
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOT ALL ROLLOUTS ARE USEFUL: DOWN-SAMPLING
ROLLOUTS IN LLM REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has emerged as the leading
approach for enhancing reasoning capabilities in large language models. How-
ever, it faces a fundamental compute and memory asymmetry: rollout genera-
tion is embarrassingly parallel and memory-light, whereas policy updates are
communication-heavy and memory-intensive. To address this, we introduce PODS
(Policy Optimization with Down-Sampling), which decouples rollout generation
from policy updates by training only on a strategically selected subset of rollouts,
maintaining learning quality while dramatically reducing update costs. We pro-
pose a principled subset selection criterion—max-variance down-sampling—that
maximizes reward diversity, and provide an efficient O(n log n) implementation.
Empirically, Group Relative Policy Optimization (GRPO) with PODS achieves
the peak test accuracy of vanilla GRPO at least 1.7× faster across the different
reasoning benchmarks and hardware configurations we tested.

1 INTRODUCTION

Reinforcement learning with verifiable rewards (RLVR) has driven recent breakthroughs in solving
math problems, code generation, and general reasoning for large language models (LLMs) (Jaech
et al., 2024; Ziegler et al., 2019; Ouyang et al., 2022; Stiennon et al., 2020). RLVR algorithms such as
Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) share a two-phase structure: an inference phase, which generates rollouts
given a prompt, and a policy-update phase, which updates the model parameters using the rewards
calculated on those rollouts.

These two phases place different computational demands on the hardware. Inference is embarrassingly
parallel and relatively memory-light, enabling modern accelerators to produce thousands of rollouts
concurrently. Although generating a single rollout may have high latency due to autoregressive
decoding, batching rollouts amortizes the per-token latency and yields higher throughput. Policy
updates, on the other hand, scale poorly with batch size: they are memory- and communication-
intensive, requiring full-precision optimizer states and cross-device synchronization of gradients
and parameters. This asymmetry creates a fundamental bottleneck: systems must either throttle
inference (underutilizing compute) or resort to memory-saving techniques like gradient accumulation
(increasing communication overhead and policy update latency), both of which hurt training efficiency.
Fig. 1 provides empirical evidence for this computational asymmetry.

We address this bottleneck through a key observation: not all rollouts contribute equally to model
improvement. Beyond a certain scale, additional rollouts provide diminishing returns and can even
degrade learning signals through redundant information. This suggests a natural solution: generate
large batches of rollouts during the scalable inference phase, but train selectively on only the most
informative subset during the policy update phase, avoiding the latency overhead of memory-saving
techniques. We formalize this idea in PODS (Policy Optimization with Down-Sampling). As
illustrated in Fig. 2, PODS maximizes hardware utilization by generating n rollouts per prompt but
updating on only m < n informative samples selected by a principled down-sampling rule.

Within the PODS framework, we introduce max-variance down-sampling, a principled criterion
that selects the subset of rollouts with the greatest reward variance of the selected subset, thereby
preserving strong contrastive signals. We show that the resulting combinatorial problem can be
solved in O(n log n) time and, in the common binary-reward setting, reduces to picking the m/2

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

100

101

102

W
al

l C
lo

ck
 T

im
e

(s
)

OOM! Inference
Policy Update (Underutilized)
Policy Update (Threshold)
Policy Update (Gradient Accumulation)

8 16 32 64 128 256 512 1024
Rollouts per GPU

10 1

100

Ti
m

e
Pe

r T
ok

en
 (s

)

Inference

Figure 1: Inference scales efficiently while policy updates become memory-bound in RLVR.
Empirical timing breakdown when fine-tuning Qwen2.5-3B-Instruct on GSM8K using 8 A100-80GB
GPUs with varying rollouts per GPU. Top: Total wall-clock time per iteration. Policy updates hit
memory limits after 32 rollouts per GPU (OOM beyond this point), requiring gradient accumulation
that dramatically slows training. Bottom: Per-token inference time decreases 21× through batching
(from 8 to 512 rollouts), saturating beyond 512. This demonstrates the core asymmetry that PODS
exploits: inference parallelizes efficiently while policy updates become memory-bound.

highest-reward and m/2 lowest-reward rollouts. We evaluate PODS with GRPO on GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021) across multiple model and hardware configurations,
demonstrating that it achieves the peak test accuracy of baseline GRPO at least 1.7× faster.

2 RELATED WORK

Reinforcement learning for LLM reasoning. Reinforcement learning has emerged as a powerful
paradigm for enhancing the reasoning capabilities of LLMs across math, coding, and problem-
solving domains (Jaech et al., 2024; Shao et al., 2024; Kazemnejad et al., 2024). Although classical
algorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) laid the foundation,
recent work has tailored them specifically to language models. Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) has gained prominence for reasoning tasks because of its implementation
simplicity, competitive performance relative to PPO, and lack of a separate critic network. OpenAI
o1 (OpenAI, 2024) and DeepSeek R1 (Guo et al., 2025), which used large-scale RL, have sparked
interest in reasoning-focused RL methods (Chen et al., 2025; Hu et al., 2025; Hu, 2025; Cui et al.,
2025). Meanwhile, value-based approaches like PPO remain central (Yuan et al., 2025a;b), alongside
complementary techniques such as Monte Carlo Tree Search (Gao et al., 2024; Xie et al., 2024) and
multi-agent methods (FAIR et al., 2022). A recent line of work has also explored data selection for
improving RL methods for LLM training. Specifically, prompt selection and filtering has gained
significant attention from works such as DAPO (Yu et al., 2025), SRPO (Zhang et al., 2025),
Reinforce-Rej (Xiong et al., 2025), Polaris An et al. (2025) and VAPO (Yuan et al., 2025a). Our
method advances this line of work by focusing on down-sampling rollouts within each prompt, instead
of selecting or filtering prompts themselves. By tackling this computational-efficiency bottleneck,
our approach complements existing methods and can be combined with them to further improve
reasoning performance.

Down-sampling and data selection. The scale of modern machine learning necessitates effective
data management strategies, particularly as datasets grow larger, noisier, and more imbalanced.
Training on the full dataset can be prohibitively expensive, motivating sophisticated data-selection and
down-sampling methods. Such techniques succeed across diverse settings—from theoretical results

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

GRPO-PODS

GRPO-GA

GRPO

High-Signal Rollouts

Rewards
Advantages

Inference Policy Update

Down-Sampling Advantage

Computation

Reward

ComputationLow-Signal Rollouts
Discarded Rollouts

Figure 2: Visualization of three training strategies: vanilla GRPO, GRPO with gradient accumulation
(GRPO-GA), and GRPO with PODS (GRPO-PODS). Vanilla GRPO generates n rollouts and trains
on all of them, leaving inference hardware underutilized. GRPO-GA alleviates this issue with
memory-saving techniques such as gradient accumulation, but at the cost of more sequential steps
in the policy-update phase. In contrast, GRPO-PODS also generates n rollouts but trains on only
m carefully selected examples, maximizing inference utilization, avoiding gradient-accumulation
overhead, and providing a cleaner learning signal that yields better final performance.

in clustering (Har-Peled & Mazumdar, 2004), regression (Li et al., 2013; Rudelson & Vershynin,
2007; Clarkson, 2010) to practical systems in speech recognition (Liu et al., 2015; Wei et al., 2014)
and computer vision (Kaushal et al., 2019; Bankes et al., 2024). In reinforcement learning, prioritized
experience replay (Schaul et al., 2015) and related methods (Hou et al., 2017; Saglam et al., 2023;
Cusumano-Towner et al., 2025) highlight the value of selective sampling from experience buffers.
More recently, careful data selection has become central to foundation-model training (Goyal et al.,
2024; Schuhmann et al., 2021; Gadre et al., 2023) and emerging applications such as computational
advertising (Bei et al., 2023; Gravin et al., 2024). Yet, to our knowledge, we are the first to apply
principled down-sampling to the rollout-generation stage of LLM reinforcement learning, mitigating
a key computational bottleneck while strengthening the learning signal.

3 DOWN-SAMPLING ROLLOUTS IN GRPO

In this section, we present our approach to resolving the computational asymmetry between inference
and policy updates in LLM reinforcement learning. We first review the original GRPO algorithm in
Section 3.1, highlighting its structural components and computational demands. Next, in Section 3.2,
we introduce the PODS (Policy Optimization with Down-Sampling) framework, which strategically
selects informative rollouts to maximize hardware utilization during both inference and policy-update
phases. In Section 3.3, we develop a principled max-variance down-sampling method that preserves
strong contrastive signals, justified by Razin et al. (2025), by retaining only rollouts from the extremes
of the reward spectrum. We show that this method admits an elegant, O(n log n) solution, making it
practical for real-world deployment. Overall, our framework retains the advantages of GRPO while
boosting computational and memory efficiency across diverse hardware setups.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 PRELIMINARIES

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a reinforcement-learning algorithm
intended to enhance the reasoning capabilities of large language models (LLMs), particularly within
the RLVR setting. Each GRPO training step follows a structured, two-phase process, described below.

Inference phase. Let πθ denote the policy parameterized by θ, which defines a distribution over
next-token probabilities given the previous tokens in a sequence. Given a single input prompt p (e.g.,
a math problem), GRPO first generates a group of n rollouts o = (o1, o2, . . . , on) by autoregressively
sampling from πθ. Each rollout is a complete token sequence excluding the prompt, representing
a possible solution. Each rollout is then evaluated using a reward model ri = R(oi), which
scores the quality and correctness of the corresponding output oi. This yields a reward vector r =
(r1, r2, . . . , rn). From these rewards, we compute normalized advantage estimates: ai = (ri − µ)/σ,
where µ and σ are the mean and standard deviation of the rewards respectively.

Policy update phase. After computing the advantages, the policy is updated by optimizing the
GRPO objective LGRPO(θ). Specifically, for each rollout oi with advantage ai, we compute a loss
for each token position t, and then average over all tokens and rollouts:

LGRPO(θ) =
1

n

n∑
i=1

1

|oi|

|oi|∑
t=1

min

[
πθ(oi,t | p, oi,<t)

πθfixed(oi,t | p, oi,<t)
· ai, clip

(
πθ(oi,t | p, oi,<t)

πθfixed(oi,t | p, oi,<t)
, 1− ϵ, 1 + ϵ

)
· ai
]
.

where |oi| is the number of tokens in oi and πθfixed is a frozen copy of the policy used for importance
weighting. This asymmetric loss embodies the slow to adopt, quick to abandon learning princi-
ple—limiting how aggressively the policy increases probabilities for tokens in high-reward rollouts
while allowing more substantial reductions for low-reward sequences.

3.2 PODS FRAMEWORK

We propose to decouple the inference and training phases in GRPO. Rather than updating on every
generated rollout, PODS first produces n rollouts in parallel and then trains on only a smaller subset of
size m < n selected by a down-sampling rule D. This strategy exploits parallelism during inference
while substantially reducing the communication and memory costs of the subsequent policy update.
Definition 3.1 (Down-sampling rule). D(o, r;m) is a function that takes as inputs n rollouts
o = (o1, o2, . . . , on), their corresponding rewards r = (r1, r2, . . . , rn), and the update size m. It
outputs a subset of indices S ⊆ {1, 2, . . . , n}, where |S| = m, indicating which rollouts to retain for
the policy update phase.

Given a selected subset of indices S, we compute the advantage estimates using only the selected
rollouts: aS,i = (ri − µS)/σS , where µS and σS are the mean and standard deviation of the rewards
in the selected subset. The GRPO-PODS objective then becomes:

LPODS(θ, S) =
1

m

∑
i∈S

1

|oi|

|oi|∑
t=1

min

[
πθ(oi,t | p, oi,<t)

πθfixed(oi,t | p, oi,<t)
· aS,i, clip

(
πθ(oi,t | p, oi,<t)

πθfixed(oi,t | p, oi,<t)
, 1− ε, 1 + ε

)
· aS,i

]
.

Algorithm 1 outlines the PODS framework for GRPO with a single prompt p in a training iteration.
When training on a batch of multiple prompts, we simply apply the same procedure to each prompt
and then concatenate the down-sampled rollouts and rewards. We conclude this section by presenting
two trivial down-sampling strategies that can potentially be applied within PODS.

Random down-sampling. The rule Drand uniformly selects m indices from {1, 2, . . . , n} without
replacement, thereby preserving the statistical properties of the original rollout distribution. In
expectation, it yields the same parameter update as running standard GRPO on exactly m rollouts.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 The PODS Framework for GRPO

Input: Models πθ, πθfixed , input prompt p, reward model R,
Number of rollouts n, update size m, down-sampling rule D

1: Independently sample n rollouts o = (o1, o2, . . . , on) using πθfixed for prompt p
2: Compute rewards r = (r1, r2, . . . , rn) using the reward model R
3: Down-sample a set of m rollouts S ← D(o, r;m)
4: Update the policy using the GRPO-PODS objective LPODS(θ, S)

Output: An updated model πθupdated

Max-reward down-sampling. The rule Dmaxr selects the m rollouts with the highest rewards,
concentrating on examples that exhibit the most desirable behavior. This should allow the model to
learn primarily from successful reasoning patterns. However, as we show in Section 4, ignoring low-
reward rollouts deprives the policy of negative feedback and can significantly degrade performance.

3.3 MAX-VARIANCE DOWN-SAMPLING

We now introduce max-variance down-sampling, a principled down-sampling rule that selects the
most diverse and informative rollouts according to their reward distribution.

Specifically, Dmaxv chooses the subset S of size m that maximizes the empirical reward variance,
i.e., S = argmax|S|=m Var({ri | i ∈ S}). By spanning the full performance spectrum, it supplies
strong contrastive signals between successful and unsuccessful reasoning paths. Recent work by
Razin et al. (2025) provides an optimization-theoretic and empirical justification for this criterion.

A naive search would examine O(
(
n
m

)
) subsets. This is clearly infeasible for realistic n and m. We

prove, however, that the optimal subset can be found in O(n log n) time.

Lemma 3.1. For a sorted list of rewards r1 ≤ r2 ≤ · · · ≤ rn, the variance-maximizing subset of size
m always consists of the k highest rewards and (m− k) lowest rewards for some k ∈ {0, 1, . . . ,m}.
That is,

Var({r1, . . . , rm−k} ∪ {rn−k+1, . . . , rn}) = max
|S|=m

Var({ri | i ∈ S}).

Proof of Lemma 3.1: Let S∗ = argmax|S|=m Var({ri | i ∈ S}) be the optimal subset of size m.
We will show that if S∗ is not of the form {1, . . . ,m− k} ∪ {n− k + 1, . . . , n} for any k, then we
can modify S∗ to obtain a new subset S′ of the same size with no smaller variance in rewards. By
repeating this procedure, we can eventually reach a subset of this form.

Let µ be the mean of the rewards in S∗. Since the set S∗ does not take the form of
{1, . . . ,m− k} ∪ {n− k + 1, . . . , n} for any k, there exists either (i) an element i ∈ S∗ such
that i > 1, ri ≤ µ and i− 1 ̸∈ S∗, or (ii) an element j ∈ S∗ such that j < n, rj ≥ µ and j + 1 ̸∈ S∗.
That is, there exists an element in S∗, such that another element further from µ is not in S∗. We will
show that we can swap them without decreasing variance.

For the ease of notation, we will denote Var({ri | i ∈ S}) as Var(S) in this proof.

For case (i), let S′ = (S∗ \ {i}) ∪ {i− 1}, and let µ′ be the mean of the rewards in S′. Then

Var(S′)−Var(S∗) =

(
1

m

∑
t∈S′

r2t − µ′2

)
−

(
1

m

∑
t∈S∗

r2t − µ2

)

=
1

m
(r2i−1 − r2i)− (µ′2 − µ2)

=
1

m
(ri−1 − ri)(ri−1 + ri)− (µ′ − µ)(µ′ + µ)

=
1

m
(ri−1 − ri)[(ri−1 + ri)− (µ′ + µ)] ≥ 0.

For case (ii), let S′ = (S∗ \ {j}) ∪ {j + 1}, we can similarly show that Var(S′)−Var(S∗) ≥ 0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In either case, we have shown that we can modify S∗ to obtain a new subset S′ of the same size
that has no smaller variance in rewards. We can repeat this process until we reach a subset of the
form {1, . . . ,m− k} ∪ {n− k + 1, . . . , n} for some k. Thus, we conclude that there must exist one
optimal subset of this form for some k.

Lemma 3.1 naturally leads to a practical algorithm, Algorithm 2, for max-variance down-sampling.
Moreover, it also offers intuition as to why maximizing variance is effective: the optimal subset
contains the k highest rewards and the (m− k) lowest rewards, thereby capturing strong contrastive
signals from both positive and negative examples.

Algorithm 2 Max-Variance Down-Sampling

Input: Number of rollouts n, update size m, rollouts {o1, o2, . . . , on}, rewards {r1, r2, . . . , rn}
1: Sort the rollouts by reward and get the sorted indices ind← argsort({r1, r2, . . . , rn})
2: Let Sans ← {ind1, . . . , indm}
3: for k ∈ {1, . . . ,m} do
4: Let Sthis ← {ind1, . . . , indm−k} ∪ {indn−k+1, . . . , indn}
5: Let Sans ← Sthis if Var({ri | i ∈ Sthis}) > Var({ri | i ∈ Sans})
6: end for

Output: Selected indices Sans of rollouts

Theorem 1. Algorithm 2 computes the max-variance down-sampling rule correctly. Moreover, it can
be implemented in O(n log n) time.

Proof of Theorem 1: The correctness of Algorithm 2 follows directly from Lemma 3.1.

For the time complexity, we first sort the rewards in O(n log n) time. To compute the variance of
the selected rollouts, note that Var({x | x ∈ Sthis}) = Ex∈Sthis [x

2]− (Ex∈Sthis [x])
2. We can maintain

the prefix sums of the rewards and the squared rewards in O(n) time. Then, for each k, we can
compute the variance of the selected rollouts in O(1) time using the prefix sums. Thus, the overall
time complexity is O(n log n) +O(m) = O(n log n).

Theorem 1 shows that the max-variance down-sampling rule can be computed efficiently, which
enables its practical application in GRPO-PODS. We conclude this section by noting an important
special case of the max-variance down-sampling rule.
Theorem 2. Let m be an even integer. When the rewards are binary, selecting m/2 rollouts with the
highest rewards and m/2 rollouts with the lowest rewards maximizes the variance of the rewards.

Proof of Theorem 2: Let the number of rollouts with reward 1 be k. Then, the number of rollouts
with reward 0 is n− k. If k ≤ m/2, then any subset of m rollouts contains at most k rollouts with
reward 1, and the variance is maximized by selecting these k rollouts and any (m− k) rollouts with
reward 0. If n − k ≤ m/2, then any subset of m rollouts contains at most (n − k) rollouts with
reward 0, and the variance is maximized by selecting these (n− k) rollouts and any m− (n− k)
rollouts with reward 1. Otherwise, any subset of m/2 rollouts with reward 1 and m/2 rollouts with
reward 0 maximizes the variance. In all cases, we can select m/2 rollouts with the highest rewards
and m/2 rollouts with the lowest rewards to maximize the variance. This concludes the proof.

4 EXPERIMENTS

We evaluate PODS across diverse hardware configurations, model architectures, and model scales
to demonstrate its generalizability and practical benefits. We test on two mathematical reasoning
benchmarks—GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021)—using Qwen2.5
(Qwen et al., 2025) and Llama3.2 (MetaAI, 2024) models ranging from 3B to 7B parameters. Our
experimental design covers both resource-constrained single-GPU setups and multi-GPU distributed
training to validate PODS across different deployment scenarios. Table 1 describes our experi-
mental configurations. To facilitate reproduction of our results, we have submitted our code to the
supplementary materials and will release it upon publication of our work.

Training infrastructure. For settings (a-c), we use Unsloth (Daniel Han & team, 2023) with
TRL (von Werra et al., 2020) for efficient LoRA (Hu et al., 2022) fine-tuning. For settings (d-e), we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Setting Benchmark Model Parameters GPUs Fine-tuning Method
(a) GSM8K Qwen2.5 3B 1 L40S LoRA (rank 64, α = 64)
(b) MATH Qwen2.5 3B 1 L40S LoRA (rank 64, α = 64)
(c) GSM8K Llama3.2 3B 1 L40S LoRA (rank 64, α = 64)
(d) GSM8K Qwen2.5 3B 8 H100s Full-Parameter
(e) GSM8K Qwen2.5 7B 8 A100s Full-Parameter

Table 1: Experimental configurations testing PODS across model scales, hardware constraints, and
training paradigms. Settings (a-c) test resource-constrained scenarios with LoRA fine-tuning, while
(d-e) evaluate full-parameter training with distributed setups.

implement distributed training with DeepSpeed ZeRO-2 (Rajbhandari et al., 2020) and extend
the open-r1 library (HuggingFace, 2025) to support PODS on multiple devices.

Rewards and evaluations. We employ rule-based reward models that score rollouts, following
standard practices in mathematical reasoning evaluation. Specifically, we reward an answer for
correctness, format compliance, and the right number of thinking tags separately, resulting in a
discrete but non-binary reward function. Details are provided in Appendix A.1.

Section roadmap. In Section 4.1, we compare the performance of GRPO and GRPO-PODS across
five hardware and model settings listed in Table 1. We show that for all the settings we test, GRPO-
PODS consistently outperforms GRPO in terms of performance as the training time increases. Then,
in Section 4.2, we focus on setting (a), and analyze the effect of the rollout and update sizes (n,m)
on the performance of GRPO-PODS, providing empirical insights into how to choose the rollout and
update sizes for GRPO-PODS. We present additional experiments about different down-sampling
rules, and evaluation results about PODS’s speed up ratio compared to GRPO and the average
response length over the course of training in Appendices A.3 to A.5, respectively.

4.1 COMPARING GRPO-PODS TO BASELINE GRPO

We evaluate max-variance down-sampling PODS with GRPO against baseline GRPO using two
experimental designs reflecting real-world constraints. For single-GPU settings (a-c), we compare
against vanilla GRPO with matched training batch sizes (m), where m is selected to fit within
memory. This corresponds to the comparison between GRPO and GRPO-PODS in Fig. 2. For
distributed settings (d-e), we compare against GRPO with gradient accumulation (GRPO-GA)—the
standard approach for scaling RLVR. In GRPO-GA, large batches are processed through multiple
gradient accumulation steps, enabling updating on larger effective batch sizes at the cost of increased
communication overhead and iteration time. We fix the total rollouts generated per prompt (n) and
compare GRPO-GA against GRPO-PODS. The detailed hyperparameters used for our experiments
are listed in Appendix A.2. Results across all five configurations show consistent improvements.

Fig. 3 shows test accuracy over wall-clock training time across all configurations. PODS consistently
achieves faster convergence: reaching the baselines’ peak accuracies at least 1.7× faster (see Ap-
pendix A.4 for complete results) while often exceeding final performance. These results demonstrate
PODS’s broad applicability across model scales (3B-7B), architectures (Qwen2.5, Llama3.2), and
deployment scenarios, making it a practical improvement for RLVR systems using GRPO.

4.2 EFFECT OF ROLLOUT AND UPDATE SIZES (n,m)

A key practical question for PODS adoption is how to choose the rollout size (n) and training batch
size (m). While a larger n provides more diverse rollouts for selection, it also increases inference
costs. Meanwhile, a smaller m reduces update costs but may provide insufficient training signal. As
shown in Fig. 4, we systematically study these trade-offs to provide deployment guidance.

Increasing rollout size n exhibits diminishing returns with an optimal point around n = 64. Perfor-
mance initially improves as larger pools enable better sample selection, but degrades beyond n = 128
due to two factors: (1) inference runtime grows significantly as GPU memory saturates, and (2)
marginal improvements in rollout diversity plateau while computational overhead continues rising.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6
Training Time on One L40S (hours)

76

78

80

82

84

Te
st

 A
cc

ur
ac

y
(%

)

GRPO
GRPO PODS

GRPO GRPO PODS
Algorithm

0.0

2.5

5.0

7.5

10.0

Se
co

nd
s p

er
Tr

ai
ni

ng
 S

te
p

(a) Training Qwen2.5 (3B) on GSM8K with one L40S GPU

0 1 2 3 4 5 6
Training Time on One L40S (hours)

35

40

45

50

Te
st

 A
cc

ur
ac

y
(%

)

GRPO
GRPO PODS

GRPO GRPO PODS
Algorithm

0.0

2.5

5.0

7.5

10.0

Se
co

nd
s p

er
Tr

ai
ni

ng
 S

te
p

(b) Training Qwen2.5 (3B) on MATH with one L40S GPU

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Time on One L40S (hours)

20

40

Te
st

 A
cc

ur
ac

y
(%

)

GRPO
GRPO PODS

GRPO GRPO PODS
Algorithm

0.0

2.5

5.0

7.5

10.0

Se
co

nd
s p

er
Tr

ai
ni

ng
 S

te
p

(c) Training Llama3.2 (3B) on GSM8K with one L40S GPU

0 5 10 15 20 25 30
Training Time on 8 H100s (minutes)

0

20

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

GRPO-GA
GRPO-PODS

GRPO-GA GRPO-PODS
Algorithm

0

5

10

15

20

Se
co

nd
s p

er

Gl
ob

al
 Tr

ai
ni

ng
 S

te
p

(d) Training Qwen2.5 (3B) on GSM8K with 8 H100 GPUs

0 5 10 15 20 25 30
Training Time on 8 A100s (minutes)

0

25

50

75

100

Te
st

 A
cc

ur
ac

y
(%

)

GRPO-GA
GRPO-PODS

GRPO-GA GRPO-PODS
Algorithm

0

10

20

30

40

Se
co

nd
s p

er

Gl
ob

al
 Tr

ai
ni

ng
 S

te
p

(e) Training Qwen2.5 (7B) on GSM8K with 8 A100 GPUs

Figure 3: Performance and per-step run time comparison of standard GRPO and GRPO-PODS
with max-variance down-sampling across different datasets and hardware environments. For the
performance comparison, the x-axis shows the training time, and the y-axis shows the accuracy on
the test set. The shaded area represents 1.96 times the standard error of the mean.

Training batch size m shows robust performance across a wide range, with minimal degradation until
very small values (m ≤ 4). This suggests PODS’ max-variance selection maintains effective learning
signals even with aggressive down-sampling ratios up to 16 where n = 64,m = 4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6
Training Time on One L40S (hours)

72.5

75.0

77.5

80.0

82.5

Te
st

 A
cc

ur
ac

y
(%

)
N = 16
N = 32
N = 64
N = 128
N = 256

N = 16 N = 32 N = 64 N = 128 N = 256
Algorithm

0

5

10

15

20

Se
co

nd
s p

er
Tr

ai
ni

ng
 S

te
p

(a) Fixing m = 16 and varying n ∈ {16, 32, 64, 128, 256}

0 1 2 3 4 5 6
Training Time on One L40S (hours)

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

M = 16
M = 8
M = 4
M = 2

M = 16 M = 8 M = 4 M = 2
Algorithm

0.0

2.5

5.0

7.5

10.0

Se
co

nd
s p

er
Tr

ai
ni

ng
 S

te
p

(b) Fixing n = 64 and varying m ∈ {16, 8, 4, 2}

Figure 4: Performance and per-step run time comparison of GRPO-PODS with max-variance down-
sampling across different settings of n and m. The training is conducted on the GSM8K dataset with
one L40S. For the performance comparison, the x-axis shows the training time, and the y-axis shows
the accuracy on the test set. The shaded area represents 1.96 times the standard error of the mean.

Practical guidelines. These results suggest down-sampling ratio of 2 to 4 (i.e., m = 16 and n = 32
or 64 in Fig. 4a) provides an effective balance of performance and efficiency. For resource-constrained
settings, aggressive down-sampling ratios up to 16 remain viable, while memory-rich environments
can benefit from larger rollout pools up to hardware limits.

5 CONCLUSION AND DISCUSSION

We introduced PODS—a lightweight, algorithm-agnostic framework that addresses a fundamental
bottleneck in modern RLVR training: the asymmetry between embarrassingly parallel rollout gen-
eration and memory-intensive policy updates. PODS generates large batches of rollouts in parallel
and updates the policy on only an informative subset chosen by the max-variance rule. Our analysis
shows that the optimal subset can be found in O(n log n) time. This simple yet principled approach
consistently outperforms standard GRPO under equal wall-clock budgets, delivers at least a 1.7×
speedup and reaching higher final accuracy across diverse model architectures, scales, and deploy-
ment scenarios. Our ablation study shows that the performance of PODS is robust over a wide range
of down-sampling ratios provided m is not too small, empirically confirming our method’s efficacy.

Limitations. Our evaluation focuses on mathematical-reasoning tasks with verifiable rewards.
Other domains such as open-ended dialogue or code generation may exhibit distinct dynamics of the
algorithms. Moreover, in workloads that demand greater prompt diversity, similar gains might be
obtained by processing more prompts per iteration with fewer rollouts per prompt and accumulating
gradients across prompts—an alternative path to address the inference-update asymmetry. Finally,
because PODS alters the training rollout distribution through selective down-sampling, it behaves
off-policy and may be unsuitable when strict on-policy guarantees are required.

Future work. The algorithm-agnostic nature of PODS enables integration with value-based meth-
ods like PPO and emerging RL approaches. Exploring whether PODS can enhance state-of-the-art
model performance represents a promising research problem. Additionally, investigating adaptive
down-sampling strategies that evolve throughout training could further optimize the learning dynam-
ics. Exploring theoretically principled approaches to balance the trade-off between prompt diversity
and rollout quantity per prompt also warrants investigation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics statement. We anticipate our work will primarily have positive social impact by improving
the computational efficiency and effectiveness of RL training for LLMs, potentially democratizing
access to high-quality reasoning models. However, by lowering the computational barriers to
training powerful reasoning systems, our method may accelerate capabilities that could be misused.
This heightens the importance of responsible release practices to mitigate harmful behaviors. Our
open-source release of code and experimental frameworks aims to facilitate reproducibility while
encouraging informed and safe adoption within the research community.

Reproducibility statement. We list the key hyperparameters in Appendix A.2, describe the rewards
used in Appendix A.1, and an anonymized version of the code used to run the experiments in this
paper is attached to our submission (as supplementary material) on OpenReview. We will publicly
release the code on GitHub, and include a link to the repo in the next version of our paper. We note
that all of the datasets used in this paper are open-source, and the models we use are all open-weight
and available publicly on HuggingFace.

LLM usage statement. In this work, we used LLMs as an assist tool in polishing the language of
our writing in the paper and auto-completing some of our evaluation code.

REFERENCES

Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for
scaling reinforcement learning on advanced reasoning models, 2025. URL https://hkunlp.
github.io/blog/2025/Polaris.

William Bankes, George Hughes, Ilija Bogunovic, and Zi Wang. Reducr: Robust data downsampling
using class priority reweighting. Advances in Neural Information Processing Systems, 37:82781–
82810, 2024.

Xiaohui Bei, Nick Gravin, Pinyan Lu, and Zhihao Gavin Tang. Bidder subset selection problem in
auction design. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 3788–3801. SIAM, 2023.

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, Jinhao Jiang, Daixuan Cheng, Wayne Xin
Zhao, Zheng Liu, Xu Miao, Yang Lu, et al. An empirical study on eliciting and improving r1-like
reasoning models. arXiv preprint arXiv:2503.04548, 2025.

Kenneth L Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM
Transactions on Algorithms (TALG), 6(4):1–30, 2010.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Marco Cusumano-Towner, David Hafner, Alex Hertzberg, Brody Huval, Aleksei Petrenko, Eugene
Vinitsky, Erik Wijmans, Taylor Killian, Stuart Bowers, Ozan Sener, et al. Robust autonomy
emerges from self-play. arXiv preprint arXiv:2502.03349, 2025.

Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/
unslothai/unsloth.

Meta Fundamental AI Research Diplomacy Team FAIR, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu,
et al. Human-level play in the game of diplomacy by combining language models with strategic
reasoning. Science, 378(6624):1067–1074, 2022.

10

https://hkunlp.github.io/blog/2025/Polaris
https://hkunlp.github.io/blog/2025/Polaris
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
next generation of multimodal datasets. Advances in Neural Information Processing Systems, 36:
27092–27112, 2023.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie
Wen. Interpretable contrastive monte carlo tree search reasoning. arXiv preprint arXiv:2410.01707,
2024.

Sachin Goyal, Pratyush Maini, Zachary C Lipton, Aditi Raghunathan, and J Zico Kolter. Scaling
laws for data filtering–data curation cannot be compute agnostic. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 22702–22711, 2024.

Nikolai Gravin, Yixuan Even Xu, and Renfei Zhou. Bidder selection problem in position auctions: A
fast and simple algorithm via poisson approximation. In Proceedings of the ACM Web Conference
2024, pp. 89–98, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300,
2004.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Yuenan Hou, Lifeng Liu, Qing Wei, Xudong Xu, and Chunlin Chen. A novel ddpg method with
prioritized experience replay. In 2017 IEEE international conference on systems, man, and
cybernetics (SMC), pp. 316–321. IEEE, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

HuggingFace. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Mahadev, Khoshrav Doctor, and Ganesh
Ramakrishnan. Learning from less data: A unified data subset selection and active learning
framework for computer vision. In 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV), pp. 1289–1299. IEEE, 2019.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for llm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pp. 127–136. IEEE, 2013.

11

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuzong Liu, Rishabh K Iyer, Katrin Kirchhoff, and Jeff A Bilmes. Svitchboard ii and fisver i:
high-quality limited-complexity corpora of conversational english speech. In INTERSPEECH, pp.
673–677, 2015.

MetaAI. Llama 3.2: Revolutionizing edge ai and vision with open, customizable mod-
els. https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-
mobile-devices/, 2024. Accessed: 2025-09-23.

OpenAI. Learning to reason with language models. https://openai.com/index/
learning-to-reason-with-llms, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D Lee, and Sanjeev Arora.
What makes a reward model a good teacher? an optimization perspective. arXiv preprint
arXiv:2503.15477, 2025.

Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through geometric
functional analysis. Journal of the ACM (JACM), 54(4):21–es, 2007.

Baturay Saglam, Furkan B Mutlu, Dogan C Cicek, and Suleyman S Kozat. Actor prioritized
experience replay. Journal of Artificial Intelligence Research, 78:639–672, 2023.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
neural information processing systems, 33:3008–3021, 2020.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. Unsupervised submodular subset selec-
tion for speech data. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4107–4111. IEEE, 2014.

12

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://arxiv.org/abs/2412.15115
https://github.com/huggingface/trl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451, 2024.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to
reinforce. arXiv preprint arXiv:2504.11343, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,
TianTian Fan, Zhengyin Du, Xiangpeng Wei, et al. Vapo: Efficient and reliable reinforcement
learning for advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025a.

Yufeng Yuan, Yu Yue, Ruofei Zhu, Tiantian Fan, and Lin Yan. What’s behind ppo’s collapse in
long-cot? value optimization holds the secret. arXiv preprint arXiv:2503.01491, 2025b.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, et al. Srpo: A cross-domain implementation of
large-scale reinforcement learning on llm. arXiv preprint arXiv:2504.14286, 2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 REWARD FUNCTIONS

The specific reward functions we use in our experiments are listed below.

Accuracy (1.0 for correct, 0.0 for incorrect): Mathematical correctness using LATEX parsing and
symbolic verification. The reward function extracts mathematical expressions from both the model’s
response and ground truth solution, then uses symbolic verification to determine equivalence.

Format (1.0 for compliant, 0.0 for non-compliant): Structured response formatting that requires
reasoning to be enclosed within <think> tags and the final answer within <answer> tags, follow-
ing the exact pattern <think>\n...\n</think>\n<answer>\n...\n</answer>.

Tag count (0.0 to 1.0 partial credit): Formatting rewards for proper XML tag usage. The model re-
ceives 0.25 points each for correct placement of <think>\n, \n</think>\n, \n<answer>\n,
and \n</answer> tags, allowing partial credit for partially correct formatting.

A.2 HYPERPARAMETERS

In Table 2, we list the key hyperparameters we use for different experimental settings.

Table 2: Hyperparameters for different experimental settings.

Setting (a) (b) (c) (d) (e)
Optimizer AdamW AdamW AdamW AdamW AdamW
Max Sequence Length 1024 1024 1024 2048 2048
Lora Rank 64 64 64 N/A N/A
Lora Alpha 64 64 64 N/A N/A
KL Coefficient 0.00 0.00 0.04 0.00 0.00
Learning Rate 5× 10−6 5× 10−6 2× 10−6 2× 10−5 1.5× 10−5

Weight Decay 0.1 0.1 0.1 0.1 0.1
Grad Clipping 1.0 1.0 1.0 1.0 1.0

GA Steps (GRPO-PODS) 1 1 1 4 4
Rollout Batch Size (GRPO-PODS) 64 32 64 128 128
Update Batch Size (GRPO-PODS) 16 8 16 32 32
Effective n (GRPO-PODS) 64 32 64 512 512
Effective m (GRPO-PODS) 16 8 16 128 128
Down-Sampling Ratio 4 4 4 4 4

GA Steps (GRPO) 1 1 1 N/A N/A
Rollout Batch Size (GRPO) 16 8 16 N/A N/A
Update Batch Size (GRPO) 16 8 16 N/A N/A
Effective n (GRPO) 16 8 16 N/A N/A
Effective m (GRPO) 16 8 16 N/A N/A

GA Steps (GRPO-GA) N/A N/A N/A 16 16
Rollout Batch Size (GRPO-GA) N/A N/A N/A 32 32
Update Batch Size (GRPO-GA) N/A N/A N/A 32 32
Effective n (GRPO-GA) N/A N/A N/A 512 512
Effective m (GRPO-GA) N/A N/A N/A 512 512

Note on gradient accumulation. For experiment settings (d) and (e), we ensured a fair compar-
ison between GRPO-PODS and GRPO-GA by matching the total number of rollouts (effective n)
generated per prompt. This was done by equating the product of rollout batch size and GA steps
across both methods. In the open-r1 implementation, GA steps determine both rollout generation
and training updates. For example, with rollout batch size 128 and GA steps 4, the effective n is
128× 4 = 512. We fixed this number at 512 for both GRPO-PODS and GRPO-GA.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For GRPO-PODS, each rollout batch was down-sampled by a factor of 4, resulting in an update batch
size of 32 and an effective m of 32 × 4 = 128. Because down-sampling is applied directly after
generating each batch rather than after aggregation, GRPO-GA must increase GA steps by 4× (from
4 to 16) to maintain the same effective n. This adjustment ensures that both variants process an equal
number of rollouts while respecting their structural differences.

A.3 COMPARING DIFFERENT DOWN-SAMPLING RULES

We study the effect of different down-sampling rules on the performance of GRPO-PODS in this
section. We conduct experiments on the GSM8K dataset with one L40S GPU. We set the rollout
size n = 64 and the update size m = 16, and we compare three different down-sampling rules:
(1) max-variance down-sampling, (2) max-reward down-sampling, and (3) random down-sampling.
The results are shown in Fig. 5. We observe that the max-variance down-sampling rule consistently
outperforms both the max-reward and random down-sampling rules across all settings. This indicates
that the max-variance down-sampling rule is effective in selecting informative rollouts for training.

0 1 2 3 4 5 6
Training Time on One L40S (hours)

40

60

80

Te
st

 A
cc

ur
ac

y
(%

)

Max Variance
Max Reward
Random

Max Variance Max Reward Random
Algorithm

0

5

10

15

Se
co

nd
s p

er
Tr

ai
ni

ng
 S

te
p

Figure 5: Performance and per-step run time comparison of GRPO-PODS with the max-variance,
max-reward and random down-sampling rules. The training is conducted on the GSM8K dataset with
one L40S. For the performance comparison, the x-axis shows the training time, and the y-axis shows
the accuracy on the test set. The shaded area represents 1.96 times the standard error of the mean.

A.4 PODS’ SPEED UP RATIO OVER GRPO

In Fig. 3, we observe that GRPO-PODS consistently outperforms GRPO in terms of performance as
the training proceeds. For each of the five plots in Fig. 3, we compute the speed up ratio of GRPO-
PODS over GRPO, i.e., the ratio between the time taken by GRPO and that taken by GRPO-PODS to
reach 0.99× the peak performance of GRPO. The results are shown in Table 3. We observe that our
method achieves a speed up ratio between 1.7× and 3.0× over GRPO across the settings.

Table 3: Speed up ratio of GRPO-PODS over GRPO in Fig. 3.

Setting (a) (b) (c) (d) (e)
Speed Up Ratio 2.0× 2.0× 3.0× 1.7× 1.7×

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5 AVERAGE COMPLETION LENGTH OVER TIME

We include additional evaluation of the average completion length over the training time for each of
the experiments we conduct in Section 4. We present the average completion length results in Figs. 6
to 8, in correspondence to Figs. 3, 4 and 5 respectively. In most of the cases, we observe that the
average completion length stays relatively stable over the training time.

0 1 2 3 4 5 6
Training Time on One L40S (hours)

200

250

Av
er

ag
e

Co
m

pl
et

io
n

Le
ng

th

GRPO
GRPO PODS

(a) Training Qwen2.5 (3B) on GSM8K with one L40S GPU

0 1 2 3 4 5 6
Training Time on One L40S (hours)

300

350

400

Av
er

ag
e

Co
m

pl
et

io
n

Le
ng

th

GRPO
GRPO PODS

(b) Training Qwen2.5 (3B) on MATH with one L40S GPU

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Training Time on One L40S (hours)

200

220

Av
er

ag
e

Co
m

pl
et

io
n

Le
ng

th

GRPO
GRPO PODS

(c) Training Llama3.2 (3B) on GSM8K with one L40S GPU

0 5 10 15 20 25 30
Training Time on 8 H100s (minutes)

300

400

Av
er

ag
e

Co
m

pl
et

io
n

Le
ng

th

GRPO-GA
GRPO-PODS

(d) Training Qwen2.5 (3B) on GSM8K with 8 H100 GPUs

0 5 10 15 20 25 30
Training Time on 8 A100s (minutes)

250

500

750

Av
er

ag
e

Co
m

pl
et

io
n

Le
ng

th

GRPO-GA
GRPO-PODS

(e) Training Qwen2.5 (7B) on GSM8K with 8 A100 GPUs

Figure 6: Average completion length over time of the trained models in Section 4.1’s experiments.
The x-axis shows the training time, and the y-axis shows the average completion length in tokens.
The shaded area represents 1.96 times the standard error of the mean.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6
Training Time on One L40S (hours)

200

250
Av

er
ag

e
Co

m
pl

et
io

n
Le

ng
th

N = 16
N = 32
N = 64
N = 128
N = 256

(a) Fixing m = 16 and varying n ∈ {16, 32, 64, 128, 256}

0 1 2 3 4 5 6
Training Time on One L40S (hours)

200

250

Av
er

ag
e

Co
m

pl
et

io
n

Le
ng

th

M = 16
M = 8
M = 4
M = 2

(b) Fixing n = 64 and varying m ∈ {16, 8, 4, 2}

Figure 7: Average completion length over time of the trained models in Section 4.2’s experiments.
The x-axis shows the training time, and the y-axis shows the average completion length in tokens.
The shaded area represents 1.96 times the standard error of the mean.

0 1 2 3 4 5 6
Training Time on One L40S (hours)

200

300

400

Av
er

ag
e

Co
m

pl
et

io
n

Le
ng

th

Max Variance
Max Reward
Random

Figure 8: Average completion length over time of the trained models in Appendix A.3’s experiments.
The x-axis shows the training time, and the y-axis shows the average completion length in tokens.
The shaded area represents 1.96 times the standard error of the mean.

17

	Introduction
	Related Work
	Down-Sampling Rollouts in GRPO
	Preliminaries
	PODS Framework
	Max-Variance Down-Sampling

	Experiments
	Comparing GRPO-PODS to baseline GRPO
	Effect of Rollout and Update Sizes (n,m)

	Conclusion and Discussion
	Additional Experimental Details
	Reward Functions
	Hyperparameters
	Comparing Different Down-Sampling Rules
	PODS' Speed Up Ratio Over GRPO
	Average Completion Length Over Time

