
ULTRAIF: Advancing Instruction Following from the Wild

Anonymous ACL submission

Abstract001

Instruction-following made modern large lan-002
guage models (LLMs) helpful assistants. How-003
ever, the key to taming LLMs on complex in-004
structions remains mysterious, for that there005
are huge gaps between models trained by open-006
source community and those trained by lead-007
ing companies. To bridge the gap, we propose008
a simple and scalable approach ULTRAIF for009
building LLMs that can follow complex instruc-010
tions with open-source data. ULTRAIF first de-011
composes real-world user prompts into simpler012
queries, constraints, and corresponding evalu-013
ation questions for the constraints. Then, we014
train an UltraComposer to compose constraint-015
associated prompts with evaluation questions.016
This prompt composer allows us to synthesize017
complicated instructions as well as filter re-018
sponses with evaluation questions. In our ex-019
periment, for the first time, we successfully020
align LLaMA-3.1-8B-Base to catch up with021
its instruct version on 5 instruction-following022
benchmarks without any benchmark informa-023
tion, using only 8B model as response gener-024
ator and evaluator. The aligned model also025
achieved competitive scores on other bench-026
marks. Moreover, we also show that ULTRAIF027
could further improve LLaMA-3.1-8B-Instruct028
through self-alignment, motivating broader use029
cases for the method.030

1 Introduction031

Large language models (Meta, 2024; OpenAI,032

2024) have demonstrated remarkable capabili-033

ties, especially in following complex instructions.034

While modeling such ability is crucial, the tech-035

nical details and the instruction datasets used in036

state-of-the-art LLMs remain mysterious. For ex-037

ample, LLaMA3 (Meta, 2024) reportedly leverages038

instruction-following data at the tens of millions039

scale but has not been open-sourced. This lack of040

transparency has resulted in a significant gap be-041

tween research community and leading companies.042

LLaMA-3.1-8B-
Instruct

AutoIF

LLaMA-3.1-8B-
Base

UltraIF (Ours)scale

IFEval
50 55 7560 65 70 80

M
u
lt
i-
IF

30

35

40

45

50

55

UltraIF(Ours)

Conifer

Evol-Instruct

Figure 1: Instruction-following performance compari-
son of ULTRAIF against baselines.

Recent efforts in aligning LLMs to follow in- 043

structions have focused on creating high-quality 044

instruction-following data. On the one hand, Wei 045

et al. (2021); Rajani et al. (2023); Jiang et al. 046

(2023) involve human annotators in developing 047

instructions and manually crafting corresponding 048

responses. While effective, these methods are 049

label-intensive, heavily reliant on human exper- 050

tise, and face challenges in scalability and cost 051

efficiency. On the other hand, Xu et al. (2023); 052

Wang et al. (2023); Sun et al. (2024a); Dong et al. 053

(2024) attempt to leverage LLMs to automatically 054

construct high-quality instruction data. Specifi- 055

cally, Xu et al. (2023); Sun et al. (2024a) guide 056

LLMs to generate constraints and evolve initial 057

instructions into more complex forms. However, 058

these LLMs-driven methods heavily rely on mod- 059

els’ instruction-evolving capability and overempha- 060

size instruction complexity, ultimately hindering 061

the diversity of evolved instructions and the cor- 062

rectness of generated responses. To improve this, 063

Wang et al. (2023); Dong et al. (2024) introduce 064

handcrafted constraints inspired by human priors 065

1



to guide LLMs. For instance, Dong et al. (2024)066

introduces constraints that can be verified by code067

execution to ensure response correctness. How-068

ever, these handcrafted constraints introduce rigid-069

ity, leading to homogeneous instructions and mak-070

ing it narrow in encompassing more complex or071

diverse instructions (e.g., write in Shakespeare’s072

tone). As a result, scaling such instruction with073

correct responses remains a significant challenge,074

limiting the applicability of modeling the distribu-075

tion of instructions from real-world users.076

In this paper, we propose ULTRAIF, a simple and077

scalable method which synthesizes high-quality078

instruction-following data. The core idea of UL-079

TRAIF is to decompose real-world user instructions080

for both constraints and evaluation questions, then081

train a composer model to synthesize diverse and082

complex instructions with verification questions.083

To achieve this, we first utilize LLM to decom-084

pose human instructions into simplified instruc-085

tions and their associated constraints. For each086

constraint, the LLM further generates the corre-087

sponding evaluation question to verify whether the088

upcoming response meets the requirement. With089

these components, we train UltraComposer, which090

takes the simplified instruction as input and out-091

puts the original instruction along with its evalua-092

tion question. In this way, the composer learns to093

evolve instructions with verifiable constraints, and094

benefits from the generalization ability of LLMs095

rather than handcrafted rules. With the composer,096

ULTRAIF could make any instruction more compli-097

cated to synthesize a large-scale and diverse dataset.098

The evaluation questions further help with quality099

control in rejection sampling and preference learn-100

ing (Rafailov et al., 2024; Chen et al., 2024).101

Through comprehensive experiments, we102

demonstrate that ULTRAIF significantly enhances103

the instruction-following capabilities of LLMs104

with high scalability and cost efficiency. Our105

evaluation, conducted on the LLaMA-3.1-8B106

model across five instruction-following datasets,107

confirms ULTRAIF’s strong alignment with108

general instructions. Notably, as shown in Figure109

1, by scaling up the training data, we achieve a110

milestone, optimizing the LLaMA-3.1-8B-Base111

model to match the instruction-following ability112

of its instruct version. Additionally, we assess113

the generability of ULTRAIF by evaluating it on114

mathematical, reasoning, coding, and general115

conversation domains. Furthermore, we explore116

the potential of self-alignment in ULTRAIF by117

further optimizing the LLaMA-3.1-8B-Instruct 118

model, and achieved sustaintial improvement. 119

The main contributions of our paper include: 120

• We introduce ULTRAIF, a simple and scalable 121

approach that leverages real-world user instruc- 122

tions to train a composer model, UltraComposer, 123

enabling the synthesis of complex and diverse 124

instructions with correct responses. 125

• Our experiments demonstrate the strong perfor- 126

mance of ULTRAIF in handling complex instruc- 127

tions, surpassing all baselines under the same 128

data budget while retaining general capabilities 129

in domains such as mathematics, coding, and 130

conversational tasks. 131

• We reach a new milestone by optimizing 132

the LLaMA-3.1-8B-Base model to match the 133

instruction-following abilities of its Instruct coun- 134

terpart with only 200k data, and showcase the 135

self-alignment potential by further optimizing 136

the LLaMA-3.1-8B-Instruct model on it own. 137

2 ULTRAIF 138

2.1 Overview 139

ULTRAIF synthesizes high-quality instruction- 140

following datasets in two stages. As shown in 141

Figure 2, ULTRAIF first constructs the UltraCom- 142

poser by decomposing user instructions into sim- 143

plified ones and constraints, along with correspond- 144

ing evaluation questions (§2.2). This specialized 145

composer facilitates the synthesis of instructions 146

with more complex and diverse constraints, while 147

the evaluation questions ensure the correctness and 148

reliability of the generated responses. Then, the 149

Generate-then-Evaluate process (§2.3) uses Ultra- 150

Composer to incorporate constraints into instruc- 151

tions and assesses the generated responses using 152

corresponding evaluation questions covering vari- 153

ous quality levels. 154

2.2 UltraComposer 155

Previous studies (Xu et al., 2023; Sun et al., 2024a) 156

that rely solely on LLMs are limited by the models’ 157

instruction-evolving ability, which restricts the di- 158

versity of synthetic instructions and compromises 159

response accuracy. While Wang et al. (2023); Dong 160

et al. (2024) address response correctness through 161

handcrafted constraints, this approach further lim- 162

its instruction diversity. In contrast, ULTRAIF fo- 163

cuses on generating diverse, complex instructions 164

2



Instructions

(a) Instruction Decomposition & Eval Question Generation

Instruction: In Shakespeare’s tone, recommend me ten Chinese books.

Simplified Instruction: 
Recommend me ten 
Chinese books.
Constraint: 
In Shakespeare’s tone.

(b) UltraComposer Training

Input
Output

Simplified 
Instruction

Instruction

Evaluation
Question

(c) Instruction Generation

1. UltraComposer

2. Generate-then-Evaluate

(d) Response Evaluation

Responses

Chosen

Rejected

Evaluate

UltraComposer

LLM LLM
UltraComposerShareGPT…

Vanilla Ins.

Evaluation Question: 
Is the response written in 
Shakespeare’s tone?

Figure 2: The framework of ULTRAIF. Specifically, ULTRAIF begins by training the UltraComposer, which
decomposes real-world user instructions and evaluation questions. For (a), the given instruction can be decomposed
into several pairs, such as the numeric constraint ‘ten books’ and content constraint ‘Chinese books’. Next, ULTRAIF
adopts a Generate-then-Evaluate process, where the composer iteratively adds multiple constraints to each collected
instruction and then applies the evaluation questions for rejection sampling.

with correct responses. To achieve this, we pro-165

pose the UltraComposer, a specialized model to166

synthesize diverse instructions and generate corre-167

sponding evaluation questions. Building this com-168

poser model involves three key steps: instruction169

decomposition, evaluation question generation, and170

UltraComposer training.171

Instruction Decomposition The decomposition172

process leverages LLMs to decompose complex173

instructions into different components. These com-174

ponents consist of a set of simplified instructions175

paired with constraints that represent the underly-176

ing requirements of the original instruction. For177

example, as shown in Figure 2 (a), the instruc-178

tion (X) “In Shakespeare’s tone, recommend me179

ten Chinese books.” can be decomposed into the180

simplified instruction (x1) “Recommend me ten181

Chinese books.” and the paired constraint (c1) “In182

Shakespeare’s tone.”, etc. This step is essential for183

disentangling intricate objectives into more struc-184

tured elements, extending beyond basic format or185

content constraints (Dong et al., 2024; Wang et al.,186

2023), and forming a foundation to model the dis-187

tribution of real-world user instructions effectively.188

Evaluation Question Generation While Xu189

et al. (2023); Wang et al. (2023) focus on improv-190

ing the complexity of instructions, omitting the191

quality of generated responses often leads to low- 192

quality samples. Inspired by Qin et al. (2024), we 193

utilize LLM to generate evaluation questions for 194

each constraint. Given the example, the evaluation 195

question (q1) would be “Is the response written 196

in Shakespeare’s tone?”. These questions are de- 197

signed to assess the generated responses for adher- 198

ence to the constraints. This mechanism not only 199

addresses the limitation of checking only program- 200

matically verifiable constraints (Dong et al., 2024), 201

but also improves the reliability of the response and 202

its alignment with the original instruction. 203

X → {(x1, c1, q1), ... , (xn, ci, qi)}, i ∈ N (1) 204

UltraComposer Training With decomposed in- 205

structions and evaluation questions, we train Ultra- 206

Composer to take a simplified query (xi) as input 207

and generate the original instruction (X) with its 208

evaluation question (qi), denoted as Eq.2, as shown 209

in Figure 2 (b). This enables UltraComposer to 210

complicate instructions in a single step. Addition- 211

ally, it enhances constraint diversity by incorporat- 212

ing not only the LLM’s inherent knowledge but 213

also distributions observed in real-world scenarios. 214

UltraComposer(xi) → (X, qi), i ∈ N (2) 215

2.3 Generate-then-Evaluate 216

With UltraComposer, ULTRAIF efficiently pro- 217

duces high-quality instruction-following data 218

3



through a Generate-then-Evaluate process, encom-219

passing both instruction generation and response220

evaluation to support both Supervised Fine-tuning221

and Preference Learning strategies.222

Instrucion Generation UltraComposer adapts223

the augmentation process fully automated and224

aligns with human preferences. This step starts by225

collecting user instructions from existing datasets226

(Chiang et al., 2023; Teknium, 2023; Rajani et al.,227

2023), and then use the Composer to augment these228

instructions. As shown in Eq.3, this process can229

be conducted iteratively, enabling the generation230

of more complex and realistic instructions (x̄) with231

multiple constraints, paired with corresponding232

evaluation questions (q̄).233

UltraComposer(x(n)) → (x̄(n), q̄(n)), n ∈ N

x(n+1) = x̄(n), q̄(n+1) = q̄(n+1) ∪ q̄(n)

(3)234

Response Evaluation Next, we prompt LLMs to235

generate K responses for each augmented instruc-236

tion. As ‘LLM-as-judge’ paradigm is prevalent237

(Zheng et al., 2023), human can be replaced by238

LLMs to assess the quality of response, so the qual-239

ity of generated responses is assessed by evaluation240

questions. This results in a dataset Ddata compris-241

ing (x̄, q̄, ychosen, yrejected). Ideally, this process242

requires only three to four calls to LLMs, signifi-243

cantly reducing the computational cost, achieves244

greater efficiency and incurs minimal costs when245

constraining large-scale datasets compared to pre-246

vious research (Xu et al., 2023; Dong et al., 2024).247

3 Experiments248

3.1 Experimental Setup249

Datasets and Baselines To train UltraComposer,250

we decompose instructions from ShareGPT (Chi-251

ang et al., 2023) and generate corresponding evalua-252

tion questions by LLaMA-3.1-70B-Instruct. In our253

experiments, we collect human instructions from254

existing open-source datasets, including ShareGPT,255

OpenHermes2.5, and No Robots (Teknium, 2023;256

Rajani et al., 2023; Chiang et al., 2023), and em-257

ploy UltraComposer to complicate instructions and258

then generate responses. For baselines, we reimple-259

ment existing methods using either public datasets260

(Sun et al., 2024a; Xu et al., 2023) or available im-261

plementations (Dong et al., 2024), and include a262

series of currently open and closed-source LLMs.263

More details are in Appendix A.1.264

Evaluation We evaluate ULTRAIF on five 265

instruction-following benchmarks, including IFE- 266

val (Zhou et al., 2023), Multi-IF (He et al., 2024), 267

InfoBench (Qin et al., 2024), FollowBench (Jiang 268

et al., 2023), and LiveBench (White et al., 2024). 269

While IFEval and Multi-IF focus on testing verifi- 270

able instructions using functions, the others extend 271

to more general instructions that need to be eval- 272

uated by LLMs. Additionally, we further test the 273

general ability of ULTRAIF such as mathematical 274

(Chen et al., 2021), reasoning (Suzgun et al., 2022), 275

coding (Cobbe et al., 2021), and general interac- 276

tion capabilities (Li et al., 2024). The details about 277

benchmarks are provided in Appendix A.2. 278

Experimental Settings We fine-tune LLaMA- 279

3.1-8B-Instruct to build our UltraComposer. Sub- 280

sequently, we explore two settings to implement 281

our training strategies listed in Appendix A.3, in- 282

cluding Supervised Fine-tuning and Preference 283

Learning. The implementation details are listed in 284

Appendix A.4. And the prompts about instruction 285

decomposition and evaluation question generation 286

are provided in Appendix B. 287

• Strong-to-Weak. In this setting, knowledge is 288

distilled from a larger model to a smaller one. For 289

ULTRAIF, we leverage LLaMA-3.1-70B-Instruct 290

for response generation and evaluation and then 291

train LLaMA-3.1-8B-Base. 292

• Self-Alignment. We replace the supervision 293

model with Llama-3.1-8B-Instruct. 294

3.2 Main Results 295

Table 1 shows the performance of ULTRAIF on five 296

instruction-following benchmarks. 297

ULTRAIF Outperforms All Previous Methods 298

In the strong-to-weak setting, ULTRAIF demon- 299

strates performance that is comparable to or ex- 300

ceeds previous methods across all datasets. By fine- 301

tuning on our generated data, ULTRAIF achieves 302

substantial improvements, particularly on IFEval 303

and Multi-IF. When compared to strong baselines 304

like AutoIF (Dong et al., 2024), ULTRAIF achieves 305

scores of 53.97 (Pr(S)) and 64.15 (Ins(S)) on IFE- 306

val and 81.91 (DRFR) on InfoBench, surpassing 307

AutoIF by margins ranging from 1.29% to 6.84%. 308

These results underscore ULTRAIF’s capability to 309

effectively follow instructions, even with lower 310

training data, representing a significant advance- 311

ment over state-of-the-art approaches. 312

4



Method #Data IFEval Multi-IF InfoBench LiveBench FollowBench

Pr(S) Pr(L) Ins(S) Ins(L) Turn1 Turn2 Turn3 DRFR Score SSR

GPT-4† - 76.90 79.30 83.60 85.40 81.50 70.50 60.90 89.40 69.40 78.60
LLaMA-3.1-8B-Instruct† - 69.13 74.86 77.46 81.65 68.54 59.63 51.26 81.33 57.10 63.41

Strong-to-Weak (Supervisor: GPT-4o-mini)

SPaR (2024)‡ 8k 54.71 58.59 64.86 68.70 55.37 36.22 27.23 78.61 50.80 59.37

Strong-to-Weak (Supervisor: LLaMA-3.1-70B-Instruct)

LLaMA-3.1-8B (ShareGPT) 10k 43.99 54.34 54.32 64.39 44.69 25.11 18.50 81.56 33.20 59.59
Evol-Instruct (2023)‡ 10k 41.96 45.66 54.44 58.03 39.03 24.34 19.14 75.74 44.90 43.87
Conifer (2024a)‡ 13k 46.40 51.02 58.51 62.59 44.91 25.83 17.95 75.73 45.60 52.42
AUTOIF (2024)‡ 10k 47.13 56.93 57.55 67.02 47.63 27.53 20.53 80.62 40.50 60.41
ULTRAIF
+ SFT 10k 53.97 58.59 64.15 68.82 52.55 29.34 22.29 81.91 42.20 59.50

+ Iterative DPO 8k 58.22 65.25 68.11 74.22 58.14 35.65 26.55 83.56 49.50 59.99

Self-Alignment (Supervisor: LLaMA-3.1-8B-Instruct)

ULTRAIF
+ SFT 10k 55.82 58.78 66.18 69.54 55.59 36.72 28.07 77.78 46.60 55.88

+ Iterative DPO 8k 56.93 64.14 66.66 73.02 58.63 42.04 31.20 79.86 54.20 58.56
+ SFT scale up 175k 69.87 72.46 77.46 80.22 66.24 53.66 42.19 79.20 51.40 59.93

+ Iterative DPO 20k 71.35 75.42 79.38 83.09 69.63 58.28 46.86 80.70 56.00 62.55

Table 1: The main results on five instruction-following benchmarks. Results marked with † are sourced from the
original benchmarks, and ‡ represents we reimplement the methods.

Iterative DPO Boosts Performance Effectively313

As shown in Table 1, the iterative DPO process314

substantially enhances alignment with complex in-315

structions. Specifically, in comparison to SFT, iter-316

ative DPO achieves an average improvement of 5%317

in the strong-to-weak setting and 3.8% in the self-318

alignment setting on MultiIF. Furthermore, this pro-319

cess enables ULTRAIF to surpass state-of-the-art320

methods in three benchmarks that require LLM-321

based evaluation, with an improvement of 1.5%322

on InfoBench, 4.6% on LiveBench, and 2.62% on323

FollowBench, demonstrating the importance of UL-324

TRAIF in handling diverse instructions.325

Smaller Supervisor Yields Better Performance326

The self-alignment setting, which employs smaller327

model as supervisor, achieves superior perfor-328

mance relative to the strong-to-weak setting. This329

divergence is particularly evident during the SFT330

stage, wherein self-alignment outperforms strong-331

to-weak on IFEval, Multi-IF and LiveBench. While332

improvements introduced by DPO remain rela-333

tively incremetal, self-alignment still exhibits su-334

perior performance on two benchmarks. These re-335

sults align with prior research by Hui et al. (2024);336

Zhang et al. (2025); Li et al. (2025), which demon-337

strates that self-generated responses more closely338

to the distribution of the base model.339

ULTRAIF Achieves A New Milestone By scal-340

ing up the training data, ULTRAIF achieves a new341

milestone in instruction-following alignment. With342

175k data in the SFT stage and 20k data in the343

DPO stage, ULTRAIF reaches impressive perfor- 344

mance, with 71.35 (Pr(S)) and 79.38 (Ins(S)), while 345

the LLaMA-3.1-8B-Instruct model only achieves 346

69.13 (Pr(S)) and 77.46 (Ins(S)), and comparable 347

across the left benchmarks. This demonstrates that 348

ULTRAIF, when optimized and trained on larger 349

datasets, not only improves instruction-following 350

capabilities but also comes closest to matching the 351

performance of LLaMA-3.1-8B-Instruct, marking 352

a significant leap forward in model performance. 353

3.3 Cross-Domain Validation 354

Table 2 presents a comparative evaluation of UL- 355

TRAIF across four general domains against AutoIF 356

and LLaMA-3.1-8B-Instruct. Although ULTRAIF 357

exhibits slightly lower performance than AutoIF on 358

math, it achieves substantial improvements on code 359

and conversation. These gains are further amplified 360

by scaling up the training data, and the applica- 361

tion of the DPO stage consistently enhances perfor- 362

mance across all evaluated domains. In particular, 363

ULTRAIF contributes significantly to improving 364

general capabilities, as evidenced by its perfor- 365

mance on the comprehensive LiveBench bench- 366

mark (White et al., 2024) and the ArenaHard con- 367

versational benchmark (Li et al., 2024). ULTRAIF 368

surpasses AutoIF by a statistically significant mar- 369

gin of 4.2% on LiveBench and achieves a substan- 370

tial 15.4% improvement in conversational perfor- 371

mance on ArenaHard. These results highlight the 372

effectiveness of ULTRAIF in advancing the devel- 373

opment of more versatile and general models. 374

5



Method Code Reasoning Math Conversation General

HumanEval BBH GSM8k Arena Hard LiveBench [All]

LLaMA-3.1-8B-Instruct 65.24 68.54 80.80 18.30 25.90
AutoIF (2024) 46.34 67.18 51.50 9.20 17.50

ULTRAIF + SFT 43.90 67.33 48.60 12.20 21.30
+ Iterative DPO 47.56 68.03 48.10 16.00 21.70

+ SFT scale up 52.44 67.26 66.70 16.00 22.80
+ Iterative DPO 55.49 68.44 68.00 31.40 23.10

Table 2: The general performance on mathematical, reasoning, coding, and conversational domains. We report
Pass@1 on HumanEval, Acc on BBH and GSM8k, and Win Rate on Arena Hard.

Iteration IFEval Multi-IF LiveBench

Pr(S) Pr(L) Ins(S) Ins(L) Turn1 Turn2 Turn3 Score

Iter 1 55.45+1.48 61.55+2.96 65.10+0.95 70.74+1.92 56.13+3.58 32.11+2.77 24.38+2.09 42.20+0.00

Iter 2 55.08+1.11 62.66+4.07 65.47+1.32 71.82+3.00 57.26+4.71 34.92+5.58 26.28+4.00 47.20+5.00

Iter 3 56.75+2.78 63.03+4.44 66.79+2.64 72.42+3.60 57.10+4.55 34.87+5.53 26.11+3.82 45.70+3.50

Iter 3w.NCA 58.22+4.25 65.25+6.66 68.11+3.96 74.22+5.40 58.14+5.59 35.65+6.31 26.55+4.26 49.50+7.30

Table 3: The performance compared to the SFT model across each iteration during the Iterative DPO process.

1.0

0.5

0.0

0.5

1.0

1.5

Ch
os

en
 R

ew
ar

d

0 2 4 6 8 10 12
Step

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Re
je

ct
ed

 R
ew

ar
d

Iter1 Iter2 Iter3 Iter3 NCA

Figure 3: Reward trajectories for the chosen and rejected
samples across the steps of each iteration during the
Iterative DPO process.

4 Analysis375

4.1 Impact of the Iterative DPO Process376

Given that UltraComposer enables the iterative377

incorporation of constraints into instructions, we378

adopt an Iterative DPO training strategy in which379

instruction complexity is gradually increased over380

successive training stages. Figure 3 illustrates the381

reward trajectories for the chosen and rejected sam-382

ples. As training progresses, the reward margin383

between chosen and rejected samples widens. How-384

ever, by the third iteration, the optimization objec-385

tive begins to diverge, prioritizing the maximiza-386

tion of the reward margin over improving the abso-387

lute reward values. This shift leads to both chosen388

and rejected sample rewards falling below zero,389

ultimately degrading model performance on three390

benchmarks, as shown in Table 3. To address this,391

we replace the DPO objective with NCA (Chen392

et al., 2024), which stabilizes the training dynamics393

Setting c=1 c=2 c=3

Strong-to-Weak 91.76 86.41 79.44
Self-Alignment 92.46 89.57 85.79

Table 4: The pass rate of of ULTRAIF across increasing
instruction complexity levels during SFT stage.

and results in more consistent and robust perfor- 394

mance across benchmarks. 395

4.2 Analysis of Sampling Efficiency 396

We also evaluate the sampling efficiency of UL- 397

TRAIF by measuring the proportion of generated 398

responses that satisfy the filter question criteria, as 399

instruction complexity increases through iterative 400

applications of UltraComposer. Table 4 presents 401

the overall pass rates of ULTRAIF across varying 402

constraint levels (c = 1, 2, 3). The pass rate de- 403

creases with increasing instruction complexity. No- 404

tably, the self-alignment setting consistently out- 405

performs the strong-to-weak setting. These trends 406

are consistent with findings from prior studies (Hui 407

et al., 2024; Zhang et al., 2025; Li et al., 2025). 408

Furthermore, Appendix C.1 compares the data 409

synthesis pass rates of ULTRAIF and AutoIF, 410

demonstrating the superior scalability and cost- 411

efficiency of ULTRAIF in dataset construction. To 412

assess the reliability of LLM-based evaluation dur- 413

ing filtering, we conduct a human evaluation study, 414

where we randomly sample 75 examples from the 415

SFT dataset and assign each to five human anno- 416

tators. The resulting agreement shows that LLM 417

evaluations achieve an accuracy of approximately 418

80%, which we consider sufficient for practical use. 419

6



Method #Data IFEval Followbench Multi-IF

541 944 4501

N-gram (N=13) Overlap Ratio
AutoIF 10k 0.0000 0.0000 0.0000
ULTRAIF 10k 0.0000 0.0026 0.0000
ULTRAIF 175k 0.0000 0.0033 0.0000

LLM Decontaminator (Rephr.)
AutoIF 10k 0.0000 0.0032 0.0000
ULTRAIF 10k 0.0018 0.0117 0.0000
ULTRAIF 175k 0.0166 0.0360 0.0082

Table 5: Contamination analysis on SFT data generated
by AutoIF and ULTRAIF on three benchmarks.

10k 25k 50k 75k 100k 150k 175k
Dataset Scale

30

40

50

60

70

80

Sc
or

e

IFEval Multi-IF LiveBench

Figure 4: Scaling the training set on SFT stage.

4.3 Contamination Analysis420

To ensure the integrity of our evaluation, we con-421

duct a comprehensive contamination analysis of422

the training data generated by both AutoIF and423

ULTRAIF across three benchmarks. We use a tra-424

ditional n-gram overlap method (overlap ratio =425
#matched_ngrams
#total_ngrams ) to identify any exact or near-426

duplicate sequences between training and test sets427

and utilize the LLM-based contamination detection428

framework from LM-Sys (Yang et al., 2023), which429

leverages advanced LLMs to identify semantically430

rephrased versions of test instances in the training431

data. Table 5 reveals extremely low contamina-432

tion rates across all configurations. Notably, both433

detection methods show that ULTRAIF exhibits434

contamination levels comparable to those of Au-435

toIF. These findings confirm that the self-generated436

training data is clean and does not compromise the437

validity of our evaluation results.438

4.4 Scalability of ULTRAIF439

To validate the effieiency and effectiveness of UL-440

TRAIF, we conduct scaling up experiments under441

the self-alignment setting. Figure 4 shows the im-442

pact of varying training data sizes during the SFT443

stage. With about 175k training samples, ULTRAIF444

demonstrates powerful performance compared to445

Pr(L) Ins(L)
Metrics

50

55

60

65

70

Sc
or

es

c=1 (w. filter)
c=2 (w. filter)
c=3 (w. filter)

c=1 (w.o. filter)
c=2 (w.o. filter)
c=3 (w.o. filter)

Figure 5: Ablations on the number of added constraints
and the evaluation question filter.

baselines, highlighting its strong capacity to scale 446

with increasing data volume. Moreover, we analyze 447

the impact of multi-turn data in Appendix C.2, and 448

incoporate such data in our scaling experiments. 449

4.5 Ablation Studies on ULTRAIF 450

The iterative augmentation capability of UltraCom- 451

poser raises a critical question for the SFT stage: 452

should simple or complex instructions be priori- 453

tized for training? Figure 5 presents the results 454

of using varying levels of instruction complexity 455

during the SFT stage. The results demonstrate that 456

as instruction complexity increases, performance 457

correspondingly improves, reaching the peak af- 458

ter three iterations with. Furthermore, we evalu- 459

ate the effectiveness of our evaluation questions. 460

Without filtering out low-quality responses, perfor- 461

mance deteriorates significantly over 3.35%-5.36%. 462

This mechanism becomes increasingly critical as in- 463

struction complexity grows, with the performance 464

gap widening alongside the increasing complex- 465

ity, underscoring the importance of this module in 466

maintaining high-quality training data. We provide 467

cases to illustrate the augmented instructions and 468

evaluation questions in Appendix C.3. 469

4.6 Extension of Self Alignment 470

In our main experiments, we distill knowledge 471

from the Instruct version model to enhance the 472

vanilla model, demonstrating the effectiveness of 473

ULTRAIF. However, the potential for ULTRAIF to 474

independently enhance a strong model like Cheng 475

et al. (2024) has not yet been explored. In this 476

section, we conduct experiments to investigate the 477

self-improvement capabilities of ULTRAIF. Under 478

the self-alignment setting, we use data generated 479

by LLaMA-3.1-8B-Instruct to enable the model to 480

train itself. As shown in Figure 6, ULTRAIF signif- 481

icantly boosts the performance of the strong model 482

7



Method #Data IFEval Multi-IF LiveBench FollowBench

Pr(S) Pr(L) Ins(S) Ins(L) Turn1 Turn2 Turn3 Score SSR

Qwen2-7B-Instruct - 52.68 55.63 62.82 65.34 54.44 39.41 29.95 46.30 63.36
AutoIF(2024)† 10k 40.70 44.50 51.30 55.40 - - - - 53.30

ULTRAIF + SFT 10k 44.17 47.31 54.19 57.55 47.56 25.38 18.13 35.20 54.16
+ Iterative DPO 8k 45.28 48.61 56.59 59.23 48.57 28.45 19.60 39.80 55.44

Table 6: The results on four instruction-following benchmarks with Qwen2-7B as the backbone model.

IFEval Multi-IF LiveBench FollowBench
Benchmark

50

55

60

65

70

75

80

Sc
or

e

LLaMA-3.1-8B-Instruct
Self-Evolve-10k

Self-Evolve-25k
Self-Evolve-40k

Figure 6: The performance of exploring the potentiality
of ULTRAIF on self-alignment.

across different size of training data, even without a483

more powerful supervisor. Specifically, ULTRAIF484

improves performance on IFEval by 2.4%-5.9%,485

on Multi-IF by 3.74%-5.38%, further validating the486

effectiveness of our approach.487

4.7 Generalizability of ULTRAIF488

To assess the generalizability of ULTRAIF across489

different foundation models, we apply it to the490

Qwen2-7B base model (Yang et al., 2024). As491

shown in Table 6, ULTRAIF maintains strong per-492

formance when built on the Qwen2 architecture,493

demonstrating its adaptability to different model494

backbones. Notably, compared to AutoIF, UL-495

TRAIF exhibits greater potential in aligning LLMs496

with instruction-following capabilites.497

5 Related Work498

5.1 Instruction Following499

Instruction following is a core area for LLMs, aim-500

ing to improve understanding and execution of com-501

plex human instructions. Early work (Wei et al.,502

2021; Rajani et al., 2023; Jiang et al., 2023) use503

curated datasets of human-written instructions and504

responses. Recent methods automate this using505

LLMs, Xu et al. (2023) and Sun et al. (2024a)506

prompt LLMs to evolve or complicate instructions.507

However, this can yield low-quality data due to508

LLMs’ limitations. To improve quality, Wang509

et al. (2023); Dong et al. (2024) add human pri-510

ors like verifiable constraints, but this reduces in-511

struction diversity. In contrast, ULTRAIF decom- 512

poses user instructions into constraints and evalua- 513

tion questions, then trains UltraComposer to gen- 514

erate diverse, complex instructions with accurate 515

responses, offering a robust approach to instruction 516

data generation. 517

5.2 Perference Learning 518

Preference learning has emerged as a key method 519

to improve instruction-following by refining mod- 520

els through feedback (Ouyang et al., 2022; Dong 521

et al., 2024; Sun et al., 2024a; Gao et al., 2024). It 522

typically enhances models finetuned on instruction 523

data using reward signals from human or automated 524

to guide learning. While RLHF with PPO is com- 525

mon, it depends on ranked responses, which are 526

costly and labor-intensive. Recent work (Rafailov 527

et al., 2024; Chen et al., 2024) addresses this via 528

direct preference optimization, reducing reliance 529

on human input. ULTRAIF supports this by gen- 530

erating evaluation questions that guide preference 531

learning more efficiently. It complements direct op- 532

timization with a scalable, cost-effective approach 533

to producing instruction-following data. 534

6 Conclusion 535

In this paper, we propose ULTRAIF, a scalable and 536

effective approach for synthesizing high-quality 537

instruction-following data. By decomposing hu- 538

man instructions into simplified queries, con- 539

straints, and corresponding evaluation questions, 540

we train UltraComposer that enables the effi- 541

cient generation of constraint-aware instructions. 542

Across two different settings, ULTRAIF demon- 543

strates strong performance across five instruction- 544

following benchmarks and four general bench- 545

marks. Extensive experiments conducted on 546

LLaMA-3.1-8B-Instruct further highlight UL- 547

TRAIF’s potential for self-alignment. Most impor- 548

tantly, we are the first to optimize the LLaMA-3.1- 549

8B-Base model to match the instruction-following 550

capabilities of its Instruct counterpart, underscoing 551

the effectiveness and potential of our approach. 552

8



Limitations553

Due to limitations in time and computational re-554

sources, ULTRAIF has not yet been evaluated on a555

wider range of backbone models or on models with556

larger parameter scales. Nevertheless, the current557

experimental results provide sufficient evidence of558

its generalizability across different foundational ar-559

chitectures. Additionally, since the full pipeline560

depends on LLMs for supervision, the data genera-561

tion process may involve limited controllability and562

introduces potential risks related to consistency and563

reliability. To minimize these risks, we apply re-564

sponses filtering to ensure the quality and stability565

of the generated data.566

References567

Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang568
Su, and Jun Zhu. 2024. Noise contrastive alignment569
of language models with explicit rewards. arXiv570
preprint arXiv:2402.05369.571

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,572
Henrique Ponde De Oliveira Pinto, Jared Kaplan,573
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg574
Brockman, and 1 others. 2021. Evaluating large575
language models trained on code. arXiv preprint576
arXiv:2107.03374.577

Jiale Cheng, Xiao Liu, Cunxiang Wang, Xiaotao Gu,578
Yida Lu, Dan Zhang, Yuxiao Dong, Jie Tang, Hongn-579
ing Wang, and Minlie Huang. 2024. Spar: Self-play580
with tree-search refinement to improve instruction-581
following in large language models. arXiv preprint582
arXiv:2412.11605.583

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,584
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan585
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion586
Stoica, and Eric P. Xing. 2023. Vicuna: An open-587
source chatbot impressing gpt-4 with 90%* chatgpt588
quality.589

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,590
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias591
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro592
Nakano, and 1 others. 2021. Training verifiers593
to solve math word problems. arXiv preprint594
arXiv:2110.14168.595

Tri Dao. 2023. Flashattention-2: Faster attention with596
better parallelism and work partitioning. arXiv597
preprint arXiv:2307.08691.598

Guanting Dong, Keming Lu, Chengpeng Li, Tingyu599
Xia, Bowen Yu, Chang Zhou, and Jingren Zhou.600
2024. Self-play with execution feedback: Improving601
instruction-following capabilities of large language602
models. arXiv preprint arXiv:2406.13542.603

Bofei Gao, Feifan Song, Yibo Miao, Zefan Cai, Zhe 604
Yang, Liang Chen, Helan Hu, Runxin Xu, Qingxiu 605
Dong, Ce Zheng, Shanghaoran Quan, Wen Xiao, 606
Ge Zhang, Daoguang Zan, Keming Lu, Bowen Yu, 607
Dayiheng Liu, Zeyu Cui, Jian Yang, and 6 others. 608
2024. Towards a unified view of preference learning 609
for large language models: A survey. arXiv preprint 610
arXiv:2409.02795. 611

Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma 612
Mandyam, Hejia Zhang, Chen Zhu, Ning Li, Tengyu 613
Xu, Hongjiang Lv, and 1 others. 2024. Multi- 614
if: Benchmarking llms on multi-turn and mul- 615
tilingual instructions following. arXiv preprint 616
arXiv:2410.15553. 617

Tingfeng Hui, Lulu Zhao, Guanting Dong, Yaqi Zhang, 618
Hua Zhou, and Sen Su. 2024. Smaller language 619
models are better instruction evolvers. arXiv preprint 620
arXiv:2412.11231. 621

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun 622
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin 623
Jiang, Qun Liu, and Wei Wang. 2023. Follow- 624
bench: A multi-level fine-grained constraints follow- 625
ing benchmark for large language models. arXiv 626
preprint arXiv:2310.20410. 627

Julian Katz-Samuels, Zheng Li, Hyokun Yun, Priyanka 628
Nigam, Yi Xu, Vaclav Petricek, Bing Yin, and Tr- 629
ishul Chilimbi. 2024. Evolutionary contrastive distil- 630
lation for language model alignment. arXiv preprint 631
arXiv:2410.07513. 632

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, 633
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and 634
Ion Stoica. 2024. From crowdsourced data to high- 635
quality benchmarks: Arena-hard and benchbuilder 636
pipeline. arXiv preprint arXiv:2406.11939. 637

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang, 638
Luyao Niu, Bill Yuchen Lin, Bhaskar Ramasubra- 639
manian, and Radha Poovendran. 2025. Small mod- 640
els struggle to learn from strong reasoners. arXiv 641
preprint arXiv:2502.12143. 642

I Loshchilov. 2017. Decoupled weight decay regulariza- 643
tion. arXiv preprint arXiv:1711.05101. 644

Meta. 2024. The llama 3 herd of models. Preprint, 645
arXiv:2407.21783. 646

OpenAI. 2024. Gpt-4 technical report. Preprint, 647
arXiv:2303.08774. 648

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 649
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 650
Sandhini Agarwal, Katarina Slama, Alex Ray, John 651
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 652
Maddie Simens, Amanda Askell, Peter Welinder, 653
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022. 654
Training language models to follow instructions with 655
human feedback. In Advances in Neural Information 656
Processing Systems, volume 35, pages 27730–27744. 657
Curran Associates, Inc. 658

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2303.08774


Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao,659
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei660
Liu, Pengfei Liu, and Dong Yu. 2024. Infobench:661
Evaluating instruction following ability in large lan-662
guage models. arXiv preprint arXiv:2401.03601.663

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-664
pher D Manning, Stefano Ermon, and Chelsea Finn.665
2024. Direct preference optimization: Your language666
model is secretly a reward model. Advances in Neu-667
ral Information Processing Systems, 36.668

Nazneen Rajani, Lewis Tunstall, Edward Beeching,669
Nathan Lambert, Alexander M. Rush, and Thomas670
Wolf. 2023. No robots. https://huggingface.co/671
datasets/HuggingFaceH4/no_robots.672

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and673
Yuxiong He. 2020. Deepspeed: System optimiza-674
tions enable training deep learning models with over675
100 billion parameters. In Proceedings of the 26th676
ACM SIGKDD International Conference on Knowl-677
edge Discovery & Data Mining, pages 3505–3506.678

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Bao-679
hua Dong, Ran Lin, and Ruohui Huang. 2024a.680
Conifer: Improving complex constrained instruction-681
following ability of large language models. arXiv682
preprint arXiv:2404.02823.683

Yuchong Sun, Che Liu, Kun Zhou, Jinwen Huang, Rui-684
hua Song, Xin Zhao, Fuzheng Zhang, Di Zhang, and685
Kun Gai. 2024b. Parrot: Enhancing multi-turn in-686
struction following for large language models. In687
Proceedings of the 62nd Annual Meeting of the As-688
sociation for Computational Linguistics (Volume 1:689
Long Papers), pages 9729–9750, Bangkok, Thailand.690
Association for Computational Linguistics.691

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-692
bastian Gehrmann, Yi Tay, Hyung Won Chung,693
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny694
Zhou, and 1 others. 2022. Challenging big-bench695
tasks and whether chain-of-thought can solve them.696
arXiv preprint arXiv:2210.09261.697

Teknium. 2023. Openhermes 2.5: An open dataset of698
synthetic data for generalist llm assistants.699

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa700
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh701
Hajishirzi. 2023. Self-instruct: Aligning language702
models with self-generated instructions. In Proceed-703
ings of the 61st Annual Meeting of the Association for704
Computational Linguistics (Volume 1: Long Papers),705
pages 13484–13508, Toronto, Canada. Association706
for Computational Linguistics.707

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin708
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-709
drew M Dai, and Quoc V Le. 2021. Finetuned lan-710
guage models are zero-shot learners. arXiv preprint711
arXiv:2109.01652.712

Colin White, Samuel Dooley, Manley Roberts, Arka Pal,713
Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv, Neel714

Jain, Khalid Saifullah, Siddartha Naidu, and 1 others. 715
2024. Livebench: A challenging, contamination-free 716
llm benchmark. arXiv preprint arXiv:2406.19314. 717

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 718
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 719
Jiang. 2023. Wizardlm: Empowering large lan- 720
guage models to follow complex instructions. arXiv 721
preprint arXiv:2304.12244. 722

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 723
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 724
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 725
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian 726
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, and 727
43 others. 2024. Qwen2 technical report. Preprint, 728
arXiv:2407.10671. 729

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E 730
Gonzalez, and Ion Stoica. 2023. Rethinking 731
benchmark and contamination for language mod- 732
els with rephrased samples. arXiv preprint 733
arXiv:2311.04850. 734

Dylan Zhang, Qirun Dai, and Hao Peng. 2025. The 735
best instruction-tuning data are those that fit. arXiv 736
preprint arXiv:2502.04194. 737

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 738
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 739
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others. 740
2023. Judging llm-as-a-judge with mt-bench and 741
chatbot arena. Advances in Neural Information Pro- 742
cessing Systems, 36:46595–46623. 743

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid- 744
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, 745
and Le Hou. 2023. Instruction-following evalu- 746
ation for large language models. arXiv preprint 747
arXiv:2311.07911. 748

10

https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://huggingface.co/datasets/HuggingFaceH4/no_robots
https://doi.org/10.18653/v1/2024.acl-long.525
https://doi.org/10.18653/v1/2024.acl-long.525
https://doi.org/10.18653/v1/2024.acl-long.525
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2407.10671


A Experimental Setup749

A.1 Datasets and Baselines750

A.1.1 Datasets751

ShareGPT 1 is an open-source and multi-turn con-752

versation dataset that AutoIF utilizing the official753

open-source code2.754

OpenHermes (Teknium, 2023) is a large-scale,755

diverse, and high-quality compilation consisting756

of around 1M synthetically generated instruction757

and chat samples. We randomly select a subset758

of 150K instructions from OpenHermes-2.5 for759

scaling experiment.760

No Robots (Rajani et al., 2023) is a high-quality761

dataset of 10k instructions and demonstrations cre-762

ated by skilled human annotators. We use all in-763

structions from No Robots for scaling experiment.764

A.1.2 Baselines765

Conifer (Sun et al., 2024a) curates a novel instruc-766

tion tuning dataset which aims to enhance how767

LLMs, particularly open-source models, follow768

complex instructions involving multiple, intricate769

constraints. We generate responses for the public770

data using LLaMA-3.1-70B-Instruct3.771

Evol-Instruct (Xu et al., 2023) automatically mass-772

produces high-complexity training data by generat-773

ing diverse instructions with varying difficulty lev-774

els. We sample 10k data and generate responses4.775

SPaR (Cheng et al., 2024) proposes a self-play776

framework to enhance instruction-following abil-777

ities for LLMs, where an LLM refines its own re-778

sponses via tree-search. We reimplement SPaR779

utilizing its official open-source dataset5.780

A.2 Evaluation Benchmarks781

IFEval (Zhou et al., 2023) is an easy-to-produce782

benchmark designed to evaluate the instruction-783

following capability of LLMs. IFEval constructs784

around 500 prompts that contain 25 types of ver-785

ifiable instructions. We use both loose and strict786

accuracy metrics at prompt and instruction levels787

in our evaluation.788

Multi-IF (He et al., 2024) is a benchmark designed789

to assess LLMs’ proficiency in following multi-turn790

1https://huggingface.co/datasets/shibing624/
sharegpt_gpt4

2https://github.com/QwenLM/AutoIF
3https://huggingface.co/datasets/ConiferLM/

Conifer
4https://huggingface.co/datasets/WizardLMTeam/

WizardLM_evol_instruct_70k
5https://huggingface.co/datasets/CCCCCC/SPaR

and multilingual instructions. Based on IFEval, 791

Multi-IF contains 4,501 multilingual conversations, 792

where each has three turns. We report the average 793

accuracy across all languages for each of the three 794

rounds in the experiment. 795

InfoBench (Qin et al., 2024) is a benchmark com- 796

prising 500 diverse instructions and 2,250 decom- 797

posed questions across multiple constraint cate- 798

gories, adopting a new metric Decomposed Re- 799

quirements Following Ratio (DRFR) for evaluating 800

LLM’s ability to follow instructions. We use GPT- 801

4-1106-preview as the evaluator in our assessments. 802

FollowBench (Jiang et al., 2023) is a multi-level 803

fine-grained constraints following benchmark for 804

LLMs. FollowBench incorporates five distinct fine- 805

grained constraint types (Content, Situation, Style, 806

Format, and Example) and underscores multi-level 807

mechanism when building instruction prompts. 808

In our experiment, we prompt the GPT-4-1106- 809

preview to assess whether LLM’s outputs have sat- 810

isfied each individual constraint. 811

LiveBench (White et al., 2024) is a LLM bench- 812

mark that contains a wide variety of challeng- 813

ing tasks (math, coding, reasoning, language, 814

instruction-following, and data analysis) and au- 815

tomatically scores answers according to objec- 816

tive ground-truth values. When assessing the 817

instruction-following skills of LLMs, we employ 818

the instruction-following subset, while the entire 819

dataset is utilized to gauge their overall capabilities. 820

GSM8K (Cobbe et al., 2021) comprises 8.5K high- 821

quality, multilingual grade school math word prob- 822

lems, specifically designed to assess the multi-step 823

mathematical reasoning proficiency of language 824

models. We report the overall accuracy in the ex- 825

periment. 826

HumanEval (Chen et al., 2021) consists of 164 827

programming problems with function signatures, 828

docstrings, bodies, and unit tests, averaging 7.7 829

tests per problem. It is utilized to evaluate the cod- 830

ing abilities of LLMs. HumanEval assesses the 831

capability of LLMs in program synthesis from doc- 832

strings, testing language comprehension, reasoning, 833

algorithms, and elementary mathematics skills. We 834

report Pass@1 on HumanEval in the experiment. 835

BBH (Suzgun et al., 2022) is a clean, challenging 836

and tractable subset benchmark filtered from Big 837

Bench, which includes 23 types of difficult tasks 838

and 6,511 evaluation examples in total. BBH pri- 839

marily assesses the models’ reasoning capacities 840

and problem-solving skills comprehensively. In the 841

experiment we report the accuracy metrics. 842

11

https://huggingface.co/datasets/shibing624/sharegpt_gpt4
https://huggingface.co/datasets/shibing624/sharegpt_gpt4
https://github.com/QwenLM/AutoIF
https://huggingface.co/datasets/ConiferLM/Conifer
https://huggingface.co/datasets/ConiferLM/Conifer
https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_70k
https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_70k
https://huggingface.co/datasets/CCCCCC/SPaR


Arena Hard (Li et al., 2024) is an automatic LLM843

benchmark consisting of 500 challenging challeng-844

ing user queries, which is curated to evaluate the845

comprehensive performance of LLMs in user dia-846

logue scenarios. In the experiment, we adopt GPT-847

4-1106-preview as the judge model and report the848

win rate of our models against the baseline model849

(GPT-4-0314).850

A.3 Training Strategies851

ULTRAIF offers flexible training strategies for852

aligning model with instruction following capa-853

bilities. To thoroughly evaluate the effectiveness,854

we provide two approaches:855

Supervised Finetuing (SFT). Given the dataset856

Ddata, we apply standard Supervised Finetuning857

(SFT) objective on vanilla model π with parameters858

θ, as shown in Eq. 4:859

LSFT (πθ) =
∑

(x̄,yc)∈Ddata

log πθ(yc|x̄) (4)860

where Ī represents the augmented instruction, and861

rc denotes the corresponding chosen response.862

SFT + Iterative Online DPO. As ULTRAIF is863

equipped with evaluation questions, it facilitates864

quality control by enabling the generation of pair-865

wise responses with varying quality levels. This866

property makes it particularly suitable for the appli-867

cation of Direct Perference Optimization (DPO,868

Rafailov et al. (2024)) to refine the fine-tuned869

model, πref . The DPO objective is formulated870

as Eq. 5:871

LDPO(πθ, πref ) = −E(x̄,yc,yr)∈Ddata
log σ(β ·∆)

∆ = (log
πθ(yc|x̄)
πref (yc|x̄)

− log
πθ(yr|x̄)
πref (yr|x̄)

)

(5)872

where β is a scaling hyperparameter, σ denotes the873

sigmoid function, and πθ is initialized from πref874

and further optimized during the DPO stage.875

In the context of ULTRAIF, the UltraComposer876

enables an iterative augmentation of instructions,877

transitioning from simpler to more complex tasks.878

This allows the DPO process to be formulated as an879

iterative curriculum. At each iteration, the model880

πref is replaced with the latest optimized model881

from the previous stage. Concurrently, more chal-882

lenging instruction-following datasets are gener-883

ated and utilized for further training. This itera-884

tive approach ensures continuous improvement in885

model performance and adaptability across increas- 886

ingly complex scenarios. 887

Moreover, during the iterative process, as ob- 888

served by (Chen et al., 2024), the DPO objective 889

primarily focuses on optimizing the margin be- 890

tween the chosen and rejected samples, rather than 891

directly maximizing the probability of chosen sam- 892

ples and minimizing that of the rejected ones. To 893

address this, we employ the Noise Contrastive Esti- 894

mation (NCA, Chen et al. (2024)) loss in the final 895

iteration, and the objective is defined in Eq. 6: 896

LNCA(πθ, πref ) =

− E(x̄,yc,yr)∈Ddata

[
log σ(β log

πθ(yc|x̄)
πref (yc|x̄)

)

+
1

2

∑
y∈{yc,yr}

log σ(−β log
πθ(y|x̄)
πref (y|x̄)

)

]
(6) 897

A.4 Implementation Details 898

Our experiments are conducted on 8×A100 GPUs 899

(80GB) using mixed precision with bf16, Deep- 900

Speed ZeRO Stage 3 (Rasley et al., 2020), and 901

FlashAttention 2 (Dao, 2023). 902

In the SFT stage, we perform full fine-tuning 903

with a learning rate of 1e-5. The maximum token 904

length is set to 8192 and variable-length packing is 905

enabled. We use AdamW (Loshchilov, 2017) as the 906

optimizer with a warmup ratio of 0.03 and employ a 907

LinearLR scheduler at the beginning, transitioning 908

to CosineAnnealingLR towards the end. 909

In the DPO stage, the configuration is similar, 910

with the only difference being a lower learning rate 911

of 5e-7. Additionally, the beta parameter of DPO 912

loss is set to 0.1. 913

B Prompts of ULTRAIF 914

To train our UltraComposer, we prompt LLM 915

to perform Instruction Decomposition and Eval 916

Question Generation. 917

We use the following prompt template to decom- 918

pose human instructions: 919

Prompt Template of Instruction Decompo-
sition

You are an expert in extracting instruction
constraints from a given query.
Definition of Constraint: The smallest unit
of restriction or requirement that the instruc-
tion imposes on the task.

920

12



Query: {query}

• If the query is not a question, or is
simple or straightforward without any
constraints, please only respond with
the following JSON, indicating that no
constraints are present.

{
"Complex": False

}

• If constraints are present, follow these
steps:

1. Identify the Basic Query: Clearly
understand the primary goal of
the query, stripping away any con-
straints. The Basic Query should
be the essential task without any
added conditions or restrictions.

2. Extract and Categorize Con-
straints: Identify and classify con-
straints based on the following
types:

– Content Constraints:

* Specific Terms or Symbols:
Mandatory use of certain
terms or symbols with their
exact placement (e.g., must
include the word ’beauti-
ful’).

* Required Elements or Con-
cepts: Mandates for includ-
ing specific elements or
concepts in responses, re-
flecting a scenario or object
(e.g., highlights the Great
Wall).

* Thematic Directives: In-
structions related to the-
matic content, perspective,
or tone, emphasizing re-
sponse significance (e.g.,
write a poem about Lon-
don).

– Numerical Constraints:

* Constraints on quantities
related to the content, such
as the number of points,

921

sentences, paragraphs, re-
sponse length, or exam-
ples (e.g., within a single
paragraph with three sen-
tences).

– Stylistic Constraints:

* Desired tone and style for
the response (e.g., formal,
informal, conversational).

* Specific language or ter-
minology to be used or
avoided (e.g., encyclopedic
style).

– Format Constraints:

* Required structure or for-
mat for the response (e.g.,
list, JSON, bullet points,
Java language).

* Presentation styles or for-
matting requirements (e.g.,
electronic medical record
format).

– Linguistic Constraints:

* Language use in specific
contexts, such as discourse,
dialects, sociolects, and
language policies (e.g., in
English).

* Sentence structure, includ-
ing phrases, constituents,
and the use of impera-
tives (e.g., with nouns and
verbs).

* Internal structure of
words, including roots,
affixes, and morphological
changes (e.g., lowercase,
single-rhyme).

3. Response Format:
– Do not consider details that

are part of the content itself,
such as those used in descrip-
tions, scenarios, or examples,
unless they directly impose a
restriction of the response.

– The Basic Query should rep-
resent the queryâĂŹs core
goal, free from any con-
straints.

922

13



– Ensure that extracted con-
straints do not overlap with
the Basic Query.

– Present each constraint as a
dictionary within a list, where
each dictionary contains:

* ’constraint’: The spe-
cific restriction or require-
ment.

* ’simplified query’:
The query after removing
this constraint, polished for
coherence and correctness.

– Exclude any constraint types
not present in the query.

{
"Complex": True,
"Basic Query": ...,
"Content Constraints": [

{
"constraint": "...",

"simplified query": "..."
},
{

"constraint": "...",
"simplified query": "..."

},
],
...

}

Please only provide the response in JSON
format.

923

We use the following prompt template to gener-924

ate evaluation questions for instructions:925

Prompt Template of Eval Question Genera-
tion

You are an expert in crafting questions to
evaluate whether a response to a query ad-
heres to specific constraints.
For the given constraint, please design a
question that human evaluators can use to
assess if the response meets the specified
constraint. The question should focus solely
on the given constraint and not other con-
straints present in the original query.
Specifically, if the given constraint is mean-
ingless or is a part of the content itself, such

926

as those used in descriptions, scenarios, or
examples, you can respond with an empty
string.
Query: {query}
Constraint: {constraint}
Please design a question for the specified
constraint for the given query, and respond
in the JSON format without explanation.

{
"question": "string",

}
927

We use the following template to train ULTRAIF 928

Prompt Template of UltraComposer

Input:
[history]: ...
[initial query]: ...
Output:

{
"augmented query": ..,
"question": ...

}
929

For Generate-then-Evaluate process, we 930

prompt LLM to perform Response Generation 931

and Response Evaluation. 932

First we use the following prompt template to 933

generate responses for the augmented instructions: 934

Prompt Template of Response Generation

You are an expert tasked with answering
the given query. Please provide a clear and
concise response directly, without introduc-
tory phrases such as ’What a great question,’
’Here is the answer,’ or similar expressions.
Focus solely on addressing the query.
Now please answer the given query while
strictly following its inside constraints.
[Query] {query}

935

Then we use the following prompt template to 936

evaluate the quality of those generated responses: 937

Prompt Template of Response Evaluation

You are an expert that is good at judging
whether the response to a given query meets
the specified evaluator questions.

938

14



Your task is to carefully examine the re-
sponse to determine if it adheres to each
requirement outlined in the evaluator ques-
tions.
[Query] {query}
[Response] {response}
[Evaluator Question] {question}
For each question, please provide a justifi-
cation for your evaluation, explaining how
the response does or does not satisfy the cri-
teria and a score (’YES’ or ’NO’) indicating
whether the answer satisfies each constraint.
You should only respond in the following
JSON format:

{
"Question 1": {

"explanation": "",
"score": "YES" or "NO"

},
"Question 2": {

"explanation": "",
"score": "YES" or "NO"

},
}

939

C Additional Experimental Results940

C.1 Analysis of Sampling Efficiency941

Moreover, Table 7 further compare the pass942

rates during dataset synthesis, where ULTRAIF943

demonstrates substantial improvements over Au-944

toIF. Specifically, ULTRAIF achieves an SFT pass945

rate of 85% and a DPO pass rate of 60%, compared946

to only 20% and 26%, respectively, for AutoIF.947

This indicates that for generating an equivalent948

amount of data, ULTRAIF reduces costs by a factor949

of three to five. Furthermore, during the rejection950

sampling stage, while AutoIF necessitates rigorous951

function-based filtering for instruction synthesis952

and response generation, ULTRAIF achieves this953

with a single LLM call, making it far more scalable954

and cost-efficient.955

Method SFT Pass Rate DPO Pass Rate

AutoIF 20% 26%
ULTRAIF 85% 60%

Table 7: The overall pass rate of data synthesis.

C.2 Analysis of Multi-Turn Data 956

Building on prior work that emphasizes enhancing 957

multi-turn instruction-following capabilities (Sun 958

et al., 2024b; He et al., 2024), our analysis re- 959

veals that incorporating multi-turn data during the 960

SFT stage significantly improves ULTRAIF’s per- 961

formance across various benchmarks. As shown in 962

Table 8, the inclusion of multi-turn data results in 963

performance gains of 3.01% on Multi-IF, 1.18% on 964

InfoBench, and 5.10% on LiveBench, compared to 965

the baseline SFT model without such data. These 966

improvements highlight the critical role of multi- 967

turn interactions in training, allowing the model 968

to better understand conversational context and 969

dependencies, thereby enhancing its instruction- 970

following capabilities. Therefore, we incorporate 971

multi-turn data in our scaling experiments. 972

Method Multi-IF InfoBench LiveBench

ULTRAIF + SFT 40.12 77.78 46.60
w. multi turn 43.13 79.86 54.20

∆ +3.01 +1.18 +5.10

Table 8: The performance comparison of incorporating
multi-turn data during the SFT stage.

C.3 Case Study 973

By modeling the distribution of real-world instruc- 974

tions, ULTRAIF supports effective instruction aug- 975

mentation while minimizing inconsistencies be- 976

tween newly added constraints and the original 977

instructions. Thus, ULTRAIF eliminates the need 978

to verify whether the constraints are consistent with 979

the original instructions (Dong et al., 2024; Katz- 980

Samuels et al., 2024). Additionally, the evalua- 981

tion questions take over a separate score-filtering 982

stage. Consequently, ULTRAIF achieves greater 983

efficiency and incurs minimal costs when constrain- 984

ing large-scale datasets. 985

Table 9 shows some examples of augmented 986

instructions and evaluation questions generated 987

by ULTRAIF. The original queries come from 988

ShareGPT dataset. 989

15



Original Query Augmented Instruction Eval Question
Explain merkle tree in
blockchain.

Explain merkle tree in
blockchain to a 10 years
old.

Is the explanation of a Merkle
tree in the context of blockchain
presented in a way that a 10-year-
old can understand?

We are driving in a car. It is cold
outside, windshield is frozen, and
we are on a secluded road to a
small village. This is scene from
a horror movie, and it’s just start-
ing. Describe a scene in great
detail.

We are driving in a car. It is cold
outside, windshield is frozen, and
we are on a secluded road to a
small village. This is scene from
a horror movie, and it’s just start-
ing. Describe a scene in great
detail, and write it in the style
of a gothic horror author.

Does the response evoke a dark,
eerie, and ominous atmosphere,
characteristic of gothic horror?

Design a html form with form
tags.

Design a html form with form
tags for the following 3 user
inputs: first_name, last_name,
date_of_birth.

Does the HTML form include
form tags for exactly three user
inputs: first_name, last_name,
and date_of_birth?

I’m planning to visit Okinawa
Japan from April 7th to April
10th. Do you have any recom-
mendation on what to do while
I’m there?

I’m planning to visit Okinawa
Japan from April 7th to April
10th. Do you have any recom-
mendation on what to do while
I’m there? I’d like to focus on
nature, food, and local culture.

Does the response recommend
activities in Okinawa that focus
on nature, food, and local cul-
ture?

What is the meaning of life? What is the meaning of life? Ex-
plain it in 5 paragraphs.

Is the response to the question ex-
plained in exactly 5 paragraphs?

Write a homepage for translation
business.

Write me a homepage for transla-
tion business in wordpress.

Is the homepage for the trans-
lation business designed using
WordPress?

Table 9: Examples of ULTRAIF’s data pair.

16


	Introduction
	UltraIF
	Overview
	UltraComposer
	Generate-then-Evaluate

	Experiments
	Experimental Setup
	Main Results
	Cross-Domain Validation

	Analysis
	Impact of the Iterative DPO Process
	Analysis of Sampling Efficiency
	Contamination Analysis
	Scalability of UltraIF
	Ablation Studies on UltraIF
	Extension of Self Alignment
	Generalizability of UltraIF

	Related Work
	Instruction Following
	Perference Learning

	Conclusion
	Experimental Setup
	Datasets and Baselines
	Datasets
	Baselines

	Evaluation Benchmarks
	Training Strategies
	Implementation Details

	Prompts of UltraIF
	Additional Experimental Results
	Analysis of Sampling Efficiency
	Analysis of Multi-Turn Data
	Case Study


