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ABSTRACT

We introduce BiViT, a Binary Vision Transformer that tackles the extremely difficult
problem of quantizing both the weights and activations of a ViT model to just 1 bit.
Initially, we observe that the techniques used to binarize transformers in NLP don’t
work on Vision Transformers (ViTs). To address this, we introduce some simple yet
critical architectural changes, improving 28% over a baseline binarized ViT. Then,
we improve 11% over from-scratch training by employing our normalized BiViT
distillation scheme, which we find to be crucial for dense distillation in vision.
Overall, BiViT can achieve a 58x reduction in operations and a 20x compression
in model size, while bringing top-1 accuracy on ImageNet-1k in line with similar
benchmarks for binary transformers in NLP. We hope BiViT can be the first step
toward even more powerful binary ViT models.

1 INTRODUCTION

Transformers have emerged as the dominant architecture across deep learning, originally in NLP
(Vaswani et al., 2017) as popularized by BERT (Kenton & Toutanova, 2019), and now also in vision
with ViT (Dosovitskiy et al., 2020) and more vision-specific transformers such as SWIN (Liu et al.,
2021a). While effective these transformers are huge, reaching billions of parameters in both NLP
(Radford et al., 2019) and vision (Zhai et al., 2021). Because of this, these models can be difficult to
run on consumer hardware.

One way to address this issue is to use quantization, reducing the size of each parameter and the time
taken per operation. In the extreme, we can use binary quantization (Courbariaux et al., 2016), where
each parameter and activation of the model is reduced to a single bit. However, the literature has not
fully caught up to the current progress in vision architectures. There are a few works about binarizing
NLP transformers such as BERT (Bai et al., 2020; Qin et al., 2022), but none about fully binarizing
Vision Transformers.

Perhaps this is simply because creating a 1-bit ViT is difficult. First, the existing binary literature
in computer vision (e.g., Liu et al. (2018; 2020)) relies heavily on the architectural design choices
of convnets such as ResNet (He et al., 2016) or MobileNet (Howard et al., 2017). For instance, the
ability to add extra skip connections (Liu et al., 2018) and the type and position of normalization
layers in the network (see Sec. 3.1) have a large impact on the performance of binary models. The
architectural design choices made in ViT (Dosovitskiy et al., 2020; Liu et al., 2022b) are very different
to the convnets of the last decade, and thus many architectural techniques in the binary quantization
literature don’t apply.

To remedy this, we make some critical changes in the ViT architecture to enable 1-bit weights and
activations: we return to BatchNorm (Ioffe & Szegedy, 2015) between every layer, as it gives a more
balanced post-sign distribution than LayerNorm (Ba et al., 2016) (Sec. 3.1); we add generalized
nonlinearities to better model ViT’s intermediate features (Sec. 3.2); and we introduce a new mixed
precision attention that works well with binary activations (Sec. 3.3). Overall, these changes increase
performance on ImageNet-1k (Deng et al., 2009) by 28% compared to naively applying off-the-shelf
techniques from vision (Xu et al., 2021) to the original ViT architecture.

Next, another central roadblock is that training even full precision ViTs is a challenge. Doing
so requires either large pretraining datasets (Dosovitskiy et al., 2020; Steiner et al., 2021), a rich
pretraining task (He et al., 2021; Xie et al., 2021), new optimization techniques (Foret et al., 2020;
Chen et al., 2021), or distillation from existing convnets (Touvron et al., 2020; Ridnik et al., 2022).
And on top of that, binary training is significantly more difficult and takes longer than floating point.
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The training time on ImageNet-1k for binary training methods like ReCU (200 epochs, Xu et al.
(2021)) or ReActNet (240 epochs, Liu et al. (2020)) is over twice that of a full precision ResNet (88
to 120 epochs, Leclerc et al. (2022); He et al. (2016)). What’s worse is that ViTs typically train for
300 epochs or more (Dosovitskiy et al., 2020; Touvron et al., 2020)! So how long would we need to
train a binary ViT?

Luckily, NLP has a solution for fast transformer training: dense distillation. Instead of learning only
the outputs of a teacher model (Hinton et al., 2015), it’s common in NLP to distill intermediate layers
of a transformer (Jiao et al., 2019). However, while this technique is used by binary NLP transformers
(Qin et al., 2022), we find that 1-bit ViTs perform abysmally with dense distillation (see Tab. 3). We
identify the cause of this issue to be the placement of LayerNorm in the original ViT architecture
(see Sec. 3.2) and fix it using a normalized distillation loss (Sec. 4.1). Then, we improve the results
of distillation using two-stage training, where we first perform dense distillation with only 1-bit
activations then fine-tune using output distillation with both 1-bit weights and activations (Sec. 4.2).
All together, using BiViT distillation offers an 11% improvement over training from scratch and a 6%
improvement over existing two-stage distillation methods (Liu et al., 2020).

In this paper, we identify that existing techniques for binarizing transformers from the NLP literature
don’t perform well for 1-bit vision transformers. To address this, we make the following contributions.
First, we introduce a BiViT architecture (Sec. 3) using simple components to fix normalization
issues (Sec. 3.1, 3.2) and a novel mixed-precision attention block (Sec. 3.3) to address difficulty in
quantization. Then, we follow with a BiViT distillation scheme (Sec. 4) that unlocks the use of dense
distillation on ViTs using our normalized distillation loss (Sec. 4.1) and then use that to create a
two-stage training method that outperforms existing distillation techniques (Sec. 4.2). Finally, we
fine-tune on CIFAR to show that these results can be transferred to other datasets without additional
distillation. Altogether, this paper introduces the first binary vision transformer model and training
approach which achieves cost and accuracy on par with that of binary NLP transformers.

2 RELATED WORK

In this paper, we set out to create the first binary ViT (Dosovitskiy et al., 2020), where each weight
and activation are represented by a single bit (1w1a).

Binary Quantization. Binary or 1-bit quantization is the most extreme version of quantization,
where all weights and activations are either +1 or -1. This both compresses the size of the model
up to 32x and allows for fast evaluation using xor and popcnt instructions. Binary quantization
began with BNN (Courbariaux et al., 2016) and has since seen rapid development with more effective
quantization schemes (Rastegari et al., 2016; Bulat & Tzimiropoulos, 2019), better architectures (Liu
et al., 2018; 2020), improved 1-bit training methods (Lin et al., 2020; Xu et al., 2021), and two-stage
training (Martinez et al., 2020; Liu et al., 2020). However, most of this work in vision has been
performed on convnets. It’s not clear how much, if any, of these improvements would also work for
ViTs.

Binary NLP Transformers. Recently, BiBERT (Qin et al., 2022) has become the first to address
1w1a quantization for NLP transformers. In BiBERT, the authors employ a specialized Direction
Matching Distillation (DMD) scheme to align the activations of a 1-bit BERT with its full precision
teacher, but we find this to not perform well enough on ViTs (see Tab. 2). Similarly, the single-stage
dense distillation used by BiBERT dosn’t work on ViTs (see Tab. 3). We address these shortcomings
in Sec. 3.3 and Sec. 4.1.

Quantized Vision Transformers. Vision Transformers (Dosovitskiy et al., 2020; Touvron et al.,
2020; Liu et al., 2021a) are a relatively new innovation in vision. Thus, so too are the works that
attempt to quantize them. There are several methods that employ quantization of both weights and
activations, either with 8w8a (Liu et al., 2021b; Lin et al., 2021), 2w8a (Xu et al., 2022), or 3w3a (Li
et al., 2022). We are the first to attempt 1w1a ViT quantization.

3 BIVIT ARCHITECTURE

In this work, we set out to create a Binary Vision Transformer by densely distilling (Jiao et al.,
2019) from an existing ViT model (Dosovitskiy et al., 2020). To show that this is a non-trivial
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Figure 1: Proposed BiViT Architecture. The BiViT block compared to the original ViT architecture
(left) and the proposed mixed precision sigmoid attention (right). BatchNorms are a cheap way to
balance binary features across the dataset (Sec. 3.1), RPReLUs assist in modeling the ViT’s inter-
mediate features (Sec. 3.2), and mixed precision sigmoid attention offers the best cost performance
trade-off of all attention methods we test (Sec. 3.3).

exercise, we apply our best distillation method from Sec. 4 to a baseline 1-bit ViT-S/32 architecture
on ImageNet-1k using standard techniques from Rastegari et al. (2016); Bulat & Tzimiropoulos
(2019); Xu et al. (2021). This baseline results in a staggering drop in accuracy from the teacher:
76% all the way down to 24% (Tab. 1). In this section, we investigate why this happens and provide
several architectural solutions to increase accuracy.

3.1 REVISITING NORMALIZATION

Borrowing from NLP (Vaswani et al., 2017), modern vision transformer architectures use LayerNorm
(Ba et al., 2016) for feature normalization instead of BatchNorm (Ioffe & Szegedy, 2015). Moreover,
vision transformer architectures such as ViT place the LayerNorm before the corresponding linear or
attention layer, while convnets such as ResNet (He et al., 2016) place their normalization after the
corresponding layer.

While these changes might seem subtle, they have a huge impact on 1-bit activations. In a convnet,
normalization happens after each conv layer and thus after activations are quantized. However, in
ViT normalization happens before the corresponding linear layers, and thus before the activations
are quantized. Because of this, the normalization we use directly affects the distribution of binary
features in a ViT. Ignoring the learned scalar transform, this takes the form

y = sign
(
x− µ

σ

)
where sign(x) =

{
+1 if x ≥ 0
−1 otherwise (1)

where µ and σ denote the mean and standard deviation as computed by the normalization scheme.
Because sign(x) ignores the scale of the input (at least in the forward pass), σ can be left out, and µ
essentially becomes the threshold for the sign operation: everything greater than or equal to µ is set
to +1, while everything below µ is set to −1.

Thus, if we want our activations to be balanced between -1 and +1, we need to be careful of which
normalization scheme we use. Assuming that the mean of the incoming features is close to the
median, for whatever normalization dimension we choose (e.g., batch or channel), half of the features
along that dimension will be -1 and half will be +1 after taking the sign.

In the case of LayerNorm, this means -1s and +1s will be distributed evenly across the channel
dimension, while with BatchNorm, they will be distributed evenly across the batch dimension (and in
the limit, the dataset itself). We show an example of this difference in Fig. 2a. Because it offers a
balanced distribution of -1s and +1s across the dataset, we opt to use BatchNorm over LayerNorm.

3



Under review as a conference paper at ICLR 2023

(a) BatchNorm produces more balanced post-sign dis-
tributions over the data than LayerNorm.

(b) The magnitude of skip connections in ViT increases
drastically compared to other architectures.

Figure 2: Architectural Challenges. The ViT architecture differs in many ways from prior convnet
architectures, and several of those changes are detrimental to binary quantization. LayerNorm is
worse for binarization than BatchNorm (left), and the placement of norms causes intermediate features
to balloon in magnitude (right), which is hard to model well with binary activations (orange line).

And because normalization is so important to balance binary weights, we apply it before every binary
linear operation in the network, including the calculation of k, q, and v (see Fig. 1). These two
simple changes combined lead to a massive +16.4% improvement (see Tab. 1). Just adding extra
LayerNorms alone accounts for 14.7% of that improvement, while swapping the LayerNorms out for
BatchNorms adds an additional 1.7% on top, with the added benefit of having a lower op count.

Note BatchNorm is faster than LayerNorm because it can be reduced to a constant at evaluation
time. Moreover, because of its position in the network, it can be treated as a threshold for the sign
function. Since most implementations of binary networks (that use xor and popcnt) already have
to compare to a non-zero constant to compute the sign function, this makes BatchNorm essentially
“free” at run-time. Thus, putting a BatchNorm before every layer actually reduces the operation count
compared to the baseline.

3.2 SKIP CONNECTION SCALE

As it turns out, placing the norm layer before its corresponding attention or linear layer has other
consequences. Namely, the magnitude of the skip connection in ViT is vastly different to both BERT
(Kenton & Toutanova, 2019) and convnets (Raghu et al., 2021). ViT makes this change because this
pre-norm was found to perform better for deeper transformers than the post-norm that BERT uses
(Wang et al., 2019). However, as we show in Fig. 2b, this results in vastly different scales for skip
connection features compared to other networks.

This is a problem, then, for binarizing ViT through dense distillation, as the skip connections in a
1-bit ViT model don’t conform to the same magnitudes (see Fig. 2b). To fix this, we add a generalized
RPReLU operation after every skip connection as in Liu et al. (2020) that can scale the skip connection
branch. This change offers a +3.4% improvement (see Tab. 1) while adding a minimal number of
operations.

3.3 MIXED PRECISION ATTENTION

Multi-head Self Attention (Vaswani et al., 2017), the heart of modern transformers, is extremely
difficult to quantize (Qin et al., 2022). In this section, we will examine our options for reducing the
compute cost of this layer. Self Attention, as used by ViT, is composed of two expensive matrix
multiplications:

MSA(x) = Av where A = softmax
(
qkT√
dh

)
(2)

where dh is the number of features for attention head h with q, k, v produced by linear layers evaluated
on x. This operation is repeated for each head, making it overall quite expensive.
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Block Design
a OPs Top-1

bits (×107) (%)

ViT Block∗ 32 230 75.98

Baseline 1-bit ViT 1 7.75 24.06
+ Norm (Sec. 3.1) 7.90 +14.7
+ LN → BN (Sec. 3.1) 7.66 +1.7
+ Scale (Sec. 3.2) 7.71 +3.4
+ MP Attn (Sec. 3.3) 8.37 +8.2

BiViT Block 1 8.37 52.05

Table 1: Building the BiViT Block. ViT-S/32
with 1-bit activations suffers from extremely
poor performance. We fix issues in normaliza-
tion, scale, and attention to create our BiViT
block. Models are 32w1a using BiViT distilla-
tion (Sec. 4). OPs are for the entire network. ∗

from Steiner et al. (2021).

Attention Design
Bits Attn OPs Top-1

qkv/A (×105) (%)

FP Softmax 32/32 23.5 54.05

1-bit Softmax 1/1 3.76 43.83
1-bit w/ DMD 3.76 48.25
1-bit w/ BNh 3.76 49.63

MP Softmax 1/32 8.86 50.49
MP Softmax w/ BNh 8.86 51.06
MP Sigmoid w/ BNh 8.71 52.05

Table 2: BiViT Attention. 1-bit softmax attn
(Eq. 3) performs poorly. DMD (Qin et al., 2022)
or adding BNh (Eq. 4) can help, but still result in
large accuracy drops. We compromise between
accuracy and OPs by using mixed precision (MP)
attention, where q, k, v are 1-bit, while A is FP.

Thus, we’d like to binarize the two matrix multiplications qk⊤ and Av. As observed in BiBERT
(Qin et al., 2022), simply binarizing the Softmax operation doesn’t cut it. In our setting, this reduces
overall performance by 10.22% (see Tab. 2), which is clearly unacceptable for a single module. Thus,
BiBERT uses Direction Matching Distillation (DMD) with boolean attention:

A = bool
(
qbink

⊤
bin√

dh

)
where bool(x) =

{
1 if x ≥ 0
0 otherwise (3)

where qbin and kbin are binary. While this was originally proposed for BERT (Kenton & Toutanova,
2019), it lowers the accuracy deficit to 5.80% (see Tab. 2) in our 1-bit ViT model.

However, we find that DMD is not necessary to achieve these results. The goal of DMD is to produce
a good feature distribution around bool(x)’s threshold of 0, but we can instead simply choose a
different threshold for the bool(x) function that fits the features as they are. As described in Fig. 2a,
this can be done by adding a BatchNorm before the bool operation:

Abin = bool
(
BNh(qbink

⊤
bin)

)
(4)

where BNh is a scalar batch norm, one for each head. This replaces the the scale factor dh, and
because BNh reduces to a constant threshold used for bool(x) at evaluation, it’s no more expensive.
This outperforms boolean attention with DMD (see Tab. 2) and is much simpler.

However, while effective, it’s still a 4.42% drop over full precision self attention. Instead, we propose
to use mixed precision attention: 1-bit q, k, and v, but full precision A. While not binary throughout,
it still significantly cuts the operation count of the layer down to a third of full precision, and most of
the accuracy drop comes from quantizing A in the first place.

Out of the box and using the equation for A from Eq. 2 but with binary q, k, v, this compromise
performs only 3.56% worse than full precision. However, binarizing q and k means that qbink

⊤
bin has a

very limited range of magnitudes. To address this, we can simple use the same trick as before: replace
the scale factor dh with the scalar BatchNorm BNh. This reduces the disparity further down to 3%.
Finally, if we replace the Softmax operation with Sigmoid, we gain another percent, meaning our
mixed precision attention performs only 2% worse than full precision, while having 3x fewer OPs:

A = sigmoid(BNh(qbink
⊤
bin)) (5)

This mixed precision sigmoid attention gives us a +8.2% improvement in accuracy over naive 1-bit
attention, while only slightly increasing the number of OPs in the network overall (see Tab. 1). Thus,
we employ it in our final model, as illustrated in Fig. 1.

Note that Rastegari et al. (2016) would consider this 32× 1 bit Avbin multiplication to be equivalent
in operations to full precision. However, we find this ignores the far fewer memory accesses in this
case. As a compromise, we’ve assigned 32 × 1 bit multiplication half the OPs of a full precision
matrix multiplication, though in practice it may be far less.
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Figure 3: BiViT Distillation. We densely distill
patch embeddings, intermediate features, and
output probabilities to a 1-bit activation 32-bit
weight student model. Then we fine-tune with 1-
bit weights using output probability distillation.

Training Method Epochs Top-1
32w1a 1w1a (%)

Teacher Model · · 75.98

From Scratch · 70 33.99
Output Distillation · 70 36.94
Dense Distillation · 70 20.30

w/ Normalized MSE · 70 37.74

Output Distillation 30 40 38.92
BiViT Distillation 30 40 44.77

Table 3: Training Methods. 1-bit ViTs are dif-
ficult to train. Standard training and distillation
methods perform very poorly. In BiViT distilla-
tion, we employ dense 32w1a pretraining into
1w1a output only fine-tuning to overcome these
challenges.

4 BIVIT DISTILLATION

In order to train BiViT, we borrow a technique from NLP transformers: dense distillation of inter-
mediate layers (Jiao et al., 2019). While this may seem directly applicable to ViT, due to the subtle
differences in architecture between ViT and BERT (discussed in Sec. 3), TinyBERT distillation
doesn’t actually work out of the box. To show this, we use our final architecture from Sec. 3 to test
different distillation methods for 1w1a training on ImageNet-1k (see Tab. 3). Here, dense distillation
performs absymally: over 13% worse than just training from scratch. In this section we explore
why this happens and propose a simple fix leading to a distillation method that outperforms existing
techniques by almost 6%.

4.1 DENSE DISTILLATION

The original TinyBERT (Jiao et al., 2019) distills 3 components of the teacher model to the student
model: intermediate features, attention matrices, and output probabilities. Like BiBERT (Bai et al.,
2020), we find that the attention matrix distillation in TinyBERT does not help for binary attention,
so we opt to omit it. Thus, for BiViT, we only distill intermediate features and output probabilities, as
illustrated in Fig. 3.

Intermediate Features. Like in BiBERT, we sample intermediate features at every skip connection,
rather than only at the end of the transformer block as in TinyBERT. Both BiBERT and TinyBERT
use a simple MSE loss for intermediate features:

ℓfeats(fs, ft) = MSE(fsW, ft) (6)

where fs and ft are the student and teacher features, and W ∈ Rds×dt is a 32-bit projection from
the feature space of the student to that of the teacher (used only during training) that is randomly
initialized and learned through backprop. However, while this MSE loss works for BERT, it performs
very poorly for ViT (see Dense Distillation in Tab. 3).

The reason for this is simple: as discussed in Sec. 3.2, BERT uses a post-norm scheme, while ViT
uses a pre-norm scheme. This causes the scale of the intermediate features to balloon with increased
depth in ViT (see Fig. 2b) compared to consistent feature magnitudes in BERT. Because of this, the
MSE loss in Eq. 6 is wildly imbalanced for different layers in the network, culminating in a few
orders of magnitude difference between the first and last layer.

To combat this, we introduce a subtle but critical variation to the loss function in Eq. 6. Namely, since
this is a scale mismatch issue, we simply normalize the features of the student and teacher so that
scale isn’t a factor in the loss. Specifically, in order to match the behavior of TinyBERT, we apply a
parameter-less LayerNorm to both the student and teacher:

ℓ̂feats(fs, ft) = MSE(LN(fsW ),LN(ft)) (7)
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We use LayerNorm here instead of BatchNorm to closely match the behavior of Eq. 6 in BERT, where
these LayerNorms are present in the BERT architecture. Note that we find applying W before the
LayerNorm performs slightly better in our case than after.

Output Probabilities. To distill output probabilities, we find no issue with using the original Soft
Target Cross Entropy as used in TinyBERT and BiBERT:

ℓout(ps, pt) = SCE(ps, pt) (8)

Note that while DeiT (Touvron et al., 2020) finds that using hard targets is better than soft targets, we
don’t observe this to be the case, at least with our limited training schedule. It could be that training
longer with hard targets would outperform soft targets even with binary networks, but we leave that
to future work.

4.2 TWO-STAGE TRAINING

Real-to-Binary (Martinez et al., 2020) and ReActNet (Liu et al., 2020) observe higher accuracy when
first training with 32w1a and then fine-tuning with 1w1a. We see this in our setting as well, and thus
we incorporate this two-stage training into our design.

First Stage. In the first stage, we use the losses described in Sec. 4.1 and train with full precision
weights. We place a normalized feature distillation loss ℓ̂feats after the position encoding is added
in the “patchify” stem and after the two skip connections in each transformer block, for a total of
2B + 1 loss targets as shown in Fig. 3, where B is the number of transformer blocks. Note that for
the student, we use the features directly after the RPReLU, as these activations can help fit to the
teacher model’s feature distribution (see Appendix C). Finally, we place the output loss ℓout at the
end. Unlike other ViT distillation methods (e.g. Touvron et al. (2020)), we do not use the original
label when distilling outputs, as we find it to make little difference in our case.

Thus, our overall loss target for the first stage of training is:

L1(s32w1a, t) = ℓout(ps, pt) +

2B∑
i=0

ℓ̂
[i]
feats(f

[i]
s , f

[i]
t ) (9)

where the student s32w1a has 32-bit weights and 1-bit activations.

Second Stage. In the second training stage, we fine tune with binary weights using XNORNet
(Rastegari et al., 2016) approximation and ReCU (Xu et al., 2021) training. As for the loss, we find
that using dense distillation in the second step is too restrictive. This is the same conclusion found by
Martinez et al. (2020), albeit with different loss functions. Thus, in the second stage we turn off all
losses other than the output loss:

L2(s1w1a, t) = ℓout(ps, pt) (10)

This second stage formulation is similar to other ViT distillation methods Thus, our first stage
becomes a “head start” for the network to quickly find a solution with floating point weights, and
then we fine-tune that solution with binary weights using standard distillation.

5 RESULTS

We use the BiViT architecture (Sec. 3) and distillation method (Sec. 4) to train several BiViT models
on ImageNet-1k (Deng et al., 2009) distilled from different ViT models (Steiner et al., 2021). We
compare these to their full precision teacher in Tab. 4, to existing binary convnets in Tab. 5, and
fine-tune them on CIFAR in Tab. 6.

Training Configuration. For all experiments, we train using AdamW (Loshchilov & Hutter, 2017)
with an effective batch size of 384 and an initial learning rate of 6e-4 with a linear decay schedule,
no warm up, and a weight decay of 1e-4. We use standard Inception-style data augmentations
(Szegedy et al., 2016) along with color jitter. We train the first stage for 30 epochs and the second
for another 40 epochs. Both stages use the same training parameters. For the ablations in Tab. 1 and
Tab. 2, we train only the first stage as we find its accuracy representative of final performance.
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Method
Bit Width Size BinOPs FLOPs OPs OPs Accuracy (%)

w/a (MiB) (1× 109) (1× 109) (1× 109) Saved Top-1 Top-5

ViT-S/32∗ 32/32 87.3 · 2.3 2.3 1x 75.98 93.20
BiViT-S/32 1/1 9.0 1.07 0.07 0.084 27x 44.77 69.73
BiViT-S/32 x1.5 1/1 15.4 2.41 0.10 0.138 17x 52.69 76.77

ViT-S/16∗ 32/32 84.1 · 9.2 9.2 1x 81.20 96.06
BiViT-S/16 1/1 5.7 4.36 0.16 0.229 40x 53.30 77.14
BiViT-S/16 x1.5 1/1 10.4 9.68 0.24 0.392 23x 60.72 83.28

ViT-B/32∗ 32/32 336.6 · 8.7 8.7 1x 80.70 95.62
BiViT-B/32 1/1 23.1 4.27 0.14 0.203 43x 58.23 80.91
BiViT-B/32 x1.5 1/1 42.2 9.59 0.20 0.347 25x 63.93 85.25

ViT-B/16∗ 32/32 330.3 · 35.1 35.1 1x 84.18 97.21
BiViT-B/16 1/1 16.4 17.09 0.33 0.601 58x 65.78 86.51
BiViT-B/16 x1.5 1/1 32.2 38.18 0.47 1.067 33x 71.07 90.07

Table 4: BiViT Results. Full BiViT results on the ImageNet-1k (Deng et al., 2009) validation set
compared to their full precision teacher models. We also include x1.5 models with more features
(see Sec. 5.1). OPs saved are relative to the corresponding FP model. See Sec. 5 for an explanation
of the calculations. ∗ models from Steiner et al. (2021). ViT FLOPs are from Zhai et al. (2021).

Binarization Method. We use XNORNet (Rastegari et al., 2016) for binary approximation and
ReCU (Xu et al., 2021) with default parameters for binary training. We do not quantize the patchify
stem and classification head, as is standard practice in binary quantization.

OPs and Model Size. To count the number of operations, we employ the strategy used by Liu et al.
(2020), where binary and floating point operations are counted separately then reported as 1 FLOP
equaling 64 BinOPs. As discussed in Sec. 3.3, we assign the mixed precision Avbin operation to 32
BinOPs per mixed precision operation. Model sizes are calculated by assigning FP parameters a size
of 4 bytes and binary parameters a size of 1 bit. Note that OPs are equivalent to MACs in this case.

5.1 ADDING FEATURES

In Tab. 4, we observe that the accuracy drop for larger models is lower than that of smaller models.
This happens with convnets too (such as ResNet-18 vs ResNet-20 in Xu et al. (2021)), but not to this
extent. ViTs rely on the features to learn inductive biases, rather than explicitly enforcing them with
conv layers. Thus, a 1-bit feature space can be harsh on smaller models.

To remedy this, we use the fact that our distillation method allows us to train a student model with a
different number of features compared to the teacher. In Tab. 4, we include x1.5 models with 50%
more features and the same number of attention heads. We find that these x1.5 models achieve a
better cost-to-performance ratio compared to the next tier of model.

5.2 COMPARISON TO SOTA CONVNETS

In Tab. 5, we compare our BiViT-B models to the highly developed state-of-the-art in 1-bit convnets
on ResNet-18. While BiViT does not yet reach the same speed-accuracy trade-off of these models,
the fact that we can reach similar accuracies is a good signal. As the first exploration into binary
vision transformers, the goal of this work is not to outright beat the established state-of-the-art, but
instead to create a strong starting point and recipe for future binary vision transformers.

Moreover as discussed in Sec. 5.1, ViT’s lack of implicit inductive biases that are afforded to convnets
makes binarization a much harsher operation. It remains to be seen whether the same is true for
transformers with inductive biases built in such as SWIN (Liu et al., 2021a) and LeViT (Graham
et al., 2021). We hope future work can iterate on our design to produce even more powerful binary
vision transformers.
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Network Method
OPs Top-1

(×108) (%)

ResNet-18

BiRealNet 1.63 56.4
Real-to-Binary 1.83 65.4
ReActNet 1.63 65.9
ReCU 1.63 66.4

ViT-B/32
BiViT 2.03 58.2
BiViT x1.5 3.47 63.9

ViT-B/16 BiViT 6.01 65.8

Table 5: 1-bit ConvNets. Comparison to BiReal-
Net (Liu et al., 2018), Real-to-Binary (Martinez
et al., 2020), ReactNet (Liu et al., 2020), and ReCU
(Xu et al., 2021). Despite being the first binary
transformer in vision, BiViT can reach comparable
accuracies to established convnet models, though
not yet at the same level of compute.

Dataset Model Source Top-1 (%)

CIFAR-10
BiViT-B/32

Scratch 75.5
Pretrain 92.6

BiViT-B/16
Scratch 69.9
Pretrain 94.7

CIFAR-100
BiViT-B/32

Scratch 46.3
Pretrain 75.8

BiViT-B/16
Scratch 39.1
Pretrain 78.2

Table 6: Fine-Tuning. Fune-tuning the BiViT
ImageNet-1k models trained in Tab. 4 on
CIFAR (Krizhevsky et al., 2009) compared
training from scratch (random initialization).
BiViT is able to transfer well without addi-
tional distillation.

5.3 FINE-TUNING ON CIFAR

Because our method uses dense two-stage distillation on ImageNet-1k, it’s not clear whether this
training technique also needs to be performed when fine-tuning on downstream datasets. To test this,
we fine-tune two ImageNet-1k pretrained BiViT models on CIFAR-10 and CIFAR-100 in Tab. 6 and
compare it to the same models trained from scratch. For both, we use cross entropy with the same
hyperparameters we use for pretraining. We train for 50 epochs when fine-tuning and 200 epochs
when training from scratch for both datasets.

As expected, fine-tuning a BiViT model pretrained on ImageNet-1k produces a substantially more
accurate model than training from scratch—even without distillation on the target dataset. This
indicates that two-stage distillation step only needs to be performed once, and subsequent down-
stream tasks can use normal binary training.

5.4 DISCUSSION

Our goal was to create a binary transformer that performs similarly to BiBERT but on vision. And
to that extent, we succeeded. Despite none of the techniques from NLP carrying over to vision and
many techniques from vision not being applicable, we obtain similar performance drop compared to
BiBERT on the base model: 13-18% drop for BiViT on ImageNet-1k vs. 15-21% drop for BiBERT
on GLUE. We break down the this accuracy drop in Appendix B and it seems that almost all of the
remaining quantization error stems from binarizing activations. This is promising because concurrent
work by Liu et al. (2022a) in NLP finds a huge boost in accuracy from rethinking how activations are
quantized, which could also work here. We hope future work can explore this direction.

6 CONCLUSION

In this paper, we introduced the first fully binary ViT model, BiViT. Initially, we found that both the
ViT architecture and existing binary distillation techniques produces extremely poor performance
when binarizing ViTs. To address this, we introduce a BiViT architecture and dense distillation
method in order to recover a lot of this lost performance. These contributions bring our BiViT in line
with existing binary transformers in NLP, despite not being able to use any of the same techniques.
Overall, we were able to produce a BiViT model with 58x fewer operations than its corresponding
full precision ViT model while maintaining 65.78% accuracy on ImageNet-1k. We hope that this
paper can be used as the first step toward accurate 1-bit Vision Transformers.
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A COMPARISON TO RESNET-18

Because ViT-B/16 is quite a large model, it’s hard to gauge if BiViT-B/16 x1.5 offers good perfor-
mance for its operation count. Thus, we also compare it against full precision ResNet-18 in Tab. 7.
Compared to ResNet-18, BiViT-B/16 x1.5 has a smaller model size, is more accurate, and has 1.7x
fewer ops. While there are of course more efficient models than a full precision ResNet-18, this
shows that binary vision transformers can offer promising level of performance, even when most
parameters and activations are 1-bit.

Method
Bit Width Model Size BinOPs FLOPs OPs OPs Accuracy

w/a (MiB) (1× 109) (1× 109) (1× 109) Saved Top-1 (%)

ResNet-18 FP 32/32 44.7 · 1.83 1.83 1.0x 69.3
BiViT-B/16 x1.5 1/1 32.2 38.18 0.47 1.07 1.7x 71.1

Table 7: Comparison to ResNet-18. Our BiViT-B/16 x1.5 model is 1.8% more accurate on ImageNet-
1k than a full precision ResNet-18 (He et al., 2016) while having 1.7x fewer ops and a smaller model
size. ResNet-18 numbers were obtained from Martinez et al. (2020).

B ACCURACY DROP BREAKDOWN

BiViT distillation trains first with 1-bit activations and 32-bit weights and then fine tunes with 1-bit
activations and 1-bit weights. By comparing the accuracy of the model at different training stages,
we can gauge how much of the accuracy loss compared to full precision is due to binary activations,
and how much is is due to binary weights. We display the results of this comparison in Tab. 8.

Architecture Image Size
Accuracy

ViT BiViT (ours)
32/32 → 32/1 → 1/1

S/32 224 75.98 (-24.48) 51.50 (-6.73) 44.77
S/32 x1.5 224 75.98 (-16.81) 59.17 (-6.48) 52.69

S/16 224 81.20 (-18.85) 62.35 (-9.05) 53.30
S/16 x1.5 224 81.20 (-12.74) 68.46 (-7.74) 60.72

B/32 224 80.70 (-16.83) 63.87 (-5.64) 58.23
B/32 x1.5 224 80.70 (-11.34) 69.36 (-5.43) 63.93

B/16 224 84.18 (-12.61) 71.57 (-5.79) 65.78
B/16 x1.5 224 84.18 (-10.50) 73.68 (-2.61) 71.07

Table 8: Quantization Error. The breakdown of accuracy lost due to quantizing activations (32/1)
and then subsequently quantizing weights (1/1) from the original full precision ViT teacher model
(32/32). As described in the paper, most of the quantization error comes from 1-bit activations.

B.1 1-BIT ACTIVATIONS

Most of the quantization error occurs in the transition between full precision (32/32) and the first
stage of BiViT distillation with full precision weights and 1-bit activations (32/1). In fact, for the
smaller models this drop is extreme to the point of making these models unusable in practice (e.g., a
24.48% drop for S/32). As mentioned in the paper, quantizing to 1-bit activations is much more taxing
on the model than 1-bit weights. This could be due to a lack of inductive biases, as the model has to
learn a good feature space without any task-specific assistance, which binary activations restrict.

B.2 1-BIT WEIGHTS

Even for the smaller models, the drop in accuracy between stages 1 and 2 of BiViT distillation
(32/1 → 1/1, i.e. binarizing weights) is significantly smaller than that for 1-bit activations. For the
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largest model (B/16 x1.5), this only amounts to a 2.61% drop. For future work, it would likely be
beneficial to focus on improving the feature space of a binary transformer, either by adding inductive
biases or using better activation functions.

B.3 ADDING FEATURES

One way to improve the feature space of quantized models is simply to add more parameters.
In the main paper, we introduce x1.5 models with a 50% larger hidden dimension compared the
corresponding teacher. This increases the number of parameters in the network by increasing the
size of each weight matrix. However, despite the primary increase in computation being due to extra
weights, the accuracy boost we get from these models actually comes from the activations.

In fact, for most of the models (especially the /32 models), multiplying the hidden dimension by
1.5 has a negligible effect on the quantization error from 1-bit weights. Instead, most of the benefit
comes from less activation quantization error. This lends more support to the idea that binary ViTs
suffer more from reducing the representational capacity of the feature space than from the weights.

C RPRELU DISTRIBUTION

In the main paper, we note that RPReLU helps the student BiViT model better learn the teacher ViT
model’s feature distribution. In order to show this, we conduct the following experiment.

For a batch of images, we take the input and output of one transformer block in the teacher model.
Then, we attempt to fit a binary transformer model to the teacher block’s features using MSE. Finally,
we repeat this experiment with and without RPReLU and report the final MSE loss and visualize the
learned feature distributions.

Figure 4: Adding RPReLU. We show that adding RPReLU on the skip connection branch improves
performance when distilling from a floating point teacher model. Here we show that slight improve-
ment in learned distribution for a single layer. Note that this slight benefit compounds over the 12
layers of the network.

The BiViT block with RPReLUs obtains a final MSE loss after convergence of 5.22. Adding
RPReLUs in the skip connection branch lowers this loss down to 4.77. This result can be seen
visually in Fig. 4, where the BiViT block with RPReLU (orange) matches the teacher distribution
(blue) slightly better than the block without RPReLU (red). While this difference in one block is
small, it adds up over the 12 layers of the network to equal a +3.4% accuracy improvement.
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