
Under review as a conference paper at ICLR 2023

TOWARDS A UNIFIED VIEW OF SPARSE FEED-
FORWARD NETWORK IN TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Large and sparse feed-forward networks (S-FFN) such as Mixture-of-Experts
(MoE) have demonstrated to be an efficient approach for scaling up Transformers
model size for pretraining. By only activating part of the FFN parameters con-
ditioning on input, S-FFN improves generalization performance while keeping
training and inference cost (in FLOPs) fixed. A growing body of work has been
focusing on improving the S-FFN design, including routing and load balancing
methods in the context of MoEs. Previously, another line of work motivates from
a neural memory perspective and develops sparse neural memory techniques for
S-FFN. This work merges the two seemingly different lines of work. We present a
unified framework to categorize design choices along two axes: memory block size
and memory block selection method. Using this unified framework, we compare
several S-FFN architectures for language modeling and provide insights into their
relative efficacy and efficiency. We show that a smaller memory block size leads
to lower perplexity. Additionally, we find that selection through a gate, in general,
improves the perplexity-FLOPs trade-off but has worse perplexity than selection
using hidden states without a gate. Based our analysis, we propose a new selection
method — Avg-K that selects blocks through their mean aggregated hidden states.
Not only outperforming all MoE models considered, Avg-K is also the first to
performs well without load balancing while Switch Transformer may degenerate.

1 INTRODUCTION

Large-scale pretrained language models (LLMs) achieve remarkable performance and generalization
ability for NLP tasks (Radford & Narasimhan, 2018; Devlin et al., 2019; Liu et al., 2019; Radford
et al., 2019; Brown et al., 2020; Raffel et al., 2020; Chowdhery et al., 2022). Scaling up the model size
(the number of parameters) has been shown as a reliable recipe for better generalization, unlocking
new capabilities, while the performance has not shown signs of plateauing (Kaplan et al., 2020;
Zhang et al., 2022a; Chowdhery et al., 2022; Hoffmann et al., 2022; Wei et al., 2022). However, the
computational resources required to train larger language models are formidable, calling for more
efficient training and inference solutions of LLMs (Borgeaud et al., 2022; Schwartz et al., 2020; Tay
et al., 2020).

One promising direction is sparse scaling which increases the number of parameters while keeping
the training and inference cost (in FLOPs) fixed. Recent work focuses on scaling up a transformer’s
feed-forward network (FFN) with sparsely activated parameters, resulting in a scaled and sparse FFN
(S-FFN). There have been two major approaches to achieve S-FFN. One treats S-FFN as a neural
memory (Sukhbaatar et al., 2015a) where a sparse memory retrieves and activates only parts of the
memory cells (Lample et al., 2019). The other adopts Mixture-of-Expert Network (MoE) (Lepikhin
et al., 2021; Fedus et al., 2021; Du et al., 2021; Roller et al., 2021; Lewis et al., 2021; Chi et al.,
2022) that replaces a single FFN module with multiple equal-sized ones (called “experts”) and only
activates a few among many experts for a particular input.

While both memory and MoE models achieve S-FFN, they have been considered two completely
different approaches. We aim to draw the connections between these two classes of S-FFN: What
critical design choices do they have in common? Which design choices are essential for their
modeling capability and computation efficiency? Can the effective ingredients of each method be
transferred and combined to improve performance further?
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Figure 1: Sparse Mixture-of-Expert and Sparse Neural Memory as two different methods.

In order to answer these questions, we start from the neural memory view of FFN (Sukhbaatar et al.,
2015a) (§2.1) and reduce all S-FFN to the same mathematical form (§3.1). Then, we characterize
various S-FFN methods along two dimensions — memory block size (e.g. expert size) and memory
block selection method (e.g. gating) (§3.2).

Using this framework, we made the following contributions:

• We study a wide range of memory block sizes besides common block size in MoEs (Fedus
et al., 2022) and show that, compared with a larger one, a smaller block size can keep
improving the perplexity with little incurred extra FLOPs (§5.1 §5.2), leading to better
perplexity/computation trade-offs.

• We conduct a systematic exploration of block selection methods to quantify their relative
efficacy and efficiency (§5.2). Specifically, we find that the selection method through
a gating function, in general, improves the FLOPs-Perplexity trade-off. However, the
parameterization of the current gating function has worse perplexity than a selection method
that uses the FFN hidden states.

• Drawing on insights above, we propose a simple gate for S-FFN— Avg-K (§6), which
efficiently selects memory blocks based on the mean aggregated hidden states of each
block. With 1% additional FLOPs, Avg-K achieves 2.16 lower perplexity than a vanilla
transformer (16.96), outperforming Switch Transformer (16.45). Avg-K is the first MoE
model performs well without load balancing constraint, as suggested by previous work
(Shazeer et al., 2017; Eigen et al., 2014).

2 BACKGROUND

2.1 FEED-FORWARD NETWORK

A transformer layer (Vaswani et al., 2017) consists of a self-attention block and a Feed-Forward
Network (FFN) block. FFN receives an input vector x 2 Rd from the self-attention block, multiplies
it with K 2 Rdm⇥d, applies an non-linear function to obtain the hidden states m 2 Rdm and applies
another affine transformation V 2 Rdm⇥d to produce a d-dimensional output (Eq. 1).

FFN(x) = f(x ·K>) ·V = m ·V 2 Rd (Multi-Layer Perceptron view) (1)

FFN(x) =
dm�1X

i=0

f(x · ki) · vi =
dm�1X

i=0

mi · vi 2 Rd (Neural Memory view) (2)

FFN is a multi-layer perceptron, but it can also be described as a neural memory (Sukhbaatar et al.,
2015b; 2019; Geva et al., 2021)(Eq. 2). In this view, FFN consists of dm key-value pairs, called
memory cells. Each key is represented by a d-dimensional ki 2 Rd, and together form the key table;
likewise, a value table V 2 Rdm⇥d. When the memory receives the query input x 2 Rd, it multiplies
x with every ki; followed by the non-linear function, it produces memory coefficient mi = f(x · ki)
for the i-th memory cell. Finally, the output of FFN is the sum of its values vi weighted by their
corresponding memory coefficient mi. Conventionally, the size of FFN — dm — is set to be 4 · d.
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2.2 SCALING UP FFN
As discussed in §1, scaling up the number of parameters in FFN serves as a lever to improve
transformer performance. Since a conventional FFN already takes about two-thirds of a transformer
layer’s parameters (Geva et al., 2021), scaling up FFN will greatly affect the parameter size of
a transformer model. However, one could sparsely activate the parameter to control the required
compute. In this section, we will review two lines of work to achieve a scaled and sparse FFN
(S-FFN). One has a mixture-of-expert model activate a few experts (§2.2.1), and the other specifies a
memory model (§2.2.2).

2.2.1 MIXTURE OF EXPERTS (MOE)

Mixture of experts (MoE; Jacobs et al. (1991)) consists of a set of expert models {fi(x)}B�1
i=0 and a

gating function g : Rd ! RB to estimates the importance of each expert. Finally, the output is the
sum of experts’ output weighted by the gate’s weight estimation for that particular expert.

MoE(x) =
X

i2E={0,1,··· ,B�1}

gi(x) · fi(x) (3)

Recent work (Du et al., 2021; Lepikhin et al., 2021; Roller et al., 2021; Lewis et al., 2021; Zhou
et al., 2022) adopt it to transformer by treating an FFN as one expert and Sparsely activating the MoE
(SMoE). In SMoE, the gating function (or “router”) routes an input token x to a subset (e.g. 1 or 2)
of experts — E = subset(g(x)). Conventionally, SMoE enforces load balancing constraints to avoid
overly using a few experts while under-utilizing others, and converging to local optima (Shazeer et al.,
2017; Eigen et al., 2014). Various SMoEs mainly have two types of gates.

Learned gate is parameterized by a set of learnable expert embeddings ✓ = [e0; · · · ; eB�1] 2 RB⇥d,
corresponding to each experts. The importance of the i-th expert is obtained by gi(x) =

exp(ei·x)P
j exp(ej ·x) .

To enforce load balancing when routing, SMoEs use an additional auxiliary loss (Lepikhin et al.,
2021; Fedus et al., 2021; Artetxe et al., 2021; Du et al., 2021; Chi et al., 2022) or frame expert
utilization as a constrained optimization problem (Lewis et al., 2021; Zhou et al., 2022).
Static gate, in contrast to a learnable gate, does not have any differentiable parameters. Instead,
it uses a static mapping that encodes load-balancing constraints to route input (Roller et al., 2021;
Gururangan et al., 2021). For example, RandHash from HashLayer (Roller et al., 2021) uses a hash
table that maps from token type to randomly selected expert(s) and enforces the load balancing with
random selection. DEMix (Gururangan et al., 2021) ensures i-th expert only sees data from i-th
domain and trains each expert for equal steps to ensure equal utilization.

2.2.2 SPARSE NEURAL MEMORY

The other line of work follows the memory view of FFN (Eq. 2). It is straightforward to increase
the memory size dm to a much larger value dm � 4 · d. By only using the top-k entries in m,
one could sparsely activate the value table, resulting in a vanilla sparse memory (VanillaM). The
straightforward application, however, uses the entire key table to produce all the memory coefficients
m = x ·K>, resulting in dense computation proportional to the memory size. Memory models need
to use models that do not look at the full key table to scale computation sublinearly to the number of
memory cells and take advantage of sparse computation. Lample et al. (2019) explored the following
two techniques in this direction.

Low-Rank Key Memory (LoRKM) A straightforward technique is to assume that the key table
is composed of and approximated by a down-projection D 2 Rd⇥d` and a low-rank key table K̃ 2
Rdm⇥d` , where d` ⌧ d. LoRKM produces memory coefficients by mi = f((x ·D) · k̃i) = f(t · k̃i).

Product Key Memory (PKM) Building upon LoRKM, PKM assumes that the low-rank key table
is further approximated by the outer product, w.r.t. vector concatenation operator, of two smaller
sub-key tables C,C0 2 R

p
dm⇥ d`

2 . Unlike LoRKM where key vectors are independent of each other,
key vectors in PKM have some overlaps with each other, i.e. k̃i =

h
cbi/

p
dmc, c

0
i (mod

p
dm)

i
2 Rd` .

Due to such factorization, PKM has a negligible key table K̃ · D> (e.g., < 0.3%) relative to the
parameters in the value table.
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3 A UNIFIED VIEW OF SPARSE FFNS

We show the connections between MoE and neural memory despite their different surface forms. We
first derive an equivalent form of MoE to establish its connection with sparse memory (§3.1). Then,
we propose a unified framework for S-FFN (§3.2).

3.1 A CLOSER LOOK AT MOE

MoEs use a gating function to estimate the importance of all experts and combine each expert’s
output through linear combination. Here, inspired by the memory view on FFNs (§2), we derive a
formulation of MoE models (Eq. 3) as seen from the memory view:

MoE(x) =
B�1X

i=0

gi(x) · fi(x) =
B�1X

i=0

gi(x) · FFN(i)(x) (Each expert is an FFN)

=
B�1X

i=0

gi(x) ·

0

@
dm�1X

j=0

m
(i)
j · v(i)

j

1

A (Apply the memory view of FFN (Eq. 2))

=
B�1X

i=0

dm�1X

j=0

⇣
gi(x) ·m(i)

j

⌘
· v(i)

j (Distributive property of multiplication) (4)

=
B·dm�1X

l=0 s.t. l=i·dm+j

⇣
gi(x) ·m(i)

j

⌘
· v(i)

j (Re-indexing) =
B·dm�1X

l=0

ml · vl (5)

In Eq 5, vl is the l-th row of the stack of dm-size value tables from B FFN experts; and ml = mi·dm+j

is its memory coefficient obtained from gi(x) ·m(i)
j . For example, mdm is is obtained by weighting

m
(1)
0 — the 0-th memory coefficient in the 1-th FFN expert — with g0(x) — the estimation of

the 1-th FFN from gate. Building upon such memory view, one could see that is a sparse memory
operating in terms block and uses its gate to narrow down the summation over the stacked value
tables V to ones in FFN(i)

, for i 2 subset(g(x)) = E .

Comparison with Sparse Memory Both SMoE and Sparse Memory are neural memory, but there
are several differences: 1) Memory cells share the same importance weight: in sparse memory, each
memory cell receives an individual weight. In contrast, in SMoE groups of 4 · d share the same
importance weight gi(x). 2) Single selection and importance weight: Sparse memory uses a single
dot product between input token and any key vector x · k for both, whereas SMoE depends on a
separately parameterized gate g in addition to the dot product.

3.2 THE UNIFIED FRAMEWORK

We propose a general framework that unifies the two different approaches to achieve S-FFN. We cast
both as instances of a memory with large key and value table — K,V 2 Rdm⇥d, where dm � 4 · d.
We distinguish the different methods along two dimensions illustrated below and summarized in
Table 1:

Memory block size specifies how many memory cells share the same importance weight at selection
time, and thus together treated as a memory block. We use g to denote the size of one block. In other
words, we split the K,V along the dm-dimension into g-size blocks. Therefore, a memory consists
of B = dm/g blocks in total. Formally, we write

Kg =
h
K(0);K(1); · · · ;K(B�1)

i
2 Rdm⇥dk ,Vg =

h
V(0);V(1); · · · ;V(B�1)

i
2 Rdm⇥dv

For example, sparse memory has block size g = 1 — trivially treating 1 memory cell as a “block”;
and SMoE has the block size g = 4 · d (§3.1). Current approaches generally use fixed block sizes,
but this is mostly an artifact of how the methods were derived rather than a mathematical constraint.
For example, we can design SMoE versions instead of 1 expert of size 4 · d, or uses 2 experts of size
2 · d. We can similarly chunk memory coefficients m into blocks of size g in sparse memories.
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Table 1: S-FFN methods decomposed along the defined design dimensions.

Memory block
size (g)

Memory block selection method Model Name

1 Direct Full-parameter Key VanillaM
Low-rank Key LoRKM, PKM (Lample et al., 2019)

4 · d Indirect
Learned gate

Switch Transformer(Fedus et al., 2021),
GShard (Lepikhin et al., 2021),

GLaM (Du et al., 2021),
BASELayer (Lewis et al., 2021),

X-MoE (Chi et al., 2022)

Static gate
HashLayer(Roller et al., 2021),

DEMix (Gururangan et al., 2021)

Memory block selection method is the specific function that compute the importance of each
memory blocks for selection. Since SMoE is also a type of sparse memory, we distinguish the
selection method by a new criterion — whether one allows input x to directly interact with the key

table Kg. As discussed in §3.1, SMoE uses the estimation from an individually parameterized gate
to select, while sparse memory solely and directly uses a key table. Thus, current SMoE is a type of
indirect selection method, and sparse memory a direct one. Various SMoEs are further characterized
by whether their gating function has learned parameters or consists of a static mapping (§2.2.1).
Meanwhile, sparse memory is characterized by how much factorization the key table uses (§2.2.2).

4 EXPERIMENT SETUP

4.1 MODELS

We choose Dense Baseline using transformer architectures used in GPT-3 models (Brown et al.,
2020), which has 24 transformer layers, with d = 1024, GeLU activation functions and with a
memory size (or FFN hidden size) to be 4 · d.

S-FFN Given a model above, we replace some of its FFNs with an S-FFN. Similar to (Lepikhin
et al., 2021), we replace the FFN at every 6 layers, leading to 4 S-FFNs in total across 24 layers.
Since memory block size g is a perception imposed upon memory cells, we use k to denote the
number of active memory cells and control how activated the S-FFN is. We use the formulation of
dm = E · (4 · d) to control the size of S-FFN, so the S-FFN will activate b = k

g out of B = dm
g

memory blocks. In Table 2, we list all S-FFN models used for analysis in §5. We count FLOPs
analytically following Narayanan et al. (2021) and do not account if a worker finishes computation
before another (when using model parallelism). We use the number of learnable parameter to
consider whether two models are equally expressive.

PKM-FFN Since the factorized key table in PKM has little (< 0.3%) learnable parameter relative
to the value table, we propose a variant called PKM-FFN to match the number of parameter of other
models like RandHash. This variant has memory block size g = 1 and the same key-value table as
RandHash. PKM-FFN has a gate whose g(x) is the same as the m from a PKM and gi = mi.

4.2 LANGUAGE MODELING

Pretraining Data We pretrain all S-FFN models on a total of 453GB text with 112B tokens from
a union of six English-only datasets, including English subset of CC100 (Wenzek et al., 2020) and
the five datasets used to pretrain RoBERTa (Liu et al., 2019) — specifically BookCorpus (Zhu
et al., 2015), English Wikipedia, CC-News (Nagel, 2016), OpenWebText (Gokaslan & Cohen, 2019),
CC-Stories (Trinh & Le, 2018) (details in Appendix A.2) We adopt the same Byte-Pair Encoding
as GPT-2 (Radford et al., 2019) and RoBERTa (Liu et al., 2019) with a vocabulary of 50K subword
units. All models are trained for 60B tokens for convergence. See Appendix A.1 for hyperparameters.
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Table 2: All the S-FFN models used in experiments and analysis in §5 — g is the number of memory
cells grouped in a memory block, k is the active memory cells, and E control the sizes of a memory
dm = E · (4 · d). Some settings(*) are only used for PKM.

Selection Method name g E kmethod type

Direct
VanillaM {1, 64, 256, 1024, 2048, 4096} (§5.1)

{4, 16,
(32)⇤}

{4096,
(8192)⇤}

LoRKM {1}
PKM (Lample et al., 2019) {1}

Indirect
RandHash (Roller et al., 2021) {1, 64, 256, 1024, 2048, 4096} (§5.1)

Switch (Fedus et al., 2021) {4096}
PKM-FFN (§4.1) {1}

Evaluation settings We evaluate our models’ ability to predict the next token in a sequence
as measured by perplexity. We report both in-domain and out-of-domain perplexity to indicate
generalization ability. For out-of-domain, we use data from The Pile (Gao et al., 2020), a public
dataset that combines data from 22 diverse sources.

5 ANALYSIS UNDER THE UNIFIED VIEW

In this section, we use the proposed unified view to systematically study the design choice of S-FFN.
Specifically, (1). we study a wide range of block sizes other than the incidental choice used in existing
work and investigate its impact on language modeling perplexity (§5.1). (2). Both direct and indirect
block selection methods lead to lower perplexity than a standard FFN, but which type of method
has better FLOPs-Perplexity trade-off and what are the relative efficacy and efficiency of different
methods require further study (§5.2).

5.1 MEMORY BLOCK SIZE

Since block size is a natural number, we aim to answer a straightforward question — given a fixed k,
does smaller memory block size lead to lower perplexity? We use simple and robust selection
methods to disentangle the impact of hyperparameter choices. Specifically, we use random hash in
HashLayer (Roller et al., 2021) (denoted RandHash) for indirect block selection and exact top-k
memory block (denoted VanillaM) for direct block selection. For all experiments, we use E = 16.

RandHash randomly selects b = k
g unique memory blocks among all B = dm

g blocks — essentially
sampling b unique values from Uniform([0, · · · , B � 1]). Originally, with block size g = 4096, a
RandHash assigns a token to 4096

4096 = 1 block; with block size g = 2048, 4096
2048 = 2 blocks.

VanillaM originally has a block size g = 1 and selects top-k scalars in memory coefficients m =
GeLU(x ·K>). We made a minimal change to extend it to larger block size g: given m, we chunk it
into B blocks — mg = [m(0); · · · ;m(B�1)]; then, we select the top-b blocks using the average of
each block — Avg(GeLU(x · (K(i))>),dim=0).1

In Fig. 2, we observe that smaller block size leads to an improvement of 0.4(15.75 ! 15.35) perplex-
ity for RandHash and an improvement of 0.87(15.56 ! 14.69) for VanillaM. This observation holds
no matter how one selects: 1) with indirect (RandHash) or direct (VanillaM) selection and 2) with
random (RandHash) or similarity-based (VanillaM) block selection. In Appendix B.2, we provide
theoretical justifications for this observation which shows that a smaller block size improves model
capacity by including more combinations of memory cells. For example, with g/2, half memory
cells of expert-1 could be activated together with half of the expert-2; however, this combination is
impossible with larger block size.

Costs for a smaller block size g With model parallelism (Lepikhin et al., 2021), multiple GPUs
contains different memory block and parallelize the calculations. If with block size g = 4 · d, a

1
Avg(·) performs better than other simple aggregators — Min(·), Max(·), and Avg(| · |); see Table 7
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Figure 2: Perplexity (lower the better) consistently improve as memory block size g decreases for
both direct (VanillaM) and indirect (RandHash) selection method in S-FFN models.

token is only routed to 1 memory block on one device, each device doubles its chance to receive
more tokens with block size g = 2 · d. Therefore, each GPU processes more tokens and requires
more computation time. Better implementations could be developed to make a smaller block size
for practical usage. In addition, since each memory block has its representation stored in the gating
function, the smaller block will lead to more block representation stored in the gate, e.g., more learned
parameters in the learned gate and a larger table for the static gate. Although RandHash with memory
block size g = 4 · d cost essentially the same with memory block size g = 1, computing g(x) for
learned gates requires more cost (details in Appendix B.3.1).

5.2 BLOCK SELECTION METHOD

Next, we investigate the impact of the selection method, specifically, the FLOPs-perplexity trade-off
for direct and indirect methods to determine the overall usefulness of each S-FFN method.

FLOPs-perplexity trade-off We study the efficiency of direct and indirect selection methods
in S-FFN models characterized by FLOPS-perplexity trade-off. We conduct experiments across
different scales of the memory by varying E 2 {4, 16}; additionally, we run E = 32 for PKM.

Figure 3: FLOPs-perplexity trade-off of indirect block selection is better than that of direct block
selection (see Fig. 5 for a detailed plot). Indirect methods (orange cross) have more perplexity
improvement relative to increases in FLOPs than direct methods (blue dots).

In Fig. 3, we marginalize different factors used in the two selection methods — i.e. types of gates,
factorization techniques on key table, etc. — and consider each type of selection method as a whole.
When we change different marginalized factors, we observe that indirect methods tend to improve
more as we use more FLOPs (with larger memory sizes controlled by E). Thus, the indirect method
has a better FLOPs-perplexity trade-off.

7



Under review as a conference paper at ICLR 2023

Effect of gating function We start with contrastive comparisons among PKM-FFN E=16,
PKME=32, RandHashE=16 with memory block size g = 1 and 4096 active memory blocks. From
the three parameter-matched models, we can learn important lessons to improve the design of gate:

Table 3: List of experiments for contrastively comparing designs. This table assume each memory
cell is a memory block, i.e. g = 1. The top two best performing models (bolded) have full-parameter
key table and depend more on dot product to activate parameters.

Selection
method type

Name
# Active
memory
cells (k)

#Parameters
(Entire Model)

Train
ZFLOPs

Out-of-Domain Avg. (#)
In-Domain (#)

(See Table 9 for
each domain) Train Val.

Dense Baseline 4096 354.7M 0.212 16.96 19.60 17.16

Direct

PKME=16 4096 590.2M 0.205 16.66 19.45 16.87
PKME=32 4096 858.7M 0.205 16.06 18.93 16.36
PKME=32 8192 858.7M 0.213 16.16 19.05 16.45

VanillaME=16 4096 858.3M 0.333 14.69 17.48 14.90

Indirect
PKM-FFNE=16 4096 858.9M 0.213 15.19 17.82 15.48
RandHashE=16 4096 858.3M 0.212 15.35 17.88 15.45

1. Comparing with PKM-FFNE=16, PKME=32 essentially moves the parameters from a full-
paramter key table to double the size of value table.

2. PKM-FFNE=16 and RandHashE=16 have the same key and value tables; but the former
uses gate jointly learned with key table, while the later uses a learning-free gate.

As shown in Table 3, on out-of-domain, PKM-FFNE=16 outperforms PKME=32(16.06) by 0.87
perplexity and slightly outperform RandHashE=16 by 0.16. Therefore, it is essential to have a
full-parameter, and thus expressive enough, key table to produce memory coefficients.

Table 3 shows the improvement of VanillaME=16, PKM-FFNE=16, RandHashE=16 over
Dense Baseline (16.96) are 2.27, 1.77, and 1.61 respectively on out-of-domain. They only dif-
fer by how much they depends on key table for selection — VanillaM directly uses it, PKM-FFN
indirectly gain information from it, and RandHash completely ignores it. Therefore, we conclude
that the more dependent on key table the selection method is, the better language model it will
lead to; and indirect usage (PKM-FFN) is not enough.

6 A NEW ROUTING METHOD — AVG-K

Shown by Fig. 3, a gated MoE has clear advantage over sparse memory. Basing on the contrastive
analysis from §5.2, we believe the current MoE already has a good design choice — a full-parameter
key table. However, an important improvement is to make more use of each expert’s key table for
routing tokens. Additionally, it needs to be compute-efficient with smaller g (§5.1).

To this end, we propose a new routing method — Avg-K. We represent each block with the average
of its key table K(i) 2 Rg⇥d along g-dimension — ei =

1
g

Pg�1
j=0 k

(i)
j = Avg(K(i)

,dim=0). Then,
we use the dot product between x and the averages to select the top-b selected block and route the
token there for memory calculation (Eq. 2):

gi(x) =

⇢
1 i 2 E = {top-b of [e0 · x, · · · , eB�1 · x]}
0 otherwise

Due to the linearity of averaging, the operation ei · x is equivalent to calculating the average of dot
products within a block without GeLU. Since all tokens share the averages, our method is efficient.
We provide more rationale for our choice of average function in Appendix C.1.

Table 4 shows that the proposed S-FFN design outperforms all other indirect methods. With < 1%
additional FLOPs, Avg-K achieves 2.16 lower perplexity than Dense Baseline (16.96), outperform
(Fedus et al., 2021) by 1.65 and (Roller et al., 2021) by 0.5. In Appendix C.2, we include a contrastive
analysis with VanillaM to understand the drastic improvement from block size g = 4096 to 256.
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Table 4: Avg-K out-performs other indirect block selection methods.

E
#Parameters Selection method g

Train Out-of-Domain Avg. (#) In-Domain (#)
(Entire Model) ZFLOPs (See Table 10 for details) Train Val.

1 354.7M Dense Baseline 1 0.212 16.96 19.60 17.16

16 ⇡ 858.3M

RandHash
(Roller et al., 2021)

4096 0.212 15.75 18.78 16.26
1 0.212 15.35 17.88 15.45

Switch
(Fedus et al., 2021) 4096 0.212 16.45 18.20 16.00

PKM-FFN 1 0.213 15.19 17.82 15.48

Avg-K
4096 0.212 16.44 19.04 16.59
256 0.213 14.91 17.57 15.19
64 0.214 14.80 17.51 15.11

Load balancing Previously, load balancing has two-fold implication: 1) to improve empirical
training time Fedus et al. (2021); 2) more importantly, to prevent the expert representations from
degeneration — i.e. routing most tokens to a single expert (Shazeer et al., 2017; Eigen et al., 2014).
Based on our observation, we hypothesize that load balancing is only optional for learning a good
expert representation (i.e., the second implication) since our experiment with Switch enforces load
balancing and experiment with Avg-K doesn’t. We provide analysis for block usage for Avg-K in
Appendix C.3.

Limitation Since Avg-K essentially applies an average pooling to the key table Kg, a better
alternative may exist. Our method also heavily depends on dot product information, but this might not
be the best information to be used. Additionally, in large-scale SMoE training, the speed is limited by
the most heavy-loaded GPU when model parallelism is used. Therefore, load balancing is essential.
We note that our scale is relatively small and does not use model parallelism, so the problem is not
pronounced for us. Future follow-up should look at how to incorporate load balancing into the unified
framework. Such unification requires more advanced theoretical connection with memory block and
block selection method, which likely involves consideration of training procedure.

7 RELATED WORK

Excluded S-FFN Terraformer’s Jaszczur et al. (2021) technique on FFN is closest to our PKM-FFN
because there is a low-rank learned gate to operate on each memory cells for selection. However, we
exclude this method because our framework uses all memory cells in each block, but Terraformer
selects 1 cell in each memory block (see our study in Appendix D.1). In finetuning scenario, Zhang
et al. (2022b) studies the connection between FFN and SMoE by turning trained FFN into experts
and separately learning a gate. In contrast, we focus on pretraining from scratch.

Approximate Nearest Neighbour(ANN) search One might wonder whether ANN techniques could
help to search for the best key in VanillaM rather than trade the expressiveness of the key table for
efficiency. For example, one could process the unfactorized key table by ANN methods like FAISS
(Johnson et al., 2021) and ScaNN (Guo et al., 2020). One successful example is applying vanilla
Locality-Sensitive Hashing to Reformer (Kitaev et al., 2020). However, in our preliminary study, we
found that perplexity is greatly affected by the search quality, and building a data structure after every
update is expensive and hard to avoid. We leave detailed discussion and analysis to Appendix D.2.

8 CONCLUSION

We provide a unified framework for designing sparse FFN in transformers and analyze existing
S-FFN methods such as SMoEs in the language modeling task. Using this framework, we found that
smaller memory block (e.g. expert) size improves perplexity at the cost of slightly higher computation
cost. Selection methods with gates have better FLOPs-Perplexity trade-offs than without, while the
gating function in current SMoEs is sub-optimal. This framework enables us to instantiate a simpler
S-FFN architecture that outperforms SMoEs while still being efficient in training and inference.
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A TRAINING SETTING

A.1 HYPERPARAMETERS

Table 6 specifies shared hyperparameters across all experiments, in which Table 5a contains ones for
training data, optimizer, and efficient infrastructure techniques; and Table 5b for architecture. Then,
Table 6a describes the hyperparameters specifically for Switch, Table 6b for LoRKM, Table 6c for
PKM,

A.2 DATA

Here is a detailed description of our pretraining corpus.

• BookCorpus (Zhu et al., 2015) consists of more than 10K unpublished books (4GB);
• English Wikipedia, excluding lists, tables and headers (12GB);
• CC-News (Nagel, 2016) contains 63 millions English news articles crawled between Septem-

ber 2016 and February 2019 (76GB);
• OpenWebText (Gokaslan & Cohen, 2019), an open source recreation of the WebText dataset

used to train GPT-2 (38GB);
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