold cross-validation following Born et al. [5, 6], ensuring
all frames from a video remain in the same fold. We adopt
their fine-tuning strategy and hyperparameters. For evalu-
ation, we compute per-class precision, recall, and F1, then
average across folds to obtain overall metrics.

5. Results

SAVeD boost signal of objects of interest in low signal-to-
noise video. It improves a range of downstream tasks in
a way that is computationally less resource-intensive and
yields higher performance than other denoising methods.

5.1. Denoising Performance.

SAVeD produces clear contiguous objects, where other
methods do not, shown in Fig. 4 & 5. SAVeD is also able
train to convergence in 22% of the time of the next-quickest
network-based method — more can be seen in Tab. 1.
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Figure 4. Qualitative raw-denoised pairs of SAVeD. Qualitative results for SAVeD trained on POCUS (lung health categorization), BUV
(breast lesion detection), CFC22 (fish detection, tracking, and counting), and Fluo (cell denoising).

Train-Time (hours) CFC22 POCUS BUV

N2V [26] 144 0.75 1.5
UDVD [44] 96* 12 23
UMVD [1] 91* 34 42
LG-BPN [54] 101 6 4
SAVeD (Ours) 20 0.5
Table 1. SAVeD is resource-efficient during training. Note

that UDVD and UMVD (U*VD) took 8 days to train CFC22, but
U*VD trained CFC22 only for one epoch. For all other datasets,
U*VD both trained for 10 epochs on 2 NVIDIA RTX 4090 GPUs.

gaussian

Figure 5. Qualitative denoising performance on CFC22. We
can see that the fish is easiest to spot as a bright patch after pro-
cessing with our denoiser. The green box highlights the fish loca-
tion. Each denoised image zooms in to that green bounding box.
The red arrow in the raw frame points to the fish location. Addi-
tional example visualizations are in Fig. 15 in Supp. Mat.

Fish Denoising: CFC22. SAVeD increases the contrast be-
tween fish and background (Fig. 5). As such, the distribu-
tions of pixel intensities at the same location when fish are
present and when they are not are distinct. This is shown
in Tab. 2, where SAVeD’s F'BD is significantly higher than
that of other methods.

Fluorescent Cells Denoising: Fluo. SAVeD increases
the cells’ brightness relative to the background, as seen in
Fig. 4. As is standard[44], and because the data size is
small, we only perform qualitative analysis on Fluo.

FBD (1 )
Train Val  Test
Raw 1005 652 860
CFC22++[24] 63.7 368 458

Median-filtered[16] 523 334 364
Gaussian-filtered[16] 793 507 756

N2VI[26] 227 194 180
UDVDI[44] 402 254 272
SAVeD (Ours) 1366 994 1458

Table 2. FBD Eq. (5) between P(Fish) vs. Q (Non-fish). For
all ground truth bounding boxes, P and Q are composed as fol-
lows: P — we take the set of pixels in each box from frames
with objects. Q — we extract the set of pixels from the same
box location from a frame where there is no object at that lo-
cation. Raw=raw noisy frame [;, CFC22++[24] = 3-channel
image (raw, background-subtracted, frame-to-frame difference),
SAVeD=denoised with motion augmentation, as in Sec. 3.2. We
calculate the KL-divergence metric, discussed in Sec. 3.4.1. 1 in-
dicates the metric is better the larger it is. Best values are bolded,
worst values are in italics.

5.2. Detection Performance

SAVeD outperforms other denoising methods when evalu-
ated on downstream detection tasks of CFC22 and BUV.
Fish Detection: CFC22. The detection performance
of SAVeD-processed frames is better than detection per-
formance of other processed frames for CFC22. This
is shown in Fig. 5 & 6 and Tab. 3. SAVeD improves
detection performance in areas where objects and sig-
nal are rare. SAVeD frames result in an improvement
of 43.2% and 9.4% test accuracy compared to the raw
and background-subtracted frames respectively, and a 5.1%
boost in performance compared to a three-channel image
(raw, background-subtracted, and frame-to-frame-absolute
difference) described as baseline++ in Kay et al. [24], but
hereon referred to as CFC22++.

Breast Lesion Detection: BUV. SAVeD clarifies the breast
lesion imagery, as seen in Fig. 4 and results in a boost of



CFC22 (Test) POCUS (5-fold-CV)  BUV(Test)
Method mAP50[12]1 MOTA[4]T nMAE[24]] APt AR?T FIT mAP5[I2]T
Classical
Baseline 73.8 374 54.8 82.6 820 804 46.4
Median-Filter[16] 73.1 37.8 53.0 86.2 855 853 52.4
Mean-Filter[16] 76.4 443 414 84.0 847 832 52.6
Gaussian-Filter[ 16] 74.9 27.6 56.8 84.1 843 833 46.5
Deep-Learning-Based Image/Video Denoising/Restoration
N2V[26] 67.2 34.2 34.3 83.7 827 824 46.6
UDVD[44] 67.2 28.1 41.9 837 846 834 49.9
UMVDI1] 70.4 38.2 34.0 80.4 826 807 539
LG-BPN[54] 72.6 41.9 342 319 343 215 49.7
RVRT[31] 62.9 29.3 43.8 81.8 798 787 26.0
AverNet[61] 65.4 30.3 35.7 83.7 834 826 47.0
DAEs
AE 67.8 343 41.7 823 847 821 46.9
UNet [42] 739 34.1 56.3 837 846 834 51.0
UNet3D[42] 66.9 32.4 35.4 83.5 80.1 80.6 47.6
SAVeD (Ours) 717.6 47.4 339 875 86.7 86.3 59.5

Table 3. Downstream results. SAVeD does well across all datasets and downstream tasks. Best performance is bolded. Baseline
refers to raw for medical ultrasound (POCUS [5, 6] and BUV [32]) and the strengthened baseline CFC22++[24] for fish sonar (CFC22
[24]. AP=average precision, AR=average recall, F1=average F1, mAPso=mean average precision of detections at IOU threshold 0.5,
MOTA=Multi-Object Tracking Accuracy[4], nMAE=normalized mean absolute counting error[24]. More tracking results are in Fig. 7.
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Figure 6. Denoising improves detections where signal is infre-
quent. (a) the ground truth fish patch locations (from bounding
box labels) normalized over the dataset; most fish pass by in the
top region, fish crossings below are infrequent, thus there is more
training signal in the top part of the videos. (b&c) patchwise de-
tection performance of CFC22++[24] and SAVeD, respectively, on
the CFC22 dataset. Heatmaps indicate mAPs¢ performance over
all frames of the test set at pixel patches. The more red a patch
is, the higher the mAPs( of that patch; the more blue the patch is,
the lower the mAPs5. (d) the difference, SAVeD - CFC22++, with
solid ellipses at regions of heightened performance and dashed el-
lipses around areas of lowered performance. Denoising improves
detections in areas where signal is infrequent. On the other hand,
detection performance declines in areas where signal is abundant.
Additional patch maps can be seen in Fig. 9 in the Supp Mat.

over 11% in breast lesion detection mAPj5( scores compared
to the next best method (UMVD). More is in Tab. 3.

MOTA Score IDF1 Score HOTA Score
Y 0.9 * 0.70 S
0.8 L4 ¢ 0.65 @
0.8 0.60
0.7
0.55
o 207 <
051 0.45 Y
* 0.6 &
0.4 u 0401 oy o
L 9 05{ © 035 @
03l @ [ [
val test val test val test
@ Raw [l CFC22++ Y Ours ‘ Perfect Denoiser val @ test

Figure 7. Quantitative tracking improvements. CFC22++
consists of the three-channel (background-subtracted, absolute-
difference, raw) frames. The “Perfect Denoiser” refers to frames
that have black backgrounds and white masks at the bounding box
locations. Denoising results in higher MOTA scores for val and
test; SAVeD boosts IDF1 and HOTA scores in test moreso than in
val.

5.3. Tracking and Counting Performance

Fish Tracking and Counting: CFC22. Compared to
classical and other DNN methods, SAVeD frames yield
higher tracking and counting performance (Fig. 7, Tab. 3).
Stronger fish—background separation reduces false nega-
tives and increases true positives in detections, subsequently
improving tracker and count accuracy.

5.4. Categorization Performance

Lung Health Categorization: POCUS. Images processed
through SAVeD yield the best 5-fold cross-validation im-
age classification score compared to classical and network-
based denoising methods on lung categorization, shown in
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Figure 8. Covid Precision-Recall across denoising methods.
SAVeD has the highest average precision and average recall across
denoising methods. Additional class-wise performance compar-
isons are in Fig. 11 in the Supplementary materials.

Tab. 3. Fig. 8 shows the precision-recall for the denoising
methods on the Covid class — SAVeD has the highest accu-
racy for Covid classification. Additional per-class perfor-
mance analysis is in Sec. A.2 of the Supp. mat.

5.5. Ablations

We ablate the reconstruction target and the denoising au-
toencoder to find their relative importance.
Reconstruction Target. PFDwT1 is the most effective re-
construction target for increasing the accuracy of down-
stream tasks. We compared PFDwT1 to PFDwWT2, o (the
standard deviation over input frames), ¥ — 57 (the sum of 5
consecutive frames - 5*mean frame), and ¥ — 37 (the sum
of 3 consecutive frames - 3*mean frame). The results are
shown in Tab. 4 and Tab. 5d in the Supplementary material.
Autoencoder vs. no Autoencoder. Using a DAE improves
downstream detection performance over using the recon-
struction targets alone for all targets. More detail is in Tab. 4
and Tab. 5d in the Supplementary material.

Architectures Our small architecture has better perfor-
mance on downstream tasks compared to larger architec-
tures. Comparisons of SAVeD with a vanilla Autoencoder,
a UNet[42], and a UNet[42] with 3D convolutional kernels
are shown in Tab. 3. For additional details and architectures,
see Tab. 5 in the Supp. mat. The vanilla Autoencoder’s ar-
chitecture is also explicitly defined in Tab. 7.

6. Discussion and Conclusion

While SAVeD is a clear improvement, we recognize that
there are further improvements to be made and research di-
rections to be explored.

Limitations. As the spatiotemporal component of our
method relies an object’s location to be overlapping in se-
quential frames, very fast moving objects may decrease per-
formance on downstream tasks using SAVeD. On the other

hand, if objects are stationary, SAVeD does not improve per-
formance, though it also should not be detrimental.

We recognize that combining noisy frames adds to the
noise of the overall signal rather than removing it. Work
[3] has shown that denoising methods capture clean data’s
underlying structure. Denoising autoencoders purposefully
corrupt training data by adding noise or masking some of
the input values [17, 51]. We rely on the autoencoder to re-
move noise implicitly by focusing on the largest reconstruc-
tion areas to minimize loss. This assumes that the objects
of interest are larger than the noise signature. Indeed, we
found that detection performance occasionally dipped for
very small (e.g. < 10 pixel) objects, when this assumption
is not held.

We observe a change in frame noise when there is an
object of interest vs. when there is no object of interest:
namely, when there is no object of interest, the whole frame
is bright, vs. when an object is in the frame, the object
pops and the background becomes dim: ideally, the back-
ground would stay dim regardless. An approach to handle
this would be adding a component to the loss to focus on
background consistency.

Despite these challenges, SAVeD-processed frames out-
perform other denoising methods on downstream tasks
while requiring fewer training resources.

Future work. We are interested in training end-to-end:
combining the representations from the denoiser and the
downstream tasks. We are also interested in exploring how
to broaden and emphasize the motion signature. Finally,
we recognize the shared qualities of each of these datasets
and also understand that self-supervised methods are data-
hungry [29, 46]. As such, one could explore the perfor-
mance benefit of training on all datasets collectively to learn
general low-SNR video properties.

Conclusion. We present SAVeD, a self-supervised denois-
ing method that improves downstream performance in low-
SNR videos without requiring clean data. Our approach is
general and applicable to a range of low-SNR video tasks
and domains. It is based on the confirmed intuition that
while there is motion in the foreground and background,
motion signatures between foreground and background are
distinct, and a simple model can separate them to improve
the SNR. We also introduce a new metric, F'BD, to cap-
ture this relationship. SAVeD enhances object motion while
leveraging autoencoders’ denoising capabilities to boost
downstream performance efficiently.
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SAVeD: Learning to Denoise Low-SNR Video for Improved Downstream
Performance

Supplementary Material

We present additional experimental results as ablations
Sec. (A), additional implementation details (Sec. B), and
additional visualizations (Sec. C).

Benefits and risks of this technology. Improving clas-
sification, tracking, and counting in sonar and ultrasound
videos is useful across medical, ecological, and other fields.
Counting fish with sonar allows for a non-invasive way to
measure population size, which can then be used for con-
servation and ecological efforts, for understanding effects
of climate change, and for monitoring human fishing be-
havior for economical reasons. Improving classification in
ultrasound videos, too, paves a path for more automated di-
agnosis. Risks, though, are inherent in both tracking ap-
plications and applications of sensitive data. Care must be
taken when using these models, so that they are not used
blindly without human intervention to make decisions.

A. Additional Experimental Results
A.1. Additional CFC22 Ablation Results

As in the main paper, we evaluate CFC22 on the detec-
tion val/test splits, and show results using mAPs5( across the
dataset splits. We look at the effect of bottleneck size in the
hourglass network, traditional augmentations, input resolu-
tion size, and reconstruction targets on how the trained de-
noiser affects downstream detection performance. We also
look at the effect of downstream task performance when us-
ing the reconstruction target alone (.S;, ) compared with us-
ing the learned reconstruction (S’t,T).

Bottlenecks size. For all experiments on CFC22, we use
a default input size of 1024hx512w, reconstruction target
as PFDwT1, mean-squared error (MSE) loss, and we train
the denoiser for 20 epochs. Here the hourglass network re-
mains 2 layers, with the number of input channels as 512,
but the number of channels in the middle layer changes. We
notice that for training, larger (less-restrictive) bottlenecks
yield higher performance. For val and test, though, bottle-
neck sizes over 64 improve performance, but the differences
between 128 and 512 is worse for val and negligible for test.
Results can be seen in Tab. 5a.

Resolution size. We vary the input resolution size to
train the denoiser and notice higher performance for train
and test when higher resolutions are used, seen in Tab. 5b.
We hypothesized that higher resolution size would make
the denoiser more stable for downstream detections because
higher resolution sizes would mean that removing entire
fish (i.e. small fish) would be less probable. It is interesting

to note that the highest resolution size 2048x1024 for val led
to lower detection performance than that of resolution size
1024x512. We note, though, that higher resolutions lead to
smaller batch sizes and longer training time.

Traditional Augmentations. We apply salt-and-pepper
noise, gaussian-blur, motion-blur, brightness, and erasing
from the kornia.Augmentations library. We apply these
augmentations when training the denoiser. We do not ap-
ply these augmentations when training downstream tasks.
We found that no traditional augmentations to train the de-
noiser, though, improve downstream performance. Results
can be seen in Tab. 5c.

Reconstruction Targets. We experimented with a hand-
ful of reconstruction targets:

Frame difference—such as absolute difference (S)q =
|I; — Ity7]|) or raw difference (Sy = Iy — I+ 7)—has been
used in other self-supervised works as a spatiotemporal re-
construction target [47]. This works well in video where
the movement in the background is less than the foreground
movement. For our experiments, we use absolute difference
as frame difference.

Raw frame (1) predicts the input (identity) frame alone.

Background subtraction (bs) We approximate the back-
ground frame, I,,, as the mean aggregate of video over time.
This is based on the approximation that objects of interest
are sparse in terms of space and time. The mean frame is
subtracted from every frame in the video (Sy = (I,,); — I,).

Positive  Frame Difference with current frame
(PFDWTN). We discuss this in more detail in the main
paper, Sec. 3.2. We experimented with T=2 (PFDwT?2) and
T=1 (PFDwT1), ultimately selecting T=1.

Standard Deviation across all frames (o) is taken across
all of the frames loaded in a window of continuous frames,
o(Ii—n : Ity n) where 2N+1 is the size of the window. We
experimented with N=1 and N=2.

Sum frames minus N*background (¥ — N I,) sums all
of the frames in a window size N and takes the positive
difference N * I,, where I, is the mean frame of all frames
in a video: max(0, (ZtT I;)— N1,). We experimented with
window sizes N=3 and N=5.

Visualizations of all of these can be seen in Fig. 10

A.2. POCUS Per-Class Performance

SAVeD performs well across all classes (COVID, Pneumo-
nia, and Regular) in the POCUS dataset (Fig. 11). For Pneu-
monia, precision levels across all methods were lower than



mAP50

Signal Modification AE Train Val Test
Signal Modification w/o Denoising Network

Raw (1) X 79.6 69.6 542
o B X 798 694 725
¥ —51 X 783 676 717
PFDwT1 X 802 669 682
PFDwT?2 X 812 68.1 630

Signal Modification w/ Denoising Network

Raw (1) v/ 815 684 734
o v/ 82 700 735
> —51 v/ 798 681 717
PFDwT1 v/ 835 706 77.6
PFDwT2 v/ 82 685 714

Table 4. Effect of Different Motion Enhancements with and
without SAVeD’s Autoencoder Network (AE) on CFC22. All
detectors that leverage the AE have superior performance to those
that use only the motion-enhanced target on the test set. The mod-
ified signal is used as the reconstruction target for the denoising
autencoder when it is present, and is the input signal for the down-
stream task when the autoencoder is not used. All results are on
CNNs with skip connections with resolution 1024 and bottleneck
512.

for other classes. Pneumonia false negatives are more of-
ten categorized as Regular than they are Covid across all
denoising methods.

B. Implementation Details
B.1. SAVeD Architecture Details

Our method uses a series of convolution blocks with skip
connections as an encoder ®, a bottleneck (hourglass net-
work) ©, and a reconstruction decoder W. Architectural de-
tails about each of these are shown in Tab. 6. For more
implementation details, the code is publicly available here.

B.2. SAVeD Hyperparameter Comparisons

The hyperparameters for our method are in Tab. 8. All DAE
models are trained until the training loss converges on 2
NVIDIA RTX 4090 GPUs.

B.3. CFC22 Detector Details

We fine-tune a YoloV5-small model pretrained on COCO
using the default training settings from Ultralytics over 5
epochs with a batch size of 16. As in Kay et al. [24],
we resize all inputs to have 896 pixels as their longest
side; the learning rate is 0.0025. We select the best model
checkpoint based on validation mAP5,. We train on two
NVIDIA RTX A6000 GPUs. We recognize that the num-
ber of epochs (5) differs from the number of epochs in the

original paper (150), and that is intentional. The reasoning
is two-fold: 1.) CFC22++ Val and Test Performance after 5
epochs are < 1% lower than Val and Test Performance af-
ter 150 epochs, therefore our denoised improvement beats
the CFC22++ method also after CFC22++ is trained for 150
epochs while the detector model based on SAVeD frames is
trained for 5 epochs; 2.) We wanted to show that a very sim-
ple detector could be used as a result of passing in denoised
frames.

B.4. CFC22 Tracker Details

We use a pretrained ByteTrack tracker with hyperparam-
eters selected as the optimal hyperparameters for tracking
performance on the validation set. Max age, the time un-
til a missing or occluded object is assigned a new id, is 20;
Min hits, the minimum number of frames with a track for
the track to be considered valid, is 11; IOU threshold, the
iou required for an object to be considered the same in the
subsequent frame, is 0.01.

C. Visualizations

Additional visualizations of the denoising performance on
fish in sonar (CFC22[24]) can be seen in Fig. 15).


https://github.com/suzanne-stathatos/SAVeD

Backgroundsublracted (BS)
Tajector

Our.desoised (Den)
Iniceto

ADen-BS)
e APSH

BS patchvisc APSO Den patchwise AP0 i

— _— —

Distrbution of APSO improvements by clip (isin)

o

GT Density BS mAPSO DenmAPSO AmApso

*Distibution of APS0 delas (Den- B by lp (raim)

(a) One clip from the CFC22-train river. You can can see the trajectory
and patchwise detection performance improves after denoising. Overall, the
biggest denoising gains appear to be at the edges of the cone, where fish are
known to be small (entering/exiting) but moving.

Our-denoised (Den) A(Den - BS)

Den patchwise APS) stchwise APSO

e o

Distribution of APSO improvermens by clp (val)

#elips

BSmAPS) “penmapso 7 amapso "

" Distibution of AP30 delas (Den - BS) by clip () U G ey

(b) One clip from the CFC22-val river. The denoising gain is smaller and
therefore more difficult to see here.

Background-sublracted (BS) . N Our-denoised (De) 3 A(Den-BS)
‘Trajcctory BS patchwise APS0 Trsecto Den patchwise AP0 patchwise APSO

| — ]

Distibution of APS0 improvements by clp (tet)

”' 6 1 ¢ W ¢ w0 w 1w
e W e Y |
GT Density BSmAPSO. DenmAPSO

Distribuidi of APS0 delias (Ben - BS) by clip ffest)

(c) One clip from the CFC22-test river.

Figure 9. Denoising-improved detection leads to better tracks. On the single-clip trajectory plots, orange dots indicate false negatives,
green dots indicate true positives, red indicates false positives.
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Figure 10. Reconstruction Targets. The window T=5 set of frames is shown with each reconstruction target we experimented with on
CFC22. While ¥ — NI frames appear strong in this example, we found that empirically they struggled to capture fish that did not move
significantly between frames.



Train Val Testl Train Val Test1

Bottleneck mAPs50 mAPs5 mAP5o Resolution mAP5o mAPs0 mAPs50
64 79.1 68.6 71.6 512 81.3 69.2 71.9
128 80.0 69.2 72.6 1024 79.1 68.6 71.6
512 81.6 69.4 72.6 2048 80.1 68.1 72.1
(a) Bottleneck size. A larger bottleneck outperforms overly-constricted (b) Resolution size. There is no clear optimal - in terms of train and val,
networks. All results are from CNNs with no skip connections and non- the smallest resolution size is the best; however, in terms of test, the largest
residual blocks. resolution size is optimal. Note that higher resolutions also lead to longer

training times.

Train Val Testl Train Val Test1
Augmentations mAPs5q mAPs5¢ mAP5¢ Target mAPs5¢ mAPs5q mAPs5o
saltpepper(, o5 81.2 68.5 72.2 Raw* 81.5 68.4 73.4
saltpepper, 5 83.7 69.7 75.1 Absolute Difference |I; — I¢41] 81.6 69.2 73.5
saltpepper, -5 81.4 69.2 72.8 Sigma(N=5) 78.8 69.2 72.8
gaussianblurg - 82.1 69.9 74.8 Ser1* 82.7 70.0 74.0
gaussianblur; 81.3 68.9 75.0 St Too* 82.8 70.6 73.0
gaussianblur, - 83.5 68.4 75.6 S’t)T—2 + 8y ey — I,* 83.7 692 74.6
motionblurg 25 83.5 68.3 76.5 » T 51’ T 803 68.3 69.0
motionblurg 5 81.2 68.2 74.7 S _ 5T 80.7 68.7 72.0
motionblurg 75 83.7 69.6 73.9
brightness, 55 83.7 69.8 4.7 (d) Reconstruction targets. Reconstruction targets including both the
Eﬁggtﬂzz?ﬁ g%é 23(7) ;gg original frame and the next or previous frames do better than reconstruc-
era‘feo'% 0.75 820 637 6.0 tion targets incorporating information from just one. Reconstruction targets
eraseo. s 81.1 68.7 75.6 with the current frame in have *. All results are on CNNs with resolution
eraseq. 75 77.4 59.3 62.4 1024 and bottleneck 512 with no skip connection.
No augmentations 83.5 70.6 77.6

(c) Augmentations. Augmentations appear to degrade performace. All
augmentation experiments are named as augmentationyropabitity- All
networks are CNNs with skip connections with resolution 1024 and bottle-

neck 512.

Train Val Test1
Architectures mAP5o mAP5o mAPs5¢
Autoencoder 82.6 68.9 67.8
CNN-fine 82.7 69.1 74.0
CNN-SKIP 83.5 70.6 71.6
CNN-residual 83.5 69.2 73.1
CNN-resnet-block 79.8 70.0 73.6
UNet-downscaled 82.1 69.1 75.8
UNet 81.2 70.0 73.9
UNet3D 79.0 67.0 66.9

(e) Denoising backbone architecture. All experiments have our target
from equation 2 (é’tyTzl) as their target. Networks are ordered from small-
est (in terms of parameters and TFLOPs) to largest — it is interesting to note
that as model size increases, performance does not necessarily increase. We
see the top performer is the CNN-SKIP architecture.

Table 5. Additional denoise-detection ablations on CFC22. All values are generated via the detection stage of our pipeline. All
reconstruction targets are sized 1024 x 512 unless otherwise stated. We report the mAPsq of the combined background-subtracted and
target reconstruction frame unless otherwise noted. Default settings are marked in ' gray .



Encoder

Type Input shape Output shape
Conv_block (1,1024,512) (16, 1024, 512)
Pooling (16,1024, 512) (16,512, 256)
Skip (16,1024, 512) (16,512, 256)
Conv _block (16,512, 256) (32,512, 256)
Pooling (32,512, 256) (32, 256, 128)
Skip (32,512, 256) (32, 256, 128)
Conv_block (32, 256, 128) (64, 156, 128)
Pooling (64, 156, 128) (64, 128, 64)
Skip (64, 156, 128) (64, 128, 64)
Conv_block (64, 128, 64) (128, 128, 64)
Pooling (128, 128, 64) (128, 64, 32)
Skip (128, 128, 64) (128, 64, 32)
Conv_block (128, 64, 32) (256, 64, 32)
Pooling (256, 64, 32) (256, 32, 16)
Skip (256, 64, 32) (256, 32, 16)
Conv _block (256, 32, 16) (512, 32, 16)
Pooling (512,32, 16) (512, 16, 8)
Skip (512,32, 16) (512, 16, 8)
Decoder
Type Input shape Output shape
Upsample_block (512, 16, 8) (256, 32, 16)
Skip_connect (256, 32, 16) (768, 32, 16)
Conv _block (768, 32, 16) (512, 32, 16)
Upsample_block (512, 32, 16) (256, 64, 32)
Skip_connect (256, 64, 32) (512, 64, 32)
Conv _block (512, 64, 32) (256, 64, 32)
Upsample_block (256, 64, 32) (128, 128, 64)

Skip_connect
Conv_block
Upsample_block
Skip_connect
Conv_block
Upsample_block
Skip_connect
Conv_block
Upsample_block

(128, 128, 64)
(256, 128, 64)
(128, 128, 64)
(64, 256, 128)
(128, 256, 128)
(64, 256, 128)
(32, 512, 256)
(64, 512, 256)
(32, 512, 256)

(256, 128, 64)
(128, 128, 64)
(64, 256, 128)
(128, 256, 128)
(64, 256, 128)
(32, 512, 256)
(64, 512, 256)
(32, 512, 256)
(1, 1025, 512)

Table 6. Architecture details of the encoder, bottleneck, and decoder of SAVeD. “Conv_block” is a basic convolutional block composed
of 3x3 convolution with padding side of 1 and ReLU activation. “Skip” is a skip connection (stored to be input into the decoder) composed
by maxpooling and then running a 1x1 convolution. “Upsample_block™ is a 2D ConvTranspose with a 2x2 kernel and a stride of 2 and a
ReLU activation. “Skip_connect” is the concatenation of the output from Upsample_block+Conv_block and the “Skip” corresponding to
the same layer saved by the encoder. Note that this architecture is on input size of 1024x512.



Encoder

Type Input shape Output shape
Conv_block (3,1024,512) (16, 1024, 512)
Pooling (16,1024, 512) (16,512, 256)
Conv_block (16,512, 256) (32,512, 256)
Pooling (32, 512, 256) (32, 256, 128)
Conv_block (32, 256, 128) (64, 156, 128)
Pooling (64, 156, 128) (64, 128, 64)
Conv_block (64, 128, 64) (128, 128, 64)
Pooling (128, 128, 64) (128, 64, 32)
Conv_block (128, 64, 32) (256, 64, 32)
Pooling (256, 64, 32) (256, 32, 16)
Conv_block (256, 32, 16) (512, 32, 16)
Pooling (512, 32, 16) (512,16, 8)
Decoder
Type Input shape Output shape
Bilinear_upsample_block (512, 16, 8) (512, 32, 16)
Conv_block (512, 32, 16) (256, 32, 16)
Bilinear_upsample_block (256, 32, 16) (256, 64, 32)
Conv_block (256, 64, 32) (128, 64, 32)
Bilinear_upsample_block (128, 64, 32) (128, 128, 64)
Conv_block (128, 128, 64) (64, 128, 64)
Bilinear_upsample_block (64, 128, 64) (64, 256, 128)

Conv_block
Bilinear_upsample_block
Conv_block
Bilinear_upsample_block
Conv_block

(64, 256, 128)
(32, 256, 128)
(32, 512, 256)
(16, 512, 256)
(16, 1024, 512)

(32, 256, 128)
(32, 512, 256)
(16, 512, 256)
(16, 1024, 512)
(1, 1024, 512)

Table 7. Architecture details of the vanilla autoencoder. “Conv_block”™ is a basic convolutional block composed of 3x3 convolution with
padding side of 1 and ReLU activation. “Bilinear_upsample_block™ is a Bilinear Upsample kernel with a scale factor of 2 and align corners
set to True. Note that this architecture is on input size of 1024x512.

Dataset ~ Resolution Target Epochs Batchsize Learning Rate Optimizer Scheduler

CFC22  (1024,512) St r=1 20 16 0.0005 AdamW  Plateau f=0.1 pat=2
POCUS  (1024,512) St r=1 120 8 0.0005 AdamW  Step ss=2, v = 0.05
BUV (1024,1024)  inverse(S; r=1) 40 8 0.0005 AdamW  Step ss=2, v = 0.05
Fluo (1024,1024) I 1000 8 0.0005 AdamW  Step ss=2, v = 0.05

Table 8. SAVeD Hyperparameters. Note “inverse(S,r—1)”"= min(0, [y — Iy—7) + I; + min(0, I; — I;4r). f=Factor, pat=Patience,
ss=Step size.
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Figure 11. SAVeD (starred) has high precision and high recall
across all POCUS classes.
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Figure 12. Visualization of F'BD. Both images on the left are
noisy images. The image on the far left has a fish located in the red
bounding box. The image in the middle is a frame from the same
video clip but with no fish in the red box. The histogram compares
the pixel intensity values of the pixels within the bounding boxes.
We can see these distributions, while overlapping, are distinct.

b.) Model Performance: Val vs. Test

a) Denoising reduces Error Rates
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Figure 13. Denoising lowers detections error-rates by improv-
ing precision and recall (a) shows baseline detection error (1-
mAPs50) compared to our detection error after our denoising pre-
processing step. For all splits train, val, and test, denoising results
in lower error. (b) compares error rates from the validation set (x-
axis) to error rates from the test set (y-axis) to see how denoising
impacts each split. There is a 5.8% reduction in error in the val set
and a 14.5% reduction in error on the test set. (c) Shows inverted
Precision-Recall plots for each CFC22 dataset split — precision and
recall both improve for all splits.
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Figure 14. Breakdown of track performance improvements for
CFC22 val and test. We can see test improves far more than val,
as is standard for the CFC22 dataset.
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Figure 15. Additional visualizations of denoising methods on
CFC22
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Figure 16. RAFT [50] on CFC22 imagery and bounding box
masks. On the left, we can see the optical flow signal does not find
the fish. When looking at the motion from the bounding-box mask
of the fish (making the background movement stationary), the op-
tical flow signal area is far greater than the actual area of the fish.
On the right are frames (with fish and corresponding bounding-
box masks), when there are 12 fish in the frame at once. Again,
optical flow’s signal is weak with the fish movement compared to
the background. With the mask movement, optical flow signals
cluster in groups of masked fish, but individuals are difficult to
distinguish.
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