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Abstract

Recent progress in large transformers-based foundation models have demonstrated
impressive capabilities in mastering complex chemical language representations.
These models show promise in learning task-agnostic chemical language represen-
tations through a two-step process: pre-training on extensive unlabeled corpora
and fine-tuning on specific downstream tasks. By utilizing self-supervised learn-
ing capabilities, foundation models have significantly reduced the reliance on
labeled data and task-specific features, streamlining data acquisition and pushing
the boundaries of chemical language representation. However, their practical im-
plementation in further downstream tasks is still in its early stages and largely
limited to sequencing problems. The proposed multimodal approach using MoL-
Former, a chemical large language model, aims to demonstrate the capabilities
of transformer based models to non-sequencing applications such as capturing
design space of liquid formulations. Multimodal MoLFormer utilizes the extensive
chemical information learned in pre-training from unlabeled corpora for predicting
performance of battery electrolytes and showcases superior performance compared
to state-of-the-art algorithms. The potential of foundation models in designing
mixed material systems such as liquid formulations presents a groundbreaking
opportunity to accelerate the discovery and optimization of new materials and
formulations across various industries.

1 Introduction

In recent times, the field of large transformers-based foundation models has made remarkable
progress, showcasing their impressive capacity to master complex chemical language representations
[L} 2, 13]. This machine learning approach has become widely adopted for accurately predicting
molecular properties due to its efficiency and ability to represent essential molecular features [4].
The said achievement of large chemical language models is just a tip of an iceberg that represents
their immense scope and potential [S]]. The applications of such models need to be further explored
beyond the domain of molecules, towards more complex design spaces such as formulations.

Recent advancements in these models have shown great promise in learning task-agnostic chemical
language representations through a two-step process: pre-training on extensive unlabeled corpora
and fine-tuning on specific downstream tasks [0, 7, 8]. The significance of this achievement cannot
be overstated [9]]. By utilizing self-supervised learning capabilities, these foundation models have
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effectively reduced the dependence on labeled data and task-specific features [[7, [10]], streamlining the
once laborious data acquisition process and propelling the field of chemical language representation
to new heights [11, 12} [13]]. Although pre-trained Language Models (LMs) have shown promise in
predicting molecular properties [[14} 15} [16], their practical implementation on further downstream
tasks is still in its early stages [17] and largely limited to sequencing problems such as predicting
sequences of proteins 18], polymers [19] and chemical reactions [20]. The question remains: Could
LMs be used to represent molecular systems with unstructured and random interactions like the ones
observed in liquid formulations?

Liquid formulations are a big part of several industrial sectors like pharmaceuticals, automotive
materials, and food science [21]]. Current strategies to design formulations rely on high-throughput
virtual screening that expedites the search for individual compounds but falls short in guiding the
complete design of materials’ formulations[22]. Battery liquid electrolytes are economically relevant
examples of a formulation system, where comprehending and optimizing the interdependencies of
constituent solvents and salts is of paramount importance for device performance [23]]. Despite
the exponential growth of the energy storage field in the last two decades, the cycling stability
of current battery technologies continues to remain in question [24]. Electrolyte engineering has
emerged to be a promising approach to improve the cycling efficiency of next generation batteries,
and remains generally an experimentally driven process. The major bottleneck in adopting machine
learning methods for electrolyte design discovery and optimization is the non-generalizability of the
battery-specific datasets available in the literature and the expensive data acquisition process [25]].

LMs can play a crucial role in bridging this gap, as their self-supervised capabilities align perfectly
with scenarios where data availability is critical [26l 27]. In this paper, we propose a multimodal
approach built upon the recently introduced LM MoLFormer to predict the performance of battery
electrolyte formulations. Unlike recently introduced chemical LMs that predict properties based on a
single molecule identifier (SMILES [16} 28], SELFIES [29, 30, etc. [31]]), our approach takes up to
six SMILES molecules as input, representing the constituents of the formulations along with their
respective molar percentages, thus capturing the composition of the design space (see Fig. [I). To
assess the effectiveness of our approach, we utilize a Li/Cu half-cell dataset from a previous study
[32], which serves as a benchmark for our proposed methodology. Our approach has demonstrated
superior performance compared to state-of-the-art algorithms, eliminating the need for laborious
human feature engineering processes and extensive experimental data acquisition.

Our work demonstrates the potential of foundation models for the design of mixed material systems.
By leveraging the power of machine learning, we can accelerate the discovery and optimization of
new materials and formulations, with the potential to revolutionize a wide range of industries.

2 Method

Our approach builds upon the foundation of MoLFormer [7], a cutting-edge transformer-based
model widely used for chemical language representations. MoLFormer is a large-scale masked
language model that processes inputs through a series of blocks, alternating between self-attention
and feed-forward connections.

The self-attention mechanism of MoLFormer allows the model to construct complex representations
by incorporating contextual information from across the input sequence. By transforming the
sequence features into query (q), key (k), and value (v) representations, attention mechanisms can
weigh the importance of different elements within the sequence. This ability to capture informative
relationships between tokens makes MoLFormer a powerful tool for predicting molecular properties.

To further enhance performance, recent studies have demonstrated the benefits of incorporating
relative position embeddings between tokens [14]. MoLFormer optimizes relative encoding by using
a modified version of the RoFormer [33]] attention mechanism. This involves position-dependent
rotations (R,,) of the query and keys at position m. These rotations can be efficiently implemented
as pointwise multiplications, ensuring that the computational complexity remains manageable (as
shown in Eq (IJ)).
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Figure 1: The figure illustrates the general architecture of the learning process of the MultiModal-
MoLFormer. (a) Electrolyte formulation dataset. Illustrated by the example, the sequence which
comprises electrolytes formulations along with their Coulombic Efficiency. b Description of elec-
trolyte formulations as input. Each formulation is composed of a sequence of up to six SMILES
along with their fraction of molar percentages and respective logarithmic Coulombic Efficiency as
performance label. ¢ Dataset augmentation in order to enrich the training of the model. d Training of
the proposed MultiModal-MoLFormer approach with the sequence of SMILES and compositions per-
centages. e Prediction of the Coulombic efficiency property based on mixture formulation (SMILES
and compositions).

In Eq , Attention,,(Q, K, V) denotes the attention operation with queries (Q), keys (X), and
values (V) at position m. The operation computes weighted sums of the value representations (v,,)
based on the similarity of the transformed query (¢(R,,¢)) and key (o(R,,ky,)) representations.
The relative position embeddings introduced through the rotations (R, ) allow the model to effectively
capture positional information, leading to improved performance in molecular property predictions.

By leveraging the capabilities of MoLFormer and enhancing it with relative position embeddings,
our approach offers an advanced and efficient solution for predicting complex molecular properties,
providing valuable insights for various chemical applications.

2.1 Tokenization process and vocabulary construction

The approach employs a tokenization process, as described in [6], to create its vocabulary. This
tokenization process utilizes an extensive dataset comprising 1.1 billion molecules from PubChem
and ZINC datasets, resulting in the generation of 2362 unique vocabulary tokens. These tokens are
then used for fine-tuning or retraining the models, with a fixed embedding capacity and vocabulary
size.

To optimize computation time and resource utilization, the sequence length is constrained to a range
of 1 to 202 tokens, including special tokens. This decision is driven by the fact that over 99.4% of all
1.1 billion molecules in the dataset contain fewer than 202 tokens. By setting this limit, the model can
effectively handle the vast majority of molecular structures while avoiding unnecessary computations
for excessively long sequences.

The tokenization process and the limited sequence length enable the approach to efficiently process
and represent molecular structures, making it feasible to scale the model to large datasets and achieve
powerful predictive capabilities in various chemical applications.



2.2 Multimodal approach

In this section, we present the multimodal layer of our proposed approach, where SMILES notations
embeddings are combined with their corresponding percentages of the formulations derived from the
electrolyte process.

Let (x,y) denote a feature-target pair, where © = (ZcL, Zproportions). The zcr represents all the
features based on chemical language representations, and Zproportions refers to the proportions of
the compounds that compose the formulations. Each z¢p, can have a sequence of tokens with a
maximum length of 202 tokens, and each token has a 768-dimensional embedding. Fig. 2]illustrates
the concatenation architecture of the proposed approach.

After the data transformation using Transformer layers (Fig. [2), the resulting embeddings per chemical
language string are concatenated along with their corresponding percentages of the formulations
derived from the electrolyte process, resulting in a learning vector of dimension (d x e + ¢). Here, d
represents the dimension of the dataset, e is the size of the resulting embeddings, and c is the number
of features that represent the formulations’ percentages. This concatenated vector is then passed to a
learning algorithm, specifically a Feed-Forward network with 2 fully connected layers, to calculate
the loss function.
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Figure 2: The figure illustrates the general architecture of the learning process of the MultiModal-
MoLFormer. The concatenation layer is responsible to combine the SMILES embeddings along with
the percentages of the formulations derived from the electrolyte process.

The method takes up to six SMILES as input, which are concatenated using a special token <SEP>.
As the order of the SMILES does not matter in the formulation, during the training phase, we consider
all possible permutations of the order in which the SMILES may appear to the system. This facilitates
the learning process, as the algorithm is based on a Transformers architecture, where the order of
tokens does matter to the system.

The multimodal approach successfully fuses SMILES notations and formulation percentages, enabling
accurate predictions of performance metrics. By effectively representing the complex relationships
between chemical components and performance metrics, our MultiModal-MoLFormer method
achieves improved predictive performance compared to traditional approaches.

In summary, our proposed approach showcases the significance of leveraging multimodal information
to enhance the understanding and prediction of complex systems in battery electrolyte formulations.
The seamless integration of SMILES notations and formulation percentages contributes to the
advancement of computational materials discovery, bridging the gap between material discovery and
development, and offering a valuable tool to expedite the exploration of new materials with enhanced
properties for diverse applications.



2.3 Dataset augmentation

When dealing with formulations, it is essential to note that the sequence of SMILES representa-
tions holds no significance [34]]. Consequently, the arrangement of data within the dataset can
be strategically permuted, as depicted in Fig. [3] to effectively enhance data augmentation. This
augmentation approach serves the purpose of bolstering the performance of the proposed model,
thereby contributing to its overall effectiveness [35]. An additional crucial point to emphasize is
that these formulations have the potential to encompass up to six distinct SMILES. In cases where
all six SMILES are not fully specified, any vacant spaces are automatically filled with “O”, while
the corresponding contribution to the composition percentage is then designated as 0.0 [36]. It is
also important to note that the special token <SEP> is ignored by the proposed approach [37]. This
systematic approach ensures consistency and accuracy in handling incomplete SMILES within the
compositions. By incorporating the data augmentation process, the training dataset underwent a
substantial expansion, transitioning from 147 compositions to 27,266 compositions. This notable
augmentation was attained through a sequence of steps, commencing with the permutation procedure
and culminating in the removal of duplicates. This intricate transformation effectively paved the way
for the dataset’s substantial growth. It is important to highlight that the test dataset is not augmented
in order to preserve the fair evaluation of the algorithms.

Transformers-based approaches as the one proposed here, greatly benefit from larger datasets [38]],
as they encompass a more extensive range of text sequences [39]. The incorporation of these
expanded datasets contributes significantly to refining the comprehension and predictive abilities of
transformers. This refinement ultimately leads to improved performance across a wide array of tasks
and applications. The increased diversity in sequence composition empowers transformers to enhance
their performance by capturing a broader spectrum of linguistic patterns, nuances, and contextual
intricacies [40]. In summary, the utilization of larger datasets empowers transformers to enhance
their understanding and predictive capacities, thereby resulting in elevated performance levels across
diverse tasks and applications.
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Figure 3: The figure elucidates the permuted SMILES of each formulation constituents, alongside a
breakdown of the constituent percentages of each SMILE within the formulation. This breakdown
is represented in the context of the input vector, providing a comprehensive understanding of the
composition dynamics.

3 Electrolyte Formulation Dataset

To evaluate this proposed methodology, we assessed its efficacy in tackling a challenging task.
We considered the Li/Cu half cell-based electrolyte formulations and their respective Coulombic
Efficiencies (CE). This dataset was carefully curated from literature to encompass a wide range
of electrolyte variations in terms of constituent molecules and compositions [32]]. CE is a crucial
metric for assessing battery performance that represents the ratio of discharge to charge capacity
[41]. Maintaining a high CE is essential to ensure optimal battery function. However, over time,
batteries can experience CE loss that is primarily caused by electrolyte and electrode decomposition
[42]. The CE values have been converted to their logarithmic (LCE) by [32] to numerically amplify



the change in output with respect to the electrolytes. This transformation allows for a more sensitive
and accurate comparison of the performance of different electrolytes. The dataset is composed of 147
electrolyte formulations for training purposes and 13 electrolyte formulations for model evaluation.
The box plots illustrated by Fig. fa| provide a clear visualization of the distribution of LCE outputs
for the training data based on the count of formulation constituents. The plot showcases essential
statistical insights, revealing the spread and central tendencies of the data. The formulations in the
dataset consist of 2 to 6 electrolyte components in each, represented as a simplified molecular-input
line-entry system (SMILES) notation. The presented approach allowed us to gain valuable insights
into the potential applicability of LMs in device-level predictive applications.
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Figure 4: (a)Box plots depicting electrolyte formulation vs LCE data as the function of number
of formulants in the formulations. Each box plot is constructed with attention to detail, where the
central line represents the median value of the LCE outputs, indicating the middle point of the data
distribution. The colored box represents the interquartile range (IQR), encompassing the 25" to 75"
percentile of the LCE values. This range provides valuable information about the variability and
spread of the majority of data points.(b) Schematic representation of Lithium-Copper half cell that is
conventionally used to study stability and cyclability of electrolyte formulations over Lithium metal
anode.

4 Performance prediction of electrolyte formulations

Here, we present a comparative analysis of LCE predictions using the Li/Cu half-cell dataset from
two approaches: Molformer and MultiModal-MoLFormer. Table[I|summarizes the LCE predictions
for the test dataset from MoLFormer [[7]] and proposed MultiModal-MoLFormer. The performance
of each algorithm is assessed using the root mean squared error (RMSE) metric, which quantifies
the prediction errors. Figure []illustrates the parity plot prediction of LCE for all the considered
algorithms.

Each row in the table displays the predicted LCE values for individual electrolyte formulations. The
numerical results indicate that our method achieves significantly lower prediction errors, as reflected
in the RMSE calculation. Morever, as illustrated by Fig. [6] the residual plot demonstrates that the
proposed approach has stable predictions.

The Table [2 compares the predictive errors of proposed models with alternative formulation models.
Specifically, the RMSE values for each algorithm are as follows: “F-GCN TL” achieves an RMSE of
0.389, and MoLFormer shows an RMSE of 0.213. In contrast, our proposed approach achieves the
lowest RMSE of 0.195, demonstrating its superior predictive capability. F-GCN are formulation graph
convolution networks that use graph representations for representing formulation constituents along
with their compositions and overcome the limitations of small experimental dataset by pre-training
graphs on labeled simulation data. Thus, "TL’ denotes transfer learning in the F-GCN framework
[36]. It is interesting to note here that despite skipping over important compositional information,



Table 1: Summary of logarithmic Coulombic efficiency (LCE) predictions from MoLFormer and
Muldimodal-MoLFormer. The root mean squared error (RMSE) metric was used to measure the
errors of the algorithms. Each row in the table displays the predicted LCE values for an individual

electrolyte formulation.

Experimental values Multimodal
b (LCE) [32) | MoLFormer | n¢or Former
1.094 1.198 1.028
1.384 1.428 1.267
1.468 1.340 1.336
1.710 1.845 1.823
1.832 1.763 1.816
2.104 1.816 1.841
2.274 1.809 1.897
1.071 1.058 0.979
1.166 1.109 0.971
1.335 1.727 1.554
1.129 0.982 0.810
1.501 1.735 1.599
1.663 1.565 1.492
RMSE 0.213 0.195
2.2 221
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Figure 5: The figure depicts the performance of our multimodal chemical language approach,
which leverages both SMILES and composition percentages of formulation constituents to predict
performance metric LCE.

MolFormer still outperforms F-GCN TL model that captures both structure and compositions of
formulation constituents. This could be attributed to the large-scale learning of underlying chemical
information by MolFormer from unlabeled corpora which makes it highly generalizable and property-
independent. Meanwhile, graphs depend upon initial vectorization and specific property to learn
structure-based relational latent space. Not only acquiring labeled data to train graphs can be very
costly, but it also renders the ability of such models to predict formulation properties dependent upon
pre-training labels. MultiModal-MoLFormer manages to overcome the compositional negligence of
MoLFormer in capturing formulation design and demonstrates the best predictive capability of any
algorithm report to date. The table demonstrates the efficacy of our multimodal chemical language
approach, which just utilizes SMILES and formulation percentages for improved prediction accuracy.
By effectively incorporating essential chemical information, our proposed method better captures the
complex interactions that influence LCE in Li/Cu half-cell batteries. This enhanced predictive power
for a complex unstructured design space is crucial for electrolyte engineering and optimizing battery
performance, thus driving advancements in battery technology.

In summary, Table 2] clearly shows that our proposed approach outperforms other state-of-the-art
algorithms in predicting LCE values for the Li/Cu half-cell dataset. The lower RMSE value obtained
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Table 2: Comparison of Coulombic Efficieny prediction from different algorithms.

Algorithm RMSE
MultiModal-MoLFormer | 0.195
MoLFormer 0.213
F-GCN TL [36] 0.389
Linear regression [32] 0.585
Random forest [32] 0.577
Boosting [32]] 0.587
Bagging [32] 0.583

by our method underscores its potential to facilitate more reliable and efficient battery design,
ultimately contributing to the development of sustainable and high-performance energy storage
solutions.

5 Conclusion

This paper introduces an innovative multimodal chemical language-based model, specifically designed
to establish intricate relationships among the structural composition and performance of battery
electrolytes within their formulation space. By seamlessly integrating both SMILES notations and
the corresponding formulation percentages, our model provides a more comprehensive depiction of
chemical interactions.

To validate the efficacy of our proposed approach, we conducted rigorous experiments using the Li/Cu
half-cell data [32]. Our approach not only surpassed state-of-the-art methodologies in predicting
formulation property i.e. logarithmic coulombic efficiency in this case, but also achieved an impressive
RMSE of 0.195. Noteworthy is the fact that our method even outperformed the formulation graph
model (F-GCN), known for its reliance on resource-intensive HUMO-LUMO features for pre-training.
This compellingly suggests that our approach excels in both efficiency and effectiveness compared to
existing methods, which rely on simpler input features such as SMILES notations and formulation
percentages.

In contrast to other algorithms demanding resource-heavy features, our method relies exclusively
on straightforward input features, rendering it more accessible and computationally streamlined.
Moreover, the residual plot (refer to Figure [6) illustrates a narrower spread of residuals compared to
the alternative formulation models. This significant finding implies that our proposed approach is
more resilient against noise and outliers in the data. In simpler terms, our approach demonstrates
heightened resistance to random data fluctuations.

It is paramount to underscore that our approach exhibits remarkable performance even when faced
with challenging tasks, given the relatively modest size of the datasets employed in this study.
Acquiring extensive datasets can be a resource-intensive endeavor, imposing constraints on data



availability. Consequently, we advocate for further experimentation on larger datasets to holistically
explore the model’s capabilities, thus validating its scalability and robustness.

In conclusion, the proposed multimodal chemical language-based model showcases exceptional
predictive prowess regarding logarithmic Coulombic efficiency. Its reliance on uncomplicated
features underscores its practicality and efficiency. While acknowledging the prevailing limitations
of our dataset, this work serves as a foundational stepping stone for future research in the realm of
battery technology. We fervently encourage continued exploration on more expansive datasets to
unlock the full potential of our model.
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