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ABSTRACT

Federated Learning enables decentralized collaborative learning of machine learn-
ing models which presents challenges such as data privacy and client drift for
heterogeneous data. Traditional FL methods offer strong generalization but lack
personalized solutions for non-IID data. Personalized federated learning (PFL)
addresses data heterogeneity by tackling these issues through balancing general-
ization and personalization level. It, however, still faces challenges such as op-
timal model partitioning and catastrophic forgetting that reduce quality and ac-
curacy of both local and global models. To address these challenges, we pro-
pose “pMixFed”, a dynamic, layer-wise PFL approach integrating mixup between
shared global and personalized local models. We develop adaptive partitioning be-
tween shared and personalized layers of the model, gradual transition of person-
alization to allow seamless adaptation of local clients, improved generalization
across clients, and mitigation of catastrophic forgetting. We provide theoretical
analysis of pMixFed. Further, we conduct extensive experiments to demonstrate
its superior performance compared with the existing PFL methods. Empirical re-
sults hows faster training, increased robustness, and improved handling of hetero-
geneity when using pMixFed as compared with the state-of-the-art PFL models.

1 INTRODUCTION

The goal in federated learning (FL) Konečnỳ et al. (2016) is to facilitate collaborative learning of
several machine learning (ML) models in a decentralized scheme. FL requires addressing data pri-
vacy, catastrophic forgetting, and client drift Huang et al. (2022); Singhal et al. (2021); Luo et al.
(2023); Qu et al. (2022). Existing FL methods cannot address all these challenges with non-IID
data. For instance, although “FedAvg” McMahan et al. (2017) demonstrates strong generalization
performance, it fails to provide personalized solutions for a cohort of clients with non-IID datasets.
Hence, the global model, or the “average client”, may not adequately represent all individual local
models in non-IID settings due to client-drift Xiao et al. (2020). Personalized FL (PFL) methods
handle data heterogeneity by considering both generalization and personalization during the training
stage. Since, there is a trade-off between generalization and personalization in heterogeneous envi-
ronments, PFL methods leverage heterogeneity and diversity as advantages rather than adversities
Pye & Yu (2021); Tan et al. (2022). A group of PFL approaches train personalized local models on
each device while collaborating toward a shared global model. Partial PFL, also known as parameter
decoupling, involves using a partial model sharing, where only a subset of the model is shared while
other parameters remain “frozen” to balance generalization and personalization.

While partial PFL methods are effective in mitigating catastrophic forgetting, strengthening privacy
and reducing computation and communication overhead Pillutla et al. (2022); Sun et al. (2023),
there are still some unaddressed challenges. First, the answer to when, where, and how to optimally
partition(split) the full model? is not clear. Recent studies Pillutla et al. (2022); Sun et al. (2023)
demonstrated that optimal partitioning architecture also depends on factors such as task type, local
model architecture, and device capabilities. An improper partitioning choice could result in under-
fitting or overfitting, more bias, and catastrophic forgetting. Further, the use of a fixed partitioning
strategy across all communication rounds for heterogeneous clients can limit the efficacy of collabo-
rative learning. For instance, if the performance of client suddenly drops due to new incoming data,
the partitioning strategy should be changed because the client requires more frozen layers. Another
issue is catastrophic forgetting of the previously shared global knowledge after only a few rounds
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Figure 1: Proposed PFL approach: (Left) The global model Gt is
formed by aggregating asynchronous local updates Lt

i , L
t
j , and Lt

k.
After local training in communication round t, available clients
i, j aggregate shared parameters to update the global model Gt+1,
while the personalized parameters Lt

k remain frozen. Merging
these distinct models Gt+1, and Lt

k, introduces inconsistencies in
model updates. (Right) During joint training of generalized and
personalized models, the gradients vector from the generalized part
may conflict with the gradients from the personalized model, lead-
ing to model discrepancy, and slower convergence.

of local training because the shared
global model can be completely over-
written by local updates leading gen-
eralization degradation Luo et al.
(2023); Huang et al. (2022); Xu et al.
(2022). Most importantly, partial
models may experience slower con-
vergence compared to full model per-
sonalization, as frozen local model
updates can diverge in an opposite
direction from the globally-shared
model. Since the generalized and per-
sonalized models are trained on non-
IID datasets, there might also be a do-
main shift, leading to model discrep-
ancy as depicted in Figure 1. These
discrepancies arise from variations in
local and global objective functions,
differences in initialization, and asyn-
chronous updates Yang et al. (2024);
Lee et al. (2023). As a result, merging
the shared and the personalized layers
can disrupt information flow within the network, impede the learning process, and lead to a slower
convergence rate. Further, while partial PFL techniques contribute to an overall improved training
accuracy, they can reduce the test accuracy on some devices, particularly in devices with limited
samples, leading to variations in results in terms of the performance level Pillutla et al. (2022).
Hence, there is a need to novel solutions to achieve the following:

• Dynamic and Adaptive Partitioning: The balance between shared and personalized layers
should be dynamically and adaptively adjusted for each client during every communication
round, rather than relying on a static suboptiaml partitioning strategy.

• Gradual Personalization Transition: The degree of personalization should transition gradu-
ally across layers, as opposed to employing strict partitioning or hard splits which has been
depicted in Figure 1. This ability allows nuanced adaptation for individual client needs.

• Improved Generalization Across Clients: The test accuracy should be optimized such that
that the global model is unbiased toward specific devices or subsets of clients.

• Mitigation of Catastrophic Forgetting: The strategy should address the issue of catastrophic
forgetting by incorporating mechanisms to retain memory of the previous global model.

• Scalability and Adaptability: The approach should be fast, scalable, and easily adaptable
to new cold-start clients, while also accounting for model and device heterogeneity.

We propose “pMixFed”, a layer-wise, dynamic PFL approach that integrates mixup Zhang et al.
(2017) between the shared global and personalized local models’ layers during both the broadcasting
(global model sharing with local clients) and aggregation (aggregating distributed local models to
update the global model) stages within a partial PFL framework. Our main contributions include:

• We develop an online and dynamic interpolation method between local and global models
using Mixup Yoon et al. (2021), simultaneously handling data and model heterogeneity.

• Our solutions facilitates a gradual increase in the degree of personalization across layers,
rather than relying on a strict cut-off layer, which helps mitigating the client drift problem.

• We introduce a new aggregation technique that is fast and efficient, and it addressed the
catastrophic forgetting by keeping the previous global model state.

• “pMixFed” reduces the participant gap (test accuracy for cold-start users) and the out-of-
sample gap (test accuracy on unseen data) caused by data heterogeneity through linear
interpolation between client updates, thereby mitigating the impact of client drift.

For a discussion on prior works, please refer to the Appendix A.

2



Under review as a conference paper at ICLR 2024

2 PROBLEM FORMULATION

Consider K collaborating clients (or agents), each trying to optimize a local loss function Fk(θ)
on the distributed local dataset Dk = (xk, yk), where (x, y) shows the data features and the cor-
responding labels, respectively. Since the agents collaborate, the parameters θ (parameters of the
global model) are shared across the agents. A basic FL objective function aims to optimize:

min
θ

F (θ) =

K∑
k=1

|Dk|
|D|

Fk(θ) , Fk(θ) =
1

|Dk|
∑

(x,yi)∈Dk

ℓ(fk(θ, xi), yi), (1)

where |D| =
∑K

k=1 |Dk| and F (θ) is the global loss function of FedAvg McMahan et al. (2017). FL
is performed in at iterative fashion. At each round, each client downloads the current version of the
global model and trains it using their local data. Clients then send the updated model parameters
to the central server. The central server receives the model updates from the selected clients and
aggregates them to update the global model. This iterative process continues until convergence

In Equation 1, the assumption is that the data is collected from an IID distribution, and all clients
should train their data according to the exact same model. However, this assumption cannot be ap-
plied within many practical FL settings due to the non-IID nature of data Imteaj et al. (2021); Imteaj
& Amini (2021). In the the PFL settings with high heterogeneity and non-IID data distribution, the
same issue persists. In PFL, the local parameters need to be customized toward each agent. PFL
extends FL by solving the following objective Li et al. (2021a); Pillutla et al. (2022):

min
θ,θk

K∑
k=1

1

|Dk|
(Fk(θk) + αk∥θk − θ∥2). (2)

PFL explicitly handles data heterogeneity through the term Fk(θk) which accounts for model het-
erogeneity by considering personalized parameter θk for client k. Meanwhile, θ represents the
shared global model parameters, and αk indicates the degree of personalization tuning collaborative
learning between personalized local models θk and generalized global model θ.

2.0.1 PARTIAL PERSONALIZED MODEL

The limitations of full model personalization methods with global and fully independent local mod-
els are discussed in Appendix A. Personalized PFL methods improve PFL by providing more flex-
ibility through allowing clients to choose which parts of their models to be personalized based on
their specific needs and constraints, leading to potentially better performance. Let Lt

k be a partial
local model k in round t which is partitioned into two parts ⟨Lt

l,k;L
t
g,k⟩, where l, g ⊆ {1, . . .M}

are the personalized and global layers, respectively, and M is the number of layers. We can integrate
both personalized and generalized layers in a local model Lk as:

Fk(θk) = ℓ(fk(⟨Lg,k;Ll,k⟩, xk), yk) (3)

Among different partitioning strategies for partial PFL Pillutla et al. (2022), the most popular tech-
nique is to assign local personalized layers Lt

l,k to final layers and allow the base layers Lt
g,k to

share the knowledge similar to FedPer Arivazhagan et al. (2019). This choice aligns with insights
from MAML 1 algorithm, suggesting that initial layers keeps general information while personalized
characteristics manifest prominently in the higher layers. Accordingly, we would have:

Fk(θk) = L
(t)
l (L(t)

g (xk))
localupdate−−−−−−−→ L′

l(L
′
g(xk))

broadcasting−−−−−−−−→ L
(t+1)
l (G(t+1)(xk)) (4)

For simplicity Lg = Lg,k and Ll = Lg,k where {1 ≤ g ≤ s ≤ l ≤ M} and s is the split(cut)
layer. The objective in solving Equation 4 is to find the optimal s (cut layer) which minimizes the
personalization objective:

∑K
k=1

1
|Dk|Fk(θk) = L

(t)
l (L

(t)
g (xk)).

In partial models, after several rounds of local training, both personalized and global layers of local
model are updated. This update could be synchronous like FedSim or asynchronous as in FedAlt. The
Personalized layers will be frozen until the next communication round, L(t+1)

l = L′
l and the global

layers will be sent to the server for global model aggregation : G(t+1) ←
∑K

k=1
|Dk|
|D| L

′
g(xk). In the

next broadcasting phase, the shared layers of the local model will be updated as L(t+1)
g ← G(t+1).

1Model-Agnostic Meta-Learning
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3 PMIXFED : PARTIAL MIXED UP PERSONALIZED FEDERATED LEARNING

3.1 MIXUP

Mixup is a data augmentation technique for enhancing model generalization Zhang et al. (2017)
based on learning to generalize on linear combinations of training examples. Variations of Mixup
have consistently excelled in vision tasks, contributing to improved robustness, generalization, and
adversarial privacy. Eq.5 demonstrates the Mixup formula for creating augmented samples:

x̄ = λ.xi + (1− λ).xj

ȳ = λ.yi + (1− λ).yj ,
(5)

where xi and xj are two input samples, yi and yj are the corresponding labels, λ, λ ∼
Beta(α, α), λ ∈ [0, 1], is the degree of interpolation between the two samples where α = 0 acts
similar to empirical risk minimization (ERM). The generated samples then are used for training.

Mixup relates data points belonging to different classes which has been shown to be successful in
mitigating overfitting and improving model generalization Verma et al. (2019); Guo et al. (2019);
Zhang et al. (2020). This linear interpolation also serves as a regularization technique that shapes
smoother decision boundaries, thereby enhancing the ability of a trained model to generalize to
unseen data. Mixup can also increase robustness against adversarial attacks Zhang et al. (2020);
Beckham et al. (2019); and improves performance against noise, corrupted labels, and uncertainty
as it relaxes the dependency on specific information Guo et al. (2019). Further, early stopping can
be effectively employed as Mixum accelerates the training process without compromising the model
performance Zou et al. (2023).

3.2 METHODOLOGY

Our goal is to leverage the well-established benefits of Mixup in the context of personalized FL.
While Mixup has previously been employed in FL frameworks, such as XORMixup Shin et al.
(2020), FEDMIX Yoon et al. (2021), and FedMix Wicaksana et al. (2022), prior studies have pri-
marily focused on using Mixup for data augmentation or data averaging. We propose pMixFed
by integrating Mixup on the model parameter space, rather using it on the feature space. We ap-
ply Mixup between the parameters of the global and the local models in a layer-wise manner for
more customized and adaptive PFL. Our approach eliminates the need for static and rigid partition-
ing strategies. Specifically, during both the broadcasting and aggregation stages of our partial PFL
framework, we generate mixed model weights using a an interpolation strategy which is illustrated
in Figure 2. Mixup offers the flexibility in combining models by introducing a mix degree for each
layer λi, which changes gradually according to µ, i.e., the mix factor. Parameter µ is also updated
adaptively in each communication round and for each client according to the test accuracy of the
global and the local model during the evaluation phase of FL. µ is computed as follows:

µt
k = 1− 1

1 + e−t(acc−50)
(6)

A more detailed discussion on parameter µ’s rule of update is discussed in section 5.4.2.

As shown in Figure 2, Mixup is applied in two distinct stages of FL. Firstly, when transferring
shared knowledge to local models, the local model Lk is mixed up with the current global model
G according to the dynamic mixing factor µ, which determines the change ratio of λi (layer-wise
Mixup degree in Eq. equation 5) across different layers. λi gradually is changed from 1 → 0 as
we move from the head to the base layer. λi = 1 means sharing the 100% of the global model and
λi = 0 means that the corresponding layer in local model is frozen and will not be mixed up with the
global model G. Calculation of the Mixup degree of layer i λi at both broadcasting and aggregation
stages is performed as follows:

Broadcasting Stage: λi =

{
1 λi > 1

µc ∗ (n− i) λi ≤ 1

Aggregation Stage: λi =

{
0 λi ≤ 0

1− (i ∗ µ)c λi > 0,

(7)

where n is the number of local model layers and µ is the adaptive mix factor which will be updated
in each communication round according to Eq. 6 for each local model individually.
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3.2.1 BROADCASTING : GLOBAL TO LOCAL MODEL TRANSFER

This stage involves sharing global knowledge with local clients. In the existing PFL methods, the
same weight allocation is typically applied to each heterogeneous local model. In our work, we
personalize this process by allowing the local model to select the proportion of layers it requires.
For instance, for a cold-start user, more information should be extracted from the shared knowledge
model, implying that a few layers should be frozen for personalization. Additionally, we introduce a
gradual update procedure where the value of λ gradually decreases from one (indicating fully shared
layers) from the base layer to the end, based on the mixing factor µ. The mix layer is adaptively
updated in each communication round for each client individually, according to personalization
accuracy. With this adaptive and flexible approach, not only can upcoming streaming unseen data
be managed, but also the participation gap, considering the addition of new cold start users:

L′(t)
k,i = (λ

(t)
k,i).G

(t)
i + (1− λ

(t)
k,i).L

(t)
k,i

L
(t+1)
k = L′(t)

k − η∇Fk(L
′(t)
k ).

(8)

3.2.2 AGGREGATION :LOCAL TO GLOBAL MODEL TRANSFER

In the existing methods, two types of layers are considered: the personalized and the general layers.
The general layers were merely expected to be shared with the global model. This approach poses
several challenges such as catastrophic forgetting. The base layers of the global model are the back-
bone of the shared knowledge Raghu et al. (2019) as they carry the generalization. When we update
the general layers of the global model by only averaging between a few local participants, valuable
information from the previously shared knowledge will be lost and forgotten. The reason is that in
every local update, the general layers are fully updated. This update leads to catastrophic forgetting
and could slow down the overall cohort’s convergence. To overcome this challenge, we propose
a new strategy by applying a Mixup between previous global gradients and the other participants.∑

λi = 1 for each client i, λi will also gradually increase from 0 to 1 from the head to the base
layer, according to the mix factor µi. Then, the base layer will be gradually updated according to
the communication round and the generalization accuracy:

G′(t)
k,i = (λ

(t)
i,k).G

(t)
i + (1− λ

(t)
k,i).L

(t+1)
k,i ,

G(t+1) =

K∑
k=1

|Dk|∑K
k=1 |Dk|

G
′(t+1)
k .

(9)

Figure 2: Workflow of pMixFed: Mixup is used in two stages. 1- Broadcasting: when transferring knowledge
to local models, the frozen personalized model L(t) is mixed up with global model G(t) according to the mix
factor µ(t) which determines λi, the Mixup degree for each layer. 2-Aggregation: The updated global model
G(t+1) results from a Mixup between the updated local model L′(t) and the current shared model G′(t).

The high-level block-diagram visualization of the proposed method is shown in Figure 1. It is
important to note that the sizes of local models LM

(0)
i can differ from each other. Consequently,

the size of GM (0) should be greater than the maximum size of local models. The parameter λ
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in Equation 5 determines the Mixup degree between the shared model GM and the local models
LM

(·)
i , while µ governs the slope of the change in λ across different layers. The degree of Mixup

gradually decreases according to the parameter µ from 0 to 1. In this scenario, λ = 0 for the first base
layer, indicating total sharing, while λ = 1 applies to the final layer, which represents no sharing.
The underlying concept is that the base layer contains more general information, whereas the final
layers retain client-specific information. The use of the parameter µ, relative to the number of local
layers, eliminates the need for a specified cut layer k and allows its application across different model
sizes and layers. The parameter µi is adaptively updated based on the personalized and global model
accuracy for each client. Algorithm 1 shows how Mixup is used as a shared aggregation technique
between individual clients and the server. In each training round, only one client is Mixed up with
the global model, and λ is adaptively learned based on the objective function using online learning.
Algorithm 2 shows how Mixup is employed as a shared aggregation technique between the clients
and the server. In each training round, only one client is “Mixed up” with the global model and the
λ parameter is adaptively learned based on the objective function using online learning.

Algorithm 1 pMixFed: Broadcasting global to lo-
cal model
1: Input: Initial states global model: GM (0), local

models: {LM (0)
i }i=1,...,M , Number of communi-

cation rounds T , number of devices per round m,
Number of layers in local models {Li}

2: for t = 0, 1, . . . , T − 1 do
3: Server selects K devices S(t) ⊂ {1, . . . , N}
4: Update µ for each LMi, i = {1, . . . ,K}
5: Server broadcasts GM (t) to each device in

S(t)
6: for each device m ∈ S(t) in parallel do
7: (LM

(t+1)
m , GM

(t+1)
m ) =

Mixup[(LM ′(t+1)
m , GM

′(t+1)
m ), µ]

8: Device sends GM
(t+1)
m back to server

9: Update µi=1,...,K

10: end for
11: Server updates GM (t+1) =

1
K

∑
i∈S(t) GM

(t+1)
m

12: end for

Algorithm 2 Proposed Mixup for Aggrega-
tion
1: Input: Initial states global model: GM (0),

Number of communication rounds T , Num-
ber of local iterations Itr, number of devices
per round m, Mixup degree λ

2: for t = 0, 1, . . . , T − 1 do
3: Server broadcasts GM (t) to each device

in S(t): LM (t)
i

4: Update λi=1,...,M for each device
5: for each device i ∈ S(t) do
6: for epoch = 0, 1, . . . , Itr − 1 do
7: Train local model:
8: LM

(t+1)
i = GM (t)

9: GM (t+1) =
10: Mixup(LM (t+1)

i , GM (t))
11: end for
12: Device sends GM (t+1) back to server
13: Adaptively update λi=1,...,M

14: end for
15: end for

4 THEORETICAL ANALYSIS

In this section, we provide the convergence analysis of pMixFed. Due to space limitations, the
complete proofs are included in Appendix B.2. Moreover, We compare the aggregation process
and the server global model update of the FedSGD algorithm with our proposed mixed aggregation
stage in pMixFed. In FedSGD, the gradients are aggregated and the server will be update the global
model according to the aggregated gradients. the FedSGD is sometimes preferred over FedAvg due
to its potentially faster convergence. However, it lacks robustness in heterogeneous environments.
pMixFed leverages the faster convergence characteristics of FedSGD by incorporating early stopping
mechanisms, facilitated by the use of mixup. As demonstrated in Section 5.3.1, the mixup factor
λ functions analogously to an SGD update at the server, even though pMixFed aggregates model
weights rather than gradients, similar to FedAvg. Section C.4 provides a more detailed explanation
of this mechanism.
We begin by introducing the key notations and assumptions used throughout the convergence anal-
ysis. Notations:

• t ∈ {0, . . . , T − 1}: communication round index.

• ηl: learning rate for local update, ηg: learning rate for global updates.

• λk,i: mixup coefficient for client k at layer i in round t, λk: mixup coefficient for client k in round t
(assuming uniform across layers).

• G(t): global model parameters at round t, L(t)
k : local model parameters of client k at round t.
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• |Dk|: size of the dataset at client k, |D|: total size of datasets across all clients.

• ∇L
(t+1)
k : gradient of the local model at client k in round t.

Assumption 1 (Smoothness of Local Objectives). The local objective functions Lk(·) are L-smooth, i.e.,

∥∇L
(t+1)
k −∇L

(t)
k ∥ ≤ L∥L(t+1)

k − L
(t)
k ∥. (10)

Assumption 2 (Bounded Gradients). The gradients at each client are bounded, i.e.,

∥∇L
(t+1)
k ∥ ≤ G, ∀k, t. (11)

These assumptions are standard in convergence analysis and ensure that the optimization process is well-
behaved. for more detailed proof refer to B.2.
We hypothesize that the mixup coefficient λ acts similarly to the learning rate η, suggesting that λ plays a role
analogous to η in FedSGD.
FedSGD Update Rule : In FedSGD, the global model G(t) is updated by aggregating the gradients from all
clients:

G(t+1) = G(t) − ηg

K∑
k=1

Ωk∇L
(t+1)
k , (12)

where Ωk = |Dk|
|D| is the weight associated with client k. Since L

(t+1)
k = L

(t)
k − ηl∇L

(t+1)
k , we can rewrite

the update as:

G(t+1) = G(t) − ηg

K∑
k=1

Ωk

(
L

(t)
k − L

(t+1)
k

ηl

)
. (13)

pMixFed Update Rule: In pMixFed, the global model update incorporates mixup coefficients:

G(t+1) =

K∑
k=1

Ωk

[
(1− λk)L

(t+1)
k + λkG

(t)
]
. (14)

Assuming λk,i = λk for all layers i, and considering that G(t) is sent to all clients at round t, we simplify the
update to:

G(t+1) = (1− λk)

K∑
k=1

ΩkL
(t+1)
k + λkG

(t). (15)

4.0.1 ANALYTICAL ANALYSIS OF THE EFFECT OF LEARNING RATE AND MIXUP DEGREE

To establish the relationship between λ and ηg , we align the FedSGD and pMixFed update equations. From
Equation equation 13, rearranged:

G(t+1) = G(t) − ηg
ηl

K∑
k=1

Ωk

(
L

(t)
k − L

(t+1)
k

)
. (16)

Assuming L
(t)
k is replaced with G(t) at round t for FedSGD, we have L

(t)
k = G(t). Substituting this into

Equation equation 16:

G(t+1) = G(t) − ηg
ηl

K∑
k=1

Ωk

(
G(t) − L

(t+1)
k

)
. (17)

Simplifying and Comparing with Equation equation 15, we see that if: λk =
ηg
ηl

. then the updates are analo-
gous.

G(t+1) = G(t)

(
1− ηg

ηl

K∑
k=1

Ωk

)
+

ηg
ηl

K∑
k=1

ΩkL
(t+1)
k . (18)

Theorem 1. Under Assumptions 1 and 2, the mixup coefficient λk in pMixFed acts similarly to the learning
rate ratio ηg

ηl
in FedSGD, such that:λk =

ηg
ηl

. This implies that the mixup mechanism in pMixFed can be
interpreted as a form of learning rate control analogous to FedSGD.For complete proof please refer to D.2.

Our theoretical analysis indicates that the mixup coefficient λk in pMixFed plays a role analogous to the learning
rate in FedSGD. This equivalence provides a deeper understanding of how pMixFed leverages the strengths of
FedSGD while mitigating its weaknesses in heterogeneous settings. By appropriately choosing λk, pMixFed
can achieve faster convergence and improved robustness. Additionally, we conducted experiments to further
investigate the impact of the learning rate and mix factor on model performance in 5.3.1.
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5 EXPERIMENTAL RESULTS
We conduct comprehensive experiments to demonstrate the superiority of our proposed method. We evaluated
our method on three benchmarks with non-IID data distributions.
5.1 EXPERIMENTAL SETUP
Dataset and Data partition: For simulating heterogeneous non-IID distributions, we follow the literature
Pillutla et al. (2022) and use a Dirichlet distribution (parameterized by γ) to model the heterogeneous
distribution of client data. The objective is to partition the dataset across multiple clients such that each client
holds a subset of the classes with varying proportions of data. A smaller γ leads to highly skewed distributions,
where clients predominantly receive samples from a limited number of classes, while a larger γ results in a
more balanced distribution of classes across clients. In our experiments, γ was set to 0.1. To simulate higher
heterogeneity and evaluate generalization, we used different class distributions for the training Dts and test
sets Dtr compared to the setting in Lin et al. (2020) where the the train-test split has been done after generating
the the class distribution for each client. In our experiments, the training and test data for the same client did
not contain the same set of classes and contains different sample sizes.
Baseline and backbone: We compare two version of our method (i) pMixFed: an adaptive and dynamic
mixup-based PFL approach, and (ii) pMixFed-Dynamic: a dynamic-only mixup variant where the parameter
µ is fixed across communication rounds, against several baselines. These baselines include: FedAvg McMahan
et al. (2017), FedAlt Pillutla et al. (2022), FedSim Pillutla et al. (2022), FedBABU Oh et al. (2021).
Additionally, we compare against full model personalization methods, pFedHN Shamsian et al. (2021),
Per-FedAvg Fallah et al. (2020) , and LG-FedAvg Liang et al. (2020). For all experiments, the number of local
training epochs was set to r = 2, and the batch size was fixed at 32. The learning rate, for both global and local
updates, was fixed at lr = 0.001 across all communication rounds. The client participation rate C varied with
the number of clients N , using the configurations: {C = 100%, N = 10}, and {C = 10%, N = 100}. The
number of communication rounds was set to 100 for all experiments. Figure 3 presents the training accuracy
versus communication rounds for CIFAR10 and CIFAR100 datasets.

Figure 3: Average loss versus communication rounds for pMixFed and PFL baselines for different participation
ratios experimented on CIFAR10 and CIFAR100.

Model Architectures: Following the FL literature, we utilized several model architectures. For MNIST, we
used a simple CNN consisting of 2 convolutional layers (each with 1 block) and 2 fully connected layers.
For CIFAR-10 and CIFAR-100, we employed a CNN with 4 convolutional layers (1 block each) and 1 fully
connected layer. Additionally, we used MobileNet, which comprises 14 convolutional layers (2 blocks each)
and 1 fully connected layer, for CIFAR-10 and CIFAR-100, for all datasets. For partial model approaches such
as FedAlt and FedSim, the split layer is fixed in the middle of the network: for CNNs, layers 1–2 are shared,
while for MobileNet, layers 1–7 are shared. Details about the model architectures can be found in Appendix
??. The Adam optimizer was used for all experiments, the momentum is set to 0.0.

5.2 COMPARATIVE RESULTS

We have reported the participant-gap Yuan et al. (2021) before and after fine tunning for different approaches in
Tables 1 and 2. In the evaluation, the average test accuracy2 is measured on cold-start clients |Dts

k∩unseen|, k ⊂
{1, ..,M}, where Dts ̸= Dtr . These clients have not participated in the federation at all. For evaluation, the
final global model at the last communication round is saved and used as the initial model for cold-start clients.
The global model is then personalized according to each baseline’s personalization or fine-tuning algorithm for
r = 2 local epochs. For FedAlt, the local model is reconstructed from the global model and fine-tuned on
the test data. For FedSim, both the global and local models are fine-tuned partially but simultaneously. In the
case of FedBABU, the head (fully connected layers) remains frozen during local training, while the body is
updated. Since we could not directly apply pFedHN in our platform setting, we adapted their method using

2Classification accuracy using softmax
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the same hyperparameters discussed above and employed hidden layers with 100 units for the hypernetwork
and 16 kernels. The local update process for LG-FedAvg, FedAvg, and Per-FedAvg simply involves updating
all layers jointly during the fine-tuning process. We observe that pMixFed outperforms the baselines in most
cases. However, we can see in 3 that partial models with a hard split are very sensitive to the choice of hyper-
parameters and they may fail to train properly. It seems that this problem has been addressed in pFedMix more
discussed in 5.3.2.

N C Methods CIFAR-10 CIFAR-100 MNIST
participant-gap fine-tune participant-gap fine-tune participant-gap fine-tune

10 1.0 pMixFed 41.40 62.34 34.83 48.88 79.42 99.62
pMixFed-Dynamic 45.67 68.07 32.30 40.51 78.00 99.37

FedAvg 27.71 59.04 10.56 18.97 76.17 99.13
FedAlt 39.38 65.08 13.54 20.66 77.93 98.88
FedSim 39.10 65.03 11.15 18.94 78.49 98.67

FedBaBU 22.11 58.35 - 14.48 - 99.12
per-FedAvg - 59.97 - 19.40 - 99.33
LG-FedAvg - 67.45 18.97 28.63 - 99.14

pFedHN - 53.12 - 37.67 - -
100 0.1 pMixFed 37.73 60.27 16.25 22.71 78.42 95.30

pMixFed-Dynamic 28.78 56.89 16.14 22.42 74.39 97.53
FedAvg 41.97 58.57 7.90 18.87 77.86 98.05
FedAlt 28.98 47.93 5.38 10.65 74.80 94.52
FedSim 26.40 47.14 6.28 11.78 70.57 87.37

FedBaBU 14.78 56.71 2.25 13.21 69.49 98.02
per-FedAvg - 60.58 - 22.42 - 99.24
LG-FedAvg 32.17 53.13 9.02 21.20 98.10

Table 1: Test accuracy of unseen clients trained on the CNN model across three datasets: CIFAR-10, CIFAR-
100, and MNIST. Results are reported for two participation rates (C = 0.1 , 1.0) and varying numbers of clients
(N = 10,100), both before and after personalization.

N C Methods CIFAR-10 CIFAR-100
participant-gap fine-tune participant-gap fine-tune

100 0.1 pMixFed 29.22 73.22 15.43 59.54
pMixFed-Dynamic 29.09 72.71 15.10 57.77

FedAvg 16.76 31.01 1.03 3.57
FedAlt 19.34 72.45 4.07 57.03
FedSim 19.37 72.11 4.08 56.57

FedBaBU 17.02 29.56 4.89 10.53
Per-FedAvg - 57.59 - 13.60
Lg-FedAvg 36.31 47.88 5.01 36.22

10 1.0 pMixFed 47.90 82.17 13.73 69.90
pMixFed-Dynamic 48.20 81.69 12.86 70.64

FedAvg 30.79 47.08 9.91 37.62
FedAlt 23.49 72.25 12.43 63.73
FedSim 24.35 70.19 11.63 64.00

FedBaBU 11.67 29.15 7.41 35.02
Per-FedAvg - 61.24 - 9.40
Lg-FedAvg 47.16 71.22 28.05 36.22

Table 2: Test accuracy of unseen clients trained on the MobileNet model across two datasets: CIFAR-10,
CIFAR-100. Results are reported for two participation rates (C = 0.1 and 10) and varying numbers of clients
(N = 10,100), both before and after personalization

5.3 ANALYTIC EXPERIMENTS

We provide a set of experiments to study and gain more insights about the proposed method.

5.3.1 EFFECT OF MIXUP DEGREE AS LEARNING RATE

As discussed in Section D, the effect of the mixup coefficient is similar to that of the learning rate or learning rate
decay. To demonstrate this similarity empirically, we designed an experiment where we compared a scenario
in which the learning rate follows a scheduler similar to the mixup coefficient µ. The results of this comparison
can be seen in Figure ??. We also conducted a layer-wise experiment, where the learning rate for the shared
layers (the first half of the network) was set to a relatively large value, lr = 0.1, while the learning rate for
the personalized layers (the second half of the network) was set to a much smaller value, lr = 1 × 10−5.
This experiment demonstrates a similar effect to freezing the personalized layers, as when λi = 0 for i ∈ Li

(personalized layers), these layers do not update or participate in the aggregation process. Our findings show
that the mixup coefficient µ can achieve the same effect of scheduling the learning rate. Without modifying
the learning rate, partitioning the model, or hindering the learning process, we were able to achieve stronger
improvements in performance.

5.3.2 ADAPTIVE ROBUSTNESS TO PERFORMANCE DEGRADATION
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Figure 4: Accuracy drop in Fed-
Sim arises due to gradient van-
ishing in round 42. Applying
adaptive mixup to the shared lay-
ers of the same model solves the
problem.

During the experiments, we observed the algorithm’s ability to adapt and
recover from performance degradation, particularly in challenging scenar-
ios such as zero gradients or incoming data variability. For instance, in
complex settings, such as with larger models like MobileNet or on the
CIFAR-100 dataset, partial model approaches encounter sudden accuracy
drops due to zero gradients or the addition of new participants. This is
mitigated by the adaptive nature of the mixup coefficient, which updates
and tunes itself according to the model’s performance. Specifically, if the
global model G(t) is not powerful enough, the mixup coefficient µ(t) is
decreased, reducing the influence of the history H

∣∣T
1
Gt, and giving more

weight to the current local updates Lt
k, k ∈ St during the aggregation pro-

cess. This adaptive adjustment allows handling performance drops and en-
sures robust training, even in scenarios with dynamic participants and data
shifts. Figure 4 shows this experiment

5.4 EFFECTS OF DIFFERENT MIX FACTOR
5.4.1 RANDOM VS GRADUAL MIX FACTOR FROM β DISTRIBUTION

The value of λ in Eq. 5, naturally sampled from a β ̸= (α, α) distribution Zhang et al. (2017) which is on the
interval [0,1]. We have also experimented the random λi using β distribution with different α. If α = 1, the
β distribution is uniform meaning that the λ would be sampled uniformly from [0,1]. Moreover α > 1, The
λ would be more in between, creating a more mixed output between Lk and G. On the contrary, if α < 1
the mixed model tend to choose just one of the global and local models where λ = 1orλ = 0. The effects of
different α on mixup degree λ could be seen in figure 7. for more discussion on this, refer to F.1.

5.4.2 MIX FACTOR(µ): SIGMOID VS SIMPLE MODE

Figure 5: The comparison between test accuracy of differ-
ent scenarios for updating Mix factor in each communica-
tion round. (Dynamic-only). In this scenario we used a
fixed Mu for all communication rounds. (Sigmoid). an
updating strategy based on a sigmoid function 6 has been
used with different b values. (Simple). A simple linear
function has been adapted for updating Mu. (pFedMix)
No dynamic or adaptive update of Mu has been used here.
Mu has been set to 0.5 for all communication rounds.

In this study, we have exploited two different functions to update
adaptive mixup factor(µ) in each communication round. This idea is
based on the performance of the model which we want to update. In
1st scenario σ function has been adapted as shown in equation 6. Acc
refers to the test accuracy of the local model:

(
Lt

k(xk, θ
t
k), yi

)
in the

broadcasting phase and average test accuracy of the previous global
model

(
Gt(x, θt), y

)
on all local test sets x = {x1, x2, . . . , xK}. It

should be noted that parameter µ is constant in the aggregation stage
for all clients as it’s dependent to the average performance of the pre-
vious global model. 3 the figure 8 illustrates how the Mu changes
with different stoop size t. t updates in each communication round (
t = epochcurrent

epochs
). The reason behind this is that a cold start user

usually needs to acquire knowledge more than an experienced user.
Hence, the communication round should also impact the mix factor.
On the other hand, the 2nd scenario merely uses a simple linear func-
tion for updating Mu according to the test accuracy (µt

k = 1− acc
100

)
The comparison of these two scenarios as well as the effect of differ-
ent t values on the test accuracy, is depicted in Figure 5.

5.4.3 DIFFERENT MODEL SIZES

pMixFed is capable of handling variable model sizes across different clients. The global model, Mg , retains
the maximum number of layers from all clients, i.e., MG = max(M1,M2, . . . ,MN ). During the matching
process between the global model Gi and the local model Li, if a layer block from the local model does not
match a corresponding global layer, we set λi = 0, meaning that the layer block will neither participate in the
broadcasting nor aggregation processes. A more detailed explanation is in section E.1.

6 CONCLUSIONS
We introduced pMixFed, a dynamic, layer-wise personalized federated learning approach that uses mixup to
integrate the shared global and personalized local models. Our approach features adaptive partitioning between
shared and personalized layers, along with a gradual transition for personalization, enabling seamless adapta-
tion for local clients, improved generalization across clients, and reduced risk of catastrophic forgetting. We
provided a theoretical analysis of pMixFed to study the properties of its convergence. Our experiments on three
datasets demonstrated its superior performance over existing PFL methods. Empirically, pMixFed exhibited
faster training times, increased robustness, and better handling of data heterogeneity compared to state-of-
the-art PFL models. Future research directions include exploring multi-Modal personalization and adapting
pMixFed for working on resource-constrained devices

3In the aggregation stage, the focus is on keeping the history of the generalized information to mitigate the
catastrophic forgetting problem.
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REPRODUCIBILITY STATEMENT

For reproducibility, we have included our source codes and environment setup instructions as a supplementary
material.

REFERENCES

Sawsan Abdulrahman, Hanine Tout, Azzam Mourad, and Chamseddine Talhi. Fedmccs: Multicriteria client
selection model for optimal iot federated learning. IEEE Internet of Things Journal, 8(6):4723–4735, 2021.
doi: 10.1109/JIOT.2020.3028742.

Idan Achituve, Aviv Shamsian, Aviv Navon, Gal Chechik, and Ethan Fetaya. Personalized federated learning
with gaussian processes. Advances in Neural Information Processing Systems, 34:8392–8406, 2021.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated learn-
ing with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Christopher Beckham, Sina Honari, Vikas Verma, Alex M Lamb, Farnoosh Ghadiri, R Devon Hjelm, Yoshua
Bengio, and Chris Pal. On adversarial mixup resynthesis. Advances in neural information processing sys-
tems, 32, 2019.

Duc Bui, Kshitiz Malik, Jack Goetz, Honglei Liu, Seungwhan Moon, Anuj Kumar, and Kang G Shin. Federated
user representation learning. arXiv preprint arXiv:1909.12535, 2019.

Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, and Da-Cheng Juan. Remix: rebalanced mixup. In
Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16, pp.
95–110. Springer, 2020.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Fedavg with fine tuning: Local updates
lead to representation learning. Advances in Neural Information Processing Systems, 35:10572–10586,
2022a.

Liam Collins, Aryan Mokhtari, Sewoong Oh, and Sanjay Shakkottai. Maml and anil provably learn represen-
tations. In International Conference on Machine Learning, pp. 4238–4310. PMLR, 2022b.

Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao, and Liang Liang. Astraea: Self-
balancing federated learning for improving classification accuracy of mobile deep learning applications. In
2019 IEEE 37th international conference on computer design (ICCD), pp. 246–254. IEEE, 2019.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-learning
approach. arXiv preprint arXiv:2002.07948, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as locally linear out-of-manifold regularization. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3714–3722, 2019.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated learning of
large cnns at the edge. Advances in Neural Information Processing Systems, 33:14068–14080, 2020.

Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in heterogeneous federated learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10143–10153,
2022.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang. Person-
alized cross-silo federated learning on non-iid data. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 7865–7873, 2021.

Ahmed Imteaj and M Hadi Amini. Fedparl: Client activity and resource-oriented lightweight federated learning
model for resource-constrained heterogeneous iot environment. Frontiers in Communications and Networks,
2:657653, 2021.

Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi Amini. A survey on federated learning
for resource-constrained iot devices. IEEE Internet of Things Journal, 9(1):1–24, 2021.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Communication-efficient on-device machine learning: Federated distillation and augmentation under non-iid
private data. arXiv preprint arXiv:1811.11479, 2018.

11



Under review as a conference paper at ICLR 2024

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
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Han Wang, Luis Muñoz-González, David Eklund, and Shahid Raza. Non-iid data re-balancing at iot edge
with peer-to-peer federated learning for anomaly detection. In Proceedings of the 14th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, pp. 153–163, 2021.

Jeffry Wicaksana, Zengqiang Yan, Dong Zhang, Xijie Huang, Huimin Wu, Xin Yang, and Kwang-Ting Cheng.
Fedmix: Mixed supervised federated learning for medical image segmentation. IEEE Transactions on Med-
ical Imaging, 42(7):1955–1968, 2022.

Qiong Wu, Xu Chen, Zhi Zhou, and Junshan Zhang. Fedhome: Cloud-edge based personalized federated
learning for in-home health monitoring. IEEE Transactions on Mobile Computing, 21(8):2818–2832, 2020.

Peng Xiao, Samuel Cheng, Vladimir Stankovic, and Dejan Vukobratovic. Averaging is probably not the opti-
mum way of aggregating parameters in federated learning. Entropy, 22(3):314, 2020.

Chencheng Xu, Zhiwei Hong, Minlie Huang, and Tao Jiang. Acceleration of federated learning with alleviated
forgetting in local training. arXiv preprint arXiv:2203.02645, 2022.

Xiyuan Yang, Wenke Huang, and Mang Ye. Fedas: Bridging inconsistency in personalized federated learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11986–
11995, 2024.

Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. Fedmix: Approximation of mixup under mean
augmented federated learning. arXiv preprint arXiv:2107.00233, 2021.

Honglin Yuan, Warren Morningstar, Lin Ning, and Karan Singhal. What do we mean by generalization in
federated learning? arXiv preprint arXiv:2110.14216, 2021.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does mixup help with
robustness and generalization? arXiv preprint arXiv:2010.04819, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated learning with
non-iid data. arXiv preprint arXiv:1806.00582, 2018.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated
learning. In International conference on machine learning, pp. 12878–12889. PMLR, 2021.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. The benefits of mixup for feature learning. In Interna-
tional Conference on Machine Learning, pp. 43423–43479. PMLR, 2023.

13



Under review as a conference paper at ICLR 2024

A RELATED WORK

PFL aims to adapt local models to the individual needs, preferences, and contexts of each participant. Since the
inception of FL, various PFL approaches have been explored to address the challenges stemming from hetero-
geneity in three distinct categories: 1) data-centric strategies Tan et al. (2022) (e.g., Astraea Duan et al. (2019),
P2P k-SMOTE Wang et al. (2021), FedMCCS Abdulrahman et al. (2021), and FedHome Wu et al. (2020)), 2)
adaptation techniques, and 3) local model personalization.
Data-centric PFL: Data normalization, feature engineering, data augmentation, employing synthetic data, and
client selection techniques are the examples of data-centric approaches which tend to address data heterogene-
ity and class imbalances by manipulating statistical data properties e.g., data size, distribution, and local data
selection Tan et al. (2022). Although data-driven methods such as Astraea Duan et al. (2019), P2P k-SMOTE
Wang et al. (2021), FedMCCS Abdulrahman et al. (2021), FedAug Jeong et al. (2018) ,Zhao et al. (2018), and
FedHome Wu et al. (2020) are reported successful results, these methods all change the natural distribution
and statistical properties of federated data as well as injecting biased information and eliminating valuable user
information. Moreover, most of the mentioned strategies require proxy data which increases the risk of infor-
mation leakage and might not comply with privacy regulations of some entities. Also, data-centric methods
could be computationally expensive and could not be employed for resource-constrained devices.
Adaptation techniques: In these type of approaches, a single global model resides on the server which can
be swiftly adapted to local models in the subsequent phase. These approaches aim for two primary objec-
tives: 1) learning a robust generalized model (representation learning), and 2) achieving fast and efficient local
model adaptation (regularization). Some of these techniques employ regularization terms to address the client
drift problem and prevent local updates from diverging. FedProx Li et al. (2020), SCAFOLD Karimireddy et al.
(2020), FL-MOON Li et al. (2021a), PerFedAVGFallah et al. (2020), pFedMe T Dinh et al. (2020), and FedMD
Li & Wang (2019) are examples of the adaptation PFL techniques.These approaches mainly benefit from meta-
learning, regularization, and transfer learning, but they also come with several challenges. Meta-learning meth-
ods can be computationally expensive, while regularization techniques can slow down the convergence of the
training process by adding a regularization term to the objective function. Similarly, using transfer learning
algorithms are inefficient in terms of communication overhead, and they may require a public dataset to rein-
force the global model on the server. One common and significant complication in adaptation techniques is the
requirement for the same model architecture for all local models. This implies that both resource-constrained
and computationally powerful devices must use the same model sizes.
Local Model Personalization: Lack of accurate personalization solutions has motivated the development of
local model personalization methods that train customized local models. Some of these approaches use multi-
task learning (MTL), which is a collaborative technique facilitating information flow between different tasks.
MOCHA Smith et al. (2017), FedAMP Huang et al. (2021), FedCurv Shoham et al. (2019), Ditto Li et al.
(2021b), pFedHN Shamsian et al. (2021) and pFedGP Achituve et al. (2021) are some of the personalization
methods that mainly incorporates various MTL approaches. The disadvantage of using MTL for PFL is that it
can be computationally expensive, making it infeasible to deploy this method for large-scale FL across different
devices. other type of these approaches are using knowledge distillation(KD) which is usuful when the local
training objectives differs . Some examples are FedGen Zhu et al. (2021) and FedGKT He et al. (2020).
Partial PFL: Partial PFL methods which is the main foucus in this paper, have been effective in mitigating
catastrophic forgetting, owing to the presence of a shared component while keeping other layers freezed for
personalization. FedPer Arivazhagan et al. (2019) initially introduced the concept of employing partial mod-
els in FL, where only the first layers containing generalized information are shared, and the final layers are
reserved for personalization. Another framework, FURL Bui et al. (2019), utilizes partial PFL for document
classification, keeping some feature embeddings private and unshared. LG-FedAVG Liang et al. (2020) adopts
compact local representation learning for high-level features, while the base layers are shared to create a global
model via adversarial competitive learning. two pionear works that have been used as baseline in this paper,
are FedAlt and Fedsim which have been successfully employed partial PFL.FedAlt Singhal et al. (2021), or
FedRecon, introduces a stateless FL paradigm where clients don’t need to retain previous parameters in mem-
ory. Instead, local models are reconstructed from the global model, resembling meta-learning. Accordingly, the
new participants could easily shape their local models by reconstructing local parameters using their own local
data. In contrast, FedSim Pillutla et al. (2022) updates shared and local models simultaneously during each
local iteration. While both algorithms are task-specific, FedAlt outperforms FedSim when local heterogene-
ity surpasses global heterogeneity. In These algorithms, shared global layers can undergo significant changes
after just a few rounds of local training leading to client drift. An experienced user with high personalization
accuracy should not freeze the same number of layers as a cold-start user. Initially, a cold-start user needs to
learn from the global shared model before gradually increasing personalization by freezing more final layers,
As clients’ dataset is constantly updated, resulting in a performance drop known as the out-of-sample gap and
participation gap Yuan et al. (2021).
Mixup: There are various mixup variations, each designed to address specific challenges or enhance aspects
of the original technique. For example, AlignMixup Venkataramanan et al. (2022) improves local spatial align-
ment, while Manifold Mixup Verma et al. (2019) acts as a regularization technique by training DNNs on linear
combinations of hidden layer representations. CutMix Yun et al. (2019) exchanges patches between images,

14



Under review as a conference paper at ICLR 2024

and Remix Chou et al. (2020) addresses class imbalance by adding extra weight to minority classes. Lastly,
AdaMix Guo et al. (2019) optimizes mixing distributions and minimizes overlaps.

B APPENDIX

B.1 HETEROGENITY

One of the primary sources of complications in FL is heterogeneity, which manifests in three domains: model,
device, and data Kairouz et al. (2021); Huang et al. (2022); McMahan et al. (2017). Device heterogeneity occurs
due to differences in computational capabilities, storage capacity, network bandwidth, and hardware equipment.
These differences cause scheduling problems, limitations in model design, high computational and communica-
tion time, unreliability, and overall model performance degradation Kairouz et al. (2021). Model heterogeneity,
On the other hand, refers to differences between local ML model structures, optimization algorithms, and model
size. This type of heterogeneity complicates the aggregation process, generates inconsistency in model Perfor-
mance, drives scalability issues, and reduces generalization Huang et al. (2022). Data heterogeneity arises
from variations in clients’ data distribution. These differences could be evident in features, labels, number of
samples, class imbalance, and different local data distributions that exist in non-IID federated data McMahan
et al. (2017); Kairouz et al. (2021).Data heterogeneity is a major factor contributing to various challenges in
the FL environment, such as catastrophic forgetting and client drift problem Huang et al. (2022); Singhal et al.
(2021); Luo et al. (2023); Qu et al. (2022). In catastrophic forgetting, a client’s model becomes too tailored to
its data after just a few rounds of local training, easily forgets the acquired shared knowledge and diminishes
generalization ability. This issue arises from the fundamental discrepancies between local data distributions
Luo et al. (2023); Qu et al. (2022). On the other hand, the client drift problem, is a common occurrence in
FL environments with high data heterogeneity, where the global and local optima gradually diverge with each
communication round. This divergence eventually causes the global model to inadequately represent the local
models, leading to a lack of sufficient generalization. PFL shares numerous objectives with meta-learning and
multi-task learning Li et al. (2021b). According to the previous pioneer works Collins et al. (2022a) where the
similarities between meta-learning and FL have been discussed, ”FedAvg” algorithm with more than two local
updates behaves similar to MAML 4 Finn et al. (2017), Collins et al. (2022b)

B.2 CONVERGENCE PROOF

C CONVERGENCE ANALYSIS OF pMixFed

We make the following assumptions to establish the convergence properties of pMixFed:

Assumption 3. Lipschitz Continuity. The gradient of the local loss function for client k is Lipschitz continuous
with constant L1, i.e.,

∥∇L(t1)
k −∇L(t2)

k ∥ ≤ L1∥L(t1)
k − L

(t2)
k ∥. (19)

Assumption 4. Unbiased Gradient Estimation with Bounded Variance. The gradient estimate for local model
updates is unbiased and has a bounded variance, i.e.,

E[∇L(t)
k ] = ∇L(t)

k , Var(∇L(t)
k ) ≤ σ2. (20)

C.1 LOCAL TRAINING CONVERGENCE

We first analyze the local training updates that occur between communication rounds.

Lemma 1. Local Model Training Progress. Under Assumptions 3 and 4, after r local updates, the expected
loss for client k satisfies:

E[L(t+r)
k ] ≤ L(t)

k +

(
L1η

2
l

2
− ηl

) r−1∑
j=0

∥∇L(t+j)
k ∥2 + L1rη

2
l σ

2

2
. (21)

This lemma provides a bound on how the local training process improves the loss function. The bound depends
on the learning rate ηl, the smoothness constant L1, and the variance of the gradient estimates σ2.

C.2 GLOBAL MODEL AGGREGATION

Next, we consider the effect of aggregating local models at the server after each communication round.

4Model-Agnostic Meta-Learning
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Lemma 2. Global Model Aggregation Dynamics. After aggregating the local models, the global model loss
changes as follows:

E[L(t+1)] ≤ E[L(t)] + ηgδ
2, (22)

where δ2 bounds the difference between the global and local model parameters before and after aggregation.

This lemma shows that, during aggregation, the global loss increases by a term proportional to the global
learning rate ηg and the parameter variation δ2.

C.3 CONVERGENCE OF pMixFed

With the above lemmas, we can now derive the convergence properties of pMixFed.

Theorem 2. Convergence Rate of pMixFed. Under the previously stated assumptions, the expected global
loss after a complete round of communication and local training satisfies:

E[L(t+1)] ≤ L(t) +

(
L1η

2
l

2
− ηl

) K∑
k=1

r−1∑
j=0

∥∇L(t+j)
k ∥2 + L1rη

2
l σ

2

2
+ ηgδ

2. (23)

This theorem demonstrates that the global loss decreases with each communication round, with the convergence
depending on the local and global learning rates, the gradient norms, and the parameter variation.

Theorem 3. Non-Convex Convergence Rate. For non-convex loss functions, pMixFed achieves convergence
at the following rate:

1

T

T−1∑
t=0

K∑
k=1

∥∇L(t)
k ∥2 ≤ O(1/T ), (24)

where T is the total number of communication rounds.

This final theorem indicates that pMixFed achieves non-convex convergence with a rate of O(1/T ), demon-
strating that the algorithm improves over time as the number of communication rounds increases.

C.4 THE EFFECT OF AGGREGATING MODEL PARAMETERS AND GRADIENTS ON
CATASTROPHIC FORGETTING

the pMixFed algorithm combines the advantages of FedSGD and FedAvg by aggregating model weights rather
than gradients, while still ensuring convergence even in heterogeneous data settings. The incorporation of the
mixup mechanism enhances stability, providing faster convergence rates compared to FedSGD, particularly in
non-convex settings.

Considering local SGD steps r and ηl as the local learning rate we can further expand the above formulation:

Gt+1 = Gt − ηg

k∑
i=1

Ωk

[
L

(t+r)
k − L

(t)
k

]
Gt+1 = Gt − ηg.ηl

k∑
i=1

Ωk

r−1∑
j=0

∇L
(t+j)
k

(25)

Since in FedSGD, the global model G(t) is fully shared with each local model L(t)
k in each communication

round t, and
∑k

i=1 Ωk = 1, we can update the problem as a constrained optimization problem.

Gt+1 = Gt − ηg.ηl

r−1∑
j=1

∇G(t+j)

r−1∑
j=2

∇G(t+j) = (1− ηg.ηl)G
t − (1 + ηg.ηl)G

t+1

The right term of the equation is the history of global model gradients which could be written as H
∣∣r−1

2
∇Gt =

a.Gt − b.Gt+1. The problem of the FedSGD algorithm is that the gradients are too small to keep the state
of the previous global model, leading to catastrophic forgetting in partial models that use gradients in their
aggregation stage.
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D THEORETICAL ANALYSIS

D.1 NOTATIONS AND ASSUMPTIONS

We begin by introducing the key notations and assumptions used throughout the convergence analysis.

Notations:

• t ∈ {0, . . . , T − 1}: communication round index.

• ηl: learning rate for local updates.

• ηg: learning rate for global updates.

• λk,i: mixup coefficient for client k at layer i in round t.

• λk: mixup coefficient for client k in round t (assuming uniform across layers).

• G(t): global model parameters at round t.

• L
(t)
k : local model parameters of client k at round t.

• |Dk|: size of the dataset at client k.

• |D|: total size of datasets across all clients.

• ∇L
(t+1)
k : gradient of the local model at client k in round t.

D.2 PROOF OF THEOROTICAL ANALYSIS

Theorem 4. Under Assumptions 1 and 2, the mixup coefficient λk in pMixFed acts similarly to the learning
rate ratio ηg

ηl
in FedSGD, such that:

λk =
ηg
ηl

. (26)

This implies that the mixup mechanism in pMixFed can be interpreted as a form of learning rate control anal-
ogous to FedSGD.

Proof. Starting from the pMixFed update in Equation equation 15:

G(t+1) − λkG
(t) = (1− λk)

K∑
k=1

ΩkL
(t+1)
k . (27)

From the rearranged FedSGD update in Equation equation 18:

G(t+1) = G(t)

(
1− ηg

ηl

)
+

ηg
ηl

K∑
k=1

ΩkL
(t+1)
k . (28)

Setting the two expressions equal:

G(t) (1− λk) + (1− λk)

K∑
k=1

ΩkL
(t+1)
k = G(t)

(
1− ηg

ηl

)
+

ηg
ηl

K∑
k=1

ΩkL
(t+1)
k . (29)

This simplifies to:
λk =

ηg
ηl

. (30)

Given that λk must lie in the range [0, 1], this relationship holds when ηg ≤ ηl. Since both ηg and ηl are
also constrained within the interval [0, 1], our findings are consistent with previous studies Oh et al. (2021);
Collins et al. (2022b), which recommend keeping the head frozen by decreasing ηl. Additionally, we conducted
experiments to further investigate the impact of the learning rate and mix factor on model performance in
5.3.1.

Remark1. Theorem 4 establishes a direct relationship between the mixup coefficient λk and the learning
rates used in local and global updates. This insight allows us to interpret the mixup mechanism in pMixFed as
adjusting the effective learning rate at the server, providing a theoretical foundation for selecting λk based on
desired convergence properties.
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Remark2. practice, this relationship suggests that by tuning λk, we can control the influence of the global
model versus the local models in the aggregation process, similar to adjusting the learning rate in FedSGD. This
is particularly beneficial in heterogeneous environments where clients may have varying data distributions.

Conclusion of Analysis: Our theoretical analysis indicates that the mixup coefficient λk in pMixFed plays
a role analogous to the learning rate in FedSGD. This equivalence provides a deeper understanding of how
pMixFed leverages the strengths of FedSGD while mitigating its weaknesses in heterogeneous settings. By
appropriately choosing λk, pMixFed can achieve faster convergence and improved robustness.

D.3 GENERALIZATION EFFICIENCY

Due to space limitations, we provide a detailed generalization analysis in Appendix B.2. The analysis demon-
strates how the mixup mechanism in pMixFed impacts the generalization performance, showing that the algo-
rithm achieves a convergence rate comparable to FedSGD under similar assumptions.

E ANALYTIC EXPERIMENTS:

E.1 HANDLING DIFFERENT MODEL SIZES AND THE RELATIONSHIP BETWEEN LEARNING
RATE AND MIXUP FACTOR

In this section, we explore how pMixFed accommodates variable model sizes across clients and investigate
the relationship between the learning rate η and the mixup coefficient λ in this context. At the beginning
of training, we partition each client’s model into shared and private parts according to the FedSim or FedAlt
protocols Pillutla et al. (2022), starting from the end of the global model. This allows for effective aggregation
despite heterogeneity in model sizes.

Experiment: Investigating the Relationship Between Learning Rate and Mixup Factor To
study the interplay between the learning rate and the mixup factor in the context of varying model sizes, we
conducted an experiment with 10 clients, each having different model sizes ranging from 3 to 13 layers. We
used MobileNet as the base architecture, with a maximum of 15 layers serving as the global model MG. Objec-
tive: The goal was to examine how adjusting the mixup coefficient λ affects the training dynamics, especially
when clients have different model capacities. We hypothesized that the mixup factor could compensate for
discrepancies in learning rates caused by model size variations.

Experimental Setup:

• Clients and Models: 10 clients with local models of sizes Mk ∈ {3, 5, 7, 9, 11, 13} layers.

• Global Model: MobileNet with 15 layers (MG = 15).

• Data Distribution: Non-IID data distribution across clients to simulate realistic federated learning
scenarios.

• Learning Rates: A constant local learning rate ηl for all clients. The global learning rate ηg was
adjusted in relation to the mixup coefficient.

• Mixup Coefficients: For layers where Mk < MG, λi = 0. For shared layers, λk was adjusted based
on the client’s model size.

Results:

Figure 6 illustrates the training accuracy over communication rounds for clients with different model sizes.

Table 3: Summary of performance metrics for different model sizes and mixup coefficients

Model Size (Mk) Mixup Coefficient (λk) Final client Accuracy (%)
3 0.8 85.2
5 0.7 86.5
7 0.6 87.3
9 0.5 88.0

11 0.4 88.5
13 0.3 88.9
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Figure 6: test accuracy curves of partial models with different learning rates lr.

Figure 7: PDF λ (mixup degree) for different values of α in β distribution

F ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

F.1 EFFECTS OF DIFFERENT MIX FACTOR

G EXTENDED ANALYSIS OF MIXUP FACTOR FROM THE BETA
DISTRIBUTION

In this section, we provide a more detailed analysis of the mixup factor λ, sampled from the Beta distribution
β(α, α), as outlined in the main text. This distribution plays a crucial role in determining how the global and
local models are mixed, influencing the overall performance of the federated learning system.

G.1 EFFECTS OF THE BETA DISTRIBUTION PARAMETER α

The Beta distribution β(α, α) is defined on the interval [0,1], where the parameter α controls the shape of the
distribution. The value of λ, used in Eq. 5, is naturally sampled from this distribution. By varying the parameter
α, we can adjust how much mixing occurs between the global model G and the local model Lk.

• Uniform Distribution: When α = 1, the Beta distribution becomes uniform over [0,1]. In this case,
λ is sampled uniformly across the entire interval, meaning that each model, G and Lk, has an equal
probability of being weighted more or less in the mixup process. This leads to a broad exploration of
different combinations of global and local models, allowing for a wide range of mixed models.

• Concentrated Mixup ( α > 1): When α > 1, the Beta distribution is concentrated around the center
of the interval [0,1]. As a result, the mixup factor λ is more likely to be closer to 0.5, leading to more
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balanced combinations of the global and local models. This results in outputs that are more ”mixed,”
with neither model dominating the mixup process. Such a setup can enhance the robustness of the
combined model, as it prevents extreme weighting of either model, creating smoother interpolations
between them.

• Extremal Mixup ( α < 1): In contrast, when α < 1, the Beta distribution becomes U-shaped, with
more probability mass near 0 and 1. This means that λ tends to be either very close to 0 or very
close to 1, favoring one model over the other in the mixup process. When λ ≈ 0, the local model
Lk is chosen almost exclusively, and when λ ≈ 1, the global model G is predominantly selected.
This form of mixup creates a more deterministic selection between global and local models, with less
mixing occurring.

The behavior of different α values is depicted in Figure 7, where the distribution of the mixup factor λ is
visualized. These distributions highlight the varying degrees of mixup, ranging from uniform blending to
nearly deterministic model selection.

G.2 EXPERIMENTAL SETUP: INVESTIGATING THE IMPACT OF α

To thoroughly investigate the impact of α on model performance, we designed two distinct experimental setups:

• Random Sampling: In this scenario, we set α = 1, meaning that the λ values are sampled uniformly
from the interval [0,1]. This ensures a wide range of mixup combinations between the global and local
models. The random sampling approach helps us assess the general robustness of the model when
the mixup degree λ is not biased towards any specific value.

• Adaptive Sampling: For this case, we divided the communication rounds into three distinct stages,
each consisting of epochglobal

3
epochs. During these stages, the parameter α is adaptively changed as

follows:

α =


0.1, initial stage (early training)
100, middle stage (convergence phase)
0.1, final stage (fine-tuning)

(31)

This adaptive strategy mimics the behavior of the original pFedMix algorithm while also allowing
for more controlled exploration of different mixup combinations. During the early and late stages, a
small α (0.1) encourages more deterministic model selections (i.e., either local or global), while the
middle stage with α = 100 promotes more balanced mixing. This dynamic adjustment of α enables
us to control the degree of mixup at different phases of training.

G.3 CONCLUSION AND OBSERVATIONS

Our extended experiments reveal that the choice of α has a significant impact on the performance of the mixed
models. Uniform sampling (α = 1) provides a general robustness across different communication rounds, but
adaptive sampling offers more fine-grained control over the mixup process. In particular, the adaptive strategy
with varying α values allows for better performance tuning across different training phases, as the model
benefits from both deterministic selections and balanced mixups at different stages. We’ve furthur designed
an experiment to see the effect of α on the overall performance of our proposed model: (a) random: In this
scenario, we chose α = 1. (b) adaptive. we divided the communication rounds in three stages : epochglobal

3
,

α = [0.1 → 100 → 0.1]. This is the closestt possible to the original adaptive pFedMix algorithm, as the frozen
layer.
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Figure 8: The Sigmoid Mixup factor µ function with different t values vs the simple function. The X-axis
presents the input which is test accuracy of the local model in broadcasting phase and average test accuracy of
the previous global model over all clients in the aggregation.
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