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ABSTRACT

We propose a causal reasoning mechanism called causal attention that can im-
prove performance of machine learning models on a class of causal inference tasks
by revealing the generation process behind the observed data. We consider the
problem of reconstructing causal networks (e.g., biological neural networks) con-
necting large numbers of variables (e.g., nerve cells), of which evolution is gov-
erned by nonlinear dynamics consisting of weak coupling-drive (i.e., causal effect)
and strong self-drive (dominants the evolution). The core difficulty is sparseness
of causal effect that emerges (the coupling force is significant) only momentarily
and otherwise remains quiescent in the neural activity sequence. Causal attention
is designed to guide the model to make inference focusing on the critical regions of
time series data where causality may manifest. Specifically, attention coefficients
are assigned autonomously by a neural network trained to maximise the Attention-
extended Transfer Entropy, which is a novel generalization of the iconic transfer
entropy metric. Our results show that, without any prior knowledge of dynamics,
causal attention explicitly identifies areas where the strength of coupling-drive is
distinctly greater than zero. This innovation substantially improves reconstruction
performance for both synthetic and real causal networks using data generated by
neuronal models widely used in neuroscience.

1 INTRODUCTION

In this work, our task is to infer causal relationships between observed variables based on time series
data and reconstruct the causal network connecting large numbers of these variables. Assume the
time series xit record the time evolution of variable i governed by coupled nonlinear dynamics, as
represented by a general differential equation ẋit = g(xit) +

∑
Bijf(xit, xjt), where g and f are

self- and coupling functions respectively. The parent variable influences the dynamic evolution of
the child variable via the coupling function f . Note that these two functions are hidden and usually
unknown for real systems. The asymmetric adjacency matrix B represents the causal, i.e., directional
coupling relationship between variables. Hence, the goal is to infer matrix B from observed time
series xit, i = 1, 2, . . . , N where N is the number of variables in the system. If Bij = 1, the variable
i is a coupling driver (parent variable) of variable j, otherwise it is zero.

The key challenge is that the causal effect in neural dynamics (e.g., biological neural systems ob-
served via neuronal activity sequences) is too weak to be detected, rendering powerless classic un-
supervised techniques of causal inference across multiple research communities Granger (1969);
Schreiber (2000); Sugihara et al. (2012); Sun et al. (2015); Nauta et al. (2019); Runge et al. (2019);
Gerhardus & Runge (2020); Tank et al. (2021); Mastakouri et al. (2021). This difficulty manifests in
three aspects. First, the dynamics contains self-drive and coupling-drive. The strength of coupling
f(xit, ·) is usually many orders of magnitude smaller than self-drive g(xit), and the latter dominates
evolution. Second, the behavior of the coupling-drive is chaotic, unlike in linear models Shimizu
et al. (2006); Xie et al. (2020). The resulting unpredictability and variability of system state means
that coupling force can be significant momentarily and otherwise almost vanish, as illustrated in
Figure 3 (gray lines). This dilutes the information in time series that can be useful for inferring the
causal relationship. Third, in the heterogeneous networks common in applications, some variables
are hubs coupled with many parent variables, among which it is difficult to distinguish individual
causes. When causal effects are weak, we do not observe clearly the principle of Granger Causality,
whereby the parent variable can help to explain the future change in its child variable Pfister et al.
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(2019). Rather, when we train a machine learning model Nauta et al. (2019); Tank et al. (2021) for
prediction task on the neuronal activity sequences, the model only exploits the historical informa-
tion of the child variable itself and that from parent variables is ignored. We posit that coupling-drive
makes a negligible contribution to dynamic evolution in the majority of samples of time series data.
In other words, only in a small fraction of samples is the information of parent variables effective in
predicting the evolution of child variables. Taking as an example the gradient algorithm to minimise
the regression error over all samples

∑
t(xit − x̂it)

2, the adjustment of model parameters from the
tiny samples corresponding to significant coupling force is negligible, but these are the only samples
which could induce the model to exploit causal effects in reducing regression error. Similarly, for
transfer entropy Schreiber (2000), which measures the reduction in uncertainty which a potential
parent variable provides to a potential child variable, there is no significant difference in measured
value between ordered pairs of variables with and without causality.

To overcome the difficulty, we propose a causal reasoning mechanism – causal attention – to iden-
tify the moments when causal effect emerges. We design an objective function, Attention-extended
Transfer Entropy (AeTE), comprising a weighted generalisation of transfer entropy. In order to
maximize AeTE, the causal attention mechanism trains neural networks to autonomously allocates
high attention coefficients at at times t where information of parent variables effectively reduces the
uncertainty of child variables, and ignores other positions by setting at close to zero. If we consider
each value in a time series as a feature, the operation of attention allocation is also equivalent to
removing the non-causal features Kusner et al. (2017); Hu et al. (2021).

However, noise in empirical samples may also produce high transfer entropy regions, which leads
to spurious causal effects even when using causal attention. We add a binary classification model to
perform more sophisticated inference under the guidance of causal attention to focus on these critical
regions and recognize different patterns between noisy and sparse emergence of causal effect. We
deal with this class of causal inference task by way of small sample supervised learning. Although
training and test data have a distribution shift in the setting of small samples, they arise through an
identical underlying generation process. Thus, if the model provides an insight into the underlying
dynamics – the coupling-drive for causal inference – then the understanding acquired from small
samples can be effectively utilised in the test environment Bareinboim & Pearl (2014); Battaglia
et al. (2016); Makhlouf et al. (2020); Pessach & Shmueli (2022). The role of causal attention is to
help the classification model gain this insight. Our contributions are summarized as follows:

1. We introduce causal attention, a causal reasoning mechanism to identify the positions of
time series at which causal effect emerges and guide a classification model to infer causality
focusing on these critical positions. Without any prior knowledge of dynamics, the mecha-
nism determines the areas where the coupling force is substantially different from zero.

2. By formulating Transfer Entropy as the difference between two types of mutual informa-
tion, and based on the dual representation of Kullback-Liebler (KL) divergence, we design
a differentiable metric, Attention-extended Transfer Entropy, as the objective function of
the proposed causal attention mechanism.

3. Our method significantly improves performance on synthetic and real causal networks us-
ing the data generated by five well-known neural dynamic models, and the number of labels
required is very small compared to the size of the causal networks.

Our methodology has limitations (i.e., cases for which performance improvement is less): 1. Dense
networks, where a variable is coupled with many driving variables such that their causal effects
overlap and are harder to distinguish. 2. Intense noise, which makes the casual attention mechanism
falsely identify high transfer entropy regions. The downstream classifier then extracts non-causal
features, leading to the reduction of its generalization. 3. Strongly coupled system, which is domi-
nated by synchronization phenomena in which the dynamic behaviors of all variables are similar.

2 BACKGROUND

2.1 DEFINITION OF TRANSFER ENTROPY

The transfer entropy, an information-theoretic causality measure, is able to detect information flow
between time series X and Y . Transfer Entropy measures the degree of non-symmetric dependence
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of Y on X , defined as Schreiber (2000):

TE(X → Y ) =
∑

p
(
yt+1, y

(k)
t , x

(l)
t

)
log

p
(
yt+1 | y(k)t , x

(l)
t

)
p
(
yt+1 | y(k)t

) , (1)

where x
(l)
t = (xt, ..., xt−l+1) and y

(k)
t = (yt, ..., yt−k+1) and k, l are lengths. For an uncou-

pled system (X and Y independent) that can be approximated by a Markov process of order k,
the conditional probability to find Y in state yt+1 at time t + 1 satisfies p

(
yt+1 | y(k)t , x

(l)
t

)
=

p
(
yt+1 | y(k)t

)
.

2.2 MUTUAL INFORMATION NEURAL ESTIMATION

The mutual information is equivalent to the KL divergence between the joint distribution PXY and
the product of the marginal distributions PX ⊗ PY Nowozin et al. (2016); Hjelm et al. (2018). The
KL divergence DKL admits the neural dual representation Donsker & Varadhan (1983); Belghazi
et al. (2018):

MI(X,Y ) = DKL (PXY ∥PX , PY ) ≥ sup
θ∈Θ

EPXY
[fθ]− log

(
EPX⊗PY

[
efθ

])
, (2)

where the supremum is taken over parameter space Θ and fθ is the family of functions parameterized
by the neural network with parameters θ ∈ Θ. The mutual information neural estimator is strongly
consistent and can approximate the actual value with arbitrary accuracy Belghazi et al. (2018).

3 METHOD

3.1 NEURAL ESTIMATOR OF TRANSFER ENTROPY

Figure 1: Visual interpretation of transfer entropy and its attention-extended version. The Transfer
Entropy is derived as the difference of two types of mutual information: MI (Yt+1, (Yt, Xt)) (blue
area) quantifies the reduction in uncertainty of future state yt+1 from knowing current states (yt, xt),
and MI (Yt+1, Yt) (green area) is same but only yt is known. The attention coefficients at (yellow
area) are assigned to each position of time series by the causal attention mechanism to maximize
the Attention-extended Transfer Entropy. For brevity, k = l = 1 here.

By the conditional Bayes formula and adding a marginal distribution of Y , we derive the transfer en-
tropy as the difference between two types of mutual information. An intuitive description is provided
in Figure 1, and the derivation is placed in Appendix A.
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=
∑
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In these expressions, yr is sampled from Y randomly and independently of the time step t. The
first term MI

(
Yt+1,

(
Y

(k)
t , X

(l)
t

))
quantifies the reduction in the uncertainty of the future state

yt+1 from knowing the historical information y
(k)
t and x

(l)
t . The second term MI

(
Yt+1, Y

(k)
t

)
is

the reduction in uncertainty simply from knowing y
(k)
t . By connecting Eq. 4 and Eq. 2, we define a

differentiable estimator of transfer entropy as:

TE(X → Y ) = sup
Θ

E
P
(
Yt+1,Y

(k)
t ,X

(l)
t

) [fθ]− log

(
E

P (Yt+1)⊗P
(
Y

(k)
t ,X

(l)
t

) [efθ])
− sup

Φ
E

P
(
Yt+1,Y

(k)
t

) [fϕ]− log
(
E

P (Yt+1)⊗P (Y
(k)
t )

[
efϕ

])
. (5)

Transfer entropy, and even mutual information, is difficult to compute Paninski (2003), especially
for high-dimensional or noisy data. In Appendix B, we offer a theoretical proof for the consistency
and convergence properties of Transfer Entropy Neural Estimation, and examine its bias on a linear
dynamic system where the true values of transfer entropy can be determined analytically.

3.2 ATTENTION-EXTENDED TRANSFER ENTROPY

The main difficulty in our task is that the causal effect in certain nonlinear dynamical systems is
too weak to be recognized by classic techniques. We discuss the limitation of the iconic transfer
entropy in detail that it works well when the three true distributions, i.e., one joint distribution and
two conditional distributions in Eq. 1, can be estimated perfectly. However, sparse causal effects
are easily masked if the estimated probability density deviates even slightly from the real distri-
bution. These momentary sources of evidence of coupling drive are like outliers in the total dis-
tribution of a time series dominated by self-drive. In order to make the transfer entropy provide
a clear distinction between causal and non-causal pairs, we need to highlight the positions where
p
(
yt+1 | y(k)t , x

(l)
t

)
> p

(
yt+1 | y(k)t

)
and filter out other times by adjusting at in Eq. 6, all while

avoiding the problem of distribution approximation. We do so by defining AeTE as:
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∑

at · p
(
yt+1, y

(k)
t , x

(l)
t

)
log

p
(
yt+1 | y(k)t , x

(l)
t

)
p
(
yt+1 | y(k)t

) (6)

= MI
(
Yt+1,

(
Y

(k)
t , X

(k)
t

)
| A

)
−MI

(
Yt+1, Y

(k)
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)
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In this expression, at ∈ [0, 1] is the attention coefficient at time step t and the collection A of
attention coefficients is the attention series. Comparison of Eq.1 and Eq.6 reveals that the transfer
entropy can be viewed as a simplified version of AeTE in which attention coefficients are uniformly
set to one: ∀t, at = 1. Because each position has an equal contribution to estimation, the value
of transfer entropy is dominated by the majority of positions where causal effect is negligible, i.e.,
where p

(
yt+1 | y(k)t , x

(l)
t

)
≈ p

(
yt+1 | y(k)t

)
. Similarly to transfer entropy, AeTE is derived as the

difference of two mutual informations, but AeTE incorporates the scheme of attention assignment.
By connecting Eq. 7 and Eq. 2, we define a differentiable estimator of AeTE as:
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where T is the total number of time steps and L = T−max(k, l). The expectation on the distribution
of variables is adapted into the mean over time series.

3.3 CAUSAL ATTENTION MECHANISM

The overall framework of our model is presented in Figure 2. In addition to two neural networks fθ
and fϕ for mutual information estimation, we employ another neural network gα for causal attention

4



Under review as a conference paper at ICLR 2023

Figure 2: Graphical illustration of causal
attention mechanism framework. An input
sample is the time series on an order pair
of variables with shape [2, L]. Stage 1: the
neural network gα assigns the attention co-
efficients {ai}Li=1. The neural networks fθ
and fϕ forming transfer entropy estimator
estimate mutual information MI1 and MI2
(first and second terms in Eq. 7). Stage
2: the inferred probability of causality is
Sigmoid( 1

L

∑
ai ∗ logiti).

assignment. Rather than approximating distributions, the neural network gα learns to maximize
AeTE given by Eq. 8 via gradient descent. However, the occurrence of high transfer entropy regions
may appear due to noise in empirical samples. For more sophisticated inference, we augment our
method with a binary classifier hη guided by causal attention to focus on high transfer entropy
regions and recognize different patterns between noise and sparse emergence of causal effect. The
classifier takes causality and non-causality as class labels. Then, the training process is divided into
two independent stages: causal attention learning and classification learning. The objectives in the
first stage are:

θ, ϕ← argmax
θ,ϕ|α

L1 + L2 (9)

α← argmax
α|θ,ϕ

L1 − L2, (10)

where L1, L2 is the expectation of the first and second sup term of Eq.8 on training set respectively.
We update (fθ, fϕ) and gα alternately. A small learning rate is required to maintain training stability,
otherwise the gα may fall into a trivial solution where attention is almost zero throughout the time
series. The objective in the second stage is:

η ← argmin
η|α

L3, (11)

where L3 is the binary cross entropy and the notation η | α indicates that causal attention remains
fixed during the second stage of training. The downstream classifier is sensitive to the upstream
scheme of attention assignment. In experiments, there exists an optimal loss interval for training the
attention model gα. We stop the first stage training when the loss value of objective Eq. 10 is stable
in this interval, and then the downstream classifier hη usually obtains the best generalization perfor-
mance. For different dynamics, their optimal intervals are different and we find them empirically1.
Details on the implementation of causal attention mechanism are provided in Appendix C.

4 EXPERIMENT

We describe our experiment setup and extensively evaluate the causal attention mechanism on neu-
ronal dynamics coupled on both synthetic and real causal networks.

4.1 SETUP

Causal networks. For synthetic networks, we generate ten groups of Erdős-Rényi (ER) and scale-
free (SF) directed networks with one hundred nodes (i.e., variables) uniformly and with mean degree
varying from 5 to 41 by adjusting the probability for edge creation in ER and the total number of

1An alternative design, which we have not yet implemented, would involve joining the first and second
stages. Attention model gα would be trained by not only maximizing AeTE but also responding to feedback
from the classifier, and would find the balance between Eq. 10 and Eq. 11 automatically.
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edges in SF. Symmetric links (both xi → xj and xj → xi) can exist. For each set of network pa-
rameters we consider five independently generated instances. For real networks, we select five neu-
rological connectivity datasets as presented in Table 1, each from a different species: Cat, Macaque,
Mouse, Worm and Rat.

Dataset Region #Nodes #Edges Mean degree

Cat Brain 65 1139 17.5
Macaque Brain 242 4090 16.9
Mouse Cortex 195 214 1.1
Worm Neural 272 4451 16.4

Rat Brain 503 30088 59.8

Table 1: Statistical information of
five real networks: dataset name,
type of network, number of nodes,
number of edges and mean degree
⟨k⟩. Detailed introduction are pro-
vided in Appendix E.

Table 2: Equations of the five dynamical models considered. B is the asymmetrical adjacency matrix
of the causal network, recording causal relationships between nodes. Bij = 1 if variable i is the
parent of variable j, otherwise Bij = 0. In these expressions, Γ describes the coupling-drive, while
other terms represent self-drive. The detailed configuration of dynamical parameters is provided in
Appendix D.

Dynamics Equations

Hindmarsh-Rose
ṗi = qi − ap

3
i + bp

2
i − n + Iext + Γ

q̇i = c − dp
2
i − qi, ṅi = r [s (pi − p0) − ni]

Γ = gc (Vsyn − pi)
∑N

j=1Bij/(1 + exp(−λ (pj − Θsyn)))

Morris-Lecar
CV̇ =I − gL (V − VL) − gCam∞(V ) (V − VCa) − gKn (V − VK) + Γ

ṅ =λ(V ) (n∞(V ) − n) , Γ = gc
∑N

j=1 Bij (nj − ni)

Izhikevich v̇i = 0.04v
2
i + 5vi + 140 − ui + I + Γ

u̇i = a(bvi − ui), Γ = gc
∑N

j=1Bijuj

Rulkov
F1(ui, wi) =

β

1 + u2
i

+ wi + Γ (uj) , F2(ui, wi) = wi − νui − σ

Γ (uj) = gc
∑N

j=1Bij/ (1 + exp(λ (uj − Θs)))

FitzHugh-Nagumo v̇ = a + bv + cv
2
+ dv

3 − u + Γ

u̇ = ε(ev − u), Γ = −gc
∑N

j=1 Bij (vj − vi) .

Dynamic models. We use five dynamic models for neural activity simulation widely used in the
field of neuroscience: Hindmarsh-Rose (HR), Morris-Lecar (Morris), Izhikevich (Izh), Rulkov and
FitzHugh-Nagumo (FHN). Dynamic equations are provided in Table 2, and segments of generated
time series are represented in Figure 3.

Evaluation metrics. We measure the following metrics: (1) the area under the receiver operating
characteristic curve (AUROC); and (2) the area under the precision-recall curve (AUPRC).

Baselines. We compared our method with seven baselines: (1) Granger causality test (Ganger)
Granger (1969); (2) Transfer Entropy (TE), as in Eq. 5; (3) Convergent cross mapping (CCM) Sug-
ihara et al. (2012); (4) Latent convergent cross mapping (Latent CCM) De Brouwer et al. (2020);
(5) PCMCI Runge et al. (2019) and (6) PCMCI+ Runge (2020) using partial correlation to quan-
tify causal strength; (7) Classification model with Convolutional Block Attention Module (TA) Woo
et al. (2018).

Training details. We employ the convolutional neural network for model gα and hη , and the fully-
connected neural network for model fθ and fϕ. We use the ADAM Kingma & Ba (2014) optimizer
with the initial learning rate of 10−4 for classifier hη and 10−5 for the others. The batch size is 10.
For synthetic networks, we select randomly twenty ordered pairs of variables as a training/validation
set and four hundred ordered pairs as a test set. For real networks, the sample set scheme is provided
in Table 3. All sets are composed of equal samples with causality and without causality. The total
time step T of time series is 50,000. Gaussian measurement noise is added with mean zero and stan-
dard deviation 1%/10% that of the original time series for synthetic/real networks respectively.We
run all experiments in this work on a local machine with two NVIDIA Tesla V100 32GB GPUs.
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(a) Hindmarsh-Rose (b) Izhikevich

(d) Rulkov(c) FitzHugh-Nagumo

Figure 3: Insight into the coupling drive of dynamics. Top panel in each subplot: segment of time
series from a ordered pair of variables with a causal relationship (blue is parent and green is child).
Bottom panel in each subplot: the absolute value of coupling force (gray line), traditional atten-
tion (light pink line), and causal attention (orange line). (a) Hindmarsh-Rose; (b) Izhikevich; (c)
FitzHugh-Nagumo; (d) Rulkov.

4.2 RESULT

Insight into the coupling-drive of underlying dynamics. The gray lines in Figure 3 represent
the change of coupling force from parent to child variable over time, and are generated by the
coupling term Γ in Table 2. The absolute value of the coupling force rises (the gray lines spike) at
occasional moments when the behavior of a parent variable substantially influences the evolution of
its child variable, and remains almost zero at other times. The orange lines representing the causal
attention keep in step with the gray lines, indicating that the causal attention mechanism recognizes
the effect of coupling force in reducing the uncertainty of the child variable and pays attention to
the areas where coupling force is significant. In Figure 3(d), the causal attention focuses on two
separated regions where the coupling forces have concentrated bursts. In contrast, the light pink
lines representing the traditional attention remain close to their maximum value, indicating it is
insensitive to changes in coupling force. This leads its classifier to extract features throughout the
whole time series (instead of focusing on causal features). The traditional attention are not designed
for causal reasoning and cannot accommodate the selection of features that correspond to the causal
information.

(a) HR in ER (b) Izh in ER (c) HR in SF (d) Izh in SF

A
U
R
O
C
/A
U
PR
C

Figure 4: Comparison of classifiers on synthetic causal networks. CA: Causal Attention. Examples
of dynamical model: (a) HR on ER; (b) Izh on ER; (c) HR on SF; (d) Izh on SF.
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Table 3: Performance comparison on real causal networks. Values in the first column of each dataset
are AUROC, and values in the second column are AUPRC. Each point contains the mean and stan-
dard deviation computed in five experiments with randomly sampled training/validation/test set in
Cat (top, 10/10/500) and Mouse (bottom, 10/10/90) connectomes. Results on other three connec-
tomes are shown in Appendix F.

Hindmarsh-Rose Izhikevich Morris-Lecar Rulkov
Granger

CCM
Latent CCM

PCMCI

TA

FitzHugh-Nagumo

PCMCI+

ATE 

TE
0.50±0.01  0.50±0.01 0.57±0.01  0.57±0.01 0.59±0.02  0.59±0.02 0.65±0.01  0.65±0.01 0.53±0.01  0.53±0.01

0.59±0.01  0.54±0.01 0.44±0.01  0.49±0.01 0.40±0.03  0.44±0.02 0.74±0.01  0.73±0.02 0.57±0.02  0.62±0.01

0.75±0.01  0.75±0.02 0.58±0.02  0.58±0.02 0.51±0.01  0.51±0.01 0.57±0.01  0.57±0.01 0.68±0.02  0.68±0.02

0.69±0.02  0.69±0.01 0.55±0.02  0.55±0.02 0.48±0.03  0.48±0.03 0.51±0.01  0.51±0.02 0.64±0.02  0.64±0.01

0.53±0.01  0.53±0.01 0.49±0.01  0.49±0.01 0.49±0.01  0.49±0.01 0.66±0.01  0.66±0.01 0.53±0.01  0.53±0.01

0.57±0.01  0.57±0.01 0.52±0.02  0.52±0.01 0.52±0.02  0.52±0.01 0.63±0.02  0.63±0.02 0.56±0.01  0.56±0.01

0.76±0.01  0.76±0.02 0.61±0.01  0.59±0.01 0.53±0.01  0.52±0.01 0.53±0.01  0.52±0.01 0.67±0.01  0.64±0.02

0.91±0.01  0.88±0.01 0.80±0.01  0.76±0.01 0.61±0.02  0.62±0.01 0.92±0.01  0.89±0.01 0.70±0.01  0.67±0.01

Hindmarsh-Rose Izhikevich Morris-Lecar Rulkov
Granger

CCM
Latent CCM

PCMCI

TA

FitzHugh-Nagumo

PCMCI+

ATE 

TE
0.62±0.03  0.62±0.02 0.51±0.02  0.51±0.01 0.54±0.03  0.54±0.02 0.89±0.01  0.89±0.02 0.21±0.04  0.21±0.01

0.40±0.03  0.44±0.02 0.53±0.05  0.62±0.08 0.57±0.02  0.56±0.03 0.33±0.04  0.40±0.02 0.30±0.03  0.33±0.01

0.55±0.05  0.55±0.04 0.24±0.05  0.24±0.01 0.47±0.04  0.47±0.04 0.58±0.01  0.58±0.02 0.58±0.05  0.58±0.04

0.47±0.01  0.47±0.01 0.51±0.02  0.51±0.01 0.51±0.01  0.51±0.02 0.53±0.02  0.53±0.02 0.53±0.01  0.53±0.01

0.50±0.02  0.50±0.01 0.46±0.03  0.46±0.01 0.50±0.02  0.50±0.01 0.77±0.03  0.77±0.03 0.13±0.02  0.13±0.01

0.53±0.03  0.50±0.01 0.38±0.04  0.38±0.01 0.50±0.05  0.50±0.02 0.79±0.02  0.79±0.01 0.21±0.09  0.21±0.01

0.97±0.02  0.95±0.04 0.51±0.02  0.53±0.02 0.51±0.03  0.51±0.02 0.89±0.01  0.83±0.05 0.94±0.01  0.89±0.01

0.98±0.01  0.96±0.02 0.85±0.01  0.82±0.01 0.92±0.03  0.91±0.03 0.98±0.01  0.96±0.02 0.89±0.04  0.85±0.05

Performance on test sets. Compared with the baselines, our method usually substantially improves
reconstruction performance on both synthetic and real causal networks, as shown in Figure 4 and
Table 3. In contrast, the classifier with traditional attention mechanism (TA) obtains low losses on
training sets but has poor generalization on test sets, highlighting that mere statistical correlation for
causal inference is unstable and can be spurious Cui & Athey (2022). The performance of classical
unsupervised methods, for which all positions in the time series are treated equally, is also limited by
the paucity of causal effects. These patterns demonstrate the importance of identifying and focusing
on critical regions, which we achieve via the causal attention mechanism. In conclusion, our method
slightly increases cost, due to the need for label collection, but obtains a substantial boost in per-
formance compared with those unsupervised methods in this class of causal network reconstruction
tasks.

The performance of all methods tends to decrease as the average network degree grows. Networks
with larger average degree are more likely to exhibit synchronization of variables which makes it
harder to distinguish cause and effect. Furthermore, a single variable in these denser networks can
have many parent variables, and substantial coupling forces can emerge from distinct parents at
overlapping times, making individual drivers harder to distinguish. In this circumstance, a slight
variance in the scheme of causal attention assignment may cause fluctuations in the performance of
the downstream classifier. Robustness of the proposed method to measurement noise and sequence
length is presented in Appendix F.

5 RELATED WORK

5.1 CAUSAL NETWORK RECONSTRUCTION

Conventional frameworks assume separability, i.e., that information about causes are not contained
in the caused variable itself. Several common methods Spirtes & Glymour (1991); Sun et al. (2015);
Runge et al. (2019); Mastakouri et al. (2021) are based on conditional independence relations, but
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differ in the design of condition-selection strategies or choice of conditional independence test.
Granger Causality Granger (1969) is extended to nonlinear dynamics by using neural networks
to represent nonlinear casual relationships Tank et al. (2021); Nauta et al. (2019). Many methods
of causal discovery assume that the causal network is a directed acyclic graph. However, directed
cyclic graphs are common in real systems. To address this non-separability issue, Convergent-cross
mapping Sugihara et al. (2012) and its variations Clark et al. (2015); De Brouwer et al. (2020)
measure the extent to which the historical record of child can reliably estimate states of the parent
in reconstructed state space. However, sparse causal effect in neuronal dynamics, particularly in the
presence of noise, may lead parent and child time series to appear statistically independent, so that
their contribution to state estimation is hard to recognize.

5.2 MUTUAL INFORMATION ESTIMATION

Belghazi et al. Belghazi et al. (2018) built on a dual representation of KL divergence Donsker &
Varadhan (1983) to offer a parametric mutual information neural estimator (MINE) which is linearly
scalable in dimension as well as sample size, and is also trainable and strongly consistent. They also
discussed another version of MINE based on the f -divergence representation Nguyen et al. (2010);
Nowozin et al. (2016). Using the technique of Noise-Contrastive Estimation (NCE) Gutmann &
Hyvärinen (2010), based on comparing target and randomly chosen negative samples, Van den Oord
et al. Van den Oord et al. (2018) proposed InfoNCE loss, minimization of which maximizes a mu-
tual information lower bound. An important application of this contrastive learning approach has
been extracting high-level representations of different data modalities Chen et al. (2020); Woo et al.
(2021); Hu et al. (2021); Koch-Janusz & Ringel (2018). In our work, we extend MINE for transfer
entropy estimation.

6 CONCLUSION

The problem of reconstructing causal networks from observational data is fundamental in multiple
disciplines of science including neuroscience, since it is a prerequisite foundation for the research
about structure analysis and behavior control in causal networks. Especially, several countries have
recently launched grand brain projects, and one important goal is to map the connectomes (i.e.,
directed links between neurons) of different species.

We proposed a novel mechanism, causal attention, to guide machine learning models to infer causal
relationships while focusing on the specific areas where casual effect may emerge. We showed that
this mechanism identifies weak causal effects ignored by classical techniques, and helps machine
learning models gain insight into the coupling dynamics underlying time series data. Our method
needs a small set of samples (i.e., a small number of known causal links), and thus raises an open
problem worthy of future pursuit: for large complex systems, how to select the small number of
ordered pairs of nodes that offer general pattern for identification of sparse causal effects.
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A DERIVATION

Here we present a derivation showing that the transfer entropy equals the difference between two
types of mutual information:

TE(X → Y ) =
∑
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Applying the conditional Bayes formula p (y | x) = p(y,x)
p(x) on the numerator and denominator in the

log term of equation 12:
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Adding the marginal distribution of time series Y to the numerator and denominator simultaneously:
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In these expressions, yr is sampled from time series Y randomly each time step and independently
of the time step t.

B NEURAL ESTIMATOR FOR TRANSFER ENTROPY

B.1 CONSISTENCY

Definition. A neural estimator Ŝ(X,Y )n which uses n samples from the data distribution to estimate
a statistic S(X,Y ) on variables X,Y is strongly consistent if for any ϵ > 0, there exists a positive
integer N and a choice of neural network such that:

∀n ≥ N, | S(X,Y )− S(X,Y )n |≤ ϵ, almost everywhere (a.e.) (17)

The Mutual Information Neural Estimator (MINE) depends on a choice of a neural network and
the number of samples n from the data distribution Belghazi et al. (2018). Let fθ be the family of
functions parameterized by the neural network with parameters θ ∈ Θ. MINE is defined as:

M̂I(X,Y )n = sup
θ∈Θ

E
P

(n)
XY

[fθ]− log
(
E

P
(n)
X ⊗P

(n)
Y

[
efθ

])
. (18)

Theorem 1 Belghazi et al. (2018). MINE is strongly consistent.

The Transfer Entropy Neural Estimator (TENE) consists of two independent MINE and depends on
choice of neural network and sample number n. TENE is defined as:

T̂E(X → Y )n = M̂I
(
Yt+1,

(
Y

(k)
t , X

(l)
t

))
n
− M̂I

(
Yt+1, Y
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)
n
. (19)
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We use MI [1], MI [2], M̂I
[1]

n , M̂I
[2]

n as abbreviations of MI
(
Yt+1,
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and
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n

respectively.

We will prove the following:
Theorem 2. TENE is strongly consistent.
Proof. Let ϵ > 0. By Theorem 1, we can choose neural networks and integers N1, N2 and such that

∀n ≥ N1,

∣∣∣∣MI [1] − M̂I
[1]

n

∣∣∣∣ ≤ ϵ/2, a.e. (20)

∀n ≥ N2,

∣∣∣∣MI [2] − M̂I
[2]

n

∣∣∣∣ ≤ ϵ/2, a.e. (21)

Letting N = max {N1, N2}, for n ≥ N and for some neural network we have, a.e.,

∀n ≥ N,
∣∣∣TE(X → Y )− T̂E(X → Y )n

∣∣∣ = ∣∣∣∣(MI [1] −MI [2])− (M̂I
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n )
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n )
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∣∣∣∣+ ∣∣∣∣(MI [2] − M̂I
[2]

n )

∣∣∣∣ (24)

≤ ϵ/2 + ϵ/2 = ϵ. (25)

The proof is complete.

B.2 VARIATION OF BIAS VARY WITH DIMENSION AND NOISE

We examine the performance of TENE for the considered class of neural networks on linear dynamic
system, consisting of variables X and Y defined as:

xt+1 = αxt + εx (26)
yt+1 = βyt + gcxt + εy (27)

We set α = β = 0.5 and εx = εx ∼ N(0, σ2). The true values of transfer entropy TE(X → Y )
in this simple coupled system can be determined analytically Kaiser & Schreiber (2002). We can
increase the dimension of the system by considering multiple independent copies of variables X
and Y , in which case the mutual information and transfer entropy scale linearly with the dimension
of the system. For each considered dimension, standard deviation σ, and coupling strength gc in an
interval from -0.4 to 0.4, we generate a time series of length 50,000. We also consider an alternative
non-parametric estimator of mutual information, the Kraskov estimator Kraskov et al. (2004) with
k = 5 nearest neighbours. In Fig 5 we compare the results of MINE with the analytic formula and the
Kraskov estimator. MINE shows marked improvement over the Kraskov estimator, especially when
variables are high-dimensional. Comparing Fig 5(a,b) or (c,d) shows that the amplitude of the driving
Gaussian noise has little influence on estimates. Interestingly, as coupling strength gc grows small,
i.e., as X and Y become more independent, the Kraskov estimator can suggest a negative value of
the mutual information, i.e., we estimate that MIn (Yt+1, Yt, Xt) < MIn (Yt+1, Yt). We deduce
that irrelevant information about the nearly independent variable Xt interferes with the estimation
of the mutual information by the Kraskov estimator.

C ALGORITHM

Details on the implementation of causal attention mechanism are provided in Algorithm 1.
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(d)(b)

(c)(a)

Figure 5: True and estimated transfer entropy versus coupling strength gc. The dimension and stan-
dard deviation (std) σ of system noise is indicated in the titles of subplots.

Algorithm 1 Causal Inference by Causal Attention

Input: Small samples S, part with causality S̄ ⊂ S, segment length for training L̄≪ L
1: θ, ϕ, α, η ← initialize network parameters
2: repeat until (L1 − L2) is stable in optimal loss interval
3: for all samples S̄ do
4: Choose ts ∈

[
1, L− L̄

]
randomly

5: Take segment s = {(xt, yt)}ts+L̄
t=ts

6: Produce joint samples in Eq. 8
7:

{(
yt+1, y

(k)
t , x

(l)
t

)}ts+L̄

t=ts
, etc.

8: end for
9: Assign causal attention A

10: Compute L1,L2 on S̄
11: Update parameters θ, ϕ← θ +∇θL1, ϕ+∇ϕL2

12: Recompute L1,L2 on S̄
13: Update parameters α← α+∇α (L1 − L2)
14: repeat until L3 convergence
15: Compute L3 on S
16: Update parameters η ← η −∇ηL3

14
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D MODEL BRAIN DYNAMICS

Here we give detailed information about five neuronal dynamics applied to modeling membrane
potential and relevant quantities in biological connectomes. We input to each causal discovery algo-
rithm the coordinate corresponding to the neuron membrane voltage potential, because this variable
is most likely to be experimentally accessible.

D.1 HINDMARSH-ROSE DYNAMICS

The spikes of activity in neurons are considered an important part of the brain’s information process-
ing Borges et al. (2018); Rabinovich et al. (2006). Hindmarsh and Rose Hindmarsh & Rose (1984)
(HR) proposed a phenomenological neuron model that is a simplification of the Hodgkin-Huxley
model Hodgkin & Huxley (1952). The HR model is described by

ṗ = q − ap3 + bp2 − n+ Iext

q̇ = c− dp2 − q

ṅ = r [s (p− p0)− n]

where p(t) is the action potential of the membrane, q(t) is related to the fast current and n(t) is as-
sociated with the slow current. Presynaptic neurons with an action potential pj coupled by chemical
synapses to neurons i modifying its action potential pi according to

ṗi = qi − ap3i + bp2i − n+ Iext + Γ

Γ = gc (Vsyn − pi)
∑N

j=1

Bij

1 + exp(−λ (pj −Θsyn))

where i, j = 1, . . . , N , N is the number of neurons, gc is the chemical coupling strength and Bij

describes neurons’ chemical connections. The chemical synapse function is modeled by the above
sigmoidal function, with Θsyn = 1.0. We use parameters a = 1, b = 3, c = 1, u = 5, s = 4, r =
0.005, p0 = −1.60, coupling strength gc = 0.1, Vsyn = 2, λ = 10, and external current Iext = 3.24,
for which HR neurons exhibits a chaotic burst behavior.

D.2 MORRIS–LECAR DYNAMICS

Morris and Lecar Morris & Lecar (1981) suggested a simple two variable model to describe os-
cillations in a barnacle’s giant muscle fiber. The Morris–Lecar model has became quite popular in
computational neuroscience community due to its biophysically meaningful and measurable param-
eters, which consist of a membrane potential u receiving an instantaneously activated Ca current and
a more slowly activated K current n evolving according to:

CV̇ =I − gL (V − VL)− gCam∞(V ) (V − VCa)− gKn (V − VK) + Γ(V )

ṅ =λ(V ) (n∞(V )− n)

where

m∞(V ) =
1

2

{
1 + tanh

[
(V − V1)

V2

]}
n∞(V ) =

1

2

{
1 + tanh

[
(V − V3)

V4

]}
λ(V ) = λ̄ cosh

[
(V − V3)

(2V4)

]
with the coupling term

Γ(Vi) = gc
∑N

j=1 Bij (nj − ni) ,

with parameters C = 20µF/cm2, gL = 2mmho/cm2, VL = −50mV, gCa = 4mmho/cm2, VCa =
100mV, gK = 8mmho/cm2, VK = −70mV, V1 = 0mV, V2 = 15mV, V3 = 10mV, V4 =
10mV, λ̄ = 0.1 s−1, and applied current I = 34µA/cm2.
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D.3 IZHIKEVICH DYNAMICS

Izhikevich dynamics reproduce spiking and bursting behavior of known types of cortical neurons,
and combine the biological plausibility of Hodgkin–Huxley-type dynamics and the computational
efficiency of integrate-and-fire neurons Izhikevich (2003). The equations governing Izhikevich spike
dynamics are:

v̇ = 0.04v2 + 5v + 140− u+ I + gc
∑

Bijuj

u̇ = a(bv − u)

with the auxiliary after-spike resetting

if v ≥ +30mV, then
{

v ← c
u← u+ d

.

Here, variable v represents the membrane potential of the neuron and u represents a membrane
recovery variable, which accounts for the activation of K+ionic currents and inactivation of Na+

ionic currents, and it provides negative feedback to v. Here, we use the parameters a = 0.2, b =
2, c = −56, d = −16, I = −99. After the spike reaches its apex (+30mV), the membrane voltage
and the recovery variable are reset. If v skips over 30 , then it first is reset to 30 , and then to c so
that all spikes have equal magnitudes.

D.4 RULKOV DYNAMICS

The Rulkov model is a map-based neuron model with a surprising abundance of features, such as
periodic and chaotic spiking, and bursting. The Rulkov map is an abstract mathematical model,
although it shares some specific features with others neuron models closer to experimental observa-
tions. We use synthetic time series where each neuron is simulated using the Rulkov model Eroglu
et al. (2020), which has two variables, u and w, evolving at different timescales as described by
x(t+ 1) = (u(t+ 1), v(t+ 1)) = F (x(t)) = (F1(u(t), w(t)), F2(u(t), w(t))), with

F1(u,w) =
β

1 + u2
+ w + Γ (u) and F2(u,w) = w − νu− σ.

The two variables reflect the two important time scales of a neuron model. The variable u represents
the fast dynamics of the system and usually models the membrane voltage of the neuron, whereas
w is the slow variable and represents the variations of the ionic recovery currents. Different combi-
nations of parameters σ and β give rise to different dynamical states of the neuron, such as resting,
tonic spiking, and chaotic bursts. As for the coupling, we consider chemical synaptic coupling, that
is, H (xi,xj) = (h (ui, uj) , 0) with h (ui, uj) = (ui − Vs) Γ (uj), where

Γ (uj) =
1

1 + exp {λ (uj −Θs)}

and electrical synaptic coupling, H (xi,xj) = (h (ui, uj) , 0), with h (ui, uj) = uj − ui. In the
chemical coupling, Vs is a parameter called the reverse potential. Here, we use the parameters with
β = 4.4, σ = ν = 0.001,, Vs = 20, Θs = −0.25 and λ = 10.

D.5 FITZHUGH-NAGUMO DYNAMICS

A FitzHugh-Nagumo neuron comprises a two-dimensional system of smooth ODEs, so cannot
exhibit autonomous chaotic dynamics and bursting. Adding noise allows for stochastic burst-
ing FitzHugh (1961). The equations governing the FitzHugh-Nagumo neuronal network dynamics
are

v̇ = a+ bv + cv2 + dv3 − u+ Γ

u̇ = ε(ev − u)

with the coupling term
Γ(vi) = −gc

∑N
j=1 Bij (vj − vi) .

The FitzHugh-Nagumo dynamics capture the firing behaviors of neurons with two components. The
first component v represents the membrane potential, which contains self- and interaction dynamics,
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and the second component u represents a recovery variable. To simulate the shape of each spike, the
time step in the model must be relatively small, e.g., τ = 0.25 ms. Here, we use the parameters a =
0.28, b = 1, c = 0, d = −1, ε = 0.04, e = 12.5. Moreover, the parameters in the FitzHugh–Nagumo
model can be tuned so that the model describes spiking dynamics of many resonator neurons.

D.6 TIME SERIES GENERATION

To obtain the time series from above neural dynamics, we use Runge-Kutta method with variable-
step to solve the ordinary differential equation of Hindmarsh-Rose and Morris–Lecar dynamics with
sample interval τ = 0.1. Izhikevich dynamics are solved by the Euler formula with time step h =
0.05. For the Rulkov map we consider a unit sample interval. The total time step of time series
T = 50, 000 in both synthetic and real networks.

E REAL BRAIN CONNECTOMES INFORMATION

E.1 CAT CONNECTOME

The cat connectivity dataset comprises a description of cortical connections in the cat brain Scannell
et al. (1995), a connectivity set resulting from a comprehensive literature search of anatomical trac-
ing studies in the cat cortex. Detailed information on the delineated regions, including information
on the used parcellation scheme, abbreviations and possible overlap with other parcellation schemes,
as well as information on the physiological characteristics of these regions, is given in the appendix
of the original study Ref. Scannell et al. (1995). The connectivity dataset incorporates data of one
hemisphere, including 65 regions and 1139 interregional macroscopic axonal projections de Reus &
van den Heuvel (2013).

E.2 MACAQUE CONNECTOME

The macaque connectivity data set used in this study comprises anatomical data from 410 tract
tracing studies collated in the online neuroinformatics data base CoCoMac (http://cocomac.org),
first analyzed and made publicly available in Ref. Modha & Singh (2010). In the present study
they focused primarily on an analysis of the connectivity among regions of the cerebral cortex.
The cortical connection matrix was extracted from the primary connection data by removing all
subcortical (thalamus, basal ganglia, brainstem) regions. In addition, regions that did not maintain at
least one incoming and one outgoing connection were also removed to ensure that the network was
strongly connected. The remaining connection data set used in this study consisted of 242 regions
and 4090 directed projections represented in binary format (connection present = 1, connection
absent = 0) Harriger et al. (2012).

E.3 MOUSE CONNECTOME

The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-
expressing adeno-associated viral vectors to trace axonal projections from defined regions and
cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons
throughout the brain. This systematic and standardized approach allows spatial registration of in-
dividual experiments into a common three dimensional (3D) reference space, resulting in a whole-
brain connectivity matrix. The Allen Mouse Brain Connectivity Atlas is a freely available, foun-
dational resource for structural and functional investigations into the neural circuits that support
behavioural and cognitive processes in health and disease Oh et al. (2014).

E.4 WORM CONNECTOME

All the chemical and gap junction synapses, the connectome, in the posterior nervous system of
the C. elegans adult male are identified by serial section electron microscopy Jarrell et al. (2012).
The feasibility of comprehensive synapse-level nervous system reconstruction by this method was
a primary reason for the initial selection of C. elegans as an experimental model. They developed
a PC-based software platform to facilitate assembly of a connectome from electron micrographic
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images. The connectome is of a single adult animal and was produced from a series of 5000 serial
thin sections of 70 to 90 nm encompassing the posterior half of the body.

E.5 RAT CONNECTOME

Because resliceable 3D brain models for relating systematically and topographically different par-
cellation schemes are still in the first phases of development, it is necessary to rely on qualita-
tive comparisons between regions and tracts that are either inserted directly by neuroanatomists or
trained annotators, or are extracted or inferred by collators from the available literature. To address
these challenges, Ref. Bota et al. (2012) developed a publicly available neuroinformatics system, the
Brain Architecture Knowledge Management System, including an exemplar for constructing inter-
related connectomes at different levels of the mammalian central nervous system organization, and
presented the latest version of the BAMS rat macroconnectome.

Information about the above datasets is summarized in Table 4.

Table 4: Statistical information of six real networks: dataset name, type of network, number of nodes,
number of edges, mean degree ⟨k⟩, and data acquisition method.

Dataset Region #Nodes #Edges Mean degree Sensor

Cat Brain 65 1139 17.5 Tract tracing studies
Macaque Brain 242 4090 16.9 Tract tracing studies
Mouse Cerebral Cortex 195 214 1.1 Electron microscopy
Worm Neural 272 4451 16.4 Electron Microscopy

Rat Brain 503 30088 59.8 Neuroanatomical experiments

F ADDITIONAL EXPERIMENTS

F.1 PERFORMANCE OF TRANSFER ENTROPY ON REAL CAUSAL NETWORKS

Experiment Results on Macaque/C.elegans/Rat connectome are provided in Table 5/Table 6/Table 7
as the supplement of main text Table 3. Classic methods have limited performance across various
neural dynamics unfolding on real causal networks especially in a noisy environment: we add Gaus-
sian measurement noise with mean zero and standard deviation 10% that of the original time series.
As we discuss in main text Sec. 3.1, sparse causal effects are easily masked in metric of iconic trans-
fer entropy when noise causes estimated probability densities to deviate even slightly from the true
distributions.

Table 5: Performance comparison on Macaque connectome. The sample number in
train/validation/test set is 50/50/500.

Hindmarsh-Rose Izhikevich Morris-Lecar Rulkov
Granger

CCM
Latent CCM

PCMCI

TA

FitzHugh-Nagumo

PCMCI+

ATE 

TE
0.50±0.01  0.50±0.01 0.48±0.02  0.48±0.01 0.50±0.02  0.50±0.01 0.54±0.01  0.54±0.01 0.54±0.01  0.54±0.01

0.44±0.01  0.49±0.01 0.53±0.05  0.52±0.05 0.54±0.03  0.51±0.02 0.48±0.07  0.49±0.04 0.43±0.02  0.45±0.01

0.44±0.02  0.44±0.02 0.49±0.01  0.49±0.01 0.51±0.01  0.51±0.01 0.55±0.01  0.55±0.01 0.56±0.01  0.56±0.01

0.47±0.01  0.47±0.01 0.51±0.02  0.51±0.01 0.51±0.01  0.51±0.02 0.53±0.02  0.53±0.02 0.53±0.01  0.53±0.01

0.47±0.01  0.47±0.01 0.51±0.01  0.51±0.01 0.50±0.02  0.50±0.01 0.50±0.01  0.50±0.01 0.52±0.01  0.52±0.01

0.47±0.02  0.47±0.01 0.48±0.01  0.48±0.01 0.51±0.02  0.51±0.01 0.52±0.02  0.52±0.01 0.52±0.01  0.52±0.01

0.68±0.03  0.51±0.03 0.56±0.01  0.55±0.01 0.52±0.04  0.50±0.02 0.51±0.02  0.51±0.03 0.54±0.01  0.52±0.01

0.71±0.04  0.65±0.03 0.60±0.02  0.59±0.01 0.66±0.03  0.64±0.03 0.59±0.03  0.57±0.03 0.63±0.02  0.59±0.02
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Table 6: Performance comparison on C.elegans connectome. The sample number in
train/validation/test set is 50/50/500.

Hindmarsh-Rose Izhikevich Morris-Lecar Rulkov
Granger

CCM
Latent CCM

PCMCI

TA

FitzHugh-Nagumo

PCMCI+

ATE 

TE
0.50±0.01  0.50±0.01 0.56±0.01  0.56±0.01 0.64±0.01  0.64±0.02 0.71±0.01  0.71±0.01 0.64±0.02  0.64±0.01

0.74±0.01  0.73±0.02 0.61±0.01  0.58±0.02 0.55±0.01  0.56±0.02 0.80±0.01  0.80±0.01 0.52±0.01  0.48±0.01

0.79±0.02  0.79±0.02 0.54±0.02  0.54±0.02 0.62±0.02  0.62±0.02 0.67±0.02  0.67±0.02 0.74±0.01  0.74±0.01

0.78±0.01  0.78±0.01 0.52±0.01  0.52±0.01 0.55±0.04  0.55±0.03 0.53±0.04  0.53±0.03 0.68±0.01  0.68±0.01

0.53±0.01  0.53±0.01 0.50±0.02  0.50±0.01 0.53±0.02  0.53±0.01 0.66±0.01  0.66±0.01 0.57±0.01  0.59±0.01

0.53±0.02  0.53±0.01 0.52±0.01  0.52±0.01 0.56±0.01  0.56±0.01 0.69±0.02  0.69±0.02 0.63±0.01  0.63±0.01

0.92±0.01  0.91±0.01 0.67±0.03  0.65±0.03 0.52±0.01  0.54±0.01 0.56±0.01  0.54±0.01 0.85±0.01  0.84±0.01

0.93±0.01  0.92±0.01 0.81±0.01  0.76±0.01 0.76±0.01  0.71±0.01 0.97±0.01  0.97±0.01 0.78±0.01  0.72±0.02

Table 7: Performance comparison on Rat connectome. The sample number in train/validation/test
set is 100/100/500.

Hindmarsh-Rose Izhikevich Morris-Lecar Rulkov
Granger

CCM
Latent CCM

PCMCI

TA

FitzHugh-Nagumo

PCMCI+

ATE 

TE
0.50±0.01  0.50±0.01 0.43±0.02  0.43±0.01 0.50±0.01  0.50±0.01 0.46±0.01  0.46±0.01 0.52±0.02  0.52±0.01

0.57±0.02  0.62±0.01 0.33±0.02  0.41±0.01 0.48±0.09  0.54±0.08 0.37±0.01  0.43±0.01 0.41±0.03  0.47±0.03

0.63±0.02  0.63±0.02 0.48±0.02  0.48±0.02 0.54±0.05  0.54±0.05 0.50±0.01  0.50±0.01 0.52±0.03  0.52±0.02

0.63±0.02  0.63±0.02 0.40±0.01  0.40±0.01 0.55±0.01  0.55±0.02 0.53±0.02  0.53±0.01 0.51±0.03  0.51±0.02

0.51±0.01  0.51±0.01 0.44±0.02  0.44±0.01 0.53±0.01  0.53±0.01 0.46±0.01  0.46±0.01 0.49±0.02  0.49±0.01

0.51±0.02  0.51±0.01 0.42±0.02  0.42±0.01 0.55±0.01  0.55±0.01 0.44±0.02  0.44±0.01 0.49±0.01  0.49±0.01

0.82±0.03  0.78±0.02 0.70±0.01  0.67±0.01 0.62±0.02  0.58±0.03 0.73±0.02  0.74±0.01 0.74±0.04  0.74±0.02

0.83±0.03  0.83±0.03 0.78±0.01  0.78±0.01 0.65±0.04  0.64±0.03 0.83±0.01  0.79±0.01 0.84±0.02  0.81±0.01

F.2 DATA EFFICIENCY OF CAUSAL ATTENTION MECHANISM AGAINST THE LENGTH OF TIME
SERIES

Taking Cat and Mouse connectome as examples, we show the results of our method trained on the
time series data with different lengths, i.e. total time steps, in Figure 6. The size of training and
test sets is the same as the scheme in the main text Table 4. Overall, the AUROC/AUPRC scores
tend to get higher as the length increases, but this tendency is not significant. It indicates that the
causal attention mechanism extracts sufficient causal features for causal inference even over short
time series.

F.3 ROBUSTNESS OF CAUSAL ATTENTION MECHANISM AGAINST THE INTENSITY OF NOISE

We show the results of our method trained on time series data added different intensities of noise
(measurement noise rather than intrinsic noise of dynamics) in Figure 7. Except for dynamics of Izh
and FHN on Cat connectome, the AUROC/AUPRC scores are stable within the range 2%-10% of
standard deviation. It implies that causal attention mechanism is robust by the sample noise level.
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Hindmarsh-Rose Morris-Lecar Izhikevich 

Rulkov FitzHugh-Nagumo

Cat

Cat

Hindmarsh-Rose Morris-Lecar Izhikevich 

Rulkov FitzHugh-Nagumo

Mouse

Mouse

Figure 6: AUROC/AUPRC scores of the causal attention mechanism trained on time series data of
different lengths. The blue bar is AUPRC, the green bar is AUROC. The x-axis indicates the scores
and y-axis represents the total time step of time series.

F.4 HOW MUCH DOES CAUSAL ATTENTION MECHANISM BRING THE DISTANCE BETWEEN
DISTRIBUTIONS OF TRAINING AND TEST SET CLOSER TOGETHER

The causal attention mechanism helps the classifier reveal the generation processing underlying the
data, i.e., coupling-drive in problem of causal inference and alleviate the dilemma of distribution
shift in scene of small samples. The causal attention mechanism refines the content of samples
(critical regions) and thus reduces the distribution dimension of the entire dataset. To quantify this
shortened distance, we ask, how many additional training samples does traditional machine learning
need to achieve the same level of generalization as our method? Taking the Cat Connectome as
example, we train the classifier with traditional attention mechanism by gradually expanding the size
of training set, and provide the results in Figure8. The green horizontal lines represent the AUROC
value of our method using ten ordered pairs with causality (0.8% of edges in Cat Connectome) while,
to achieve the same performance, the traditional classifier needs approximately 10%/15%/20%/40%
samples for HR/Izh/Morris/Rulkov dynamics respectively (the blue lines cross the green lines). It
also indicates that our method provides significant saving in labels collection, which is significant
given that the procedure for checking connections in organisms is cumbersome in practice.
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Figure 7: AUROC/AUPRC scores of the causal attention mechanism trained on time series data
added different intensity of noise. The blue bar is AUPRC, the green bar is AUROC, and the y-axis
indicates the percentage of standard deviation of Gaussian measurement noise in the original time
series.

(a) HR (b) Izh (c) Morris (d) Rulkov

Figure 8: Size of training set that the traditional classifier requires to achieve same level of general-
ization as our method. The x-coordinate indicates the percentage of the ordered pairs with causality
in training set to the total edges in causal network. Examples of dynamical model: (a) HR; (b) Izh;
(c) Morris; (d) Rulkov.
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