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Abstract

Unsupervised learning typically involves learning a full generative model of the inputs, and
goes back at least to the Boltzmann (Ackley et al. 1985) and Helmholtz machines (Dayan
et al. 1995). More recently, it was noted that we can get good representations of unlabelled
datapoints without the need to learn a full generative model, and this gave birth to the mod-
ern field of self-supervised learning (SSL). We reconcile these critically important families of
machine learning method, by showing that modern SSL methods including InfoNCE which
maximize mutual information are equivalent to a particular unsupervised learning method,
the variational autoencoder. Additionally, our approach resolves mysteries purely in SSL.
In particular, recent work (Tschannen et al., 2019) has argued that mutual information
objectives can give arbitrarily entangled representations. Instead, they argue that the excel-
lent performance of InfoNCE arises from the use of a simplified, linear mutual information
estimator. How can we understand the success of InfoNCE if better mutual information
estimators lead to worse representations? Remarkably, under one choice of prior, the VAE
objective (i.e. the ELBO) is exactly equal to the mutual information (up to constants).
Under an alternative choice of prior, the SSVAE objective is exactly equal to the simplified
parametric mutual information estimator used in InfoNCE (up to constants). As such, the
SSVAE framework naturally provides a principled justification for using simplified mututal
information estimators, because they are equivalent to structured priors.

1 Introduction

A common challenge occuring across machine learning is to extract useful, structured representations from
unlabelled data (such as images). This problem is now known as self-supervised learning, and there are two
broad approaches: generative and contrastive learning (Liu et al., 2021).

Generative self-supervised learning (also known as unsupervised learning) can be traced back at least to
the Boltzmann machine (Ackley et al., 1985) and the Helmholtz machine (Dayan et al., 1995; Hinton et al.,
1995). This classical work emphasises two key characteristics of most generative models; first, they should
in some sense model the probability density of the data and second they should use latent variables that
are ideally interpretable. Modern generative models are exemplified by variational autoencoders (VAEs)
(Kingma & Welling, 2013; Rezende et al., 2014). VAEs (like the Helmholtz machine) learn a probabilitistic
encoder which maps from the data to a latent representation, and learn a decoder which maps from the
latent representation back to the data domain. This highlights perhaps the key issue with VAEs: the need
to reconstruct the data, which may be highly complex (e.g. images) (Dorta et al., 2018) which may force the
latent space to encode details of the image that are irrelevant for forming a good high-level representation
(Chen et al., 2016b).

Contrastive self-supervised learning is an alternative class of methods that learn good representations with-
out needing to reconstruct the data. One common approach is to define a “pretext” classification task
(Dosovitskiy et al., 2015; Noroozi & Favaro, 2016; Doersch et al., 2015; Gidaris et al., 2018). For instance,
we might take a number of images, rotate them, and then ask the model to determine the rotation applied
(Gidaris et al., 2018). The rotation can be identified by looking at the objects in the image (e.g. grass is
typically on the bottom of the image, while birds are nearer the top), and thus a representation useful for
determining the orientation may also extract useful information for other high-level tasks. We are interested
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in an alternative class of objectives known as InfoNCE (NCE standing for noise contrastive estimation) (Oord
et al., 2018). These methods take two inputs (e.g. two different patches from the same underlying image),
encode them to form two latent representations, and maximize the mutual information between them. As
the shared information should concern high-level properties such as objects, but not low-level details of each
patch, this should again extract a useful representation.

InfoNCE was thought to learn good representations by (approximately) maximizing mutual information
(Oord et al., 2018). However, recent work has argued that principle behind the success of InfoNCE cannot
be maximizing mutual information, because the mutual information is invariant under arbitrary invertible
transformations, so maximizing mutual information could give arbitrarily entangled representations (Tschan-
nen et al., 2019). Instead, they argue that InfoNCE learns good representations because it uses a highly
approximate, linear mutual information estimator (Oord et al., 2018). This is highly problematic: better
mutual information estimators give worse representations (Tschannen et al., 2019), so InfoNCE’s success
with a highly approximate estimator cannot be due to maximizing mutual information. So what is InfoNCE
doing? And how can the success of its simplified mutual information estimator be understood?

Here, we develop a new family of self-supervised variational autoencoders (SSVAEs). Critically, the SSVAE
objective (the ELBO) is exactly equal to the mutual information under one choice of prior, and exactly
equal to the parametric mutual information estimator used in InfoNCE under an alternative prior (up to
constants). This unifies contrastive and generative SSL, and provides a principled justification for the use of
simplified parametric mutual information estimators in InfoNCE methods: they are priors, and of course we
are free to choose priors with e.g. linear structure in the latent space, if we believe those describe the true
latent dynamics. This suggests the success of InfoNCE is because of a choice of prior that induces simple
latent representations. In contrast, if the success of InfoNCE arose from mutual information maximization,
then InfoNCE would improve as we used more complex and accurate mutual information estimators. But of
course, the performance of InfoNCE actually gets worse with more accurate mutual information estimators
(Tschannen et al., 2019).

2 Background

2.1 Variational Autoencoders

Usually in a variational autoencoder (Kingma & Welling, 2013; Rezende et al., 2014), we have observed data,
x, and latents, z, and we specify a prior, P (z), a likelihood, P (x|z), and an approximate posterior, Q (z|x).
We then jointly optimize parameters of the prior, likelihood, and approximate posterior using the ELBO,

log P (x) ≥ L = EQ(z|x)

[
log P (x|z) P (z)

Q (z|x)

]
, (1)

which bounds the model evidence or marginal likelihood, P (x) (as can be shown using Jensen’s inequality).
The approximate posterior, Q (z|x), is often known as the encoder as it maps from data to latents, while the
likelihood, P (x|z), is often known as the decoder, as it maps from latents back to the data domain.

2.2 InfoNCE

In InfoNCE (Oord et al., 2018), there are two data items, x and x′. Oord et al. (2018) initially describes a
time-series setting where x was a context giving the recent history of past data and x′ was data for the next
time step. But Oord et al. (2018) also consider other contexts where x and x′ are different augmentations
or patches of the same underlying image. We then form latent representations, z and z′ by passing x and
x′ through neural network encoders, z = g(x) and z′ = g′(x′). Note that while we often have g = g′, there
is no requirement that this be the case. The InfoNCE objective was originally motivated as maximizing the
mutual information between latent representations,

I (z; z′) = EQ(z,z′)

[
log Q (z′|z)

Q (z′)

]
. (2)
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Note, we are using Q rather than P for consistency with VAE derivations in the methods. As such, Q (z, z′)
denotes the distribution induced by taking true data, (x, x′), and encoding them with neural networks, g and
g′. As the mutual information is difficult to estimate, they use a bound based on a classifer that distinguishes
the positive sample (i.e. the z′ paired with the corresponding z) from negative samples (i.e. z′

j drawn from
the marginal distribution and unrelated to z or to the underlying data; see Poole et al., 2019 for further
details).

I (z; z′) ≥ LInfoNCE;N = E
[

log f(z, z′)
f(z, z′) +

∑N
j=1 f(z, z′

j)

]
+ log N (3)

where the expectation is taken over Q (z, z′)
∏

j Q
(
z′

j

)
, and we use this objective to optimize the parameters

of f , g and g′. Taking the limit as N goes to infinity, and assuming an arbitrarily flexible classifier, the
bound becomes tight (Oord et al., 2018), and can be written as (Wang & Isola, 2020; Li et al., 2021),

I (z; z′) = LInfoNCE = EQ(z,z′) [log f(z, z′)]− EQ (z)
[
log EQ(z′) [f(z, z′)]

]
. (4)

Of course, in reality we do not have an arbitrarily flexible classifier. The original InfoNCE paper does not
even use a neural network; instead, they use a linear classifier,

f(z, z′) = exp
(
zT Wz′) . (5)

Here, W is a weight matrix, and Tschannen et al. (2019) argue that this simple classifier is critical to the
success of InfoNCE.

3 Methods

We begin by looking at the unstructured SSVAEs with a single latent and observed variable. This gives
useful intuition but does not recover InfoNCE. We then go on to look at the structured SSVAE with two
latent and two observed variables which recovers InfoNCE.

3.1 Unstructured SSVAEs

In a standard variational autoencoder, we specify parametric forms (e.g. using neural networks) for the prior,
P (z), the likelihood, P (x|z) and the approximate posterior, Q (z|x). However, in an SSVAE, we specify only
the prior, P (z), and the approximate posterior, Q (z|x). The likelihood, P (x|z), is given implicitly. In a
simple model with one latent variable, z, and one observation, x, the likelihood is given by Bayes theorem,

P (x|z) = Q (z|x) Ptrue (x)
Q (z) . (6)

Here, Ptrue (x) is the true distribution over data, which is fixed, independent of parameters, and in general
different from the model’s distribution, P (x). We cannot evaluate the probability density Ptrue (x), and hence
we cannot evaluate the probability density P (x|z) (it will turn out that we do not need to). Next, Q (z|x)
is the variational approximate posterior. Specifying the likelihood, P (x|z), in terms of the approximate
posterior, Q (z|x), is highly unusual in the variational framework — indeed, we believe we are the first to
propose it. Nonetheless, it is perfectly valid, as it is simply equivalent to sharing parameters between P (x|z)
and Q (z|x), which is not ruled out by the standard variational formulation. Indeed, sharing parameters
between the prior/likelihood and the approximate posterior is frequently used in practice (Ustyuzhaninov
et al., 2020; Ober & Aitchison, 2021b; Aitchison et al., 2021; Ober & Aitchison, 2021a). Finally, we define
marginal approximate posterior, Q (z), as,

Q (z) =
∫

dx Q (z|x) Ptrue (x) . (7)

Next, P (x|z) defined in Eq. (6) is a valid distribution over x′ (albeit one whose probability density cannot
be computed) because it is non-negative and integrates to 1. In particular, integrating, and substituting
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Eq. (7) into Eq. (6), ∫
dx P (x|z) =

∫
dx Q (z|x) Ptrue (x)∫

dx′ Q (z|x′) Ptrue (x′)
= 1. (8)

The model’s joint distribution over x and z is thus,

P (x, z) = P (x|z) P (z) = Q (z|x) Ptrue (x) P (z)
Q (z) . (9)

where, remember, Q (z|x) is our neural network encoder, Ptrue (x) is the true data distribution, P (z) is our
choice of prior, and Q (z) is given by Eq. (7). Substituting the likelihood (Eq. 6) into the ELBO (Eq. 1), we
get,

L(x) = log Ptrue (x) + EQ(z|x)

[
log P (z)

Q (z)

]
(10)

where P (z) is our parametric form for the prior and Q (z) is given by Eq. 7.

Remember that log Ptrue (x) is constant with respect to the parameters as Ptrue is the true, fixed data
distribution. This term can thus be treated as a constant for the purposes of optimizing the parameters of
P (z) and Q (z|x). Thus, to optimize L(x), we need to focus on the density ratio, P (z) / Q (z). However,
this density ratio cannot be evaluated directly as we cannot evaluate Q (z) (Eq. 7). Instead, we could be
inspired by InfoNCE and NCE in general to estimate this ratio using a classifier that distinguishes samples
of P (z) from those of Q (z).

However, it turns out that this approach is unlikely to be useful for forming latent representations. In
particular, consider taking the expectation of the ELBO (Eq. 10) over the true data distribution Ptrue (x),

EPtrue(x) [L(x)] = EPtrue(x) [log Ptrue (x)] + EQ(z)

[
log P (z)

Q (z)

]
= c−DKL (Q (z)∥P (z)) . (11)

Optimizing the ELBO thus matches the marginal distributions in latent space between Q (z) (Eq. 7) and
our parametric prior, P (z). In essence all we are doing is to find an encoder, Q (z|x), from x to z such that,
averaging over x from the data, the resulting z’s have a distribution close to P (z). However, it is not at
all clear that this will give us a good representation. For instance, if P (z) is Gaussian, and if noise in the
data, x, is Gaussian, then it may be easier to get Gaussian z’s by extracting noise, rather than (as we would
like), extracting high-level structure. That said, it may still be possible to do something useful by applying
identifiability results inspired by ICA (e.g. Khemakhem et al., 2020).

3.2 Structured SSVAEs

The previous section argued that an SSVAE with just one latent and observed variable is unlikely to give
useful representations. Instead, consider a generative model with two observed variables, x and x′, and two
latent variables, z and z′. The approximate posterior is given in terms of neural network encoders for x and
x′ separately,

Q (z, z′|x, x′) = Q (z|x) Q (z′|x′) . (12)

The generative model has structure x← z − z′ → x′,

P (x, x′, z′, z) = P (x|z) P (x′|z′) P (z, z′) . (13)

where P (z, z′) may be a specific, parametric form (e.g. a Gaussian), and the decoders, P (x|z) and P (x′|z′)
are given implicitly in terms of the encoders, Q (z|x) and Q (z′|x′) and the true marginal distributions of the
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data, Ptrue (x) and Ptrue (x′),

P (x|z) = Q (z|x) Ptrue (x)
Q (z) (14a)

P (x′|z′) = Q (z′|x′) Ptrue (x′)
Q (z′) (14b)

where,

Q (z) =
∫

dx Q (z|x) Ptrue (x) (15a)

Q (z′) =
∫

dx′ Q (z′|x′) Ptrue (x′) . (15b)

Now, we compute the model evidence (note we delay applying Jensen’s inequality to get the ELBO),

log P (x, x′) = log
∫

dz dz′ Q (z, z′|x, x′) P (x, x′, z, z′)
Q (z, z′|x, x′)

= log EQ(z,z′|x,x′)

[
P (x, x′, z, z′)
Q (z, z′|x, x′)

]
. (16)

Substituting for the approximate posterior (Eq. 12) and prior (Eq. 13),

log P (x, x′) = log EQ(z,z′|x,x′)

[
P (x|z)
Q (z|x)

P (x′|z′)
Q (z′|x′) P (z, z′)

]
. (17)

Substituting Eq. (14) and remembering that log Ptrue (x) and log Ptrue (x′) are parameter-independent con-
stants

log P (x, x′) = log EQ(z,z′|x,x′)

[
P (z, z′)

Q (z) Q (z′)

]
+ c (18)

Finally, applying Jensen’s inequality we get the ELBO,

log P (x, x′) ≥ L(x′, x) (19)

L(x′, x) = EQ(z,z′|x,x′)

[
log P (z, z′)

Q (z) Q (z′)

]
+ c (20)

3.3 Deterministic encoders

Consider a deterministic encoder,

Q (z|x) = δ (z − g(x)) (21a)
Q (z′|x′) = δ (z′ − g′(x′)) (21b)

where δ is the Kronecker delta. In this case, we have z = g(x) and z′ = g′(x′) and the ELBO bound is tight,

log P (x, x′) = L(x, x′) = log P (z, z′)
Q (z) Q (z′) + c, (22)

so, the ELBO is equal to the model evidence (up to constant factors).

3.4 Understanding the SSVAE objective

To understand how this objective behaves, consider its expectation under the data distribution, Ptrue (x, x′),

L = EPtrue(x,x′) [L(x, x′)] = EQ(z,z′)

[
log P (z, z′)

Q (z) Q (z′)

]
+ c (23)
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where,

Q (z, z′) =
∫

dx dx′ Q (z|x) Q (z′|x′) Ptrue (x, x′) . (24)

Adding and subtracting EQ(z,z′) [log Q (z, z′)],

L = EQ(z,z′)

[
log Q (z, z′)

Q (z) Q (z′)

]
+ EQ(z,z′)

[
log P (z, z′)

Q (z, z′)

]
+ c, (25)

allows us to identify two KL-divergence terms,

L = DKL (Q (z, z′)∥Q (z) Q (z′))−DKL (Q (z, z′)∥P (z, z′)) + c (26)

The first term is a mutual information. The objective therefore maximizes the mutual information between
z and z′ under Q (z, z′) (Eq. 24). At the same time, the second term is the KL-divergence between the
parametric prior, P (z, z′), and Q (z, z′). Thus, the objective also encourages Q (z, z′) (Eq. 24) and the
parametric prior, P (z, z′), to become more similar.

3.5 Recovering a maximum mutual-information objective

We can recover a mutual-information objective by giving an implicit definition of the prior over latent
variables,

PMI (z, z′) = Q (z, z′) , (27)

in which case the KL-divergence between P (z, z′) and Q (z, z′) is zero, and we are left with just the mutual
information (Eq. 2),

LMI = EQ(z,z′)

[
log Q (z′|z)

Q (z′)

]
+ c, (28)

3.6 Recovering the exact form for the InfoNCE estimator

Recent work has argued that the good representation arising from InfoNCE cannot be from maximizing
mutual information alone, because the mutual information is invariant under arbitrary invertible transfor-
mations (Tschannen et al., 2019; Li et al., 2021). Instead, the good properties must arise somehow out of
the simple mutual information estimator in Eq. (5). Remarkably, this estimator (at least in the infinite N
limit) can be recovered by making a specific choice of prior in the latent space. We choose the prior on z
implicitly, as Q (z), and we choose the distribution over z′ conditioned on z to be given by an energy based
model that depends on Q (z′) and an arbitrary coupling function, f(z, z′), which could be given by Eq. (5)
as in the original InfoNCE, or could be more general,

PInfoNCE (z) = Q (z) (29)

PInfoNCE (z′|z) = 1
Z

Q (z′) f(z, z′). (30)

The normalizing constant, Z, is

Z =
∫

dz′ Q (z′) f(z, z′) = EQ(z′) [f(z, z′)] . (31)

To obtain the ELBO objective in Eq. (19), we need the ratio,

log PInfoNCE (z, z′)
Q (z) Q (z′) = log

Q (z) 1
Z Q (z′) f(z, z′)

Q (z) Q (z′) = log f(z, z′)− log EQ(z′) [f(z, z′)] (32)

Remarkably, this is exactly equal to the infinite limit of the InfoNCE objective in Eq. (4), so the full expected
ELBO becomes,

LInfoNCE = EQ(z,z′) [log f(z, z′)]− EQ(z)
[
log EQ(z′) [f(z, z′)]

]
(33)

as derived in (Wang & Isola, 2020) and used in (Li et al., 2021). This can be bounded by the usual finite-
sample estimator, as described in (Oord et al., 2018).
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Figure 1: Results of the moving balls experiment. A) Example of the motion between consecutive frames.
The balls move by a full diameter in a semi-random direction. B) Locations of the extracted ball centres,
after supervised linear decoding. The standard InfoNCE setup fails to extract correct locations. C) The
mean distance from the extracted and true centres of the balls for a supervised method, InfoNCE with a
Gaussian discriminator after supervised decoding and InfoNCE with a linear discriminator after supervised
decoding. D) Probability distribution for the next location of the coral ball in A according to an encoder
trained with a Gaussian discriminator. E) Probability distribution for the next location of the same ball
according to an encoder trained with a linear discriminator.
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Figure 2: Architecture of the encoder neural network. The first of the two 3x3 convolutional layers outputs
6 feature maps and uses a ReLU activation. The second convolution outputs 3 feature maps and applies a
sigmoid activation. For each of these 3 maps, we extract their centre of mass. This is done by summing each
dimension and normalising it to 1. This is then used to perform a weighted average over the axis locations
and get the final coordinates.

4 Results

Remember that the success of InfoNCE cannot have arisen due to mutual information maximization, because
more complex and accurate mutual information estimators give worse representations (Tschannen et al.,
2019). Thus, our work’s key value is in giving a normative explanation for the success of InfoNCE, by
showing that the choice of simplified mutual information estimator is equivalent to a choice of prior in an
SSVAE, and of course we are free to choose a simplified prior which induces good representations if that
captures our true beliefs about the latent space. Indeed, the connection we draw is so strong — showing
that the InfoNCE is exactly equivalent to our SSVAE — that experimental comparisons become meaningless.
Arguably, through that equivalence, we could potentially count all previous successes of InfoNCE as successes
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also for SSVAEs. Indeed, note that if our theoretical results had been weaker, we would have been able to
do a much stronger experiments section: if we had not shown exact equivalence, we could at least have made
a meaningful comparison.

Of course, our approach does offer some advantages over the InfoNCE framework, but these advantages
are conceptual. In particular, we cannot use mututal information maximization as a principle to choose
an estimator that gives good representations, because better mututal information estimators give worse
representations (Tschannen et al., 2019). But we show that the choice of simplified mututal information
estimator is equivalent to the choice of prior in an SSVAE, and we can choose a prior that gives good
high-level representations, assuming that this accords with our beliefs about the underlying system.

As the primary importance of our work is theoretical, we give only a simple proof-of-principle, of how choosing
mutual information estimators based on priors is beneficial. In particular, consider a self-supervised learner
that extracts the locations of three moving balls, based on videos of these balls bouncing around in a square
(Fig. 1A).

We generated 900 images in a single continuous video with a resolution of 256× 256 pixels. The three balls
had a diameter of 32 pixels. Between consecutive frames the balls moved by a full diameter in a random
direction, as illustrated in Fig. 1A. The movement trajectory was picked by taking the previous trajectory
and adding a uniform noise of −2◦ to +2◦. If the picked movement resulted in a collision, we sampled a new
trajectory by doubling the noise range until a valid trajectory is found.

We trained the model in a classic self-supervised manner. We encoded one “base” frame, one “target” frame
(the next frame in a video sequence), along with a number of random frames. As usual, the network was
trained to distinguish between the target frame (adjacent to the base frame) and random frames. We then
trained a linear decoder in a supervised manner to return the (x, y) locations of the balls.

The encoder itself is a simple convolutional neural network, as shown in Fig. 2. It consists of 2 batch
normalised convolutional layers with a kernel size of 3. The first layer uses ReLU as the activation function,
while the second layer uses a sigmoid. At the output of the convolutional layers, we have 3 feature maps,
which we interpret as the locations of the 3 different balls. We finally extract these locations by computing
the centre of mass of the feature maps, giving a vector of six numbers as output (the x and y locations of the
centres of mass of each feature map). The training itself was performed by using stochastic gradient descent
with a learning rate of 0.005 over the course of 30 epochs. The batches were made of 30 random pairs of
consecutive frames. For any pair, we use the second frame as the positive example and we use the second
frame of the other pairs in the batch, as the random negative examples, against which we contrast.

When we naively applied the usual InfoNCE setup (using Eq. 5), self-supervised learning failed (linear
in Fig. 1BC), because we did not correctly encode prior information about the structure of the problem.
Critically, our prior is that for the adjacent frames, the locations extracted by the network will be close,
while for random frames, the locations extracted by the network will be far apart. The linear estimator in
Eq. (5) is not suitable for extracting the proximity of the ball locations, so it fails (linear in Fig. 1 BC). In
particular, it corresponds to a non-sensical prior over z′ given z,

PInfoNCE (z′|z) = 1
Z

Q (z′) f(z, z′) ∝ exp
(
zT Wz′) (34)

(where we have taken Q (z′) to be uniform). Instead, we would like a prior that encodes our knowledge that
z′ is likely to be close to z, such as,

P (z′|z) = N
(
z′; z, L2)

. (35)

This corresponds to a Gaussian RBF form for f ,

f(z, z′) = exp
(
− 1

2L2 (z − z′)2)
. (36)

where L is a learned lengthscale. Critically, this sensible, effective prior was chosen entirely based on the
prior viewpoint. It is very difficult to see how one would have arrived at this choice if we were using the
mutual information estimator viewpoint. As such, the Bayesian SSVAE framework naturally allows us to
incorporate our knowledge in the form of structured latent variables, with rich prior dependencies.
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5 Related work

Perhaps the closest prior work is Zimmermann et al. (2021), which also identifies an interpretation of InfoNCE
as inference in a principled generative model. Unlike this work, we identify a connection between the
InfoNCE objective and the ELBO or model evidence. Moreover, their proof requires complex geometric
properties, whereas our’s merely involves straightforward manipulations of probability distributions. In
addition, their approach requires four restrictive assumptions. First, they assume deterministic encoder, e.g
Q (z|x) = δ (z − g(x)). In contrast, all our theory applies to stochastic encoders. While we do explicitly
consider deterministic encoders in Sec. 3.3, this is only to show that with deterministic encoders, the ELBO
bound is tight — all the derivations outside of this very small section (which includes all our key derivations)
use fully general encoders, Q (z|x) and Q (z′|x′). Second, they assume that z(x) is invertible, i.e. that there
exists a deterministic decoder x(z′), which is not necessary in our framework. Third, they assume that the
latent space is unit hypersphere, while in our framework there is no constraint on the latent space. Fourth,
they assume the ground truth marginal of the latents of the generative process is uniform, whereas our
framework accepts any choice of ground-truth marginal. As such, our framework has considerably more
flexibility to include rich priors on complex, structured latent spaces.

Other work looked at the specific case of isolating content from style (von Kügelgen et al., 2021). This
work used a similar derivation to that in Zimmermann et al. (2021) with slightly different assumptions.
While they still required deterministic, invertible encoders, they relax e.g. uniformity in the latent space.
But because they are working in the specific case of style and content variables, they make a number of
additional assumptions on those variables. Importantly, they again do not connect the InfoNCE objective
with the ELBO or model evidence.

Very different methods use noise-contrastive methods to update a VAE prior (Aneja et al., 2020). Impor-
tantly, they still use an explicit decoder.

There is a large class of work that seeks to use VAEs to extract useful, disentangled representations (e.g.
Burgess et al., 2018; Chen et al., 2018; Kim & Mnih, 2018; Mathieu et al., 2019; Joy et al., 2020). Again,
this work differs from our work in that it uses explicit decoders and thus does not identify an explicit link
to self-supervised learning.

Likewise, there is work on using GANs to learn interpretable latent spaces (e.g. Chen et al., 2016a). Im-
portantly, GANs learn a decoder (mapping from the random latent space to the data domain). Moreover,
GANs use a classifier to estimate a density ratio. However, GANs estimate this density ratio for the data,
x and x′, whereas InfoNCE, like the methods described here, uses a classifier to estimate a density ratio on
the latent space, z and z′.

There is work on reinterpreting classifiers as energy-based probabilistic generative models (e.g. Grathwohl
et al., 2019), which is related if we view SSL methods as being analogous to a classifier. Our work is very
different, if for no other reason than because it is not possible to sample data from an SSVAE (even using a
method like MCMC), because the decoder is written in terms of the unknown true data distribution.

6 Conclusions

In conclusion, we have seen that the ELBO in an SSVAE is equal to the mutual information with one choice
of prior, and equal to the InfoNCE parametric mutual information estimator with an alternative prior (up to
constants). As such, we unify contrastive semi-supervised learning with generative self-supervised learning
(or unsupervised learning). In addition, we provide a principled framework for using simple parametric
models in the latent space to enforce disentangled representations, and our framework allows us to use
Bayesian intuition to form richer priors on the latent space. Finally, our framework provides the basis for
future work to combine self-supervised learning with Bayesian (generative) approaches.
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