
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BYZANTINE-ROBUST FEDERATED LEARNING
WITH LEARNABLE AGGREGATION WEIGHTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) enables clients to collaboratively train a global model without sharing their
private data. However, the presence of malicious (Byzantine) clients poses significant challenges
to the robustness of FL, particularly when data distributions across clients are heterogeneous. In
this paper, we propose a novel Byzantine-robust FL optimization problem that incorporates adaptive
weighting into the aggregation process. Unlike conventional approaches, our formulation treats
aggregation weights as learnable parameters, jointly optimizing them alongside the global model
parameters. To solve this optimization problem, we develop an alternating minimization algorithm
with strong convergence guarantees under adversarial attack. We analyze the Byzantine resilience
of the proposed objective. We evaluate the performance of our algorithm against state-of-the-art
Byzantine-robust FL approaches across various datasets and attack scenarios. Experimental results
demonstrate that our method consistently outperforms existing approaches, particularly in settings
with highly heterogeneous data and a large proportion of malicious clients.

1 INTRODUCTION

Federated Learning (FL) is a distributed machine learning framework that enables multiple clients to collaboratively
train a shared global model without transferring their private data to a central location (Li et al., 2020a; Bonawitz et al.,
2019; Li et al., 2020b; McMahan et al., 2017). Instead of centralizing data, FL only exchanges model updates such
as gradients or parameters, between the clients and the central server. This architecture mitigates privacy risks and
supports applications with distributed data that is too costly or too sensitive to share (Li et al., 2020a).

In a typical FL workflow, a central server initializes a global model and sends it to the clients. Each client trains
the model locally on its private dataset and transmits only the resulting updates back to the server (Li et al., 2020a;
McMahan et al., 2017). The server aggregates these updates to improve the global model, and this cycle repeats
across multiple communication rounds. Federated Averaging (FedAvg), one of the most widely adopted FL algorithms,
computes a weighted average of client updates, accounting for the size of each client’s dataset (McMahan et al., 2017).

A significant challenge in FL arises from the presence of malicious clients, often referred to as Byzantine clients.
Previous studies (Baruch et al., 2019; Fang et al., 2020) have highlighted that the global model trained using FedAvg can
be compromised when malicious clients deliberately send malicious model updates. Detecting such malicious behavior
is inherently challenging due to the decentralized nature of FL, where the server has limited visibility into individual
clients’ local data and training processes. This challenge is further exacerbated in scenarios with heterogeneous data
distributions, where each client’s local dataset may differ significantly from others in terms of represented classes,
feature distributions, or data volumes. These variations in data distributions make it difficult to differentiate between
benign updates influenced by data heterogeneity and corrupted updates sent by malicious clients (Cao et al., 2021; Liu
et al., 2023b).

Various studies (Yin et al., 2018; Blanchard et al., 2017; Liu et al., 2023b; Guerraoui et al., 2018; Pillutla et al., 2022;
Karimireddy et al., 2021) have proposed Byzantine-robust FL strategies to defend against malicious clients. Generally,
robust aggregation methods can be clustered in three categories: distance-based (Blanchard et al., 2017), statistic-based
(Yin et al., 2018; Farhadkhani et al., 2022; Liu et al., 2023a), and performance-based approaches (Xie et al., 2019).
Krum, which is a distance-based method, filters outliers by selecting updates with the smallest cumulative Euclidean
distance to their neighbors (Blanchard et al., 2017), while Median is a statistical method that replaces the mean operator
with the median when aggregating local updates (Yin et al., 2018). Trimmedmean removes a fraction of the largest
and smallest values for each parameter before computing the mean of the remaining values (Yin et al., 2018). Bulyan
combines Krum to select consistent updates and Median to refine them (Guerraoui et al., 2018).

Defending against Byzantine attacks in heterogeneous settings presents substantial challenges (Karimireddy et al.,
2020; Liu et al., 2023b). To the best of our knowledge, all existing Byzantine-robust FL methods typically follow a
similar approach: after identifying and removing malicious clients, they assign uniform aggregation weights to the
benign clients, akin to FedAvg (Blanchard et al., 2017; Shejwalkar & Houmansadr, 2021; Karimireddy et al., 2020;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 50 100 150 200
0

20

40

60

80

Te
st

ac
c.

(%
)

Inverse Gradient Attack

FedLAW (Ours) Bulyan Bulyan + Bucketing
Krum Trimmed Mean Coordinate-wise Median
Huber Aggregator

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

C
lie

nt
w

ei
gh

t

FedLAW – Inverse Gradient

Benign Malicious

Epoch (global model update)

Figure 1: Test accuracy and weight evolution on MNIST under the inverse gradient attack (setting: q = 0.9, 40%
malicious; see Section 5). Left: Average test accuracy ±1 std over 200 epochs and 5 runs, evaluated across multiple
methods with 200 clients. Right: Aggregation weights of individual clients during the first 100 epochs (10 clients;
MLP, batch size 64, 3 local epochs). Benign clients quickly converge to stable, non-trivial weights, while malicious
clients are consistently suppressed.

Liu et al., 2023b; Mhamdi et al., 2018). While this approach simplifies the aggregation process, it poses a significant
drawback in heterogeneous data settings. Specifically, after removing the malicious clients, the distribution of data
examples with specific labels may become imbalanced among the remaining benign clients. Assigning uniform weights
in such a scenario fails to adapt to this imbalance, potentially degrading accuracy by not giving sufficient attention to all
labels. This challenge becomes increasingly critical as the degree of data heterogeneity increases and label imbalance
among benign clients becoming more pronounced. Addressing this challenge requires aggregation weights adjusted to
the underlying data distribution. Figure 1 illustrates this phenomenon, showing how the aggregation weights of benign
and malicious clients evolve under an inverse gradient attack and how adaptive weighting influences test accuracy.

We further demonstrate this relationship through empirical results in Section 5.

Contributions. In this paper, we propose a novel method for secure and robust FL that integrates adaptive weighting
into the aggregation process. Unlike conventional methods, our approach treats aggregation weight selection as a part
of the learning procedure, akin to global model parameters.

• First, we formulate the proposed optimization problem of jointly learning the global model parameters and
the aggregation weights. Subsequently, we propose an algorithm to solve this problem using an alternating
minimization approach that involves two key steps: first, minimizing the objective with respect to aggregation
weights, and second, minimizing it with respect to the model parameters.

• We provide theoretical analyses demonstrating both the Byzantine resilience and convergence properties of
our method. Theorem 2 shows that the proposed objective is robust to malicious agents. In Theorem 1, we
establish convergence guarantees for learning the aggregation weights step. In Theorem 3, we further prove
that, under adversarial settings, the sequences generated by our algorithm, including both the aggregation
weights and global model parameters, converge to a neighborhood of the optimum of the cost function.

• We evaluate the performance of our method against state-of-the-art Byzantine-robust FL approaches, consider-
ing five types of attacks and two different datasets under varying levels of heterogeneity.

Structure of the paper. The remainder of this paper is organized as follows: Section 2 introduces the notation and
model framework used throughout. Section 3 presents our novel approach for Byzantine-robust FL, along with the
corresponding solution algorithm. Section 4 analyzes the Byzantine resilience of the proposed method and provides
convergence results. Finally, Section 5 evaluates our method through comprehensive numerical experiments comparing
it against state-of-the-art Byzantine-robust FL algorithms.

2 NOTATION AND MODEL

2.1 NOTATION

Vectors and matrices are denoted by bold lowercase and uppercase letters, respectively. The support of a vector w,
denoted by supp(w), is the set of indices corresponding to the non-zero elements in w. The symbols ∥w∥0 and ∥w∥2
denote the ℓ0 pseudo-norm (i.e., the number of non-zero elements in w) and the ℓ2 norm of w, respectively. The inner

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

product of two vectors x and y is represented by ⟨x,y⟩. Additionally,∇wf denotes the gradient of the function f with
respect to w. The vector xΛ is a subset of the vector x, which contains only the elements indexed by the entries in the
vector Λ. The i-th element of the vector x is denoted by xi. Finally, vk,i denotes the vector associated with client i at
synchronous round k.

2.2 MODEL

We consider a federated learning system with a parameter server and n clients, up to bf of which may be Byzantine
(acting arbitrarily). In each synchronous round k, the server broadcasts the global model parameters θk ∈ Rd to all
clients. Each honest client i computes a mini-batch gradient ṽk,i := 1

B

∑
z∈ξk,i

∇θfi(θk; z) based on a random sample
ξk,i of B data points drawn from its local distribution. This mini-batch gradient is an unbiased estimate of the client’s
true population gradient, vk,i, satisfying: Eξk,i

{ṽk,i} = vk,i = ∇θfi(θk). Each Byzantine client j may submit an
arbitrary gradient vector bk,j and loss f̃k,i. Attackers have full knowledge of the system and can collaborate (Lynch,
1996). The server receives n gradient vectors, applies a robust aggregation rule to compute a single aggregated gradient
Fk, and updates the model via the rule θk+1 = θk − αFk.

3 BYZANTINE-ROBUST FEDERATED LEARNING WITH LEARNABLE WEIGHTS

3.1 PROBLEM FORMULATION

Traditional FL aims of finding a set of global model parameters θ ∈ Rd minimizing the training loss f(θ) =
n∑
i=1

wifi(θ),

where n is the number of clients and fi : Rd 7→ R represents the loss function of the i-th client. The aggregation weights
wi are fixed and satisfy wi ≥ 0 and

∑n
i=1 wi = 1. Byzantine resilience is typically introduced by adding functionality

for detecting malicious clients and removing them from the learning process, effectively setting the corresponding wi’s
to zero.

The key idea in our approach is to transform the binary detection and removal of suspicious clients into a continuous
weight optimization process, effectively embedding the Byzantine defense into the learning objective itself. We do so
by treating the weights w = [w1, . . . , wn] as decision variables and jointly optimize them with θ:

min
θ∈Rd,w∈∆+

t,ℓ0

n∑
i=1

wifi(θ) (1)

where

∆+
t,ℓ0

= {w ∈ Rn |
n∑
i=1

wi = 1, wi ≥ 0, wi ≤ t, ∥w∥0 ≤ s}. (2)

Here ∆+
t,ℓ0

denotes a sparse unit-capped simplex, and the ℓ0 pseudo norm of w is utilized to achieve Byzantine
robustness. Notably, if we set t = 1/(n − bf) and s = n − bf , the only feasible weight vectors in ∆+

t,ℓ0
are those

where bf clients are excluded and all others are weighted equally in the objective (see Proposition 2 in § A of the
Supplementary).

3.2 PROPOSED ALGORITHM

Several techniques for solving (1) already exist, including the BSUM algorithm by Razaviyayn et al. (2013) and the
prox-linear approach introduced in (Drusvyatskiy et al., 2019). These algorithms rely on alternating between updating
the weights for fixed model parameters, and revising the model parameters for fixed weights. In our experience (see § B
in the Supplementary), such updates tend to be too aggressive, and miss important couplings between the two variable
blocks that are helpful for detecting malicious clients. To address these challenges, we propose a new algorithm based
on rewriting (1) as a nested optimization problem (Dempe, 2002):

min
w∈∆+

t,ℓ0

min
θ∈Rd

n∑
i=1

wifi(θ) (3)

To solve the inner optimization problem, we use a quadratic approximation f̂i(θ) of fi(θ)

f̂i(θ;θk) = fi(θk) + ⟨∇θfi(θk),θ − θk⟩+
1

2α
∥θ − θk∥22. (4)

Substituting this quadratic approximation into the inner optimization problem in (3) leads to:

θk+1(w) = argmin
θ∈Rd

n∑
i=1

wif̂i(θ;θk) = θk − α
n∑
i=1

wi∇fi(θk) = θk − αGkw, (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where α is a step size and Gk = [∇θf1(θk), · · · ,∇θfn(θk)]. Note that the model update depends on the aggregation
weights. This dependence is accounted for in the outer optimization, which becomes

wk+1 = argmin
w∈∆+

t,ℓ0

n∑
i=1

wifi(θk+1(w)) = argmin
w∈∆+

t,ℓ0

n∑
i=1

wifi(θk − αGkw), (6)

The optimization in (6) minimizes the global objective by adjusting the weights w ∈ ∆+
t,ℓ0

considering the effect
that they have on the parameter update θk+1(w) = θk − αGkw. In particular, the weighted combination of client
gradients in Gkw shapes the parameter update, coupling the choice of weights to the losses fi(θk+1(w)). This
formulation prioritizes clients whose gradients, represented by the columns of Gk, align with the descent direction
of fi(θk − αGkw), as benign client gradients typically form a coherent cluster in the parameter space. In contrast,
Byzantine clients tend to submit updates that deviate from this direction or behave inconsistently due to adversarial
perturbations, making them outliers. The sparsity constraint ∆+

t,ℓ0
ensures that up to n− s misaligned clients, including

Byzantines, are excluded, enhancing robustness of the learning process.

While (5) is a simple gradient descent step, the optimization in (6) is more challenging since both its objective and
constraint set are non-convex. Nevertheless, it can be approached by first approximating

Φk(w) =

n∑
i=1

wifi(θ − αGkw) (7)

by the following quadratic function

Φ̂k(w) = Φk(wk) + ⟨∇wΦk(wk),w −wk⟩+
1

2β
∥w −wk∥22

for some positive step-size β. We then replace (6) by

wk+1 = argmin
w

Φ̂k(w) + δ∆+
t,ℓ0

(w) (8)

where δ∆+
t,ℓ0

(w) is the indicator function of the set ∆+
t,ℓ0

. By completing the square and dropping constant terms, the
above update is equivalent to

wk+1 = argmin
w

1

2
∥w − hk∥22 + δ∆+

t,ℓ0

(w) = prox∆+
t,ℓ0

(hk), (9)

where hk = wk − β∇wΦk(wk) and the final equality follows from the definition of the proximal mapping in (16) (see
§ A in the Supplementary). Thus, wk+1 is the projection of hk onto the sparse unit capped simplex ∆+

t,ℓ0
. Although

this set is non-convex, the next result shows how the projection can be performed efficiently.
Theorem 1. Denote PLs

(hk) as the operator selecting the s largest elements of the vector hk, and let P∆+
t

be the
projection operator onto the unit-capped simplex ∆+

t = {w ∈ Rn |
∑n
i=1 wi = 1, wi ≥ 0, wi ≤ t}, which has an

efficient solution provided in Algorithm 3 (see Section C in the Supplementary).

The problem (9) is exactly solved by the three-step projection method below:

1. Sparsity enforcement hλ = PLs(hk)

2. Support selection: S∗ = supp(hλ) (10)

3. Unit capped simplex projection: wk+1S∗ = P∆+
t
(hλS∗), wk+1(S∗)∁ = 0.

Proof. See Section D in the Supplementary.

After having updated the weights wk+1 based on (9), the parameter vector θk can be updated by substituting w = wk+1

into (5), yielding:
θk+1 = θk − αGkwk+1. (11)

The pseudo-code of the final algorithm is summarized in Algorithm 2 (see Supplementary).

To translate our algorithm procedure in the FL framework, at epoch k+1, the server broadcasts θk to clients, who return
∇θfi(θk). The server constructs Gk, computes θ̃k+1 = θk−αGkwk, and sends θ̃k+1 to clients. Clients respond with
fk+1 = [f1(θ̃k+1), . . . , fn(θ̃k+1)]

⊤ and G̃k+1 = [∇θf1(θ̃k+1), . . . ,∇θfn(θ̃k+1)]. The server then updates wk+1 via
(10), with hk = wk + αβG⊤

k G̃k+1wk − βfk+1, and computes θk+1 via (11). This requires two communication
rounds: one for θk and gradients, another for θ̃k+1 and client responses.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Remark 1. While our method requires two communication rounds per training epoch, this does not necessarily imply a
doubling of total communication rounds compared to standard FL. We highlight a key factor that mitigate this cost.
Introducing w as a decision variable offers additional flexibility in minimizing the loss (see (6)), which accelerates
convergence of the global model parameters (see Figure 8 in the Supplementary). To fairly compare methods, we
evaluate performance based on total communication rounds. Figure 8 shows that FedLAW achieves higher test accuracy
within the same communication round. As a result, the total number of rounds required to reach a target accuracy by
our method may be only marginally higher, or even lower than that of competing methods.

We conclude this section by discussing the server-side overhead relative to standard FL. The only extra step in our
method is the aggregation weight update (10), while the model update remains identical to that in standard FL. The
following proposition quantifies the complexity of the extra step.
Proposition 1. The memory complexity of server-side aggregation weight update based on (10) is O(dn) per round,
and the computational complexity of the projection (10) in the server isO(nmin(s, log n)+ s2), where d is the number
of model parameters, n is the number of clients, and s is the sparsity level.

Proof. See Section H.5 in the Supplementary.

4 THEORETICAL ANALYSES

4.1 BYZANTINE-RESILIENT ANALYSIS

The main method proposed in (6) is designed for Byzantine-resilient federated learning through optimized aggregation
weights. The following theorem establishes its resilience property, as formalized in Definition 5 (Section A in the
Supplementary).

The first step in our resilience analysis is to make the objective in (6) analytically tractable. We use Taylor’s theorem
with an exact remainder to reformulate it, revealing that it is governed by the quadratic form wTGT

kGkw. By denoting
vk,i = ∇θfi(θk), we can show this term is equivalent to an expression involving pairwise gradient distances:

wTGT
kGkw = −

n∑
i=1

wi∥vk,i∥22 +
n∑
i=1

n∑
j=1

wiwj∥vk,i − vk,j∥22.

From here, the proof exploits the terms ∥vk,i − vk,j∥22 with a novel, especially tailored approach to establish Byzantine
resilience. Although gradient differences are exploited in other Byzantine-resilient methods, here they appear naturally
from the structure of (6) using our novel derivations. Note that the nested structure of (3), leading to (6), is an essential
building block.

It is important to highlight that, unlike Definition 5, we consider a more general setting where population losses and
gradients are non-iid. To improve practicality, our analysis also focuses on the case where the aggregator relies on
mini-batch gradients rather than full-batch gradients, which is a more realistic scenario.

We now state the formal assumptions for our theoretical analysis.
Assumption 1 (Formal Setup for Theoretical Analysis). We analyze the setting where each honest client i ∈ H provides
a mini-batch gradient ṽk,i of size B. Let vk,i = ∇θfi(θk) be the full batch population gradient. We assume the
following:

(A) Client loss functions

(A1) (Smoothness) Each client loss function fi(θ) is Li-smooth, with Lmax = max1≤i≤n Li.

(A2) The weight objective function Φk(w) in (7) with respect to w is Lw-smooth.

(B) Step-size Schedule

(B1) Algorithm 2 employs a hybrid schedule where the step-size α is a fixed constant 0 < α < 1/Lmax, and
the weight step-size {βk} is an adaptive schedule satisfying the standard Robbins-Monro conditions (βk >
0, βk → 0,

∑
βk =∞,

∑
β2
k <∞) and βk < 1/Lw.

(C) Stochastic Gradient Model

(C1) The deviation of any single-sample gradient from its full batch population is bounded by ∥∇fi(θk; z)−vk,i∥ ≤
Rk on one single data point z.

(D) Population Heterogeneity

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(D1) We assume the population gradients and losses at round k, {fi(θk),vk,i}i∈H is vk,i ∼ Gk,i, E{vk,i} = gk,i
with g = 1

|H|
∑
i∈H gk,i, mk,i = E{fi(θk)} with mavg =

1
|H|

∑
i∈H

mk,i, and

• Directional Heterogeneity: 1
|H|

∑
i∈H
∥gk,i − g∥2 ≤ H2

k .

• Magnitude Heterogeneity:
∣∣∣∥gk,i∥2 − ∥g∥2∣∣∣ ≤ K2

k .

• Inter-Client Variance: E{∥vk,i − gk,i∥22} ≤ dσ2
k.

• Loss Heterogeneity: 1
|H|
∑
i∈H |mk,i −mavg| ≤ εk.

(E) Byzantine Clients and Aggregator

(E1) Attackers submit arbitrary gradients bk,i and non-negative losses f̃k,i ≥ 0, subject to the norm constraint
∥bk,i∥ ≤ max

j∈H
∥ṽk,j∥2.

Theorem 2 (High-Probability Byzantine Resilience). Under Assumption 1 (excluding A2 and B1) and let assume bf
min-batch gradient updates ṽk,i are replaced with their Byzantine counterparts bk,j at any round k with 2bf + 2 ≤ n.
Let the aggregator F̃ be computed as follows

F̃ =
∑
i∈H

wk,iṽk,i +
∑
j∈H∁

wk,jbk,j (12)

where wk represents the optimal weight vector obtained from (6), for a step-size 0 < α ≤ αmax in which

αmax = min
{ 1

Lmax
,

Chet

2Lmax∥g∥2
}
, εS =

√
2R2

k log(2d/δ)

B
, (13)

Chet :=
4K2

kbf
n− bf

+ 2H2
k +

2dσ2
k(2n− bf − 2)

n− bf
+

2ε2Sbf
n− bf

Then, with probability at least 1− δ, the aggregator F̃ is Byzantine-resilient. Specifically, its expected bias with respect
to the true global mean g is bounded by:

∥E{F̃} − g∥ ≤ ηk, (14)

where the error bound ηk is explicitly decomposed into the distinct sources of error:

ηk =

√
2bf

(εk
α

+ Chet + Lmaxα(
H2
k

2
+
K2
k

2
+ dσ2

k + ε2S)
)
+

2bf√
n− bf

Hk + εS (15)

Furthermore, if the signal-to-noise condition ηk < ∥g∥ holds, then the angle ζ between the expected aggregated
gradient E{F̃} and the true global gradient g is bounded by sin ζ ≤ ηk

∥g∥ .

Proof. See Section E in the Supplementary.

Theorem 2 provides a comprehensive resilience guarantee for the proposed method. The key insight is the error
decomposition in Eq. (15), which shows that the total error η2k is a sum of four distinct and well-characterized sources:
loss heterogeneity, gradient heterogeneity, inter-client variance, and mini-batch sampling noise. The bound explicitly
shows that the sampling noise is controllable, as it vanishes when the mini-batch size B increases.

The assumptions underpinning this result are standard and practically justifiable. The condition ∥bk,i∥ ≤ max
j∈H
∥ṽk,j∥2

is enforced in practice by a standard gradient clipping mechanism on the server side: each incoming update is projected
onto an ℓ2-ball of radius C. Honest updates remain untouched when C exceeds their typical norm, whereas malicious
updates cannot exceed the threshold. This adds no extra communication and is already commonplace in FedAvg,
DP-Fed, and similar protocols. Similarly, assuming bounded heterogeneity (H2

k ,K
2
k) is a standard prerequisite for

any non-IID analysis. In addition, in practice εk is typically very small even under a high heterogeneity, thereby
mitigating the effect of the 1/α scaling in (15). Additionally, Byzantine resilience under the scenario where both the
losses and gradients are replaced with Byzantine versions is established separately in Theorem 9 (see Section F in the
Supplementary).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 CONVERGENCE ANALYSIS

A key difficulty in Algorithm 2 is the arbitrary behavior of the adversary, which complicates the convergence analysis
of our alternating minimization scheme to optimize θ and w jointly. We tackle this by viewing the method through the
lens of a hybrid step-size schedule. This perspective yields a strong stability guarantee: even under attack, the adaptive
weights not only stabilize, but their limit is a critical point of the exact (non-approximated) objective in (6). Building on
this result, the following theorem establishes convergence to a neighborhood of the optimum of problem (1) in both
non-convex and strongly convex regimes under adversarial conditions.
Theorem 3. Let the sequences {(θk,wk)}∞k=1 be generated by Algorithm 2. Let the aggregator be Fk(w) = Gkw
with bounded variance Var

(
Fk(wk)

)
≤ σ2

F,k, where Gk contain mini-batch honest gradients as well as arbitrary
Byzantine gradients. Assume Assumption 1 holds and suppose:

• ∥E{Fk(wk)} − gk∥ ≤ ζk where gk =
∑n
i=1 wk,iE{vk,i}.

• As k →∞, we have ζk → ζ∞, σ2
F,k → σ2

F,∞, and σ2
k → σ2

∞.

Then, the aggregation weights satisfy wk+1 → wk as k →∞ with limits point w⋆, which is a critical point of (6) for
k →∞. Moreover, the following convergence guarantees hold:

1. (L-smooth, Non-Convex Case) The sequence generated by our algorithm converges to a neighborhood of a
stationary point of the main loss function (1). In particular, with probability at least 1− δ, the time-averaged
squared gradient norm is bounded as:

lim
T→∞

sup
1

T

T−1∑
k=0

∥gk∥2 ≤ lim
T→∞

T∑
k=1

C2,k

TC1
= O

(
ζ2∞ + σ2

F,∞
)

where C1 = 1
4 (1− αLmax) > 0, εS =

√
2R2

k log(2d/δ)

B , and

C2,k = 2ζk+1

√
K2
k + dσ2

k + ε2S +
(
ζ2k + σ2

F,k + σk
√
d
√
ζ2k + σ2

F,k

)
+

(2ζk+1 + ζk + 4C1ζk)
2

4C1
.

2. (Strongly Convex and L-smooth Case) If the client loss functions fi are µ-strongly convex, then the algorithm
converges to a neighborhood of the global optimum. Moreover, with probability at least 1− δ, we have

lim
k→∞

supE{Q(θk,wk)−Q⋆} ≤ dσ2
∞ +

C2,∞

2µC1
= O

(
ζ2∞ + σ2

F,∞ + σ2
∞
)
.

in which Q(θ,w) denotes loss function in (1). Also, Q⋆ is its global minimum when w = w⋆, evaluated under
honest gradients.

In addition, the bound ζ∞ ≤ η∞ holds, where η∞ is the upper bound from (14) in Theorem 2, representing the
Byzantine resilience guarantee of the update rule (6) as k →∞.

Proof. See Section G in the Supplementary.

Theorem 3 establishes that our algorithm converges to a bounded neighborhood of the optimum, with the error radius
scaling directly with the adversary’s influence. The final error bound is determined by the asymptotic bias and variance
of the aggregator (ζ∞, σF,∞), highlighting a powerful property: as the aggregator improves (e.g., ζk → 0), the algorithm
converges to increasingly precise solutions.

The key insight of our work lies in the formal link between these two results. Theorem 2 provides a per-iteration
resilience guarantee (ηk), while Theorem 3 strengthens this by showing that the asymptotic bias is bounded by the same
guarantee, ζ∞ ≤ η∞. Together, they establish that the long-term bias of the converged system is controlled by the
same mechanism that ensures step-wise robustness. This unifies the static resilience of the aggregator with the dynamic
convergence of the algorithm, demonstrating that robustness at the aggregation level directly translates into stability and
convergence at the system level.

This theoretical foundation is strongly supported by our empirical results. Our experiments (e.g., Figs. 1 and 4) show
the practical outcome of this theory: the algorithm effectively neutralizes attackers by learning to assign them zero
weight, which is empirical evidence that the bias ζk converges to zero. Furthermore, the theoretical insights in Section B
explain the mechanism by which our objective function enables the detection of malicious clients, providing a clear
rationale for the algorithm’s observed success.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Furthermore, in Appendix G.3, we show that if each fi is Li-smooth and has bounded gradients with upper bound C,
then ∇wΦk(w) is Lw-Lipschitz continuous with

Lw ≤ αC2
(
n3/2 + n+ αnLmax +

αn2Lmaxϱ
2

)
,

where ϱ =
√
kt2 + r2 with k = ⌊1/t⌋ and r = 1− kt ∈ [0, t).

5 NUMERICAL STUDY

In this section, we evaluate the performance of the proposed FedLAW algorithm, and compare it against state-of-the-art
Byzantine-robust FL baselines on diverse attack scenarios and datasets.

5.1 EXPERIMENTAL SETUP

Datasets and Models: We conduct experiments on the MNIST (LeCun & Cortes, 2010) and CIFAR10 (Krizhevsky
et al., 2009) datasets. We train a 3-layer fully connected network on MNIST, and a 4-layer convolutional neural network
with group normalization on CIFAR10.

Data Distribution and Client Configuration: We simulate a federated setting with 200 clients and distribute the data
in a non-IID fashion using the method from Cao et al. (2021). To control the degree of data heterogeneity, we introduce
a concentration parameter q: each training example with label l is assigned to the l-th group with probability q, and
to the remaining L− 1 groups with probability 1−q

L−1 , where L = 10 is the total number of labels in our experiments.
Within each group, data is uniformly distributed to clients. We consider q ∈ {0.6, 0.9} to simulate moderate and high
levels of data heterogeneity, respectively. The proportion of malicious clients varies across {0.1, 0.2, 0.3, 0.4}.
Attack Types and Baselines: We evaluate robustness under five adversarial attacks: label-flipping, inverse-gradient,
backdoor, a combined (double) attack, and the LIE (Little Is Enough) attack. For comparison, we consider several
baseline defenses: Krum, Trimmed Mean, Bulyan, Coordinate-wise Median (CwMed), CCLIP (Centered CLIPping
(Karimireddy et al., 2020)), RFA (Robust Federated Averaging (Pillutla et al., 2022)), Huber aggregator (Zhao et al.,
2024) and Bucketing combined with Bulyan, RFA, or CCLIP. As a non-robust reference, we also include FedAvg, the
standard aggregation without defense.

Evaluation Protocol: Each dataset is split into 80% training, 10% validation, and 10% testing. We report average test
accuracy and malicious client detection accuracy over five independent runs. Standard deviations are provided in tables
(not included here) for completeness.

Additional experimental details, including computational complexity, hyperparameter settings, and sensitivity analysis,
are provided in Section H of the Supplementary.

5.2 EXPERIMENTAL RESULTS

Results on MNIST (see Figure 2.a and Table 3): Our experiments show that FedLAW delivers consistently strong
results, typically surpassing robust baselines. The advantage is especially pronounced under severe contamination
and heterogeneity; for example, under the inverse-gradient attack with 40% malicious clients, FedLAW attains a
test accuracy 3.6% higher than the next-best defense. While several methods remain competitive at low attack rates,
defenses such as RFA, RFA-bucketing, CClip, and CClip-bucketing deteriorate markedly as the attacker fraction grows,
with some even diverging. For example, under the double attack, the accuracy of RFA and RFA-bucketing decreases by
more than 31% with rising heterogeneity, and both CClip and CClip-bucketing diverge, whereas FedLAW maintains
robustness.

A defining strength of FedLAW is its stability. Whereas competing defenses degrade sharply, FedLAW’s accuracy
remains notably consistent across attacker fractions, exhibiting graceful degradation. This robustness stems from
a two-pronged design: it (i) identifies and removes malicious clients and (ii) adaptively reweights the remaining
honest updates. Unlike traditional approaches that revert to uniform weights after filtering suspected clients, FedLAW
continuously learns optimal weights, enhancing both robustness and representational fairness.

Results on CIFAR10 (see Figure 2.b and Table 4): The more complex CIFAR10 dataset presents additional challenges
due to its higher dimensionality and visual diversity. Nevertheless, FedLAW consistently shows strong resilience across
all attack types and configurations. Under label flipping with q = 0.6 and 40% adversaries, FedLAW reaches 70.5%
accuracy, an +8.3 percentage-point gain over the best baseline (Bulyan at 62.2%). For inverse-gradient attacks with
q = 0.9 and 40% adversaries, it delivers a +3.1 percentage-point improvement over the best baseline (59.38% vs.
56.24%), while RFA and CClip variants diverge. In the challenging Double attack, FedLAW delivers the best results
among state-of-the-art methods. Likewise, in Lie Attack, FedLAW performs on par with the strongest baselines, while
substantially outperforming many others that suffer severe accuracy degradation.

A key observation is the rapid convergence of the weights. In our experiments, the weights w typically stabilize within
the first 20 rounds, after which further updates have negligible effect.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4

80

90

Flipping label, q = 0.6

0.1 0.2 0.3 0.4

60

70

80

90

Flipping label, q = 0.9

0.1 0.2 0.3 0.4
20

40

60

Flipping label, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

Flipping label, q = 0.9

0.1 0.2 0.3 0.4

20

40

60

80

100

Inverse gradient, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

80

Inverse gradient, q = 0.9

0.1 0.2 0.3 0.4

20

40

60

80

Inverse gradient, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

Inverse gradient, q = 0.9

0.1 0.2 0.3 0.4

20

40

60

80

100

Backdoor attack, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

80

Backdoor attack, q = 0.9

0.1 0.2 0.3 0.4

20

40

60

80

Backdoor attack, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

Backdoor attack, q = 0.9

0.1 0.2 0.3 0.4

80

85

90

95

Double attack, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

80

Double attack, q = 0.9

0.1 0.2 0.3 0.4

20

40

60

80

Double attack, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

Double attack, q = 0.9

0.1 0.2 0.3 0.4

40

60

80

LIE attack, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

80

LIE attack, q = 0.9

0.1 0.2 0.3 0.4

20

40

60

80

LIE attack, q = 0.6

0.1 0.2 0.3 0.4

20

40

60

LIE attack, q = 0.9

FedLAW (Ours) Bulyan Bulyan + Bucketing Krum Trimmed Mean CClip
CClip + Bucketing RFA RFA + Bucketing Coordinate-wise Median Huber Aggregator No Defence

Fraction of Malicious Clients

Te
st

A
cc

ur
ac

y
(%

)

(a) MNIST: Defense performance (left two columns). (b) CIFAR10: Defense performance (right two columns).

Figure 2: Defending against attacks on MNIST and CIFAR10
6 CONCLUSION

This paper introduces FedLAW, a Byzantine-robust Federated Learning framework that treats aggregation weights as
learnable parameters, optimized alongside the global model. By enforcing a sparsity constraint, our method effectively
neutralizes the influence of malicious clients while adaptively balancing contributions from benign clients. To solve
the resulting joint optimization problem, we develop an alternating minimization algorithm that updates weights and
model parameters in tandem. We prove convergence guarantees and establish theoretical resilience to adversarial
behavior. Extensive empirical results on MNIST and CIFAR10 datasets under multiple attack scenarios demonstrate
the robustness and effectiveness of FedLAW. Compared to existing Byzantine-robust algorithms, our method achieves
consistently higher accuracy, especially in highly non-IID and adversarial environments. These findings highlight the
benefits of integrating adaptive aggregation into the learning process, paving the way for more secure and equitable FL
deployments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Hedy Attouch and Jérôme Bolte. On the convergence of the proximal algorithm for nonsmooth functions involving
analytic features. Mathematical Programming, 116:5–16, 2009.

Hedy Attouch, Jérôme Bolte, and Benar Svaiter. Convergence of descent methods for semi-algebraic and tame problems:
Proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. Mathematical Programming,
137, 01 2011. doi: 10.1007/s10107-011-0484-9.

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for distributed learning.
Advances in Neural Information Processing Systems, 32, 2019.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with adversaries:
Byzantine tolerant gradient descent. Advances in neural information processing systems, 30, 2017.

Jerome Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1-2):459–494, 2014. doi: 10.1007/s10107-013-0701-9.
URL https://inria.hal.science/hal-00916090.

K. A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé M
Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel
Ramage, and Jason Roselander. Towards federated learning at scale: System design. In SysML 2019, 2019. URL
https://arxiv.org/abs/1902.01046. To appear.

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Provably secure federated learning against malicious clients. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 6885–6893, 2021.

Stephan Dempe. Foundations of Bilevel Programming, volume 61 of Nonconvex Optimization and Its Applications.
Springer Science & Business Media, 2002. doi: 10.1007/978-1-4615-1503-8.

Dmitriy Drusvyatskiy, Adrian S Lewis, and Catherine A Paquette. Efficiency of the prox-linear algorithm for composite
optimization. Mathematical Programming, 178:503–558, 2019.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to {Byzantine-Robust}
federated learning. In 29th USENIX security symposium (USENIX Security 20), pp. 1605–1622, 2020.

Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, and John Stephan. Byzantine machine learning
made easy by resilient averaging of momentums. In International Conference on Machine Learning, pp. 6246–6283.
PMLR, 2022.

Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability of distributed learning in byzantium. In
International Conference on Machine Learning, pp. 3521–3530. PMLR, 2018.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous datasets via bucketing.
In International Conference on Learning Representations, 2020. URL https://api.semanticscholar.
org/CorpusID:238856649.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust optimization. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 5311–5319. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/karimireddy21a.html.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Anastasios Kyrillidis, Stephen Becker, Volkan Cevher, and Christoph Koch. Sparse projections onto the simplex. In
Proceedings of the 30th International Conference on Machine Learning - Volume 28, ICML’13, pp. II–235–II–243.
JMLR.org, 2013.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.com/
exdb/mnist/.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020a. doi: 10.1109/MSP.2020.2975749.

10

https://inria.hal.science/hal-00916090
https://arxiv.org/abs/1902.01046
https://api.semanticscholar.org/CorpusID:238856649
https://api.semanticscholar.org/CorpusID:238856649
https://proceedings.mlr.press/v139/karimireddy21a.html
https://proceedings.mlr.press/v139/karimireddy21a.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization
in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020b.

Yuchen Liu, Chen Chen, Lingjuan Lyu, Fangzhao Wu, Sai Wu, and Gang Chen. Byzantine-robust learning on
heterogeneous data via gradient splitting. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023a.

Yuchen Liu, Chen Chen, Lingjuan Lyu, Fangzhao Wu, Sai Wu, and Gang Chen. Byzantine-robust learning on
heterogeneous data via gradient splitting. In International Conference on Machine Learning, pp. 21404–21425.
PMLR, 2023b.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1st edition, 1996. ISBN 1558603484. URL
http://www.amazon.com/Distributed-Algorithms-Kaufmann-Management-Systems/dp/
1558603484.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh and Jerry Zhu (eds.), Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine
Learning Research, pp. 1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.press/
v54/mcmahan17a.html.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of distributed learning in
byzantium. In International Conference on Machine Learning, 2018. URL https://api.semanticscholar.
org/CorpusID:3473997.

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1(3):123–231, 2014.

Krishna Pillutla, Sham M. Kakade, and Zaid Harchaoui. Robust aggregation for federated learning. IEEE Transactions
on Signal Processing, 70:1142–1154, 2022. doi: 10.1109/TSP.2022.3153135.

Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. A unified convergence analysis of block successive minimization
methods for nonsmooth optimization. SIAM Journal on Optimization, 23(2):1126–1153, 2013.

Virat Shejwalkar and Amir Houmansadr. Manipulating the byzantine: Optimizing model poisoning attacks and
defenses for federated learning. Proceedings 2021 Network and Distributed System Security Symposium, 2021. URL
https://api.semanticscholar.org/CorpusID:231861235.

Weiran Wang and Canyi Lu. Projection onto the capped simplex, 2015. URL https://arxiv.org/abs/1503.
01002.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with suspicion-based
fault-tolerance. In International Conference on Machine Learning, pp. 6893–6901. PMLR, 2019.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed learning: Towards
optimal statistical rates. In International conference on machine learning, pp. 5650–5659. Pmlr, 2018.

Puning Zhao, Fei Yu, and Zhiguo Wan. A huber loss minimization approach to byzantine robust federated learning.
In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on
Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial
Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi: 10.1609/aaai.v38i19.
30181. URL https://doi.org/10.1609/aaai.v38i19.30181.

11

http://www.amazon.com/Distributed-Algorithms-Kaufmann-Management-Systems/dp/1558603484
http://www.amazon.com/Distributed-Algorithms-Kaufmann-Management-Systems/dp/1558603484
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://api.semanticscholar.org/CorpusID:3473997
https://api.semanticscholar.org/CorpusID:3473997
https://api.semanticscholar.org/CorpusID:231861235
https://arxiv.org/abs/1503.01002
https://arxiv.org/abs/1503.01002
https://doi.org/10.1609/aaai.v38i19.30181

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Contents
1 Introduction . 1

2 Notation and Model . 2
2.1 Notation . 2
2.2 Model . 3

3 Byzantine-Robust Federated Learning with Learnable Weights . 3
3.1 Problem Formulation . 3
3.2 Proposed Algorithm . 3

4 Theoretical Analyses . 5
4.1 Byzantine-resilient Analysis . 5
4.2 Convergence Analysis . 7

5 Numerical Study . 8
5.1 Experimental Setup . 8
5.2 Experimental Results . 8

6 Conclusion . 9

A Mathematical Foundations . 13

B Optimizing the Joint Loss Function: FedLAW and BSUM . 15
B.1 BSUM: A Baseline for Comparison . 15
B.2 FedLAW vs. BSUM: Capturing Joint Optimization Dynamics . 16

C Projection onto the unit-capped simplex . 17

D Proof of Theorem 1 . 19

E Proof of Theorem 2 . 19
E.1 Optimal solution of (6) . 20
E.2 High-Probability Bound via Hoeffding’s Inequality . 21
E.3 Decomposing the Error with the Triangle Inequality . 22

F Byzantine Resilience Against Adversarial Loss and Gradient . 29

G Proof of Theorem 3 and Determining Lipschitz Constant Lw . 30
G.1 Proof of Theorem 3 for L-smooth (Item 1) . 30
G.2 Proof of Theorem 3 for L-smooth and strongly convex (Item 2) . 38
G.3 Determining Lipschitz Constant Lw . 40

H Additional Experimental Setups and Results . 42
H.1 Experimental Framework Overview . 42
H.2 Hyperparameter Settings . 43
H.3 FedLAW: Client-weight dynamics under four adversarial settings. 44
H.4 Evaluation of Malicious Client Detection . 46
H.5 Computational Complexity . 51

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 CLIENTUPDATE

Require: current global model θ; learning-rate α; local epochs E; batch-size B; private data Di
1: ψi ← θ ▷ initialize local model parameters
2: for e = 1 to E do ▷ full local epochs
3: for all mini-batches B ⊂ Di of size B do
4: ψi ← ψi − α∇ψfi(ψi,B)
5: end for
6: end for
7: gi ← −

ψi − θ

α
▷ gradient at θ

8: fi ← fi(ψi)
9: return (gi, fi)

Algorithm 2 FedLAW (Federated Learning with Learnable Aggregation Weights)

Require: initial model θ0; learning rates α, β; total epochs T ; local epochs E; batch-size B; sparsity level s; cap t;
number of clients n

1: initialize weights w0 ← 1
n1

2: for k = 0 to T − 1 do
// ——– collect client updates ——– //

3: broadcast θk to all clients
4: for all clients i=1:n in parallel do
5: (gi, fi)← CLIENTUPDATE(θk, α, E,B)
6: end for

// ——– server step 1 ——– //
7: gagg ←

∑n
i=1 wk,i gi

8: θ̃k+1 ← θk − αgagg

9: broadcast θ̃k+1 and collect (g̃i, f̃i) via CLIENTUPDATE
// ——– server step 2 (weight update) ——– //

10: G= [g1, · · · ,gn], G̃= [g̃1, · · · , g̃n]
11: f̃ = [f̃1, . . . , f̃n]

⊤

12: hk ← wk + αβG⊤G̃wk − β f̃
13: wk+1 ← Proj∆+

t,ℓ0

(hk) with s via (10)
// ——– server step 3 (second model update) ——– //

14: gagg ←
∑n
i=1 wk+1,i gi

15: θk+1 ← θk − αgagg

16: end for
17: return θT

A MATHEMATICAL FOUNDATIONS

In this section, we first introduce key mathematical concepts used throughout the paper. We then present specific
structural properties and feasibility results related to our proposed optimization framework.

We begin with the definition of proximal mapping.
Definition 1. (Parikh & Boyd, 2014) Let p : domp → (−∞,+∞] be a proper and lower semi-continuous (PLSC)
function. Then the proximal mapping of p at x ∈ Rn is defined as

proxp(x) = argmin
u∈domp

{
1

2
∥x− u∥22 + p(u)

}
. (16)

Definition 2. (Attouch et al., 2011) The subdifferential of a PLSC function g at x ∈ Rn is defined as

∂g(x)
△
= {ζ ∈ Rn | ∃xk → x, g(xk)→ g(x), ζk → ζ ∈ ∂ĝ(xk)}

where ∂ĝ(xk) is the Fréchet subdifferential of g at xk ∈ Rn, defined as

∂ĝ(xk) =

{
ζ ∈ Rn | lim inf

v ̸=x,v→x

1

∥v − x∥22
[g(v)− g(x)− ⟨v − x, ζ⟩] ≥ 0

}
. (17)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Definition 3. (Attouch et al., 2011) A point x∗ is called a critical point of a PLSC function f(x) if 0 ∈ ∂f(x∗).
Definition 4 (Operator PLs

). The operator PLs
(w) leaves the s largest elements (based on their values, not magnitudes)

of the vector w unaltered and sets all other entries to zero.
Lemma 4 (Descent lemma (Bolte et al., 2014)). Let f : Rn → R be a continuously differentiable function whose
gradient ∇f is L-Lipschitz continuous. Then, for all x,y ∈ Rn:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥22. (18)

Definition 5 ((ζ, bf)-Byzantine Resilience (Blanchard et al., 2017)). Let ζ be any angular value in the interval
[0, π/2), and bf be any integer in {0, 1, . . . , n}. Consider n independent identically distributed (i.i.d.) random vectors
v1, . . . ,vn in Rd with vi ∼ G where E{G} = g, and bf random vectors b1, . . . ,bbf in Rd, possibly dependent on the
vi’s. A choice function F is said to be (ζ, bf)-Byzantine resilient if, for any 1 ≤ j1 < · · · < jbf ≤ n, the vector

F = F (v1, . . . ,bj1 , . . . ,bjbf , . . . ,vn) (19)

satisfies:

1. It maintains alignment with the expected gradient:

⟨E{F}, g⟩ ≥ (1− sinα)∥g∥2 > 0.

2. E{∥F∥r} (for r = 2, 3, 4) satiates the following condition:

E{∥F∥r} ≤ C
∑

E{∥G∥ri}, where
∑

ri = r.

Definition 6 (Kurdyka-Łojasiewicz Property (Attouch & Bolte, 2009)). A function f : Rd → R ∪ {+∞} satisfies
the Kurdyka-Łojasiewicz (KL) property at a point x̄ ∈ dom(∂f) if there exist η > 0, a neighborhood U of x̄, and a
continuous concave function ϕ : [0, η)→ [0,+∞) with ϕ(0) = 0, ϕ differentiable, and ϕ′(s) > 0 for s ∈ (0, η), such
that for all x ∈ U with f(x̄) < f(x) < f(x̄) + η,

ϕ′(f(x)− f(x̄)) · dist(0, ∂f(x)) ≥ 1,

where dist(0, ∂f(x)) = inf{∥v∥ | v ∈ ∂f(x)}. A function satisfying the KL property at all points in dom(∂f) is called
a KL function.
Proposition 2. Consider the sparse-unit capped simplex

∆+
t,ℓ0

=

{
w ∈ Rn |

n∑
i=1

wi = 1, wi ≥ 0, wi ≤ t, ∥w∥0 ≤ s

}
(20)

with t = 1
n−bf and s = n− bf . Then any weight vector w ∈ ∆+

t,ℓ0
has exactly n− bf non-zero weights, each equal to

1
n−bf , and the remaining bf weights are zero.

Proof. Let w have k ≤ n − bf non-zero weights indexed by S, so
∑
i∈S wi = 1, 0 < wi ≤ 1

n−bf for all i ∈ S. If
k < n− bf , we have:

n∑
i=1

wi ≤ k ·
1

n− bf
< (n− bf) ·

1

n− bf
= 1,

which cannot satisfy
∑n
i=1 wi = 1. Thus, k = n− bf . Suppose at least one weight, say w1 <

1
n−bf . Then:

n−bf∑
i=2

wi = 1− w1 > 1− 1

n− bf
=
n− bf − 1

n− bf
.

The maximum sum for the remaining n − bf − 1 weights, each capped at 1
n−bf , is n−bf−1

n−bf . Since the required

sum
∑n−bf
i=2 wi >

n−bf−1
n−bf exceeds the maximum possible sum, this is impossible. Thus, w1 <

1
n−bf leads to a

contradiction. Similarly, wi > 1
n−bf violates the upper bound wi ≤ 1

n−bf .

Hence, all n− bf non-zero weights must be 1
n−bf , and the remaining bf weights are zero, satisfying all constraints.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In the following lemma, we determine when the sparse, unit-sum, t-capped simplex is non-empty, a key condition
for selecting valid sparsity and cap parameters in the proposed method (1). We also compute an upper bound of the
Euclidean distance between any two vectors in this set that we will use in later results.

Lemma 5 (Feasibility and Distance in Sparse Unit-Capped Simplex). Consider the sparse unit-capped simplex (20) in
which, n ≥ 2, s ∈ {1, . . . , n}, and t ∈ (0, 1]. Then ∆+

t,ℓ0
̸= ∅ iff st ≥ 1, and for any w1,w2 ∈ ∆+

t,ℓ0
,

∥w1 −w2∥2 ≤
√

2 (kt2 + r2). (21)

where k = ⌊1/t⌋ and r = 1− kt ∈ [0, t). If 1/t ∈ N, the bound simplifies to ∥w1 −w2∥2 ≤
√
2t.

Proof. (⇒) If ∆+
t,ℓ0
̸= ∅, then there exists a t-capped, s-sparse vector summing to 1. Since each nonzero entry is at

most t, we must have st ≥ 1.

(⇐) If st ≥ 1, we can construct a feasible vector by setting k = ⌊1/t⌋, r = 1− kt, and defining

w⋆ = [t, . . . , t︸ ︷︷ ︸
k times

, r, 0, . . . , 0],

which has at most s nonzero entries and sums to 1, so w⋆ ∈ ∆+
t,ℓ0

.

The maximum ℓ2 norm in ∆+
t,ℓ0

is achieved by w⋆ = [t, . . . , t︸ ︷︷ ︸
k times

, r, 0, . . . , 0] with ∥w⋆∥22 = kt2 + r2. For any

w1,w2 ∈ ∆+
t,ℓ0

, we have

∥w1 −w2∥22 = ∥w1∥22 + ∥w2∥22 − 2⟨w1,w2⟩ ≤ 2(kt2 + r2),

because ⟨w1,w2⟩ ≥ 0 (all entries are non-negative). Taking square roots yields the result.

B OPTIMIZING THE JOINT LOSS FUNCTION: FEDLAW AND BSUM

A core contribution of this paper is to address Byzantine-robust federated learning by formulating and solving the
following joint optimization problem over global model parameters θ ∈ Rd and aggregation weights w = [w1, . . . , wn]:

min
θ∈Rd,w∈∆+

t,ℓ0

n∑
i=1

wifi(θ), (22)

where ∆+
t,ℓ0

= {w ∈ Rn |
∑n
i=1 wi = 1, wi ≥ 0, wi ≤ t, ∥w∥0 ≤ s}.

As detailed in Section 3.2, our primary solution to this problem is the FedLAW algorithm, whose pseudocode is
provided in Algorithm 2. As another contribution, we adapt the Block Successive Upper-bound Minimization (BSUM)
method (Razaviyayn et al., 2013) to solve (22), providing a baseline for our novel algorithm. By comparing FedLAW
and BSUM, we demonstrate that FedLAW’s integrated use of loss and gradient information results in more robust and
efficient learning under adversarial conditions. Below, we detail both methods and their comparative performance.

B.1 BSUM: A BASELINE FOR COMPARISON

BSUM alternates between updating the global model parameters θ and client weights w, minimizing a local upper
bound approximation of the objective for each block while fixing the other. At iteration k + 1, it performs the following
operations:

1. Update θ: With w = wk, solve:

min
θ∈Rd

n∑
i=1

wk,ifi(θ). (23)

Assuming differentiable fi(θ), we provide a quadratic upper bound f̂i(θ) of fi(θ)

f̂i(θ;θk) = fi(θk) + ⟨∇θfi(θk),θ − θk⟩+
1

2α
∥θ − θk∥22. (24)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where α > 0 is a step size. Substituting this quadratic upper bound into (23) gives

θ̃k+1 = argmin
θ∈Rd

n∑
i=1

wif̂i(θ;θk) = θk − αGkwk, (25)

in which Gk = [∇θf1(θk), · · · ,∇θfn(θk)].

2. Update w: With θ = θ̃k+1, solve:

wk+1 = argmin
w∈∆+

t,ℓ0

n∑
i=1

wifi(θ̃k+1). (26)

This is a linear program in w, constrained by the sparse unit-capped simplex ∆+
t,ℓ0

. To ensure a fair comparison with
our method, which uses the most recent weights to update θ for enhanced robustness, we apply an extrapolation step,
updating:

θk+1 = θk − αGkwk+1.

This extrapolation aligns BSUM’s θ update with our method’s strategy, using the latest weights wk+1 optimized at
θ̃k+1 to reflect current client reliability assessments. By incorporating wk+1, which downweights malicious clients
via the sparse capped simplex, the update improves robustness against Byzantine attacks, ensuring that performance
differences arise from the algorithm design rather than the precise ordering of updates.

B.2 FEDLAW VS. BSUM: CAPTURING JOINT OPTIMIZATION DYNAMICS

A key difference distinguishes our method (Equation (6)) from BSUM. In BSUM, θ̃k+1 is fixed when updating w,
simplifying (26) to a linear objective. In contrast, our method minimizes:

n∑
i=1

wifi(θk − αGkw). (27)

When the weight vector w inside fi is fixed to wk, our method (Equation (6)) reduces to BSUM’s linear program
(Equation (26)), revealing that BSUM is a suboptimal approximation. This raises a key question: how does our method
compare to BSUM in Byzantine-robust federated learning? BSUM updates w by minimizing

∑n
i=1 wifi(θ̃k+1), relying

solely on client losses fi(θ̃k+1) to detect malicious clients. However, attacks like the inverse gradient attack, where
malicious clients submit flipped gradients but benign losses, are not immediately detectable in losses, delaying BSUM’s
exclusion of malicious clients and slowing convergence. In contrast, our method optimizes

∑n
i=1 wifi(θk − αGkw),

leveraging both losses and gradients to enhance robustness.

Our algorithm solves (6) via the projection in Equation (9), where wk+1 = prox∆+
t,ℓ0

(hk) and hk = wk +

βαGT
k G̃k+1wk − βf(θk − αGkwk). Here, G̃k+1 = [∇θf1(θk − αGkwk), . . . ,∇θfn(θk − αGkwk)] and

f(θk − αGkwk) = [f1(θk − αGkwk), . . . , fn(θk − αGkwk)]. The vector hk incorporates two factors for de-
tecting malicious clients:

1. Losses (f(θk − αGkwk)): This term, similar to BSUM, assesses client losses. It is effective against attacks
like data poisoning, which directly alter losses, but is less reliable when losses remain benign despite malicious
gradients.

2. Gradient Alignment (GT
k G̃k+1): This inner product quantifies the alignment between gradients at θk and

θk − αGkwk across consecutive rounds. In attacks such as the inverse gradient attack, malicious gradients
typically misalign in direction relative to benign ones, enabling early detection and exclusion through the
sparsity constraint ∥w∥0 ≤ s.

To substantiate this comparison, we provide an empirical evaluation of our method against BSUM (labeled as ”FedLAW-
BSUM” in the figures), offering evidence to support the theoretical advantages.

Empirical comparison. Figures 3 and 4 compare our method with BSUM under four adversarial attack scenarios on
MNIST: flipping label, inverse gradient, backdoor, and double attack.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 50 100 150 200
30
40
50
60
70
80
90
100

Flipping label

0 50 100 150 200
30
40
50
60
70
80
90

100

Inverse gradient

0 50 100 150 200
30
40
50
60
70
80
90
100

Backdoor attack

0 50 100 150 200
30
40
50
60
70
80
90

100

Double attack

FedLAW FedLAW-BSUM
Te

st
ac

cu
ra

cy
(%

)

Epoch

Figure 3: Test accuracy on MNIST for four attack settings (q=0.9, 10 clients, 40% malicious), contrasting
FedLAW-BSUM (solid blue) with FedLAW (dashed green).

Figure 3 shows the test accuracy over 200 epochs. Across all attack settings, our method (FedLAW, dashed green)
either matches or surpasses the performance of BSUM (solid blue), with the most significant improvements observed
under gradient-based attacks. In particular, under the inverse gradient and double attack scenarios, FedLAW converges
faster and reaches a higher final accuracy, highlighting its enhanced robustness in detecting and mitigating subtle
gradient manipulations.

Figure 4 further illustrates the client-weight evolution under these adversarial conditions. The top two rows correspond
to FedLAW, and the bottom two rows to BSUM. Each subplot displays how the aggregation weight of each client evolves
across 100 epochs. While both methods eventually suppress malicious clients (red/orange), FedLAW consistently
achieves this suppression earlier, especially under inverse gradient and double attacks, due to its reliance on both loss
and gradient information. In contrast, BSUM, which only considers losses, fails to immediately detect malicious clients
whose losses remain close to benign ones, delaying their exclusion.

These findings demonstrate that FedLAW more effectively captures the joint optimization dynamics in (22) by
incorporating both loss and gradient-based alignment into the weight update process compared to BSUM. FedLAW
not only detects malicious behavior earlier but also maintains better model accuracy and stability in the presence of
sophisticated adversaries.

C PROJECTION ONTO THE UNIT-CAPPED SIMPLEX

The purpose here is to solve the following optimization problem:

x∆+
t
= P∆+

t
(y) = argmin

x∈∆+
t

1

2
∥x− y∥22 (28)

where ∆+
t = {w ∈ Rn |

∑n
i=1 wi = 1, wi ≥ 0, wi ≤ t}. In Wang & Lu (2015), using Karush–Kuhn–Tucker (KKT)

conditions, a solution for the above projection is determined which is formulated in Algorithm 3.

For more details on this algorithm, see Wang & Lu (2015).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

FedLAW - Flipping label

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

FedLAW - Inverse gradient

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

FedLAW - Backdoor attack

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

FedLAW - Double attack

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

FedLAW-BSUM - Flipping label

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

FedLAW-BSUM - Inverse gradient

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

FedLAW-BSUM - Backdoor attack

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

FedLAW-BSUM - Double attack

Benign Malicious (Flipping label/Inverse gradient/Backdoor attack) Malicious (Global parameter attack)

C
lie

nt
w

ei
gh

t

Epoch

Figure 4: Client-weight dynamics on MNIST under four adversarial settings (q=0.9, 10 clients, 40% malicious). Two
top row: FedLAW. Two bottom row: FedLAW-BSUM. Each panel tracks the aggregation weight of every client
during the first 100 global epochs for a three-layer MLP (batch size 64, three local epochs). Across all attacks, benign
clients (grey) quickly converge to a stable weight, while malicious clients (red/orange) are pushed towards negligible
influence. Notably, FedLAW suppresses attackers faster than BSUM, especially for the gradient-based attacks (inverse
gradient, double attack), illustrating its stronger resilience.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 3 Projection onto the unit capped simplex

Require: y ∈ Rn is sorted in ascending order: y1 ≤ y2 ≤ · · · ≤ yn
1: Set y0 = −∞ and yn+1 =∞

2: Compute partial sums T0 = 0 and Tk = 1
t

k∑
j=1

yj for k = 1, . . . , n

3: for a = 0, 1, . . . , n do
4: if (1t == n− a) and (ya+1 − ya ≥ t) then
5: Set b = a
6: break
7: end if
8: for b = a+ 1, . . . , n do
9: Compute γ =

1
t+b−n+Ta−Tb

b−a
10: if (yat + γ ≤ 0) and (ya+1

t + γ > 0) and (ybt + γ < 1) and (yb+1

t ≥ 1) then
11: break
12: end if
13: end for
14: end for
15: Output: x = [0, . . . , 0, ya+1 + tγ, . . . , yb + tγ, t, . . . , t]

D PROOF OF THEOREM 1

To prove Theorem 1, we draw inspiration from the analysis used in the proof of Theorem 2 in Kyrillidis et al. (2013).
However, it is crucial to highlight a key difference: while Kyrillidis et al. (2013) establishes convergence for the sparse
projection onto the unit simplex, our goal is to demonstrate the convergence of the proposed method for the sparse
unit-capped simplex, which introduces additional constraints.

To prove Theorem 1, we use the following two steps.

STEP 1: THE s-LARGEST ELEMENTS SHOULD BE IN THE SOLUTION

Let w be an optimal projection of hk onto ∆+
t,ℓ0

, and assume that there exists an index i among the s-largest entries of
hk such that wi = 0. Suppose also that there exists an index j ̸∈ supp(PLs

(hk)) where wj > 0. Define a new vector
w̃ by setting w̃j = 0 and w̃i = wj , while keeping all other entries unchanged. Consequently

∥w − hk∥22 = ∥w̃ − hk∥22 + 2wj(h
i
k − h

j
k) (29)

Since wj(hik − h
j
k) ≥ 0, it follows that ∥w − hk∥22 ≥ ∥w̃ − hk∥22, contradicting the assumption that w is the optimal

projection. Thus, the s-largest coordinates of w should be in the solution.

STEP 2: ENSURING THE SIMPLEX CONSTRAINT IS SATISFIED

Once the support set S∗ (of size s) in (10) is determined, the optimal solution is obtained by projecting wS∗ onto the
unit-capped simplex. For the projection we utilized the proposed method in Wang & Lu (2015) and established in
Algorithm 3. Since the proposed method used the KKT conditions for this projection, using (10) and (28), we have

∥wk+1S∗ − hλS∗∥2 ≤ ∥w̃ − hλS∗∥2, ∀w̃ ∈ ∆+
t (30)

This guarantees that wk+1S∗ is the optimal projection of hλS∗ onto ∆+
t .

At the final step we show that solutions with support |S| = s are as good as any other solutions with |S| < s.
Suppose there exists a solution w with support |S| < s. Consider extending |S| to a set |S ′| = s by adding any
elements and its protection onto unit-capped simplex results in w2. Since according to (30), the new solution satisfies
∥w′

S′ − hλS′∥2 ≤ ∥wS − hλS∥2. This results in ∥w′ − hλ∥2 ≤ ∥w − hλ∥2.

E PROOF OF THEOREM 2

In this section, we present the proof of Theorem 2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To simplify the notation, we omit the iteration index k throughout this proof, as the analysis holds for any arbitrary
round k. We thus denote the true gradient of client i as vi := ∇θfi(θk) (instead of vk,i) and its mini-batch estimate as
ṽi (instead of ṽk,i).

E.1 OPTIMAL SOLUTION OF (6)

To make the objective in (6) analytically tractable, our first step is to use Taylor’s theorem with an exact remainder to
reformulate the cost function. For any client i, we can express the projected loss as:

fi(θk − αGkw) = fi(θk) + ⟨∇fi(θk),−αGkw⟩+Ri(w) (31)

where the remainder term Ri(w) is bounded by:

|Ri(w)| ≤ Lmax

2
∥αGkw∥2 =

Lmax

2
α2∥Gkw∥2

Using (31), we have

n∑
i=1

wifi(θk − αGkw) =
n∑
i=1

wifi(θk)− α⟨
n∑
i=1

wi∇fi(θk),Gkw⟩+
n∑
i=1

wiRi(w)

=

n∑
i=1

wifi(θk)− αwTGT
kGkw +

n∑
i=1

wiRi(w). (32)

Using Gk = [v1, · · · ,vn], in which vi = ∇θfi(θk), we have

GT
kGk =


vT1 v1 vT1 v2 · · · vT1 vn
vT1 v2 vT2 v2 · · · vT2 vn

...
... · · ·

...
vT1 vn vT2 vn · · · vTnvn

 . (33)

Substituting vTi vj =
∥vi∥2

2+∥vj∥2
2−∥vi−vj∥2

2

2 in the above matrix yields

G̃k = GT
kGk =

1

2
G̃m
k −

1

2
G̃d
k, (34)

in which G̃m
k and G̃d

k are given by

G̃d
k =


0 ∥v1 − v2∥22 · · · ∥v1 − vn∥22

∥v1 − v2∥22 0 · · · ∥v2 − vn∥22
...

... · · ·
...

∥v1 − vn∥22 ∥vn − v2∥22 · · · 0

 ,

G̃m
k =


2∥v1∥22 ∥v1∥22 + ∥v2∥22 · · · ∥v1∥22 + ∥vn∥22

∥v1∥22 + ∥v2∥22 2∥v2∥22 · · · ∥vn∥22 + ∥v2∥2
...

... · · ·
...

∥v1∥22 + ∥vn∥22 ∥v2∥22 + ∥vn∥22 · · · 2∥vn∥22

 . (35)

By defining k = [∥v1∥22, · · · , ∥vn∥22]T and 1n = [1, · · · , 1]T , the matrix G̃m
k can be written by

G̃m
k = 1n ⊗ kT + k⊗ 1n

T . (36)

Using the above representation and the property
n∑
i=1

wi = 1, we have

wT G̃m
k w = 2

n∑
i=1

wi∥vi∥22. (37)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Replacing (34) in (32) and using the above equation, we obtain
n∑
i=1

wifi(θk − αGkw) =

n∑
i=1

wifi(θk) +
α

2
wT G̃d

kw −
α

2
wT G̃m

k w +

n∑
i=1

wiRi(w)

=

n∑
i=1

wifi(θk) +
α

2

n∑
i=1

n∑
j=1

wiwj∥vi − vj∥22 − α
n∑
i=1

wi∥vi∥22 +
n∑
i=1

wiRi(w) (38)

=

n∑
i=1

wi(fi(θk)− α∥vi∥22) +
α

2

n∑
i=1

n∑
j=1

wiwj∥vi − vj∥22 +
n∑
i=1

wiRi(w).

Let J(w) =
∑n
i=1 wifi(θk − αGkw) be the true objective function and Japprox(w) =

∑n
i=1 wi(fi(θk)− α∥vi∥22) +

α
2

∑n
i=1

∑n
j=1 wiwj∥vi − vj∥22 be the approximate objective from (32). Consequently,

J(w) = Japprox(w) +

n∑
i=1

wiRi(w) = Japprox(w) + Etaylor(w),

where Etaylor(w) =
∑n
i=1 wiRi(w).

Substituting the cost function in (6) with the above expression, we obtain the optimal weights expressed as

wo = argmin
w∈∆+

t,ℓ0

n∑
i=1

wi(fi(θk)− α∥vi∥22) +
α

2

n∑
i=1

n∑
j=1

wiwj∥vi − vj∥22 + Etaylor(w). (39)

To exclude bf clients, based on Proposition 2, it requires setting t = 1
n−bf and s = n− bf in the constraint set ∆+

t,ℓ0
:

woi =


1

n−bf , if i ∈ Λw

0, if i ∈ Λ∁
w.

(40)

where Λw = supp(wo) and its complement is denoted by Λ∁
w. The indices in Λw corresponding to benign and Byzantine

clients are denoted by Λc and Λb, respectively.

Next, we need to check the first condition in Definition 5, in which it is required to compute ∥E{F̃} − g∥22. It is
important to highlight that, unlike Definition 5, we consider a more general setting where population losses and gradients
are non-iid. To improve practicality, our analysis also focuses on the case where the aggregator relies on mini-batch
gradients rather than full-batch gradients, which is a more realistic scenario. In this case, our function F̃ which is a
weighted summation of the gradients with the obtained weight wo from the optimization problem (39), is given by

F̃ = F̃ (ṽ1, · · · , ṽn−bf ,b1, · · · ,bbf) =
1

n− bf

(∑
i∈Λc

ṽi +
∑
j∈Λb

bj

)
, (41)

where Λw = Λc
⋃
Λb. It is important to note that in the above equation, ṽi is the mini-batch gradient of size B for an

honest client i for i = 1, . . . , n− bf . To maintain consistency with the notation in Definition 5, we denote the honest
and Byzantine gradients as ṽi and bj , respectively. Also, the ideal aggregator, F , is a theoretical construct. It is the
output of (6) if it were run using the true, unobserved population gradients {vi} i ∈ ∀1 ≤ i ≤ n− bf instead of ṽi.

E.2 HIGH-PROBABILITY BOUND VIA HOEFFDING’S INEQUALITY

This section provides a formal proof for the high-probability bound on the intra-client sampling deviation.
Lemma 6 (High-Probability Sampling Deviation Bound). Let ṽi be the mini-batch gradient of size B for an honest
client i, and let vi = ∇θfi(θk) be the corresponding population gradient. We assume that the deviation of any
single-sample gradient from its population mean is bounded:

∥∇θfi(θk; z)− vi∥ ≤ Rk.

Then, for any failure probability δ ∈ (0, 1), the following bound on the sampling deviation holds with probability at
least 1− δ:

∥ṽi − vi∥ ≤ εS , where εS =

√
2R2

k log(2d/δ)

B
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. The proof relies on a vector version of Hoeffding’s inequality. We define the zero-mean random variable
Xj = ∇θfi(θk; zj)− vi. It is straightforward to show that E{Xj} = 0. The sampling deviation is the average of B
such independent random variables:

ṽi − vi =
1

B

B∑
j=1

Xj .

Based on the bounded deviation assumption, we know ∥∇fi(θk; z)− vi∥ ≤ Rk. Applying the Hoeffding’s inequality
for the average of B independent, zero-mean random vectors Xj ∈ Rd, where ∥Xj∥2 ≤ Rk for all j, states that for any
t > 0:

P

∥∥∥∥∥∥ 1

B

B∑
j=1

Xj

∥∥∥∥∥∥ ≥ t
 ≤ 2d · exp

(
−Bt

2

2R2
k

)
.

In our case, the average is the sampling deviation, ∥ṽi − vi∥. Substituting this into the general form gives:

P (∥ṽi − vi∥ ≥ t) ≤ 2d · exp
(
−Bt

2

2R2
k

)
.

We set the failure probability to be at most δ and solve for the bound t = εS :

δ ≥ 2d · exp
(
−Bε

2
S

2R2
k

)
.

Solving this inequality for εS :

δ

2d
≥ exp

(
−Bε

2
S

2R2
k

)
log

(
2d

δ

)
≤ Bε2S

2R2
k

2R2
k log(2d/δ)

B
≤ ε2S .

This shows that if we choose εS =

√
2R2

k log(2d/δ)

B , the probability of the deviation exceeding this value is at most δ.
Therefore, the bound holds with probability at least 1− δ.

E.3 DECOMPOSING THE ERROR WITH THE TRIANGLE INEQUALITY

We can relate the practical error to the ideal error by adding and subtracting the ideal aggregator, F :

∥E{F̃} − g∥ = ∥E{F̃ − F + F} − g∥
= ∥(E{F̃} − E{F}) + (E{F} − g)∥
≤ ∥E{F̃ − F}∥︸ ︷︷ ︸

Perturbation Error

+ ∥E{F} − g∥︸ ︷︷ ︸
Ideal Heterogeneity Error

.

We now bound each of these two terms separately.

Bounding the Perturbation Error: The first term, ∥E{F̃ −F}∥, represents how much the mini-batch noise perturbs
the output of the aggregator. Consequently,

F̃ − F =
1

n− bf

∑
i∈Λc

(ṽi − vi).

With high probability 1− δ, using Lemma 6 we have ∥ṽi − vi∥ ≤ εS . This leads to a bound on the perturbation:

∥F̃ − F∥ ≤ |Λc|
n− bf

εS ≤ εS ,

Taking the expectation:
∥E{F̃ − F}∥ ≤ E{∥F̃ − F∥} ≤ εS . (42)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Bounding the Ideal Error : To compute the error ∥E{F} − g∥, we first define the vector s as follows

s =
1

n− bf

∑
i∈Λc

vi +
1

n− bf

|Λb|∑
j=1

ej (43)

in which ej is the j-elements in the set E , which is constructed as follows:

1. If |Λc| ≥ |Λb|, E is constructed by a random selection of |Λb| elements from the set V̄ = {vj , ∀j ∈ Λc}.
2. If |Λc| < |Λb|, E is constructed as

E =

V̄, . . . , V̄︸ ︷︷ ︸
z times

,P

 (44)

in which z = ⌊ |Λ
b|

|Λc|⌋ and P is constructed as a random selection of |Λb| − z|Λc| entries from V̄ .

Taking the expectation from both sides of (43) results in

E{s} = 1

n− bf

∑
i∈Λc

E{vi}+
1

n− bf

|Λb|∑
j=1

E{ej}+
1

n− bf

∑
i∈Λd

E{vi} −
1

n− bf

∑
i∈Λd

E{vi} (45)

in which Λd = {1, 2, . . . , n− bf} \ Λc. Based on the definition of the set E , using E{vi} = gi, |Λc|+ |Λb| = n− bf ,
and g = 1

n−b
∑n−bf
j=1 gj we have

E{s} = 1

n− bf

n−bf∑
i=1

gi +
1

n− bf

|Λb|∑
j=1

E{ej} −
1

n− bf

∑
i∈Λd

E{vi} = g +
1

n− bf

|Λb|∑
j=1

gmap(j) −
1

n− bf

∑
i∈Λd

gi.

(46)

in which each vector ej is mapped to one of the vectors vi for all 1 ≤ i ≤ n− bf , i.e. ej = vmap(j). Now, we compute

∥E{F} − g∥22. Since E{s}+ 1
n−bf

∑
i∈Λd gi − 1

n−bf

∑|Λb|
j=1 gmap(j) = g,

∥E{F} − g∥2 = ∥E{F} − E{s} − 1

n− bf

∑
i∈Λd

gi +
1

n− bf

|Λb|∑
j=1

gmap(j)∥2 ≤

∥E{F − s}∥2 +
1

n− bf

∑
i∈Λd

∥gi − g∥2 +
1

n− bf

|Λb|∑
j=1

∥gmap(j) − g∥2 (47)

Since 1
n−bf

∑n−bf
i=1 ∥gi − g∥22 ≤ H2

k , using Cauchy-Schwarz inequality 1
n−bf

∑
i∈Λd ∥gi − g∥2 ≤

1
n−bf

√∑
i∈Λd ∥gi − g∥22

√
|Λb| ≤ bf√

n−bf
Hk, we have

∥E{F} − g∥2 ≤ ∥E{F − s}∥2 +
2bf√
n− bf

Hk (48)

Substituting F and s in the above inequality results in

∥E{F−s}∥22 = ∥E
{ 1

n− bf

(∑
i∈Λc

vi+
∑
j∈Λb

bj−
∑
i∈Λc

vi−
|Λb|∑
j=1

ej

)}
∥22 = ∥E

{ 1

n− bf

(∑
j∈Λb

bj−
|Λb|∑
j=1

ej

)}
∥22. (49)

Using Jensen inequality, we have

∥E{F − s}∥22 ≤ E
{ 1

(n− bf)2
∥∥∥(∑

j∈Λb

bj −
|Λb|∑
j=1

ej

)∥∥∥2
2

}
=

1

(n− bf)2
E
{∥∥∥(|Λb|∑

j=1

bΛb(j) − ej

)∥∥∥2
2

}
≤

|Λb|
(n− bf)2

E
{ ∑
j∈Λb

∥∥∥bΛb(j) − ej

∥∥∥2
2

}
(50)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Based on the definition of the set E , ej is one of the vectors in the set V̄ which includes all vectors vj for all j ∈ Λc.
Consequently,

∥E{F − s}∥22 ≤
|Λb|

(n− bf)2
E
{ ∑
j∈Λb

∥∥∥bΛb(j) − ej

∥∥∥2
2

}
≤ |Λb|

(n− bf)2
E
{∑
i∈Λc

∑
j∈Λb

∥vi − bj∥22
}
=

|Λb|
(n− bf)2

∑
i∈Λc

∑
j∈Λb

E
{
∥vi − bj∥22

}
. (51)

Thus, to bound the squared error of the aggregation rule, ∥E{F − s}∥22, we need to compute an upper bound for
E
{
∥vi − bj∥22

}
. The remainder of the proof addresses this step.

Theorem 7. If all the assumptions stated in Theorem 2 hold, then the corresponding result follows.

Proof. It is crucial to note that, if some honest gradients vi are replaced by their Byzantine counterparts bi, the
optimization problem (39) involves a mixture of both Byzantine and honest gradients. Furthermore, under the
assumption stated in the above lemma, the aggregator has access to all honest losses fi(θk). Without loss of generality,
we assume that the last bf gradient vectors have been replaced with their Byzantine versions. As a result, the gradient
matrix can be expressed as:

Gk = [v1, · · · ,vn−bf ,b1, · · · ,bbf]. (52)

In the above equation, since the aggregator F operates on the true population gradients, we denote the honest and
Byzantine gradients by vi and bj , respectively, for i = 1, . . . , n− bf . From (41), and noting that wo is the minimizer
of (39), we obtain

n∑
i=1

woi fi(θk)− α
∑
i∈Λc

woi ∥vi∥22 − α
∑
i∈Λb

woi ∥bi∥22 +
α

2

(∑
i∈Λc

∑
j∈Λb

woiw
o
j∥vi − bj∥22+

∑
i∈Λc

∑
j∈Λc

woiw
o
j∥vi − vj∥22 +

∑
i∈Λb

∑
j∈Λb

woiw
o
j∥bi − bj∥22

)
+ Etaylor(w

o) ≤
n∑
i=1

wtifi(θk)− α
n−bf∑
i=1

wti∥vi∥22+

α

2

n−bf∑
i=1

n−bf∑
j=1

wtiw
t
j∥vi − vj∥22 + Etaylor(w

t) (53)

in which wt is a feasible set of weights given by

wti =


1

n−bf , if 1 ≤ i ≤ n− bf

0, if n− bf + 1 ≤ i ≤ n.
(54)

Based on the inequality (53), we have

α

2

∑
i∈Λc

∑
j∈Λb

woiw
o
j∥vi − bj∥22 ≤

n∑
i=1

wtifi(θk)−
n∑
i=1

woi fi(θk) + α
∑
i∈Λc

woi ∥vi∥22 + α
∑
i∈Λb

woi ∥bi∥22−

α

n−bf∑
i=1

wti∥vi∥22 +
α

2

n−bf∑
i=1

n−bf∑
j=1

wtiw
t
j∥vi − vj∥22 + Etaylor(w

t)− Etaylor(w
o) (55)

Replacing woi and wtj based on (40) and (54) in the above inequality results in

α

2(n− bf)2
∑
i∈Λc

∑
j∈Λb

∥vi − bj∥22 ≤
1

n− bf

(∑
i∈Λd

fi(θk)−
∑
j∈Λb

fj(θk)
)
+

α

(n− bf)
∑
i∈Λb

∥bi∥22−

α

(n− bf)
∑
i∈Λd

∥vi∥22 +
α

2(n− bf)2

n−bf∑
i=1

n−bf∑
j=1

∥vi − vj∥22 + Etaylor(w
t)− Etaylor(w

o) (56)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

in which Λd = {1, 2, . . . , n − bf} \ Λc, implying |Λd| = n − bf − |Λc| = |Λb|. Using the assumption ∥bj∥ ≤
maxl∈H ∥ṽl∥, we have

α

2(n− bf)2
∑
i∈Λc

∑
j∈Λb

∥vi − bj∥22 ≤
1

n− bf

(∑
i∈Λd

fi(θk)−
∑
j∈Λb

fj(θk)
)
+

αbf
(n− bf)

∥ṽmap(k)∥22−

α

(n− bf)
∑
i∈Λd

∥vi∥22 +
α

2(n− bf)2

n−bf∑
i=1

n−bf∑
j=1

∥vi − vj∥22 + Etaylor(w
t)− Etaylor(w

o) (57)

where map(k) that was selected by the optimizer.

BOUNDING THE LOSS HETEROGENEITY TERM

The first term on the right-hand side of the above inequality captures the effect of non-IID losses. We take its expectation:

E{Loss Term} = 1

n− bf

∑
i∈Λd

mi −
∑
j∈Λb

mj

 .

Let mk = mavg + δk, where δk = mk −mavg .∑
i∈Λd

mi −
∑
j∈Λb

mj =
∑
i∈Λd

(mavg + δi)−
∑
j∈Λb

(mavg + δj)

= (|Λd| − |Λb|)mavg +

∑
i∈Λd

δi −
∑
j∈Λb

δj

 .

Since |Λd| = |Λb|, the mavg terms cancel perfectly. We are left with bounding the sum of the deviations. Taking the
absolute value: ∣∣∣∣∣∣

∑
i∈Λd

δi −
∑
j∈Λb

δj

∣∣∣∣∣∣ ≤
∑
i∈Λd

|δi|+
∑
j∈Λb

|δj | =
∑

k∈Λd∪Λb

|mk −mavg|.

Since the set of selected and discarded clients is a subset of all honest clients, this sum is bounded by the total sum of
deviations over all honest clients: ∑

k∈Λd∪Λb

|mk −mavg| ≤
∑
k∈H

|mk −mavg|.

Using our new assumption,
∑
k∈H |mk −mavg| ≤ (n− bf)εk. Therefore:∣∣∣E{Loss Term}

∣∣∣ = 1

n− bf

∣∣∣∣∣∣
∑
i∈Λd

δi −
∑
j∈Λb

δj

∣∣∣∣∣∣ ≤ (n− bf)εk
n− bf

= εk. (58)

BOUNDING THE PAIRWISE DISTANCE TERM

First, we find an upper bound for the average expected squared distance between any two honest clients.

E{∥vi − vj∥22} = E{∥(gi − gj) + ((vi − gi)− (vj − gj))∥22}
= ∥gi − gj∥22 + E{∥(vi − gi)− (vj − gj)∥22}
= ∥gi − gj∥22 + Var(vi − vj)

≤ ∥gi − gj∥22 + 4dσ2
k.

To bound the average of ∥gi − gj∥22, we add and subtract g and note that
∑
k(gk − g) = 0:

1

(n− bf)2
∑
i,j∈H

∥gi − gj∥22 =
1

(n− bf)2
∑
i,j

∥(gi − g)− (gj − g)∥22

=
2(n− bf)
(n− bf)2

n−bf∑
k=1

∥gk − g∥22 ≤
2

n− bf
· (n− bf)H2

k = 2H2
k .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Therefore, the average expected squared distance is bounded as:

1

(n− bf)2
∑
i,j∈H

E{∥vi − vj∥22} ≤ 2H2
k +

(4dσ2
k)(n− bf − 1)

n− bf
. (59)

BOUNDING THE NORM-DIFFERENCE TERM

This section provides a formal proof for the bound on the term D =
∑
i∈Λb E{∥bi∥22]−

∑
i∈Λd E{∥vi∥22}, which is a

key component of the main resilience proof for the practical mini-batch aggregator.

Lemma 8 (Bound on the Mini-Batch Norm-Difference Term). Under assumptions (1) and assume that ∥bj∥ ≤
maxl∈H ∥ṽl∥.
Then, with probability at least 1− δ (over the mini-batch sampling events), the norm-difference term D is bounded by:

D ≤ bf (2K2
k + dσ2

k + ε2S). (60)

Proof. To prove the lemma, we begin with the definition ofD. The attacker’s gradient norm is bounded by maxl∈H ∥ṽl∥.
Therefore, for each Byzantine client j ∈ Λb, its expected squared norm is bounded by the expected squared norm of
some honest client ‘map(k)‘ that was selected by the optimizer. This allows us to write:

D =
∑
j∈Λb

E{∥bj∥22} −
∑
i∈Λd

E{∥vi∥22}

≤

bfE{∥ṽmap(k)∥22} −
∑
i∈Λd

E{∥vi∥22}

 , (61)

The mini-batch gradient ṽk is an unbiased estimate of the population gradient vk, meaning Ebatch{ṽk} = vk. The total
expectation is taken over both the mini-batch sampling and the population distribution. We have:

E{∥ṽk∥22} = E{∥vk + (ṽk − vk)∥22}
= E{∥vk∥22 + 2⟨vk, ṽk − vk⟩+ ∥ṽk − vk∥22}.

The cross-term vanishes under the total expectation because the inner expectation over the batch is zero: E{⟨vk, ṽk −
vk⟩} = E{⟨vk,Ebatch{ṽk} − vk} = E{⟨vk,vk − vk} = 0. Consequently,

E{∥ṽk∥22} = E{∥vk∥22}+ E{∥ṽk − vk∥22}. (62)

We now substitute (62) into (61), resulting in

D ≤

bf (E{∥vmap(k)∥22}+ E{∥devmap∥22}
)
−
∑
i∈Λd

E{∥vi∥22}


where dev denotes the sampling deviation vector (ṽ − v). We first bound the population level. Using E{∥vk∥22} =
∥gk∥22 + Var(vk) ≤ ∥gk∥22 + dσ2

k:∑
i∈Λd

(
E{∥vmap(k)∥22} − E{∥vk∥22}

)
≤
∑
i∈Λd

(
(∥gmap(k)∥22 + dσ2

k)− ∥gk∥22
)
=
∑
i∈Λd

(∥gmap(k)∥22 − ∥gk∥22) + bfdσ
2
k.

We now apply the Bounded Norm Deviation assumption (K2) to the difference of squared norms:∣∣∣∥gmap(k)∥22 − ∥gi∥22
∣∣∣ = ∣∣∣(∥gmap(k)∥22 − ∥g∥22)− (∥gi∥22 − ∥g∥22)

∣∣∣
≤
∣∣∣∥gmap(k)∥22 − ∥g∥22

∣∣∣+ ∣∣∣∥gi∥22 − ∥g∥22∣∣∣ ≤ 2K2
k .

This gives the final, ∥g∥2-independent bound for the norm-difference term:

bf∑
k=1

(
E{∥vmap(k)∥22} − E{∥vk∥22}

)
≤

bf∑
k=1

2K2
k + bfdσ

2
k = bf (2K

2
k + dσ2

k). (63)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Next, we bound the sampling deviation. The high-probability bound states that ∥dev∥2 ≤ ε2S for any client. To get an
upper bound on the difference, we have:

E{∥devmap∥22} ≤ ε2S .
Summing over the bf clients, this entire term is bounded by bfε2S .

Finally, combining the bounds for the two separated terms, we arrive at the final result. With probability at least 1− δ:

D ≤
(
bf (2K

2
k + dσ2

k)
)
+
(
bfε

2
S

)
= bf (2K

2
k + dσ2

k + ε2S).

This completes the proof of Lemma 8.

BOUNDING THE TAYLOR ERROR TERM

The new term introduced by the exact analysis is Enew = (Etaylor(w
t)− Etaylor(w

o)). We now bound its magnitude.

|Enew| =
∣∣∣(∑wtiRi(w

t)−
∑

woiRi(w
o)
)∣∣∣

≤
(∑

wti |Ri(wt)|+
∑

woi |Ri(wo)|
)

≤ Lmax

2
α2
(
∥Gkw

t∥2 + ∥Gkw
o∥2
)

=
Lmaxα

2

2

(
∥Gkw

t∥2 + ∥Gkw
o∥2
)

To get a concrete bound, using the assumption ∥bi∥2 ≤ maxl∈H ∥ṽl∥2, and since w is in the simplex,
∥ 1
n−bf

(∑
i∈Λc ṽi+

∑
j∈Λb bj

)
∥2 ≤ 1

n−bf

(∑
i∈Λc ∥ṽi∥22+

∑
j∈Λb ∥bj∥22

)
≤ 1

n−bf

(∑
i∈Λc ∥ṽi∥22+bf∥ṽmap(k)∥22

)
.

Similarly, ∥Gkw
o∥2 ≤ 1

n−bf

(∑n−bf
i=1 ∥ṽi∥22

)
. Consequently,

E{|Enew|} ≤
Lmaxα

2

2(n− bf)

(n−bf∑
i=1

E{∥ṽi∥22}+
∑
i∈Λc

E{∥ṽi∥22}+ bfE{∥ṽmap(k)∥22}
)

≤ Lmaxα
2

2(n− bf)

(n−bf∑
i=1

E{∥vi∥22}+
∑
i∈Λc

E{∥vi∥22}+ bfE{∥vmap(k)∥22}
)
+ Lmaxα

2ε2S by using(62) (64)

Rearranging and using the assumption that Var(vi) ≤ dσ2
k, we get:

E{∥vi∥2} = ∥gi∥2 + Var(vi) ≤ ∥gi∥2 + dσ2
k

We now sum the above result over all n− bf honest clients:

n−bf∑
i=1

E{∥vi∥2} ≤
n−bf∑
i=1

(∥gi∥2 + dσ2
k) =

n−bf∑
i=1

∥gi∥2
+ (n− bf)dσ2

k

The final piece is to bound the sum of squared population gradients using the heterogeneity constant H and the mean
gradient g. We use the ”add and subtract g” trick:

n−bf∑
i=1

∥gi∥2 =

n−bf∑
i=1

∥gi − g + g∥2

=

n−bf∑
i=1

(
∥gi − g∥2 + 2⟨gi − g,g⟩+ ∥g∥2

)
=

n−bf∑
i=1

∥gi − g∥2 + 2

〈n−bf∑
i=1

(gi − g),g

〉
+

n−bf∑
i=1

∥g∥2

The middle term is zero because
∑n−bf
i=1 (gi − g) = (

∑
gi)− (n− bf)g = (n− bf)g − (n− bf)g = 0. This leaves

us with:
n−bf∑
i=1

∥gi∥2 =

n−bf∑
i=1

∥gi − g∥2 + (n− bf)∥g∥2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Using the heterogeneity assumption from your proof,
∑n−bf
i=1 ∥gi − g∥2 ≤ (n− bf)H2

k , we get our final bound on this
sum:

n−bf∑
i=1

∥gi∥2 ≤ (n− bf)H2
k + (n− bf)∥g∥2 (65)

To compute the upper bound for
∑
i∈Λc E{∥vi∥22}+ bfE{∥vmap(k)∥22}, we have∑

i∈Λc

E{∥vi∥22}+ bfE{∥vmap(k)∥22} ≤ (n− bf)dσ2
k +

∑
i∈Λc

∣∣∣∥gi∥22 − ∥g∥22∣∣∣+ bf

∣∣∣∥gmax(k)∥22 − ∥g∥22
∣∣∣+ (n− bf)∥g∥22

≤ (n− bf)dσ2
k + (n− bf)K2

k + (n− bf)∥g∥22 (66)

Replacing (65) and (66) into (64) gives us:

E{|Enew|} ≤ Lmaxα
2

(
∥g∥2 + H2

k

2
+
K2
k

2
+ dσ2

k + ε2S

)
(67)

ASSEMBLING THE RESULT FOR IDEAL ERROR

We substitute the bounds from (58), (59), (60), and (67) into the expectation of the main inequality (57).

α

2(n− bf)2
∑

i∈Λc,j∈Λb

E{∥vi − bj∥22} ≤ εk +
α

n− bf
(
bf (2K

2
k + dσ2

k + ε2S)
)
+

(2αdσ2
k)(n− bf − 1)

n− bf
2dσ2

k+

αH2
k + Lmaxα

2

(
∥g∥2 + H2

k

2
+
K2
k

2
+ dσ2

k + ε2S

)
= εk +

2K2
kαbf

n− bf
+
ε2Sαbf
n− bf

+ αH2
k +

(αdσ2
k)(2n− bf − 2)

n− bf
+

Lmaxα
2

(
∥g∥2 + H2

k

2
+
K2
k

2
+ dσ2

k + ε2S

)
.

Dividing the entire inequality by α/2, we obtain the final bound on the expected distance:

1

(n− bf)2
∑
i∈Λc

∑
j∈Λb

E
{
∥vi − bj∥2

}
≤ 2εk

α
+

(
4K2

kbf
n− bf

+
2ε2Sbf
n− bf

+ 2H2
k

)
+

(2dσ2)(2n− bf − 2)

n− bf

+ 2Lmaxα

(
∥g∥2 + H2

k

2
+
K2
k

2
+ dσ2

k + ε2S

)
. (68)

To eliminate the ∥g∥2 dependency and using α ≤ 1
Lmax

, we absorb the 2Lmaxα∥g∥2 part of the Taylor error into the
same budget:

2Lmaxα∥g∥2 ≤ Chet =⇒ α ≤ min{ 1

Lmax
,

Chet

2Lmax∥g∥2
}

where where the constant ”absorption budget” Chet is defined as:

Chet :=
4K2

kbf
n− bf

+ 2H2
k +

2dσ2
k(2n− bf − 2)

n− bf
+

2ε2Sbf
n− bf

Using inequality (68) with 2Lmaxα∥g∥2 ≤ Chet in (51) and noting that |Λd| ≤ bf results in

∥E{F − s}∥2 ≤
√
bf

(2εk
α

+ 2Chet + 2Lmaxα(
H2
k

2
+
K2
k

2
+ dσ2

k + ε2S)
)

(69)

Incorporating the above inequality in (48), we obtain

∥E{F} − g∥2 ≤
√
2bf

(εk
α

+ Chet + Lmaxα(
H2
k

2
+
K2
k

2
+ dσ2

k + ε2S)
)
+

2bf√
n− bf

Hk (70)

Combining the above results with (42) gives us

∥E{F̃} − g∥2 ≤
√
2bf

(εk
α

+ Chet + Lmaxα(
H2
k

2
+
K2
k

2
+ dσ2

k + ε2S)
)
+

2bf√
n− bf

Hk + εS︸ ︷︷ ︸
η

(71)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

By assumption, η < ∥g∥2, i.e. E{F̃} belongs to a ball centered at g with radius η. This implies

⟨E{F̃},g⟩ ≥ (∥g∥2 − η)∥g∥2 = (1− sinα)∥g∥22 (72)

To finalize the proof, we need to verify the second condition of Definition 5 using our method. To do this, we have

∥F̃∥2 = ∥ 1

n− bf

(∑
i∈Λc

ṽi +
∑
j∈Λb

bj

)
∥2 =

1

n− bf
∥
∑
i∈Λc

ṽi +
∑
j∈Λb

bj∥2 (73)

Using the triangle inequality in the above equation and ∥bi∥22 ≤ maxl∈H ∥ṽl∥22 results in

∥F̃∥2 ≤
1

n− bf

(∑
i∈Λc

∥ṽi∥2 +
∑
j∈Λb

∥bj∥2
)
≤ 1

n− bf

(∑
i∈Λc

∥ṽi∥2 + bf max
l∈H
∥ṽl∥2

)
(74)

Using maxl∈H ∥ṽl∥ ≤
∑
l∈H ∥ṽl∥2, we have

∥F̃∥2 ≤
1

n− bf

(∑
i∈Λc

∥ṽi∥2 + bf max
l∈H
∥ṽl∥

)
≤ 1

n− bf

(∑
l∈H

∥ṽl∥2 + bf
∑
l∈H

∥ṽl∥2

)
=

1 + bf
n− bf

∑
l∈H

∥ṽl∥2.

Finally, using the inequality (a+ b)r ≤ 2r−1(ar + br) and the multinomial theorem, we have

∥F̃∥r2 ≤
(1 + bf)

r

(n− bf)r
(n−bf∑

i=1

∥vi∥2 + (n− bf)εS
)r
≤

2r−1(1 + bf)
r

(n− bf)r
(
(n− bf)rεrS +

∑
r1+···+rn=r
r1,...,rn≥0

n!

r1!r2! . . . rn!
∥v1∥r12 ∥v2∥r22 . . . ∥vn∥rn2

)
(75)

Since G1, . . . , Gn are independent, we obtain

E{∥F̃∥r2} ≤
2r−1(1 + bf)

r

(n− bf)r
∑

r1+···+rn=r
r1,...,rn≥0

n!

r1!r2! . . . rn!

n∏
i=1

E{∥Gi∥ri2 }+ 2r−1(1 + bf)
rεrS (76)

This concludes the proof of Theorem 7.

F BYZANTINE RESILIENCE AGAINST ADVERSARIAL LOSS AND GRADIENT

Theorem 9. If all the assumptions stated in Assumption 1 hold, and suppose bf mini-batch gradient updates ṽi and the
corresponding loss values fi are replaced with their Byzantine counterparts bi and f̃i, respectively (e.g. data poisoning
attack) with 2bf + 2 ≤ n. Then, for a step-size 0 < α ≤ αmax in which αmax = min

{
1

Lmax
, Chet
2Lmax∥g∥2

}
, we have

∥E{F̃} − g∥2 ≤

√
2bf

(1
α
(εk +

bf
n− bf

mavg) + Chet + Lmaxα(
H2
k

2
+
K2
k

2
+ dσ2

k + ε2S)
)
+

2bf√
n− bf

Hk + εS︸ ︷︷ ︸
η̃

(77)

and if η̃ < ∥g∥2, we have

⟨E{F̃},g⟩ ≥ (∥g∥2 − η̃)∥g∥2 = (1− sinα)∥g∥22. (78)

Proof. The proof of the above lemma closely follows the approach used in Theorem 7. However, unlike Theorem 7,
which considers only the presence of Byzantine gradient updates, this theorem accounts for both Byzantine gradient
updates and Byzantine loss values, requiring additional care in the analysis.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

The main difference between the results of both loss and gradient attacks, compared to the model attack, is that some
losses are replaced with their Byzantine versions. So, based on (57), we need to replace the losses of adversarial clients
with the Byzantine version, resulting in

α

2(n− bf)2
∑
i∈Λc

∑
j∈Λb

∥vi − bj∥22 ≤
1

n− bf

(∑
i∈Λd

fi(θk)−
∑
j∈Λb

f̃j(θk)
)
+

α

(n− bf)
∑
i∈Λb

∥bi∥22 −
α

(n− bf)
∑
i∈Λd

∥vi∥22 +
α

2(n− bf)2

n−bf∑
i=1

n−bf∑
j=1

∥vi − vj∥22 + Etaylor(w
t)− Etaylor(w

o)︸ ︷︷ ︸
term1

(79)

Using the assumptions that ∥bi∥22 ≤ max
l∈H
∥ṽl∥22, the byzantine losses f̃j are nonnegative, and using mi = E{fi(θ)},

we have
1

(n− bf)2
∑
i∈Λc

∑
j∈Λb

E{∥vi − bj∥22} ≤
2

α(n− bf)
∑
i∈Λd

mi︸ ︷︷ ︸
term2

+
2

α
E{term1}. (80)

It is worth noting that term1 is exactly the same as the term following the loss difference in the right-hand side of the
inequality (57). Using (68), we can write

2

α
E{term1} =

(
4K2

kbf
n− bf

+
2ε2Sbf
n− bf

+ 2H2
k

)
+

(2dσ2
k)(2n− bf − 2)

n− bf
+ 2Lmaxα

(
∥g∥2 + H2

k

2
+
K2
k

2
+ dσ2

k + ε2S

)
.

(81)

Now we need to bound the term term2. Based on Assumption 1, we know 1
n−bf

∑n−bf
i=1 |mi −mavg| ≤ εk and using

|Λd| ≤ bf , we have

2

α(n− bf)
∑
i∈Λd

mi −mavg +mavg ≤
2

α(n− bf)

(∑
i∈Λd

|mi −mavg|+ bfmavg

)
≤ 2

α
(εk +

bf
n− bf

mavg) (82)

Using (81) and (82) in (80) yields to

1

(n− bf)2
∑
i∈Λc

∑
j∈Λb

E{∥vi − bj∥22} ≤
2

α
(εk +

bf
n− bf

mavg)+(
4K2

kbf
n− bf

+
2ε2Sbf
n− bf

+ 2H2
k

)
+

(2dσ2)(2n− bf − 2)

n− bf
+ 2Lmaxα

(
∥g∥2 + H2

k

2
+
K2
k

2
+ dσ2

k + ε2S

)
. (83)

The rest of the proof is the same as the one used in the proof of Theorem 7. Consequently,

∥E{F̃} − g∥2 ≤

√
2bf

(1
α
(εk +

bf
n− bf

mavg) + Chet + Lmaxα(
H2
k

2
+
K2
k

2
+ dσ2

k + ε2S)
)
+

2bf√
n− bf

Hk + εS

(84)
By assumption, η̃ < ∥g∥2, i.e. E{F̃} belongs to a ball centered at g with radius η̃. This implies

⟨E{F̃},g⟩ ≥ (∥g∥2 − η̃)∥g∥2 = (1− sinα)∥g∥22. (85)

The remainder of the proof proceeds by following the same reasoning as the argument presented after (72).

This concludes the proof of Theorem 9.

G PROOF OF THEOREM 3 AND DETERMINING LIPSCHITZ CONSTANT Lw

G.1 PROOF OF THEOREM 3 FOR L-SMOOTH (ITEM 1)

In this section, we provide the proof of Item 1 of Theorem 3.
Theorem 10. Consider the cost function (1) under Assumption 1. The sequence {θk,wk}∞k=1 generated by Algorithm
2 satisfies the corresponding result of Item 1 of Theorem 3.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Proof. To streamline notation and maintain consistency with Assumption 1, we denote the true population gradient by
vk,i = ∇θfi(θk), and the mini-batch gradient by ṽk,i. It is important to note that, in the optimality condition of our
method—since it is solved on the server side—we work with mini-batch gradients, whereas in the descent lemma we
analyze the true gradients.

Since each fi is continuously differentiable and its gradient∇θfi is Li-Lipschitz continuous, Lemma 4 directly implies
that

fi(θ̃k+1) ≤ fi(θk) + ⟨vk,i, θ̃k+1 − θk⟩+
Li
2
∥θ̃k+1 − θk∥22. (86)

Multiplying both sides of the above inequality by wk,i and summing over i = 1 to n, we have:

n∑
i=1

wk,ifi(θ̃k+1) ≤
n∑
i=1

wk,ifi(θk) + ⟨
n∑
i=1

wk,ivk,i, θ̃k+1 − θk⟩+

n∑
i=1

wk,iLi

2
∥θ̃k+1 − θk∥22. (87)

It is important to note that in the above inequality, all gradients {vk,i}ni=1 are honest ones; otherwise, the descent lemma
breaks. We use the notation F ck (wk) =

∑n
i=1 wk,ivk,i for the all honest gradients.

In the first step of our proposed method to find the θ, we utilize (5). Since, θ̃k+1 = θk − αGkwk = θk − αFk(wk) is
the minimizer of (5) when w = wk, we can write

⟨
∑
i∈H

wk,iṽk,i +
∑
i∈H∁

wk,ibk,i, θ̃k+1 − θk⟩+
1

2α
∥θ̃k+1 − θk∥22 ≤ 0. (88)

Here, the term
∑
i∈H wk,iṽk,i +

∑
i∈H∁ wk,ibk,i accounts for both the contributions from the set of honest clientsH

and the complement setH∁. Crucially, because the optimization problem (5) is solved at the server side, the gradients
of Byzantine clients may be arbitrarily substituted by bk,i. This explains why the inequality above involves bk,i rather
than the true gradients.

Adding the above inequality to (87) gives us
n∑
i=1

wk,ifi(θ̃k+1) + ⟨Fk(wk),−αFk(wk)⟩+
1

2α
∥θ̃k+1 − θk∥22 ≤

n∑
i=1

wk,ifi(θk)+

⟨F ck (wk),−αFk(wk)⟩+

n∑
i=1

wk,iLi

2
∥θ̃k+1 − θk∥22. (89)

Simplifying this inequality and using
n∑
i=1

wk,iLi ≤
n∑
i=1

wk,iLmax ≤ Lmax, we have

n∑
i=1

wk,ifi(θ̃k+1) ≤
n∑
i=1

wk,ifi(θk) + α⟨Fk(wk)− F ck (wk), Fk(wk)⟩+ (
Lmax

2
− 1

2α
)α2∥Fk(wk)∥22. (90)

On the other hand using Lemma 4 for wT f(θk − αGkw) results in
n∑
i=1

wk+1,ifi(θk − αGkwk+1) ≤
n∑
i=1

wk,ifi(θk − αGkwk)+

⟨∇wwT
k f(θk − αGkwk),wk+1 −wk⟩+

Lw
2
∥wk+1 −wk∥22. (91)

In terms of θk+1 = θk − αGkwk+1 and θ̃k+1 = θk − αGkwk, this inequality reads
n∑
i=1

wk+1,ifi(θk+1) ≤
n∑
i=1

wk,ifi(θ̃k+1) + ⟨∇wwT
k f(θ̃k+1),wk+1 −wk⟩+

Lw
2
∥wk+1 −wk∥22 (92)

In the above inequality, since we are writing a descent lemma, all gradients are true.

It is straightforward to show that the optimization problem (9) is equivalent to the following formulation:

wk+1 = argmin
w

⟨∇wwT
k f(θk − αGkwk),w −wk⟩+

1

2βk+1
∥w −wk∥22 + δ∆+

t,ℓ0

(w). (93)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

The term ∇wwT
k f(θk − αGkwk) = f(θ̃k+1) − αGT

k G̃k+1wk in the above inequality. However, the similar term
in (92) does not include Byzantine data, so we just replace H = {1, · · · , n} in (92), using notation G̃c

k+1 instead of
G̃k+1.

From (93), since wk+1 minimizes the objective function, its corresponding objective value is less than or equal to that
of any other feasible choice, including w = wk. This yields the inequality:

⟨∇w
n∑
i=1

wk,ifi(θ̃k+1),wk+1 −wk⟩+
1

2βk+1
∥wk+1 −wk∥22 + δ∆+

t,ℓ0

(wk+1) ≤ δ∆+
t,ℓ0

(wk) (94)

Adding the above inequality to (92) yields:

n∑
i=1

wk+1,ifi(θk+1) + δ∆+
t,ℓ0

(wk+1) ≤
n∑
i=1

wk,ifi(θ̃k+1)+

⟨αGT
k (G̃k+1 − G̃c

k+1)wk,wk+1 −wk⟩+ (
Lw
2
− 1

2βk+1
)∥wk+1 −wk∥22 + δ∆+

t,ℓ0

(wk) (95)

It is straightforward to show that the above inequality can be written

n∑
i=1

wk+1,ifi(θk+1) + δ∆+
t,ℓ0

(wk+1) ≤
n∑
i=1

wk,ifi(θ̃k+1)+

α⟨Fk(wk+1)− Fk(wk),Fk+1(wk)− Fck+1(wk)⟩+ (
Lw
2
− 1

2βk+1
)∥wk+1 −wk∥22 + δ∆+

t,ℓ0

(wk) (96)

Adding inequality (90) to the above inequality yields:

n∑
i=1

wk+1,ifi(θk+1) +

n∑
i=1

wk,ifi(θ̃k+1) + δ∆+
t,ℓ0

(wk+1) ≤
n∑
i=1

wk,ifi(θk) +

n∑
i=1

wk,ifi(θ̃k+1)+

α⟨Fk(wk+1)− Fk(wk),Fk+1(wk)− Fck+1(wk)⟩+ α⟨Fk(wk)− Fck(wk),Fk(wk)⟩+

(
Lw
2
− 1

2βk+1
)∥wk+1 −wk∥22 + (

Lmax

2
− 1

2α
)∥θk+1 − θk∥22 + δ∆+

t,ℓ0

(wk) (97)

Simplifying the above inequality results in:

Qk+1 ≤ Qk + α⟨Fk(wk+1)− Fk(wk),Fk+1(wk)− Fck+1(wk)⟩︸ ︷︷ ︸
Ek+1

+α⟨Fk(wk)− Fck(wk),Fk(wk)⟩︸ ︷︷ ︸
Ik

+

(
Lmax

2
− 1

2α

)
α2 ∥Fk(wk+1)∥22︸ ︷︷ ︸

Fk

+

(
Lw
2
− 1

2βk+1

)
∥wk+1 −wk∥22, (98)

whereQk+1 =
∑n
i=1 wk+1,ifi(θk+1)+δ∆+

t,ℓ0

(wk+1). To guarantee the exclusion of exactly bf clients, we set t = 1/s

and s = n − bf (see proposition 2). With this choice, the nonzero weights become 1/(n − bf), ensuring that our
algorithm removes precisely bf clients.

To continue the proof, we take the expectation of the above inequality over all sources of randomness. We first focus on
deriving an upper bound for the expectation of the cross-time-step error term:

Ek+1 = α
〈
Fk(wk+1)− Fk(wk), Fk+1(wk)− F ck+1(wk)

〉
,

which is formalized in the following lemma.

Lemma 11. Let Item B2 of Assumptions 1 hold. The expected error is bounded by:

E[Ek+1] ≤ 2αζk+1

(
∥gk∥+

√
K2
k + dσ2

k + ε2S

)
. (99)

Proof. The proof proceeds by first separating the randomness from different time steps.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Let Ek[·] denote the expectation conditioned on all information up to step k. We rewrite the total expectation using the
law of total expectation, E[·] = Ek[Ek+1[·]]. Let Ek+1

Byz = Fk+1(wk)− F ck+1(wk).

E[Ek+1] = α · Ek
[
⟨Fk(wk+1)− Fk(wk),Ek+1[E

k+1
Byz]⟩

]
.

The inner expectation is the bias of the aggregator at step k+ 1 using the weights from step k. By our Bias Assumption,
its norm is bounded by ζk+1. Applying the Cauchy-Schwarz inequality:

E[Ek+1] ≤ αζk+1 · E[∥∆Fk∥], (100)

where ∆Fk = Fk(wk+1)− Fk(wk). The problem is now reduced to finding an upper bound for E[∥∆Fk∥].
The change in the aggregator is ∆Fk = Gk(wk+1−wk). Let mk be the number of clients whose weights are swapped
between iterations. Under the simplified weight structure, ∆Fk = 1

n−bf (
∑
i∈Ac

k
ṽk,i +

∑
i∈Ab

k
bk,i −

∑
j∈Rc

k
ṽk,j −∑

j∈Rb
k
bk,j) in which bk,j is Byzantine gradient of client j at round k. The change in weights from wk to wk+1

occurs because some clients are removed from the active set and replaced by others. We formally define these sets of
swapped clients:

• Let Ak = supp(wk+1) \ supp(wk) be the set of ”added” clients.

• LetRk = supp(wk) \ supp(wk+1) be the set of ”removed” clients.

Since the size of the active set is constant at s = n− bf , we have |Ak| = |Rk| = mk. We can further partition these
sets into honest (H) and Byzantine (H∁) clients:

• Added honest/Byzantine: Ack = Ak ∩H, Abk = Ak ∩H∁.

• Removed honest/Byzantine: Rck = Rk ∩H,Rbk = Rk ∩H∁.

Under the simplified weight structure where non-zero weights are 1/(n− bf), the change in the aggregator ∆Fk can be
written explicitly as:

∆Fk =
1

n− bf

∑
i∈Ac

k

ṽk,i +
∑
i∈Ab

k

bk,i

−
∑
j∈Rc

k

ṽk,j +
∑
j∈Rb

k

bk,j

 .

To bound E[∥∆Fk∥], we first bound the expected squared norm, E[∥∆Fk∥2], using the assumption ∥bk,j∥ ≤
maxi∈H ∥ṽk,i∥2 and then use Jensen’s inequality.

E[∥∆Fk∥2] ≤
2

(n− bf)2

E


∥∥∥∥∥∥
∑
i∈Ac

k

ṽk,i +
∑
i∈Ab

k

bk,i

∥∥∥∥∥∥
2
+ E


∥∥∥∥∥∥
∑
i∈Rc

k

ṽk,i +
∑
i∈Rb

k

bk,i

∥∥∥∥∥∥
2



≤ 2

(n− bf)2

mk

(∑
i∈Ac

k

E{∥ṽk,i∥2}+ |Abk|E{∥ṽk,map(i)∥22}
)
+mk

(∑
j∈Rk

E{∥ṽk,i∥2}+ |Rbk|E{∥ṽk,map(i)∥22}
) .

where map(i) = argmaxi∈H∥ṽk,i∥2. The next step is to bound the expected squared norm of an arbitrary client’s
gradient, E[∥ṽk,i∥2]. For an honest client i , using (62), and E{∥vk,i∥2} ≤ ∥gk∥2 +K2

k + dσ2
k

E[∥ṽk,i∥2] ≤ ∥gk∥2 +K2
k + dσ2

k + ε2S .

Substituting this in:

E[∥∆Fk∥2] ≤
4m2

k(∥gk∥2 +K2
k + dσ2

k + ε2S)

(n− bf)2
.

Using Jensen’s inequality, E[X] ≤
√
E[X2], we get the bound on the expected norm:

E[∥∆Fk∥] ≤

√
4m2

k(∥gk∥2 +K2
k + dσ2

k + ε2S)

(n− bf)2
. (101)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

The bound in (101) depends on ∥gk∥. To split it, we use the inequality
√
x+ y ≤

√
x+
√
y for x, y ≥ 0.√

∥gk∥2 +K2
k + dσ2

k + ε2S ≤
√
∥gk∥2 +

√
K2
k + dσ2

k + ε2S = ∥gk∥+
√
K2
k + dσ2

k + ε2S .

Let CK =
√
K2
k + dσ2

k + ε2S . Substituting this into the bound for E[∥∆Fk∥]:

E[∥∆Fk∥] ≤
2mk

n− bf
(∥gk∥+ CK).

using the above inequality from (100) and mk ≤ n− bf , we have:

E[Ek+1] ≤ αζk+1 · E[∥∆Fk∥]

≤ αζk+1 ·
2mk

n− bf
(∥gk∥+ CK)

≤ 2αζk+1∥gk∥+ 2αζk+1CK .

This completes the proof of Lemma 11.

Next, we focus on deriving the upper bound of the expectation of Ik in (98).

Lemma 12 (Bound on the Single-Step Bias Term). Let Assumptions 1 hold. Then, the expectation of the single-step
bias term is bounded by:

Ek{α⟨Fk − F ck , Fk⟩} ≤ α
(
ζk∥gk∥+ ζ2k + σ2

F,k + σk
√
d
√
ζ2k + σ2

F,k

)
. (102)

Proof. The derivation proceeds by decomposing the inner product with respect to the true gradient gk. The constant α
can be handled at the end. We focus on finding an upper bound for Ik = Ek[⟨Fk − F ck , Fk⟩].
First, we have

⟨Fk − F ck , Fk⟩ = ⟨(Fk − gk)− (F ck − gk),gk + (Fk − gk)⟩.

We can expand this inner product, which results in four terms:

⟨Fk − F ck , Fk⟩ = ⟨Fk − gk,gk⟩︸ ︷︷ ︸
Term 1

+ ∥Fk − gk∥2︸ ︷︷ ︸
Term 2

− ⟨F ck − gk,gk⟩︸ ︷︷ ︸
Term 3

−⟨F ck − gk, Fk − gk⟩︸ ︷︷ ︸
Term 4

.

We now take the conditional expectation Ek[·] of each of the four terms.

• Term 1: Since gk is deterministic at step k, we have:

Ek[⟨Fk − gk,gk⟩] = ⟨Ek[Fk]− gk,gk⟩.

By the Cauchy-Schwarz inequality and the bounded bias assumption:

⟨Ek[Fk]− gk,gk⟩ ≤ ∥Ek[Fk]− gk∥ · ∥gk∥ ≤ ζk∥gk∥.

• Term 2: This is the Mean Squared Error (MSE) of our aggregator, which decomposes into squared bias and
variance:

Ek[∥Fk − gk∥2] = ∥Ek[Fk]− gk∥2 + Vark(Fk) ≤ ζ2k + σ2
F,k.

• Term 3: Since the clean aggregator F ck is unbiased (Ek[F ck] = gk), this term’s expectation is zero:

Ek[⟨F ck − gk,gk⟩] = ⟨Ek[F ck]− gk,gk⟩ = ⟨gk − gk,gk⟩ = 0.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• Term 4: For the final cross-term, we use the Cauchy-Schwarz inequality for random vectors, |E[⟨X,Y ⟩]| ≤√
E[∥X∥2]E[∥Y ∥2].

−Ek[⟨F ck − gk, Fk − gk⟩] ≤ |Ek[⟨F ck − gk, Fk − gk⟩]|

≤
√
Ek[∥F ck − gk∥2] ·

√
Ek[∥Fk − gk∥2]

≤
√
dσ2

k ·
√
ζ2k + σ2

F,k = σk

√
d(ζ2k + σ2

F,k).

Summing these four bounds gives the result for Ik. Multiplying by α completes the proof of Lemma 12.

Next, we focus on deriving the lower bound of the expectation of Fk in (98).

Lemma 13 (Bound on the Expected Squared Aggregator Norm). Let Assumptions 1 hold. Then, we have:

Ek[∥Fk∥22] ≥ ∥gk∥22 − 2ζk∥gk∥2. (103)

Proof. We know
Ek[∥Fk∥22] = Vark(Fk) + ∥Ek[Fk]∥22. (104)

Since Vark(Fk) ≥ 0, we can therefore drop this term, resulting in

Ek[∥Fk∥22] ≥ ∥Ek[Fk]∥22. (105)

Using the inequality ∥a+ b∥2 ≥ (∥a∥ − ∥b∥)2 = ∥a∥2 − 2∥a∥∥b∥+ ∥b∥2, we can write

∥Ek[Fk]∥22 = ∥gk + (Ek[Fk]− gk)∥22 ≥ ∥gk∥22 − 2∥gk∥2∥Ek[Fk]− gk∥2 + ∥Ek[Fk]− gk∥22.

We now use our aggregator’s bias assumption, ∥Ek[Fk]− gk∥ ≤ ζk . We can substitute this into the inequality:

∥Ek[Fk]∥22 ≥ ∥gk∥22 − 2ζk∥gk∥2 + ∥Ek[Fk]− gk∥22.

Since the final term is non-negative, we can drop it from the right-hand side. This gives us:

∥Ek[Fk]∥22 ≥ ∥gk∥22 − 2ζk∥gk∥2. (106)

Using (106) in (105) yields to

Ek[∥Fk∥22] ≥ ∥Ek[Fk]∥22 ≥ ∥gk∥22 − 2ζk∥gk∥2.

This completes the proof of Lemma 13.

Now we return to (98). We take the expectation E[·] and substitute the bounds for Ek+1, Ik and Fk from (99), (102),
and (103), respectively.

E{Qk+1} ≤ E{Qk}+ 2αζk+1

(
∥gk∥+

√
K2
k + dσ2

k + ε2S

)
(from Ek)

+
(
α(ζk∥gk∥+ ζ2k + σ2

F,k + σk
√
d
√
ζ2k + σ2

F,k)
)

(from Ik)

− Cαα2
(
∥gk∥22 − 2ζk∥gk∥2

)
(fromFk)

− Cβk+1
Ek{∥wk+1 −wk∥22}. (Weight Descent)

Let Cα = (1
2α −

Lmax

2) > 0 and Cβk+1
= (1

2βk+1
− Lw

2) > 0, resulting in α < 1
Lmax

and βk+1 <
1
Lw

. We group
terms by their dependence on ∥gk∥. Let Bkα = α(2ζk+1 + ζk + 2Cααζk) be the coefficient of the rebound term. Let

Cerr,k+1 = 2ζk+1

√
K2
k + dσ2

k + ε2S +
(
ζ2k + σ2

F,k + σk
√
d
√
ζ2k + σ2

F,k

)
which collects all constant error terms.

E{Qk+1} ≤ E{Qk} − Cαα2∥gk∥22 +Bkα∥gk∥+ Cerr,k+1α− Cβk+1
E[∥wk+1 −wk∥22].

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

The term Bk∥gk∥ is positive and could counteract the main descent. We use Young’s inequality, ab ≤ γ
2a

2 + 1
2γ b

2, on
Bk∥gk∥:

Bkα∥gk∥ ≤
γ

2
∥gk∥2 +

B2
kα

2

2γ
.

Here, γ is a free parameter. We make a standard strategic choice to ensure descent: we set the ”rebound” from Young’s
inequality to be half of the main descent, i.e., γ2 = 1

2Cαα
2, so γ = Cαα

2. The combined coefficient of ∥gk∥2 becomes:

−Cαα2 +
γ

2
= −Cαα2 +

Cαα
2

2
= −Cαα

2

2
= −

(
α

4
− Lmaxα

2

4

)
.

This is strictly negative for α < 1/Lmax, guaranteeing descent. The other constant term from Young’s inequality is B2
k

2γ .
Consequently,

E{Qk+1} ≤ E{Qk} − C1α∥gk∥2 + C2,kα− Cβk+1
E[∥wk+1 −wk∥22], (107)

where C1 = 1
4 (1− Lmaxα) > 0 for 0 < α < 1/Lmax, and C2,k is the constant that groups all bias and variance terms:

C2,k = Cerr,k+1 +
B2

k

4C1
.

Taking the total expectation from the above inequality, since gk is deterministic, and sum from k = 0 to T − 1:

C1α

T−1∑
k=0

∥gk∥2 +
T−1∑
k=0

Cβk+1
E[∥wk+1 −wk∥22] ≤ (E[Q0]− E[QT]) +

T∑
k=1

C2,kα. (108)

Now, we keep the first term of the left hand side of the inequality (108), resulting in

C1α

T−1∑
k=0

∥gk∥2 ≤ (E[Q0]− E[QT]) +
T∑
k=1

C2,kα.

Let Q⋆ = infθ,wQ(θ,w) be the minimum value of our objective, which we assume is bounded. By definition, for any
k, QT ≥ Q⋆, and therefore:

E[Q0]− E[QT] ≤ Q0 −Q⋆. (109)

Substituting this back into our main sum:

C1α

T−1∑
k=0

∥gk∥2 ≤ (Q0 −Q⋆) +
T∑
k=1

C2,kα.

Dividing by TC1α:

1

T

T−1∑
k=0

∥gk∥2 ≤
Q0 −Q⋆

TC1α
+

T∑
k=1

C2,k

TC1
.

Taking the limit as T →∞, the first term on the right-hand side vanishes, leaving the final bound on the average of the
squared gradients:

lim
T→∞

sup
1

T

T−1∑
k=0

∥gk∥2 ≤ lim
T→∞

T−1∑
k=1

C2,k

TC1
. (110)

Now, we provide a detailed analysis of the order of this final error rate.

Since C1 = O(1), the final error rate is determined by C2,k. Based on the definition of C2,k, we have

C2,k = 2ζk+1

√
K2
k + dσ2

k + ε2S +
(
ζ2k + σ2

F,k + σk
√
d
√
ζ2k + σ2

F,k

)
︸ ︷︷ ︸

Cerr,k+1

+
(2ζk+1 + ζk + 2Cαα)

2

4C1︸ ︷︷ ︸
B2

k
4C1

(111)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

As k →∞, we have ζk → ζ∞, σ2
F,k → σ2

F,∞, and σ2
k → σ2

∞. This implies the limits of the coefficients are:

lim
k→∞

Cerr,k+1 = 2ζ∞

√
K2
k + dσ2

∞ + ε2S +
(
ζ2∞ + σ2

F,∞ + σ∞
√
d
√
ζ2∞ + σ2

F,∞

)
= O(ζ2∞ + σ2

F,∞)

lim
k→∞

B2
k

4C1
=

(2ζ∞ + ζ∞ + 4C1ζ∞)2

4C1
= O(ζ2∞). (112)

For the upper bound in (110), we use a fundamental result from analysis: if a sequence xk converges to a limit L, then
its Cesàro mean (average) 1

T

∑
xk also converges to L. Since we established that C2,k converges to C2,∞. Using (112),

we have

lim
T→∞

sup
1

T

T−1∑
k=0

∥gk∥2 ≤ O(ζ2∞ + σ2
F,∞). (113)

Now, we need to show that for the hybrid step-size schedule in Assumption 1, the aggregation weight wk+1 converges
to wk as k →∞.

Lemma 14. Consider the inequality (108) with the hybrid step-size schedule in Assumption 1. The expected weight
updates will vanish:

lim
k→∞

E[∥wk+1 −wk∥2] = 0.

Proof by Contradiction. Let xk := E[∥wk+1 − wk∥2]. We begin from (108) with neglecting non-negative term
C1α

∑T−1
k=0 ∥gk∥2 from left hand side of inequality and using (109):

T−1∑
k=0

(
1

2βk+1
− Lw

2

)
xk ≤ Q0 −Q⋆ +

T−1∑
k=0

C2,kα. (114)

Assume for contradiction that {xk} does not converge to 0. This implies the existence of a constant ϵ > 0 and an
infinite set of indices K such that xk ≥ ϵ for all k ∈ K with KT = K ∩ {0, . . . , T − 1}. Following the standard
contradiction argument, this leads to the inequality:

ϵ
∑
k∈KT

(
1

2βk+1
− Lw

2

)
≤ Q0 −Q⋆ + α

T−1∑
k=0

C2,k.

Taking the limit of the above inequality when T →∞ give us:

ϵ lim
T→∞

1

T

∑
k∈KT

(
1

2βk+1
− Lw

2

)
≤ lim
T→∞

Q0 −Q⋆

T
+ α lim

T→∞

1

T

T−1∑
k=0

C2,k.

The first term on the right-hand side of the above inequality converges to zero as T →∞ because Q0 −Q⋆ is bounded.
The second term is a Cesàro mean of the sequence {C2,k}, and as shown converges to C2,∞. The key step is to analyze
the asymptotic growth of both sides. So, we have

ϵ · lim
T→∞

1

T

∑
k∈KT

(
1

2βk+1
− Lw

2

)
≤ αC2,∞.

Since βk+1 → 0, the terms (1/(2βk+1) − Lw/2) → ∞. The Cesàro mean (average) of a sequence that diverges to
infinity also diverges to infinity. Thus, the left-hand side is infinite, leading to the contradiction∞ ≤ αC2,∞. The
assumption must be false, and therefore limk→∞ xk = 0. This concludes the proof of Lemma 14.

Now, we need to show that the aggregation weight wk converges to the critical point of (6) as k →∞. As we know
limk→∞ wk = w⋆, which is a fixed point. Using (8), we have

w⋆ = argmin
w

Φ∞(w⋆) + ⟨∇Φ∞(w⋆),w −w⋆⟩+ 1

2β∞
∥w −w⋆∥22 + δ∆+

t,ℓ0

(w) (115)

Using the optimality condition for the above equation gives us

0 ∈ ∇Φ∞(w⋆) +
1

β∞
(w⋆ −w⋆) + ∂δ∆+

t,ℓ0

(w⋆) (116)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

where ∂ denotes subgradient. As k →∞, β∞ → 0, so 1
β∞

(w⋆ −w⋆) = 0. Using this point results in

0 ∈ ∇Φk(w⋆) + ∂δ∆+
t,ℓ0

(w⋆), (117)

which is exactly the optimality condition for (6). Since this represents the optimal solution of (6) as k →∞, it also
satisfies the Byzantine resilience bound (14) in the limit. Hence, we conclude that ζ∞ ≤ η.

This concludes the proof of Theorem 10.

G.2 PROOF OF THEOREM 3 FOR L-SMOOTH AND STRONGLY CONVEX (ITEM 2)

We extend the previous analysis to the case where each loss function fi(θ) is µ-strongly convex.

Theorem 15. Consider the cost function (1) under the assumptions of Theorem 3 and Item 2. The sequence {θk,wk}∞k=1
generated by Algorithm 2 satisfies the corresponding result of Item 2 of Theorem 3.

Proof. To prove the above theorem, since fi(θ) is a µ strongly convex function, we need to show that the Q(θ,w) is
also µ- strongly convex with respect to θ, which is formulated in the following lemma.

Lemma 16. Let the function be Q(θ,w) =
∑n
i=1 wifi(θ)+ δ∆+

t,ℓ0

(w). If each fi(θ) is µ-strongly convex with respect

to θ and w is on the unit sparse capped simplex, then Q(θ,w) is also µ-strongly convex with respect to θ.

Proof. The proof analyzes convexity with respect to θ for a fixed, valid w. The term δ∆+
t,ℓ0

(w) is constant with respect
to θ, and adding a constant does not affect the convexity or the strong convexity parameter of a function. Therefore,
Q(θ,w) is µ-strongly convex with respect to θ if the weighted sum H(θ,w) =

∑n
i=1 wifi(θ) is µ-strongly convex.

We use the definition that a function h(θ) is µ-strongly convex if h(θ)− µ
2 ∥θ∥

2 is convex. We analyze this forH(θ,w):

H(θ,w)− µ

2
∥θ∥2 =

(
n∑
i=1

wifi(θ)

)
−

(
n∑
i=1

wi

)
µ

2
∥θ∥2

=

n∑
i=1

wi

(
fi(θ)−

µ

2
∥θ∥2

)
.

By assumption, each function fi(θ) is µ-strongly convex, so each term (fi(θ)− µ
2 ∥θ∥

2) is convex. Since the weights
wi ≥ 0, the expression above is a non-negative weighted sum of convex functions, which is itself a convex function.

Thus, H(θ,w) is µ-strongly convex. As established, this implies that Q(θ,w) is also µ-strongly convex with respect
to θ.

To continue the proof, we define:

F (θk,wk) =

n∑
i=1

wk,ifi(θk) + δ∆+
t,ℓ0

(wk), ∇θF (θk,wk) =

n∑
i=1

wk,i∇θfi(θk) (118)

in which fi(θk) and ∇θfi(θk) for all 1 ≤ i ≤ n denote the honest losses and gradients. Additionally, according to
Lemma 16, F (θ,w) is µ-strongly convex with respect to θ.

Next, we need to determine the variance of the global true gradients, which is formalized in the following lemma.
Furthermore, as mentioned, we exclude bf clients, so in our algorithm we have t = 1/s and s = n− bf .

Lemma 17. Under Assumption 1, the variance of the global true gradient is bounded:

σ2
g,k := var(∇θF (θk,wk)) = E

[
∥∇θF (θk,wk)− gk∥22

]
≤ dσ2

k.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Proof. We start from the definition of σ2
g,k and substitute the definition of F (θk,wk):

σ2
g = E

[
∥∇

(
n∑
i=1

wk,ifi(θk)

)
− E

[
∇

(
n∑
i=1

wk,ifi(θk)

)]
∥22

]

= E

[
∥

n∑
i=1

wk,i∇fi(θk)−
n∑
i=1

wk,iE[∇fi(θk)]∥22

]
by linearity of ∇,E

= E

[
∥

n∑
i=1

wk,i (∇fi(θk)− E[∇fi(θk)]) ∥22

]
.

We use the inequality ∥
N∑
i=1

xi∥22 ≤ N
N∑
i=1

∥xi∥22 and the property capped in ∆+
t,ℓ0

, i.e. w2
k,i ≤ t2. Here, N ≤ s.

σ2
g,k ≤ st2E

 ∑
i∈supp(wk)

∥∇fi(θk)− E[∇fi(θk)]∥22


= st2

∑
i∈supp(wk)

E
[
∥∇fi(θk)− E[∇fi(θk)]∥22

]
by linearity of E

= st2
∑

i∈supp(wk)

var(∇fi(θk)).

Now, we apply the given bound var(∇fi(θk)) ≤ dσ2
k:

σ2
g,k ≤ st2

∑
i∈supp(wk)

(dσ2
k)

≤ (st)2dσ2
k.

Replacing s = n− bf and t = 1/s gives us the proof of Lemma 17.

Since F (θ,w) in (118) is µ-strongly function with respect to θ, applying this to generated sequence {θk,wk} by
Algorithm 2 yields to

2µ(F (θk,wk)− F (θ⋆,wk)) ≤ ∥∇θF (θk,wk)∥22.
Since the adversary just replaces the honest gradients with Byzantine gradients, so F (θk,wk) = Q(θk,wk). Using
this point and taking the expectation from both side of the above inequality yields to

2µ · E{Q(θk,wk)−Q(θ⋆,wk)} ≤ E
[
∥∇θF (θk,wk)∥22

]
. (119)

The term E[∥∇θF (θk,wk)∥22] can be written

E
[
∥∇θF (θk,wk)∥22

]
= ∥E[∇θF (θk,wk)]∥22 + E

[
∥∇θF (θk,wk)− E[∇θF (θk,wk)]∥22

]
= ∥gk∥22 + var(∇θF (θk,wk))

= ∥gk∥22 + σ2
g,k. (120)

Substituting the decomposition from (120) back into our main inequality (119):

2µE{Q(θk,wk)−Q(θ⋆,wk)} ≤ ∥gk∥22 + σ2
g,k.

Using Lemma 17 to bound σ2
g ≤ dσ2

k, we get a lower bound on ∥gk∥2:

2µE{Q(θk,wk)−Q(θ⋆,wk)} − dσ2
k ≤ ∥gk∥22. (121)

According to (107), by neglecting the negative term −
∑T−1
k=0 Cβk+1

E{∥wk+1 −wk∥22} and replacing ∥gk∥22 by the
lower bound (121), we have

Ek+1 ≤ (1− a)Ek + adσ2
k + aE{Q⋆(wk)−Q⋆}+ C2,kα. (122)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

where Ek+1 = E{Q(θk+1,wk+1)−Q⋆} and Ek = E{Q(θk,wk)−Q⋆} where Q⋆ = Q(θ⋆,w⋆) and w⋆ be a limit
point of the sequence, i.e. limk→∞ wk = w∗

θ⋆ = argmin
θ

F (θ,w∗) by using (118)

This allows us to analyze the asymptotic behavior of the recurrence in (122). The inequality is a standard form of a
Robbins-Siegmund-type lemma, Ek+1 ≤ (1− a)Ek + bk, where:

• a = 2µC1α.

• bk = a
(
dσ2

k + E{Q⋆(wk)−Q⋆}
)
+ C2,kα.

The convergence of such a sequence is determined by the asymptotic behavior of the error term bk relative to the descent
term a. Specifically, we analyze the limit of their ratio:

lim
k→∞

bk
a

= lim
k→∞

(
dσ2

k + E{Q⋆(wk)−Q⋆}+
C2,k

2µC1

)
.

From Lemma 14, we have established wk+1 → wk with limit point w⋆ and using the continuity of Q, we have
limk→∞ E{Q⋆(wk)−Q⋆} = 0. Consequently,

lim sup
k→∞

bk
a

= dσ2
∞ +

C2,∞

2µC1
.

In this case, the optimization error converges to a neighborhood of the optimum, with the size of the error ball given by
this limit:

lim sup
k→∞

Ek ≤ dσ2
∞ +

C2,∞

2µC1
= O

(
ζ2∞ + σ2

F,∞ + σ2
∞
)
.

This completes the proof of Lemma 15.

G.3 DETERMINING LIPSCHITZ CONSTANT Lw

In the following lemma, we derive a bound for the Lipschitz constant Lw, assuming ∇θfi is Lipschitz continuous and
∥∇θfi(θ)∥2 ≤ C for all θ.
Lemma 18. Let fi : Rd → R be continuously differentiable with ∇θfi being Li-Lipschitz continuous and bounded,
∥∇θfi(θ)∥ ≤ C for all θ ∈ Rd and i = 1, . . . , n. Define:

h(w) =

n∑
i=1

wifi

θ − α
n∑
j=1

wj∇θfj(θ)

 , (123)

for w ∈ ∆+
t,ℓ0

= {w ∈ Rn :
∑
i wi = 1, wi ≥ 0, wi ≤ t, ∥w∥0 ≤ s}, α > 0, and fixed θ. Then, ∇wh(w) is

Lw-Lipschitz continuous with:

Lw ≤ αC2(n3/2 + n+ αnLmax + αn2
Lmaxϱ

2
), (124)

where Lmax = max
i=1,...,n

Li, and ϱ =
√
2 (kt2 + r2) as defined in Equation (21) of Lemma 5.

Proof. Define z(w) = θ − αGw, where G = [∇θf1(θ), . . . ,∇θfn(θ)] ∈ Rd×n. Then:

h(w) =

n∑
i=1

wifi(z(w)).

The gradient is:
∇wh(w) = f(z)− αGT G̃(w)w,

where f(z) = [f1(z), . . . , fn(z)]
T , and G̃(w) = [∇θf1(z), . . . ,∇θfn(z)] ∈ Rd×n. We need to show that:

∥∇wh(w2)−∇wh(w1)∥2 ≤ Lw∥w2 −w1∥2.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

We compute

∇wh(w2)−∇wh(w1) = f(z2)− f(z1)− αGT (G̃(w2)w2 − G̃(w1)w1),

where zj = θ − αGwj , j = 1, 2. Thus:

∥∇wh(w2)−∇wh(w1)∥2 ≤ ∥f(z2)− f(z1)∥2 + α∥GT (G̃(w2)w2 − G̃(w1)w1)∥2. (125)

First Term (∥f(z2)− f(z1)∥2): Since fi is Li-smooth, the descent lemma gives:

fi(z2)− fi(z1) ≤ ∇θfi(z1)T (z2 − z1) +
Li
2
∥z2 − z1∥2. (126)

Since z2 − z1 = αG(w1 −w2), and ∥G∥F ≤
√
nC (as ∥∇θfi(θ)∥ ≤ C):

∥z2 − z1∥ ≤ α
√
nC∥w2 −w1∥2.

Similarly, we can write

fi(z1)− fi(z2) ≤ ∇θfi(z2)T (z1 − z2) +
Li
2
∥z2 − z1∥22. (127)

Since ∥∇θfi(z1)∥2 ≤ C, using (126), (127), and the result (21) in Lemma 5 ∥w2 − w1∥2 ≤ ϱ where ϱ =√
2 (kt2 + r2) ≤

√
2:

|fi(z2)− fi(z1)| ≤ α(
√
n+

Liϱ

2
nα)C2∥w2 −w1∥2.

Thus:

∥f(z2)− f(z1)∥2 ≤
n∑
i=1

|fi(z2)− fi(z1)| ≤ α
n∑
i=1

(
√
n+

Liϱ

2
nα)C2∥w2 −w1∥2 ≤

α(n3/2 + n2α
Lmaxϱ

2
)C2∥w2 −w1∥2. (128)

Second Term (∥GT (G̃(w2)w2 − G̃(w1)w1)∥2):

G̃(w2)w2 − G̃(w1)w1 =

n∑
i=1

wi,2 (∇θfi(z2)−∇θfi(z1)) +
n∑
i=1

(wi,2 − wi,1)∇θfi(z1).

Using the Lipschitz property of ∇θfi
∥∇θfi(z2)−∇θfi(z1)∥2 ≤ Li∥z2 − z1∥2 ≤ Liα

√
nC∥w2 −w1∥2.

Utilizing the property
∑n
i=1 wi,2Li ≤ Lmax

∑n
i=1 wi,2 = Lmax∥∥∥∥∥

n∑
i=1

wi,2 (∇θfi(z2)−∇θfi(z1))

∥∥∥∥∥
2

≤
n∑
i=1

wi,2Liα
√
nC∥w2 −w1∥2 ≤ αLmax

√
nC∥w2 −w1∥2. (129)

Also, we have ∥∥∥∥∥
n∑
i=1

(wi,2 − wi,1)∇θfi(z1)

∥∥∥∥∥
2

≤
n∑
i=1

|wi,2 − wi,1|C ≤ C
√
n∥w2 −w1∥2. (130)

Combining (130) and (129) gives us

∥GT (G̃(w2)w2 − G̃(w1)w1)∥2 ≤ ∥G∥F (αLmax

√
nC + C

√
n)∥w2 −w1∥2 ≤

(αLmaxnC
2 + C2n)∥w2 −w1∥2.

So, we have
α∥GT (G̃(w2)w2 − G̃(w1)w1)∥2 ≤ α(αLmaxnC

2 + C2n)∥w2 −w1∥2. (131)

Replacing (128) and (131) in (125):

Lw ≤ αC2(n3/2 + n+ αnLmax + αn2
Lmaxϱ

2
). (132)

Thus, ∇wh(w) is Lw-Lipschitz continuous.

The Lipschitz constant Lw can be determined in two ways. A more precise approach is to compute Lw directly by
analyzing the gradient of h(w) defined in (123), though this may be computationally complex. Alternatively, when
direct computation is challenging, Lw can be bounded as in (132) under the assumptions of Lemma 18.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

H ADDITIONAL EXPERIMENTAL SETUPS AND RESULTS

H.1 EXPERIMENTAL FRAMEWORK OVERVIEW

Implementation Details: We implemented our federated learning framework using Python 3.12.7 and PyTorch as the
primary deep learning library. All experiments were conducted on GPU-accelerated hardware to ensure efficient training
and evaluation. Specifically, we utilized CUDA for GPU support and ran our models on a variety of high-performance
GPUs, including NVIDIA A100, NVIDIA A40, and Tesla V100-SXM2-32GB. These resources allowed for large-scale
parallelization and significantly reduced computation time during training. For further implementation details, we have
shared the complete source code.

Data Heterogeneity and Malicious clients: In this study, we utilize two datasets, MNIST and CIFAR10, both of which
contain ten labels. As described in Subsection 5.1, the number of groups corresponds to the number of labels, which is
ten. A training example with label l is assigned to group l with probability q, and to other groups with probability 1−q

9 .
Each group consists of a subset of clients, and since this study involves 200 clients divided into ten groups, each group
contains 20 clients.

For selecting malicious clients, we adopt a group-oriented approach. Specifically, we randomly select ngm =

⌈ number of malicious
number of clients per group⌉ groups. Malicious clients are first chosen from within a single group. If there are remaining

malicious clients to be assigned, we select them from other groups, repeating this process until all malicious clients
have been selected.

For example, for a fraction of malicious clients 0.3 in this study, the number of malicious clients is 60. Since the number
of clients per group is 20, the malicious clients are selected from three random groups.

Now, a question may arise: why is this methodology employed instead of randomly selecting malicious clients? In
fact, this methodology is a specific case of random selection and represents one of the most difficult and challenging
cases. Assume the fraction of malicious clients is 0.3 and the selected random groups are i, j, and k (i ̸= j ̸= k). It is
straightforward to show that the attack corrupts all datasets with labels i, j, and k with probability q + 2 1−q

9 = 2
9 + 7q

9 ,
which can be a high probability, especially for non-IID data with a high degree of non-IIDness, as considered in the
numerical study (q = {0.6, 0.9}).
In this case, if we cannot detect the malicious clients, they can significantly reduce the test accuracy. In contrast, if the
malicious clients are selected randomly, they may be distributed among all groups (for example, uniform selection). In
this scenario, the attack may have a minor effect because the benign data dominates the malicious data.

Furthermore, we examine the effect of group-oriented malicious selection compared to random selection on FedAvg.
We observed that the test accuracy of FedAvg drops significantly for group-oriented selection compared to random
selection. In summary, this explanation demonstrates that group-oriented selection is one of the most difficult and
challenging scenarios for detecting malicious clients. This allows us to compare the proposed method to state-of-the-art
Byzantine-robust FL approaches in a highly challenging setting.

Attacks:

• Flipping label: Malicious clients train the model using a poisoned dataset, where the label of each class l is
changed to L− l − 1, where L represents the total number of labels (in our study L is 10).

• Backdoor attack: Malicious clients train the model using a poisoned dataset, where a black square of size
8× 8 pixels is added to the center of the image, and its label is randomly changed to a label between 0 and
L− 1.

• Inverse gradient: Malicious clients compute gradients based on their local datasets to minimize the loss
function and then flip the sign of their gradients.

• Global parameter attack: At each round, the server sends the global parameters to the clients. Malicious
clients add Gaussian noise, N (ν1µ, ν2σ

2), into the global parameters θ, where µ represents the mean of the
global parameters, σ denotes their standard deviation, ν1 and ν2 > 0 are arbitrary real-valued constants. In
this study, we set ν1 = −5 and ν2 = 1.5.

• Double attack: In this scenario, during a communication round, an attack targets a fraction of clients. In a
subsequent communication round, a different attack affects a separate set of clients that were not impacted by
the initial attack. Specifically, this study assumes that the first attack, an inverse gradient, takes place during
the second communication round, targeting 50% of the malicious clients. Later, in the fifth communication
round, a global random parameter attack is executed, affecting the remaining 50% of malicious clients who

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

were not involved in the first attack. For instance, if the proportion of malicious clients is 40%, then 20% of the
clients are impacted by the inverse gradient attack, while the random parameter attack targets the other 20%.

• LIE (Little Is Enough) attack: Malicious clients first compute the coordinate-wise mean µk and standard
deviation σk of the client updates in round k. They then submit forged updates of the form

bk,j = µk + z σk, ∀j ∈ H∁,

where z > 0 is a small constant ensuring that the forged updates remain within a plausible range. In our
experiments, we use the original stealth bound for z as proposed in Baruch et al. (2019).

H.2 HYPERPARAMETER SETTINGS

We detail the hyperparameter configurations used for all state-of-the-art methods and our proposed algorithm. For Krum,
the retained clients were set to (1− fraction of malicious)× total clients− 2, and for Trimmed Mean, the trimming
fraction matched the fraction of malicious clients. All methods with tunable hyperparameters (e.g., Bulyan, FedLAW,
CClip, Huber) were tuned via grid search using a dedicated validation split (80 % for training, 10 % for validation, and
10 % for testing). The chosen values corresponded to the settings that achieved the highest validation accuracy after 200
communication rounds on MNIST and 400 rounds on CIFAR-10. All methods shared a common training configuration
with the learning rate α = 0.01, a batch size of 64 for the MNIST dataset and 16 for CIFAR-10, and 3 local epochs.
The total number of communication rounds used to update the global model parameters was 200 for MNIST and 400
for CIFAR-10. An overview of the selected hyperparameters for each method is summarized in Table 1.

Table 1: Selected hyper-parameters for all defences.

Method Hyper-parameter(s) Chosen value

Krum Retained clients (1− fraction of malicious)× n− 2

Trimmed Mean Trimming fraction fraction of malicious

Bulyan Candidate pool size grid: 20/40/50
Inner aggregation size (1− fraction of malicious)× n− 2

FedLAW β grid: 1× 10−2 − 1× 10−4

Sparsity budget s (1− fraction of malicious)× n
Client weight upper bound t 1/(s− 10)

CClip Clipping radius τ grid: 0.1, 10
Fixed-point iterations 1

CClip + Bucketing Clipping radius τ grid: 0.1, 10
Fixed-point iterations 1

Bucketing factor 2

RFA (Geometric Median) Smoothing ν 10−6

Iterations R 3

RFA + Bucketing Same as RFA ν = 10−6, R = 3
Bucketing factor 2

Huber Threshold τ grid: 0.12, 0.2

Coordinate-wise Median – –

FedLAW: sensitivity to β. We evaluated the impact of the FedLAW hyperparameter β under the flipping label attack
with a strongly non-IID split (q = 0.9) and 40 % malicious clients. The test accuracy (mean ± standard deviation across
runs) is reported in Table 2; accuracy curves with error bars appear in Figs. 5 and 6.

For MNIST, accuracy remains consistently high across a wide range of β, staying above 86% for all β ≥ 6.3 ×
10−4. Performance peaks around 87.7% when β = 10−2, but values between 6.3 × 10−4 and 10−2 yield nearly
indistinguishable results.

For CIFAR-10, accuracy generally stays in the 55–60% band, with some variance at a few values of β. The best mean
accuracy of 59.7% is achieved at β = 10−2, and most settings in the 10−3−10−2 range perform comparably.

Overall, FedLAW is robust to the choice of β; near-optimal performance is obtained without extensive tuning, especially
for β in the 10−3−10−2 range.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Table 2: FedLAW β-sweep with 40 % flipping label attack (q=0.9). Reported values are mean test accuracy ± standard
deviation across 5 runs.

β MNIST Acc. (%) CIFAR-10 Acc. (%)

1× 10−2 87.67 ± 0.97 59.66 ± 0.77
6.3× 10−3 86.80 ± 0.97 57.83 ± 1.80
4.0× 10−3 86.54 ± 0.46 58.91 ± 0.01
1.6× 10−3 86.43 ± 0.64 59.12 ± 0.42
1.0× 10−3 86.27 ± 2.69 54.23 ± 7.52
6.3× 10−4 86.97 ± 0.64 58.03 ± 0.24
4.0× 10−4 83.59 ± 5.31 59.11 ± 2.08
1.0× 10−4 84.12 ± 4.61 55.17 ± 0.16
6.3× 10−5 82.49 ± 4.40 55.27 ± 0.39
4.0× 10−5 85.19 ± 6.63 55.50 ± 1.43
1.6× 10−5 83.67 ± 5.00 58.00 ± 1.80
1.0× 10−5 84.50 ± 1.99 53.90 ± 4.44

10−5 10−4 10−3 10−2
0

20

40

60

80

100

β

A
cc

ur
ac

y
(%

)

Figure 5: FedLAW sensitivity to β on MNIST (q=0.9, 40% flipping label attack). Error bars denote ±1 standard
deviation across 5 runs.

Bulyan: sensitivity to inner aggregation size and candidate pool size. In our main experiments, we fix the inner
aggregation size to (1− fraction of malicious)× total clients− 2 and tune only the candidate pool size. However, in
Fig. 7, we sweep both hyperparameters to study their joint effect. Under the flipping label attack with 40 % malicious
clients and q=0.9, we observe that inner aggregation size has limited impact, whereas performance is notably more
sensitive to the candidate pool size. For the MNIST dataset, the best or near-best results are typically achieved when
the candidate pool size is set to 40 or 50. It is important to note that these experiments violate Bulyan’s theoretical
guarantee, which requires the number of Byzantine clients f to satisfy f < (n − 3)/4, where n is the total number
of clients (Guerraoui et al., 2018). Theoretical results guarantee that, under this assumption, the deviation of each
aggregated coordinate from any honest one is bounded by O(σ/

√
d), where σ is the variance among honest updates and

d is the model dimension. Since the assumption is violated in our setting, the theoretical bound does not formally apply.
Nevertheless, as shown in Fig. 7, Bulyan still achieves strong empirical robustness in highly adversarial conditions.

H.3 FEDLAW: CLIENT-WEIGHT DYNAMICS UNDER FOUR ADVERSARIAL SETTINGS.

To investigate how FedLAW responds to various adversarial behaviors during training, we analyze the evolution of
client aggregation weights in four distinct attack settings: flipping label, inverse gradient, backdoor attack, and a double

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

10−5 10−4 10−3 10−2
0

10

20

30

40

50

60

70

β

A
cc

ur
ac

y
(%

)

Figure 6: FedLAW sensitivity to β on CIFAR-10 (q=0.9, 40% flipping label attack). Error bars denote ±1 standard
deviation across 5 runs.

108 118 128 138 148 158 168 178

20

40

50

76.84 81.36 74.16 74.72 81.32 80.2 72.73 80.33

84.22 85.13 87.53 87.25 87.17 84.92 86.36 85.87

86.03 86.55 85.68 86.56 87.13 86.43 86.57 87.23

Inner Aggregation Size

C
an

di
da

te
Po

ol
Si

ze

70

75

80

85

90

A
cc

ur
ac

y
(%

)
Figure 7: Bulyan sensitivity to inner aggregation size and candidate pool size on MNIST under the flipping label attack
(q=0.9, 40 % malicious clients).

attack scenario. We conduct the experiments on the MNIST dataset with a non-iid partitioning factor of q = 0.9 across
10 clients, of which 40% (i.e., 4 clients) are malicious. In the double attack setting, two adversaries apply inverse
gradient manipulation while the other two send randomly perturbed global parameters. Each client trains a three-layer
fully connected MLP using a batch size of 64 for three local epochs per round. The aggregation is performed using
FedLAW with sparse weighting.

Figure 4 displays the per-client weight trajectories over 100 global training epochs. Grey curves denote benign clients,
red curves indicate malicious clients executing single-strategy attacks, and in the double attack panel, blue curves
represent global parameter attackers while red curves indicate inverse gradient attackers. Across all settings, FedLAW
effectively distinguishes between benign and malicious behavior. Benign clients consistently receive stable, high
weights, while malicious clients are rapidly down-weighted, either immediately (in flip-label and inverse gradient

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

attacks) or gradually (in the backdoor and double attack settings). The results demonstrate FedLAW’s ability to suppress
diverse attack strategies in real-time during training.

H.4 EVALUATION OF MALICIOUS CLIENT DETECTION

To comprehensively evaluate the performance of our method in detecting malicious clients, we report four standard
classification metrics: Precision, Recall, F1 Score, and Accuracy. We define the counts of true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN) using the following strategy, whereM represents the set of
malicious clients.

Formally, for each client i, we define the following indicator variables:

TPi =
{

1, if i ∈M and wi ≤ ε,
0, otherwise, (133)

FPi =
{

1, if i /∈M and wi ≤ ε,
0, otherwise, (134)

FNi =
{

1, if i ∈M and wi > ε,
0, otherwise, (135)

TNi =
{

1, if i /∈M and wi > ε,
0, otherwise. (136)

Here:

• True Positives (TP): Counts the number of malicious clients that are correctly identified as malicious by the
method.

• False Positives (FP): Counts the number of benign clients that are incorrectly flagged as malicious.

• False Negatives (FN): Counts the number of malicious clients that are mistakenly identified as benign.

• True Negatives (TN): Counts the number of benign clients that are correctly identified as benign.

The total counts are computed as:

TP =

n∑
i=1

TPi, FP =

n∑
i=1

FPi, FN =

n∑
i=1

FNi, TN =

n∑
i=1

TNi.

Using these counts, we compute:

• Precision:
Precision =

TP
TP + FP

,

which measures the proportion of clients flagged as malicious that are actually malicious.

• Recall:
Recall =

TP
TP + FN

,

which measures the proportion of actual malicious clients that are successfully detected.

• F1 Score:
F1 Score = 2× Precision× Recall

Precision + Recall
,

providing a balance between precision and recall.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

• Accuracy:

Accuracy =
TP + TN

n
,

which measures the overall fraction of correctly classified clients (both malicious and benign), where n is the
total number of clients.

We set ε = 10−4 to ensure that clients with very small aggregation weights are identified as malicious for evaluation.
This threshold is appropriate, as fewer than 200 clients typically remain after excluding detected malicious ones. In the
equal-weight case, benign clients receive weights above 5× 10−3, well above ε, allowing a clear distinction between
benign and malicious clients.

Table 7 summarizes FedLAW’s performance in detecting malicious clients on MNIST and CIFAR-10 under four attack
types: Flipping Label, Inverse Gradient, Backdoor Attack, and Double Attack. We evaluate across different data
heterogeneity levels (q = 0.6 and q = 0.9) and malicious client fractions (0.1 to 0.4), using Precision, Recall, F1 Score,
and Accuracy. Results are reported as the mean ± standard deviation across five independent runs.

Recall and Accuracy are especially important: high Recall ensures most malicious clients are caught, which boosts
Accuracy. This is critical when the malicious fraction is high. Precision helps avoid false positives, but its impact is less
critical in practice when benign clients are the majority.

FedLAW consistently shows strong detection capabilities. For Flipping Label, Inverse Gradient, and Backdoor Attacks,
often it achieves Recall values close to or equal to 1.0, often resulting in high Accuracy (≥0.92). CIFAR-10 generally
yields better results than MNIST, likely due to its more complex features, which may help us in the detection procedure.
Precision and F1 scores are also high (typically ≥ 0.9), confirming robust overall performance.

The Double Attack poses a greater challenge due to its hybrid and dynamic nature. On CIFAR-10 with q = 0.9 and
40% malicious clients, FedLAW still secures solid Recall (0.899), but lower Precision (0.848) and F1 (0.872) pull
Accuracy down to 0.897. On MNIST with q = 0.6 and 10% malicious clients, Recall falls to 0.7 and Accuracy to 0.940.
At low malicious fractions, even minor misclassifications can significantly affect metrics, though their practical impact
remains limited due to the low number of malicious. It is important to note that FedLAW’s performance under the
double attack is slightly lower compared to other attack types, reflecting the increased complexity of this scenario. The
double attack is used specifically to assess the method’s robustness in the most demanding settings.

In summary, FedLAW provides reliable and accurate detection of malicious clients across all four attack types and
under highly heterogeneous data distributions, conditions that closely resemble real-world federated learning settings.
Its consistently high Recall and Accuracy make it an effective and practical defense mechanism for secure federated
learning systems.

Table 3: Test accuracy (%) on MNIST under four attack types, two non-IID levels (q) and varying fractions of malicious
clients. Reported as mean ± std over five runs and are also depicted in Figure 2.a.

Algorithm Fraction of Malicious Clients
q = 0.6 q = 0.9

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Attack: Flipping Label
FedLAW 92.63±0.07 92.71±0.05 92.39±0.07 92.22±0.20 89.60±0.24 89.55±0.57 88.30±0.28 87.45±0.26

Bulyan 92.06±0.04 91.86±0.32 91.68±0.20 91.14±0.45 89.01±0.06 87.59±0.95 87.03±0.66 87.53±0.35

Bulyan-Bucketing 92.18±0.24 91.89±0.35 91.69±0.36 91.22±0.28 88.61±0.37 87.41±1.09 85.99±0.38 85.36±1.37

Krum 86.08±0.21 86.29±0.80 86.37±0.56 86.43±0.24 76.46±0.84 76.72±1.26 76.16±0.96 75.55±0.60

Trimmed Mean 92.15±0.29 91.58±0.17 91.02±0.32 90.13±0.75 88.54±0.34 86.54±0.06 82.13±1.26 71.21±3.74

CClip 92.44±0.25 91.89±0.39 88.97±0.54 72.70±2.53 87.00±0.49 78.31±0.76 66.36±0.68 54.45±1.97

CClip-Bucketing 92.46±0.05 91.55±0.39 89.51±0.75 73.56±3.36 86.72±0.34 79.11±0.69 63.50±1.92 54.00±2.45

RFA 92.60±0.16 92.34±0.24 92.06±0.38 89.90±1.41 88.60±0.47 86.22±0.82 72.43±3.79 55.20±2.16

RFA-Bucketing 92.89±0.67 92.84±0.73 92.16±0.46 88.29±2.49 89.00±0.27 86.17±0.86 71.12±2.49 54.82±1.41

CwMed 92.09±0.28 91.64±0.20 91.03±0.14 90.25±0.23 88.12±0.45 86.09±0.32 82.68±0.54 72.82±3.87

Continued on next page

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Table 3 (continued) from previous page
Algorithm Fraction of Malicious Clients

q = 0.6 q = 0.9

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Huber Aggregator 92.48±0.17 92.17±0.36 91.55±0.49 88.35±1.42 87.31±0.66 78.66±1.75 65.22±1.99 54.84±2.56

FedAVG 92.65±0.03 92.23±0.13 89.56±0.19 77.71±0.61 88.05±0.29 80.04±0.13 67.74±0.88 56.11±0.37

Attack: Inverse Gradient
FedLAW 92.40±0.19 91.88±0.46 91.83±0.33 91.62±0.33 88.71±0.55 88.45±0.18 86.86±0.15 87.41±1.39

Bulyan 91.59±0.38 91.26±0.16 90.29±0.27 89.11±0.33 87.09±0.06 85.88±0.23 82.54±0.96 83.80±1.83

Bulyan-Bucketing 91.31±0.27 91.18±0.14 90.39±0.59 88.44±1.41 85.89±0.97 85.97±1.13 82.06±4.05 81.44±2.81

Krum 81.99±3.34 80.43±4.33 75.72±1.59 76.88±1.10 68.89±1.25 66.25±5.60 64.39±3.56 61.93±8.41

Trimmed Mean 91.38±0.32 90.63±0.08 88.49±1.00 84.35±1.52 84.49±0.75 77.76±2.30 66.53±3.91 52.38±1.55

CClip 84.98±3.19 73.78±1.31 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00

CClip-Bucketing 83.02±1.36 73.73±0.18 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00

RFA 91.82±0.29 90.70±0.15 87.85±4.97 60.88±3.61 84.92±1.08 76.15±1.00 65.85±2.18 10.00±0.00

RFA-Bucketing 92.18±0.04 90.32±0.13 89.14±0.88 59.05±0.26 84.54±0.87 76.69±0.18 67.39±0.94 10.00±0.00

CwMed 91.41±0.29 90.66±0.44 88.90±0.61 83.89±1.93 85.33±0.41 80.72±2.19 68.27±0.93 52.11±2.89

Huber Aggregator 91.71±0.32 84.81±3.37 65.26±1.16 57.09±1.55 82.08±1.34 73.28±1.32 64.00±0.94 55.40±1.30

FedAVG 84.16±1.05 74.06±0.44 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00

Attack: Backdoor
FedLAW 92.32±0.14 92.64±0.30 92.19±0.13 92.46±0.27 89.69±0.42 89.17±1.77 88.81±0.71 87.88±1.16

Bulyan 92.15±0.07 91.73±0.22 69.23±1.95 59.66±3.32 88.79±0.04 83.28±2.40 51.79±8.79 33.89±1.80

Bulyan-Bucketing 92.11±0.16 91.62±0.27 90.17±0.09 88.54±0.44 88.27±0.19 85.22±1.69 79.39±4.89 72.17±3.84

Krum 27.60±3.99 28.16±0.97 15.83±4.34 22.64±6.54 15.21±0.35 16.36±2.40 18.68±2.33 16.90±2.69

Trimmed Mean 91.74±0.07 91.24±0.21 90.40±0.16 88.77±0.60 88.51±0.58 86.84±0.99 81.08±1.04 74.45±2.48

CClip 92.21±0.22 91.66±0.17 90.89±0.46 90.36±0.19 88.35±0.22 87.87±1.03 84.94±0.83 81.45±1.11

CClip-Bucketing 92.15±0.15 91.31±0.12 91.15±0.18 90.38±0.31 88.57±0.84 87.17±1.19 84.57±0.88 80.52±0.73

RFA 93.72±0.27 92.54±0.12 91.22±0.42 90.51±0.33 89.27±0.53 87.42±0.43 86.53±1.22 79.33±2.19

RFA-Bucketing 93.48±0.37 92.30±0.18 90.99±0.22 90.51±0.11 89.55±0.41 86.97±1.35 84.31±0.60 80.17±3.38

CwMed 91.61±0.26 91.02±0.30 90.40±0.33 88.44±0.69 87.78±0.48 86.23±0.41 81.17±2.18 67.89±4.39

Huber Aggregator 92.40±0.08 91.48±0.28 90.73±0.39 89.93±0.35 88.79±0.43 87.42±0.29 84.94±1.22 80.80±2.65

FedAVG 91.99±0.06 91.34±0.19 91.03±0.16 89.93±0.24 88.43±0.63 87.13±1.17 85.00±0.53 79.74±2.65

Attack: Double Attack
FedLAW 92.57±0.05 92.39±0.02 92.34±0.46 92.31±0.23 89.93±0.21 89.76±0.11 89.35±0.24 87.47±0.95

Bulyan 91.98±0.11 91.69±0.08 91.22±0.13 90.79±0.22 88.80±0.22 87.50±0.23 87.01±1.13 85.47±0.31

Bulyan-Bucketing 92.06±0.33 91.59±0.23 91.49±0.03 90.57±0.68 88.84±0.68 87.83±0.68 84.91±0.69 83.50±3.44

Krum 82.24±3.66 80.82±2.03 79.28±1.60 80.77±2.15 71.20±0.52 71.83±2.64 71.25±1.57 62.43±5.90

Trimmed Mean 92.00±0.04 91.61±0.40 90.68±0.67 89.74±0.26 88.32±0.45 85.02±1.05 82.01±2.83 76.10±1.22

CClip 92.08±0.12 91.67±0.08 90.78±0.62 82.99±4.99 89.12±0.29 80.84±1.60 68.12±3.87 10.00±0.00

CClip-Bucketing 92.27±0.18 91.72±0.21 90.47±0.38 86.45±4.14 87.97±1.15 82.27±2.20 74.48±2.68 10.00±0.00

RFA 94.37±1.39 94.29±0.21 94.13±0.17 93.58±0.30 91.59±0.50 83.74±4.85 85.23±2.65 57.15±1.60

RFA-Bucketing 94.94±0.23 94.78±0.25 94.07±1.53 91.50±5.75 91.13±1.46 89.97±0.14 76.23±5.72 60.54±4.33

CwMed 91.92±0.22 91.03±0.10 90.77±0.58 89.63±0.56 87.58±0.54 86.18±0.86 82.78±2.90 76.71±2.63

Huber Aggregator 91.97±0.31 91.28±0.51 90.08±1.04 85.00±2.90 86.06±1.28 78.47±2.42 66.62±0.95 57.96±0.35

FedAVG 92.29±0.21 91.62±0.11 90.83±0.40 85.68±6.05 89.42±0.46 86.79±1.64 71.49±6.16 68.28±3.67

Continued on next page

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Table 3 (continued) from previous page
Algorithm Fraction of Malicious Clients

q = 0.6 q = 0.9

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Attack: Lie Attack
FedLAW 92.72±0.04 92.24±0.02 90.70±0.08 86.88±4.02 90.15±0.05 89.51±0.11 86.30±0.14 70.10±2.17

Bulyan 92.16±0.02 91.44±0.56 89.41±1.36 50.15±33.52 88.80±0.37 86.16±1.92 58.92±22.98 21.23±13.09

Bulyan-Bucketing 92.21±0.16 91.88±0.03 90.40±0.05 86.94±0.05 89.14±0.16 87.53±0.68 81.73±2.54 29.98±2.07

Krum 92.32±0.17 90.92±0.40 88.06±0.53 39.53±11.36 89.49±0.33 83.84±1.01 26.56±1.91 11.62±0.23

Trimmed Mean 92.21±0.25 92.07±0.20 90.66±0.01 87.58±0.23 88.94±0.11 88.42±0.15 81.78±0.49 56.70±4.70

CClip 92.57±0.09 92.56±0.16 92.09±0.33 90.60±0.12 89.90±0.42 88.85±0.18 86.47±1.21 81.63±2.68

CClip-Bucketing 92.76±0.14 92.76±0.07 92.11±0.14 90.64±0.09 89.91±0.27 89.13±0.26 87.96±1.15 82.69±1.09

RFA 92.25±0.10 91.70±0.18 90.94±0.12 89.15±0.09 89.69±0.44 86.76±0.28 82.25±2.92 55.50±3.14

RFA-Bucketing 92.52±0.19 91.74±0.12 91.03±0.21 89.29±0.59 89.13±0.47 87.35±0.95 82.16±1.63 57.39±7.07

CwMed 92.31±0.14 91.56±0.15 90.12±0.15 87.06±0.33 87.96±0.41 86.36±1.03 79.07±2.32 56.03±2.68

Huber Aggregator 92.45±0.13 92.04±0.02 92.09±0.30 90.69±0.12 90.08±0.44 89.34±0.48 86.19±1.03 68.83±14.50

FedAVG 92.67±0.11 92.61±0.21 91.91±0.03 90.16±0.01 90.06±0.69 88.54±1.10 86.92±0.88 84.22±2.34

Table 4: Test accuracy (%) on CIFAR-10 under four attack types, two non-IID levels (q) and varying fractions of
malicious clients. Reported as mean ± std over five runs and are also depicted in Figure 2.b.

Algorithm Fraction of Malicious Clients
q = 0.6 q = 0.9

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Attack: Flipping Label
FedLAW 74.59±0.54 73.21±0.09 72.43±0.23 70.52±0.16 66.86±0.50 64.85±0.24 62.39±0.51 58.86±2.22

Bulyan 73.53±0.71 70.55±0.75 68.60±0.53 62.20±1.97 64.93±0.57 61.84±0.92 60.00±0.94 53.57±10.37

Bulyan-Bucketing 70.52±3.66 71.56±0.68 67.17±3.08 45.86±12.96 59.48±6.86 58.33±6.53 58.56±6.54 47.82±5.42

Krum 27.66±4.51 24.77±2.19 27.19±0.45 24.99±0.14 21.23±0.40 17.64±2.69 11.94±0.00 15.97±0.18

Trimmed Mean 73.12±0.03 71.72±0.03 67.39±0.30 51.18±0.74 62.24±0.33 59.27±0.29 53.02±1.97 43.45±2.09

CClip 72.42±0.44 66.19±1.13 60.12±5.46 39.98±8.15 61.93±0.91 55.58±1.91 47.93±2.25 42.22±1.57

CClip-Bucketing 72.31±0.37 66.89±0.87 55.85±6.59 41.97±9.59 61.65±0.81 54.95±1.17 49.94±2.21 41.34±2.04

RFA 72.61±0.75 69.70±2.29 64.16±3.89 50.96±4.01 62.66±1.07 57.76±0.66 51.42±2.16 42.11±0.80

RFA-Bucketing 73.81±0.63 71.45±1.69 67.51±4.59 53.38±1.80 63.10±0.78 57.10±1.05 49.06±2.86 40.19±0.62

CwMed 73.50±0.42 71.03±0.31 68.66±1.03 52.44±2.28 63.91±0.41 59.80±1.26 53.40±1.68 44.92±3.49

Huber Aggregator 73.50±0.54 70.80±1.04 66.18±0.25 55.77±1.04 62.66±0.86 57.13±0.24 51.06±5.03 38.95±1.61

FedAVG 72.19±0.64 67.63±0.61 52.23±7.76 51.21±9.39 61.70±0.73 54.91±0.78 48.59±1.52 41.24±1.78

Attack: Inverse Gradient
FedLAW 74.45±0.58 73.16±0.63 72.05±0.55 70.32±0.24 66.26±0.67 64.41±0.37 62.95±1.13 59.38±1.14

Bulyan 72.82±0.66 70.56±0.30 67.62±0.73 65.98±0.11 64.55±1.31 60.46±1.38 57.53±1.79 56.24±1.19

Bulyan-Bucketing 72.42±0.35 71.50±0.26 68.01±0.78 52.84±3.32 64.13±0.34 61.57±1.11 59.58±1.28 47.20±0.63

Krum 29.68±0.71 30.11±0.98 29.15±2.62 24.48±1.44 19.23±3.51 17.59±2.46 21.32±3.50 17.03±1.57

Trimmed Mean 71.05±0.25 67.18±0.39 59.22±0.86 42.44±3.84 61.56±1.73 55.27±1.55 48.16±1.34 38.17±1.37

CClip 71.40±0.29 67.61±0.47 67.09±1.48 10.00±0.00 61.17±0.73 55.01±1.27 53.53±5.57 10.00±0.00

CClip-Bucketing 71.44±0.61 67.39±1.09 67.20±0.63 10.00±0.00 62.89±1.58 56.77±0.31 52.09±3.76 10.00±0.00

Continued on next page

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Table 4 (continued) from previous page
Algorithm Fraction of Malicious Clients

q = 0.6 q = 0.9

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

RFA 70.81±0.61 65.37±1.74 10.00±0.00 10.00±0.00 60.98±2.00 10.00±0.00 10.00±0.00 10.00±0.00

RFA-Bucketing 71.37±1.07 66.71±1.17 10.00±0.00 10.00±0.00 61.26±1.18 10.00±0.00 10.00±0.00 10.00±0.00

CwMed 71.93±0.78 68.08±0.40 60.48±1.74 42.89±1.86 62.08±0.36 56.74±1.67 49.29±2.31 34.10±4.47

Huber Aggregator 72.00±0.78 67.56±0.16 65.55±1.39 10.00±0.00 61.96±1.68 56.37±0.76 47.93±2.93 10.00±0.00

FedAVG 67.83±1.58 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00

Attack: Backdoor
FedLAW 74.21±0.05 72.89±0.14 71.77±0.11 70.10±0.38 66.53±0.22 64.73±0.90 63.07±0.43 59.90±0.17

Bulyan 73.05±0.27 66.66±1.16 47.46±0.07 30.93±0.32 62.85±0.21 54.52±0.84 35.38±2.69 18.62±2.53

Bulyan-Bucketing 71.61±0.34 69.73±0.51 67.06±0.72 60.39±0.48 63.53±0.33 58.58±1.21 53.70±0.91 48.04±0.84

Krum 25.36±1.17 16.47±0.35 15.18±1.60 12.12±3.10 13.20±3.32 13.76±5.08 9.79±0.29 10.06±0.08

Trimmed Mean 74.69±0.39 73.11±0.29 70.72±1.24 66.07±0.76 65.66±0.20 64.05±0.18 59.45±1.63 52.92±2.76

CClip 73.61±0.48 72.94±0.47 71.32±0.24 68.59±0.50 65.91±0.29 64.13±0.94 60.60±1.18 56.54±0.99

CClip-Bucketing 74.16±0.50 73.09±0.31 71.24±0.29 69.33±0.74 65.94±0.65 63.45±0.21 60.30±0.80 56.31±0.42

RFA 74.15±0.51 73.00±0.15 71.90±0.47 69.87±0.66 66.22±0.41 64.00±0.65 62.05±0.49 59.04±0.63

RFA-Bucketing 73.80±0.63 72.56±0.49 71.67±0.46 69.69±0.45 66.10±0.73 63.70±1.25 62.39±0.16 59.69±0.50

CwMed 73.83±0.44 72.07±0.33 69.79±0.64 65.50±2.24 65.44±0.64 63.66±1.28 57.91±1.28 52.14±0.59

Huber Aggregator 74.07±0.14 71.73±0.25 69.15±0.65 65.30±1.46 65.12±0.70 62.13±0.89 60.26±0.30 55.30±0.30

FedAVG 74.36±0.18 72.88±0.37 71.24±0.38 69.71±0.28 66.35±0.23 63.21±0.68 60.62±1.92 55.94±0.86

Attack: Double Attack
FedLAW 74.09±0.31 72.89±0.28 71.63±0.29 70.54±0.70 66.45±0.08 64.95±0.14 62.89±0.57 59.98±1.25

Bulyan 73.56±0.53 70.60±0.18 69.44±0.34 69.01±0.36 64.86±0.36 62.14±1.28 60.15±1.44 59.02±1.02

Bulyan-Bucketing 72.85±0.11 72.09±0.31 71.20±0.41 64.51±0.23 64.47±0.19 64.10±0.51 61.77±0.55 53.64±1.19

Krum 25.41±1.33 29.35±2.74 23.43±2.81 26.55±1.57 18.94±1.51 18.02±3.86 17.60±3.54 17.95±2.79

Trimmed Mean 72.72±0.67 69.81±1.93 67.26±0.72 62.76±0.06 63.30±0.13 60.16±0.11 56.54±1.20 50.95±1.11

CClip 72.49±0.29 70.71±0.35 67.77±0.96 63.34±0.78 63.27±0.86 59.31±1.02 52.72±0.48 46.01±2.03

CClip-Bucketing 72.81±0.82 69.91±0.32 67.43±1.01 63.02±1.23 63.27±1.46 59.48±0.88 53.14±1.73 45.99±1.49

RFA 58.99±2.02 64.97±2.37 55.80±3.36 10.00±0.00 66.19±2.71 59.29±1.40 46.31±5.51 10.00±0.00

RFA-Bucketing 64.33±3.61 70.75±3.30 57.14±3.17 10.00±0.00 66.90±1.67 60.26±2.12 10.00±0.00 10.00±0.00

CwMed 73.22±0.61 70.79±0.47 66.95±0.67 62.99±0.77 64.65±0.89 61.84±0.79 57.28±0.39 52.12±1.44

Huber Aggregator 73.11±0.05 70.17±0.06 67.61±0.47 63.06±0.86 64.06±0.51 60.20±2.26 53.12±1.82 46.73±1.73

FedAVG 71.98±0.53 68.73±0.15 65.74±0.82 58.39±1.36 62.11±1.10 56.41±1.07 46.83±1.30 39.48±1.05

Attack: Lie Attack
FedLAW 74.20±0.30 71.96±0.26 60.91±0.37 41.56±3.28 66.49±0.19 61.79±0.50 46.22±1.76 28.34±0.44

Bulyan 73.52±0.20 50.18±0.61 31.19±2.30 10.00±0.01 65.57±0.63 40.99±1.13 13.82±3.44 10.00±0.00

Bulyan-Bucketing 73.19±0.27 64.14±0.51 42.53±2.28 27.45±1.14 64.99±0.21 51.49±0.31 32.16±1.41 11.69±2.99

Krum 65.43±0.76 45.04±1.09 28.70±1.52 10.00±0.00 52.68±0.60 35.39±1.33 13.32±3.13 10.01±0.02

Trimmed Mean 74.66±0.25 69.01±0.48 45.98±1.21 27.65±0.40 67.00±0.68 57.22±0.41 35.47±1.48 10.00±0.00

CClip 74.07±0.17 72.78±0.17 63.91±0.02 42.54±0.27 66.35±0.14 64.08±0.59 49.48±0.25 34.11±1.04

CClip-Bucketing 74.10±0.64 72.80±0.32 64.31±0.18 43.05±0.74 66.75±0.67 64.39±0.01 52.47±0.18 31.59±1.50

RFA 74.27±0.12 65.25±0.46 50.53±0.62 33.52±2.06 66.18±0.06 52.98±1.13 39.49±1.08 22.14±1.86

RFA-Bucketing 74.47±0.04 66.18±0.48 50.92±0.15 35.05±1.12 66.18±0.54 54.56±1.37 40.71±0.27 25.56±0.28

Continued on next page

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

0 100 200 300 400
0

20

40

60

Comm. round

Te
st

ac
c.

(%
)

Inverse gradient

0 100 200 300 400
0

20

40

60

Comm. round

Backdoor

FedLAW (Ours) Bulyan Bulyan + Bucketing Krum Trimmed Mean Coordinate-wise Median
Huber Aggregator CClip CClip + Bucketing RFA RFA + Bucketing

Figure 8: Convergence on CIFAR-10 under two adversarial settings (q = 0.9, 40% malicious clients; see Section 5 for
details). Each panel shows the average test accuracy over 5 independent runs; shaded regions denote ±1std. FedLAW
uses two communication rounds per model update, so 400 rounds correspond to 200 global epochs. All other methods
run for 400 global epochs. We report results for one data poisoning attack (backdoor) and one model attack (inverse
gradient), which are representative of the broader attack space. Methods excluded from the inverse gradient plot did not
converge.

Table 4 (continued) from previous page
Algorithm Fraction of Malicious Clients

q = 0.6 q = 0.9

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

CwMed 72.04±0.08 58.56±0.77 43.48±0.81 21.37±2.06 60.80±0.19 47.00±2.13 31.23±3.98 10.00±0.01

Huber Aggregator 74.33±0.10 68.08±0.18 51.65±0.29 36.16±1.98 67.08±0.91 61.23±0.14 45.58±1.24 26.49±2.58

FedAVG 74.30±0.06 73.51±0.20 64.04±0.88 44.70±2.87 66.54±0.99 64.30±0.41 51.71±0.80 33.04±2.57

H.5 COMPUTATIONAL COMPLEXITY

Communication Overhead between Server and Clients: As demonstrated in Table 5, state-of-the-art Byzantine-robust federated
learning methods typically do not update aggregation weights, incurring zero communication rounds for this step. In contrast, our
proposed method, FedLAW, optimizes the aggregation weights w alongside the global model parameters θ, requiring an additional
20 communication rounds for w updates. Since Byzantine attacks are assumed to occur early in training and w converges quickly,
we restrict its updates to the first 20 rounds, ensuring a fixed and limited communication overhead.

To ensure a fair comparison with existing methods and maintain a standardized benchmark, we align the number of communication
rounds for updating θ with those used by state-of-the-art approaches in our numerical study. This setup allows for a direct evaluation
of FedLAW’s performance under equivalent conditions for θ updates. However, as highlighted in Remark 1 and illustrated in Figure 8,
FedLAW achieves the target accuracy with fewer θ-update rounds compared to other methods, owing to the joint optimization of w
and θ. This flexibility enhances convergence speed, effectively offsetting the additional 20 rounds for w updates and potentially
reducing the total communication cost in practical settings.

Finally, we note that the CIFAR-10 dataset requires more θ-update rounds than MNIST due to its higher complexity, which
necessitates additional training effort to achieve robust convergence across all methods.

Memory Complexity of Server-Side Weight Update: In our method, the server updates both the global model parameters and the
aggregation weights. The weight update involves computing the vector

hk = wk + βαGT
k G̃k+1wk − βf(θ̃k+1) (137)

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Algorithm Dataset # of Rounds to Update θ # of Rounds to Update w

FedLAW (ours) MNIST 200 20

CIFAR10 400 20

Bulyan MNIST 200 0

CIFAR10 400 0

Krum MNIST 200 0

CIFAR10 400 0

Trimmed Mean MNIST 200 0

CIFAR10 400 0

FedAVG MNIST 200 0

CIFAR10 400 0

Table 5: Number of communication rounds for updating θ and w in
each algorithm.

where wk ∈ Rn are the aggregation weights, Gk = [∇θf1(θk), · · · ,∇θfn(θk)] ∈ Rd×n, G̃k+1 =

[∇θf1(θ̃k+1), · · · ,∇θfn(θ̃k+1)] ∈ Rd×n are gradient matrices, and f(θ̃k+1) ∈ Rn denotes the losses of all clients. The
vector hk is then projected onto the sparse unit-capped simplex.

To analyze the memory requirements for computing hk, we summarize the necessary data stored on the server in Table 6.

Symbol Shape Purpose Memory Cost
wk n Aggregation weights O(n)
Gk d× n Previous round gradients O(dn)

G̃k+1 d× n Current round gradients O(dn)
f(θ̃k+1) n client losses O(n)

Intermediate z = G̃k+1wk d Matrix-vector product scratch O(d)
Projection buffer n Sparse simplex projection O(n)

Table 6: Memory components required for computing aggregation weights.

The dominant memory cost arises from storing the two gradient matrices Gk and G̃k+1, each of size O(dn). The other components
contribute lower-order terms, resulting in an overall memory complexity of O(dn).

Note that forming the product GT
k G̃k+1wk naively would require constructing an O(n2) matrix. However, this can be avoided by

computing it in two steps:

1. Compute z = G̃k+1wk with cost O(dn).

2. Then compute GT
k z with cost O(dn).

In summary, the memory required for server-side weight updates scales linearly with both the number of model parameters and the
number of clients. Therefore, the total memory requirement per round is O(dn).

Computational Complexity of Projection onto the sparse unit capped simplex: According to (10), the projection onto the sparse
unit-capped simplex involves the following steps:

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Attack Type q Frac. Mal.
MNIST CIFAR-10

Prec. Rec. F1 Acc. Prec. Rec. F1 Acc.

Flipping Label

0.6 0.4 0.990 ± 0.010 0.998 ± 0.006 0.994 ± 0.006 0.995 ± 0.005 0.976 ± 0.055 1.000 0.987 ± 0.029 0.989 ± 0.025
0.3 0.990 ± 0.022 1.000 0.995 ± 0.011 0.997 ± 0.007 0.971 ± 0.065 1.000 0.984 ± 0.035 0.990 ± 0.023
0.2 0.963 ± 0.051 1.000 0.980 ± 0.027 0.992 ± 0.011 0.959 ± 0.091 1.000 0.977 ± 0.051 0.990 ± 0.023
0.1 0.982 ± 0.041 1.000 0.990 ± 0.021 0.998 ± 0.005 0.964 ± 0.101 1.000 0.979 ± 0.059 0.995 ± 0.014

0.9 0.4 0.921 ± 0.052 0.948 ± 0.072 0.934 ± 0.060 0.946 ± 0.049 0.954 ± 0.048 0.950 ± 0.054 0.952 ± 0.051 0.961 ± 0.041
0.3 0.963 ± 0.045 0.966 ± 0.047 0.965 ± 0.046 0.979 ± 0.028 0.937 ± 0.058 0.987 ± 0.014 0.960 ± 0.026 0.975 ± 0.017
0.2 0.970 ± 0.021 0.975 ± 0.025 0.972 ± 0.023 0.989 ± 0.009 0.932 ± 0.073 0.965 ± 0.029 0.947 ± 0.044 0.978 ± 0.019
0.1 0.972 ± 0.041 1.000 0.986 ± 0.021 0.997 ± 0.005 0.948 ± 0.064 0.939 ± 0.082 0.944 ± 0.073 0.989 ± 0.014

Inverse Gradient

0.6 0.4 0.880 ± 0.045 0.874 ± 0.052 0.877 ± 0.049 0.902 ± 0.039 0.956 ± 0.063 0.973 ± 0.061 0.964 ± 0.060 0.971 ± 0.048
0.3 0.824 ± 0.166 0.823 ± 0.165 0.824 ± 0.165 0.895 ± 0.098 0.975 ± 0.037 1.000 0.987 ± 0.019 0.992 ± 0.012
0.2 0.913 ± 0.140 0.917 ± 0.138 0.915 ± 0.139 0.965 ± 0.056 0.963 ± 0.082 1.000 0.980 ± 0.045 0.991 ± 0.020
0.1 0.913 ± 0.194 0.930 ± 0.157 0.921 ± 0.177 0.983 ± 0.039 0.968 ± 0.092 1.000 0.981 ± 0.053 0.996 ± 0.012

0.9 0.4 0.899 ± 0.072 0.904 ± 0.064 0.902 ± 0.068 0.922 ± 0.054 0.997 ± 0.006 0.997 ± 0.006 0.997 ± 0.006 0.998 ± 0.005
0.3 0.833 ± 0.071 0.833 ± 0.071 0.833 ± 0.071 0.899 ± 0.043 0.969 ± 0.048 0.997 ± 0.008 0.982 ± 0.029 0.989 ± 0.018
0.2 0.825 ± 0.071 0.825 ± 0.071 0.825 ± 0.071 0.929 ± 0.029 0.943 ± 0.087 0.985 ± 0.034 0.963 ± 0.061 0.984 ± 0.026
0.1 0.707 ± 0.033 0.857 ± 0.131 0.774 ± 0.073 0.953 ± 0.008 0.901 ± 0.140 0.990 ± 0.022 0.939 ± 0.088 0.986 ± 0.021

Backdoor Attack

0.6 0.4 0.979 ± 0.018 1.000 0.989 ± 0.009 0.991 ± 0.008 0.968 ± 0.068 1.000 0.983 ± 0.037 0.985 ± 0.033
0.3 0.980 ± 0.030 1.000 0.990 ± 0.015 0.994 ± 0.010 1.000 1.000 1.000 1.000
0.2 0.970 ± 0.023 1.000 0.985 ± 0.012 0.994 ± 0.005 0.963 ± 0.090 1.000 0.979 ± 0.050 0.991 ± 0.023
0.1 0.900 ± 0.039 1.000 0.947 ± 0.022 0.989 ± 0.005 1.000 1.000 1.000 1.000

0.9 0.4 0.997 ± 0.006 1.000 0.998 ± 0.003 0.999 ± 0.003 0.966 ± 0.064 1.000 0.981 ± 0.035 0.984 ± 0.031
0.3 0.988 ± 0.016 1.000 0.994 ± 0.008 0.996 ± 0.005 0.972 ± 0.061 1.000 0.985 ± 0.033 0.990 ± 0.022
0.2 0.959 ± 0.035 1.000 0.979 ± 0.018 0.991 ± 0.008 0.968 ± 0.095 1.000 0.981 ± 0.056 0.991 ± 0.027
0.1 0.915 ± 0.085 1.000 0.954 ± 0.048 0.990 ± 0.011 1.000 1.000 1.000 1.000

Double Attack

0.6 0.4 0.874 ± 0.010 0.874 ± 0.010 0.874 ± 0.010 0.899 ± 0.008 0.855 ± 0.093 0.897 ± 0.130 0.875 ± 0.111 0.899 ± 0.088
0.3 0.825 ± 0.026 0.825 ± 0.026 0.825 ± 0.026 0.896 ± 0.015 0.856 ± 0.042 0.909 ± 0.070 0.881 ± 0.054 0.927 ± 0.032
0.2 0.807 ± 0.028 0.800 ± 0.025 0.803 ± 0.026 0.921 ± 0.011 0.826 ± 0.029 0.960 ± 0.065 0.887 ± 0.041 0.952 ± 0.017
0.1 0.696 ± 0.037 0.707 ± 0.027 0.701 ± 0.031 0.940 ± 0.008 0.681 ± 0.015 0.990 ± 0.022 0.807 ± 0.018 0.952 ± 0.005

0.9 0.4 0.804 ± 0.133 0.810 ± 0.132 0.807 ± 0.132 0.845 ± 0.106 0.848 ± 0.100 0.899 ± 0.141 0.872 ± 0.119 0.897 ± 0.095
0.3 0.804 ± 0.039 0.804 ± 0.039 0.804 ± 0.039 0.882 ± 0.025 0.848 ± 0.129 0.888 ± 0.162 0.867 ± 0.145 0.920 ± 0.086
0.2 0.756 ± 0.039 0.750 ± 0.043 0.753 ± 0.041 0.901 ± 0.016 0.776 ± 0.121 0.823 ± 0.164 0.799 ± 0.141 0.918 ± 0.057
0.1 0.697 ± 0.133 0.697 ± 0.133 0.697 ± 0.133 0.939 ± 0.027 0.764 ± 0.082 0.970 ± 0.045 0.852 ± 0.055 0.966 ± 0.015

Table 7: Precision, recall, F1 score, and accuracy of FEDLAW under different attack types, values of q, and fractions of
malicious clients on MNIST and CIFAR-10. Results are reported as the mean ± standard deviation over 5 independent
runs.

• Sparsity enforcement: hλ = PLs(hk), selecting the top-s elements from hk ∈ Rn. This step can be performed in
O(nmin(s, logn)) (Kyrillidis et al., 2013).

• Support selection: S∗ = supp(hλ), identifying the indices of the top-s elements, which requires O(n) time.

• Unit-capped simplex projection: wk+1S∗ = P
∆+

t
(hλS∗), wk+1(S∗)∁ = 0. This projection onto the unit-capped

simplex has a computational complexity of O(s2) (Wang & Lu, 2015).

The total complexity of the projection step is O(nmin(s, logn) + s2).

53

	Introduction
	Notation and Model
	Notation
	Model

	Byzantine-Robust Federated Learning with Learnable Weights
	Problem Formulation
	Proposed Algorithm

	Theoretical Analyses
	Byzantine-resilient Analysis
	Convergence Analysis

	Numerical Study
	Experimental Setup
	Experimental Results

	Conclusion
	Mathematical Foundations
	Optimizing the Joint Loss Function: FedLAW and BSUM
	BSUM: A Baseline for Comparison
	FedLAW vs. BSUM: Capturing Joint Optimization Dynamics

	Projection onto the unit-capped simplex
	Proof of Theorem 1
	Proof of Theorem 2
	Optimal solution of (6)
	 High-Probability Bound via Hoeffding's Inequality
	Decomposing the Error with the Triangle Inequality

	Byzantine Resilience Against Adversarial Loss and Gradient
	Proof of Theorem 3 and Determining Lipschitz Constant Lw
	Proof of Theorem 3 for L-smooth (Item 1)
	Proof of Theorem 3 for L-smooth and strongly convex (Item 2)
	Determining Lipschitz Constant Lw

	Additional Experimental Setups and Results
	Experimental Framework Overview
	Hyperparameter Settings
	FedLAW: Client-weight dynamics under four adversarial settings.
	Evaluation of Malicious Client Detection
	Computational Complexity

