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ABSTRACT

Federated Learning (FL) enables clients to collaboratively train a global model without sharing their
private data. However, the presence of malicious (Byzantine) clients poses significant challenges
to the robustness of FL, particularly when data distributions across clients are heterogeneous. In
this paper, we propose a novel Byzantine-robust FL optimization problem that incorporates adaptive
weighting into the aggregation process. Unlike conventional approaches, our formulation treats
aggregation weights as learnable parameters, jointly optimizing them alongside the global model
parameters. To solve this optimization problem, we develop an alternating minimization algorithm
with strong convergence guarantees under adversarial attack. We analyze the Byzantine resilience
of the proposed objective. We evaluate the performance of our algorithm against state-of-the-art
Byzantine-robust FL approaches across various datasets and attack scenarios. Experimental results
demonstrate that our method consistently outperforms existing approaches, particularly in settings
with highly heterogeneous data and a large proportion of malicious clients.

1 INTRODUCTION

Federated Learning (FL) is a distributed machine learning framework that enables multiple clients to collaboratively
train a shared global model without transferring their private data to a central location (Li et al.,|2020aj; Bonawitz et al.}
2019; [Li et al., [2020b; McMahan et al., [2017)). Instead of centralizing data, FL only exchanges model updates such
as gradients or parameters, between the clients and the central server. This architecture mitigates privacy risks and
supports applications with distributed data that is too costly or too sensitive to share (Li et al.,[2020a)).

In a typical FL workflow, a central server initializes a global model and sends it to the clients. Each client trains
the model locally on its private dataset and transmits only the resulting updates back to the server (Li et al., 2020a;
McMahan et al.| [2017). The server aggregates these updates to improve the global model, and this cycle repeats
across multiple communication rounds. Federated Averaging (FedAvg), one of the most widely adopted FL algorithms,
computes a weighted average of client updates, accounting for the size of each client’s dataset (McMahan et al.,[2017).

A significant challenge in FL arises from the presence of malicious clients, often referred to as Byzantine clients.
Previous studies (Baruch et al., 2019; [Fang et al.| 2020) have highlighted that the global model trained using FedAvg can
be compromised when malicious clients deliberately send malicious model updates. Detecting such malicious behavior
is inherently challenging due to the decentralized nature of FL, where the server has limited visibility into individual
clients’ local data and training processes. This challenge is further exacerbated in scenarios with heterogeneous data
distributions, where each client’s local dataset may differ significantly from others in terms of represented classes,
feature distributions, or data volumes. These variations in data distributions make it difficult to differentiate between
benign updates influenced by data heterogeneity and corrupted updates sent by malicious clients (Cao et al., 2021} |Liu
et al.l [2023b).

Various studies (Yin et al., 2018 Blanchard et al., 2017 [Liu et al., 2023b; |Guerraoui et al., 2018}; |Pillutla et al., [2022;
Karimireddy et al.l 2021) have proposed Byzantine-robust FL strategies to defend against malicious clients. Generally,
robust aggregation methods can be clustered in three categories: distance-based (Blanchard et al.|[2017)), statistic-based
(Yin et al.| 2018} |Farhadkhani et al., 2022} |Liu et al., |2023a), and performance-based approaches (Xie et al., 2019).
Krum, which is a distance-based method, filters outliers by selecting updates with the smallest cumulative Euclidean
distance to their neighbors (Blanchard et al., 2017), while Median is a statistical method that replaces the mean operator
with the median when aggregating local updates (Yin et al., | 2018)). Trimmedmean removes a fraction of the largest
and smallest values for each parameter before computing the mean of the remaining values (Yin et al., 2018)). Bulyan
combines Krum to select consistent updates and Median to refine them (Guerraoui et al., [2018)).

Defending against Byzantine attacks in heterogeneous settings presents substantial challenges (Karimireddy et al.,
2020; ILiu et al., [2023b). To the best of our knowledge, all existing Byzantine-robust FL methods typically follow a
similar approach: after identifying and removing malicious clients, they assign uniform aggregation weights to the
benign clients, akin to FedAvg (Blanchard et al., 2017} |Shejwalkar & Houmansadr, 202 1} |Karimireddy et al., |2020;
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Figure 1: Test accuracy and weight evolution on MNIST under the inverse gradient attack (setting: ¢ = 0.9, 40%
malicious; see Section[5). Left: Average test accuracy +1 std over 200 epochs and 5 runs, evaluated across multiple
methods with 200 clients. Right: Aggregation weights of individual clients during the first 100 epochs (10 clients;
MLP, batch size 64, 3 local epochs). Benign clients quickly converge to stable, non-trivial weights, while malicious
clients are consistently suppressed.

Liu et al.| 2023b; Mhamdi et al., | 2018). While this approach simplifies the aggregation process, it poses a significant
drawback in heterogeneous data settings. Specifically, after removing the malicious clients, the distribution of data
examples with specific labels may become imbalanced among the remaining benign clients. Assigning uniform weights
in such a scenario fails to adapt to this imbalance, potentially degrading accuracy by not giving sufficient attention to all
labels. This challenge becomes increasingly critical as the degree of data heterogeneity increases and label imbalance
among benign clients becoming more pronounced. Addressing this challenge requires aggregation weights adjusted to
the underlying data distribution. Figure[I]illustrates this phenomenon, showing how the aggregation weights of benign
and malicious clients evolve under an inverse gradient attack and how adaptive weighting influences test accuracy.

We further demonstrate this relationship through empirical results in Section [5]

Contributions. In this paper, we propose a novel method for secure and robust FL that integrates adaptive weighting
into the aggregation process. Unlike conventional methods, our approach treats aggregation weight selection as a part
of the learning procedure, akin to global model parameters.

* First, we formulate the proposed optimization problem of jointly learning the global model parameters and
the aggregation weights. Subsequently, we propose an algorithm to solve this problem using an alternating
minimization approach that involves two key steps: first, minimizing the objective with respect to aggregation
weights, and second, minimizing it with respect to the model parameters.

* We provide theoretical analyses demonstrating both the Byzantine resilience and convergence properties of
our method. Theorem [2] shows that the proposed objective is robust to malicious agents. In Theorem|[I] we
establish convergence guarantees for learning the aggregation weights step. In Theorem 3] we further prove
that, under adversarial settings, the sequences generated by our algorithm, including both the aggregation
weights and global model parameters, converge to a neighborhood of the optimum of the cost function.

* We evaluate the performance of our method against state-of-the-art Byzantine-robust FL approaches, consider-
ing five types of attacks and two different datasets under varying levels of heterogeneity.

Structure of the paper. The remainder of this paper is organized as follows: Section 2]introduces the notation and
model framework used throughout. Section [3|presents our novel approach for Byzantine-robust FL, along with the
corresponding solution algorithm. Section @] analyzes the Byzantine resilience of the proposed method and provides
convergence results. Finally, Section [5|evaluates our method through comprehensive numerical experiments comparing
it against state-of-the-art Byzantine-robust FL algorithms.

2 NOTATION AND MODEL

2.1 NOTATION

Vectors and matrices are denoted by bold lowercase and uppercase letters, respectively. The support of a vector w,
denoted by supp(w), is the set of indices corresponding to the non-zero elements in w. The symbols ||w||o and ||w |2
denote the ¢y pseudo-norm (i.e., the number of non-zero elements in w) and the /5 norm of w, respectively. The inner
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product of two vectors x and y is represented by (x,y). Additionally, V., f denotes the gradient of the function f with
respect to w. The vector x, is a subset of the vector x, which contains only the elements indexed by the entries in the
vector A. The i-th element of the vector x is denoted by z;. Finally, v}, ; denotes the vector associated with client 4 at
synchronous round k.

2.2 MODEL

We consider a federated learning system with a parameter server and n clients, up to by of which may be Byzantine
(acting arbitrarily). In each synchronous round k, the server broadcasts the global model parameters 8, € R? to all
clients. Each honest client 7 computes a mini-batch gradient vy, ; := % > cens Vo fi(Ok; z) based on a random sample
&k,; of B data points drawn from its local distribution. This mini-batch gradient is an unbiased estimate of the client’s
true population gradient, vy ;, satisfying: E¢, . {Vx i} = Vi, = Vg fi(6x). Each Byzantine client j may submit an
arbitrary gradient vector by, ; and loss fy, ;. Attackers have full knowledge of the system and can collaborate (Lynch
1996). The server receives n gradient vectors, applies a robust aggregation rule to compute a single aggregated gradient
F},, and updates the model via the rule 81 = 0}, — o F}.

3 BYZANTINE-ROBUST FEDERATED LEARNING WITH LEARNABLE WEIGHTS
3.1 PROBLEM FORMULATION

Traditional FL aims of finding a set of global model parameters @ € R¢ minimizing the training loss f(0) = >_ w; f;(6),
i=1

where 7 is the number of clients and f; : R? — R represents the loss function of the i-th client. The aggregation weights

w are fixed and satisfy w; > O and ) " —1 Wi = 1. Byzantine resilience is typically introduced by adding functlonahty

for detecting malicious clients and removing them from the learning process, effectively setting the corresponding w;’s

to zero.

The key idea in our approach is to transform the binary detection and removal of suspicious clients into a continuous
weight optimization process, effectively embedding the Byzantine defense into the learning objective itself. We do so

by treating the weights w = [wq, ..., w,] as decision variables and jointly optimize them with 0:
min w; f;(0) e
Ocrtweaf, ;
where .
A&O ={weR"| Zwl =1,w; > 0,w; <t,|wlo < s} 2)

i=1
Here AZF 4, denotes a sparse unit-capped simplex, and the £y pseudo norm of w is utilized to achieve Byzantine
robustness. Notably, if we sett = 1/(n — by) and s = n — by, the only feasible weight vectors in A} ¢4, are those

where by clients are excluded and all others are weighted equally in the objective (see Proposition l in § [A] . of the
Supplementary).

3.2 PROPOSED ALGORITHM

Several techniques for solving (I]) already exist, including the BSUM algorithm by [Razaviyayn et al|(2013)) and the
prox-linear approach introduced in (Drusvyatskiy et al.l 2019). These algorithms rely on alternating between updating
the weights for fixed model parameters, and revising the model parameters for fixed weights. In our experience (see § [B]
in the Supplementary), such updates tend to be too aggressive, and miss important couplings between the two variable
blocks that are helpful for detecting malicious clients. To address these challenges, we propose a new algorithm based
on rewriting (I) as a nested optimization problem (Dempe, 2002):

min min w; f3(0) 3)
wea,, Oert i

To solve the inner optimization problem, we use a quadratic approximation f;(8) of f;(6)

. 1
fi(8:0k) = fi(Or) + (Vo fi(0r),0 — Ox) + 5|0 — 0 l>- “)
Substituting this quadratic approximation into the inner optimization problem in (3)) leads to:
Ori1(W) = arggmlnzwzfz (0;0k) = 0 —a > w;Vfi(Bk) = O — aGyw, ®)
€RY j—1 i=1
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where « is a step size and Gy = [V f1(0%), -, Vo fn(0k)]. Note that the model update depends on the aggregation
weights. This dependence is accounted for in the outer optimization, which becomes
Wit = argmin Y w;fi(Or1(w)) = argmin Y w; fi(0 — aGrw), (6)
WGA:% i=1 WEAt,Zo i=1

The optimization in (6) minimizes the global objective by adjusting the weights w € A&U considering the effect
that they have on the parameter update 051 (w) = 0 — aGgw. In particular, the weighted combination of client
gradients in G, w shapes the parameter update, coupling the choice of weights to the losses f;(0;+1(w)). This
formulation prioritizes clients whose gradients, represented by the columns of Gy, align with the descent direction
of f;(0r — aGgw), as benign client gradients typically form a coherent cluster in the parameter space. In contrast,
Byzantine clients tend to submit updates that deviate from this direction or behave inconsistently due to adversarial
perturbations, making them outliers. The sparsity constraint A;flo ensures that up to n — s misaligned clients, including
Byzantines, are excluded, enhancing robustness of the learning process.

While (3) is a simple gradient descent step, the optimization in (6) is more challenging since both its objective and
constraint set are non-convex. Nevertheless, it can be approached by first approximating

Op(w) = Z w; (0 — aGEw) ™

i=1
by the following quadratic function

1
Op(w) = Pr(wi) + (VwPr(wi), w — wy) + %HW — w13
for some positive step-size 3. We then replace (€ by
W1 = argmin &y (w) + 6Aj’,30 (w) 8)

where § N (w) is the indicator function of the set Aj: ¢, By completing the square and dropping constant terms, the
above update is equivalent to 1

Wit = argmin 5w — i+ 0y (W) = proxs; (h) ©)
where hy, = wi, — SV P (wy) and the final equality follows from the definition of the proximal mapping in (T6)) (see

§|§in the Supplementary). Thus, w1 is the projection of hy, onto the sparse unit capped simplex Az ¢,- Although
this set is non-convex, the next result shows how the projection can be performed efficiently.

Theorem 1. Denote Py, (hy) as the operator selecting the s largest elements of the vector hy, and let PAj be the
projection operator onto the unit-capped simplex A?‘ ={w e R" | ZZL:I w; = 1,w; > 0,w; < t}, which has an
efficient solution provided in Algorithm 3|(see Section[Clin the Supplementary).

The problem () is exactly solved by the three-step projection method below:
1. Sparsity enforcement hy = Pr,_(hy,)
2. Support selection: S* = supp(hy) (10)
3. Unit capped simplex projection: Wy 1 g. = AF (hyag+), Wit1(g+)e = 0.

Proof. See Section[D]in the Supplementary. O
After having updated the weights w41 based on (9), the parameter vector 8, can be updated by substituting w = w41
into (3)), yielding:

O0ri1 =0 — aGrwyi1. (1D

The pseudo-code of the final algorithm is summarized in Algorithm 2](see Supplementary).

To translate our algorithm procedure in the FL freimework, atepoch k+ 1, the server broadcasts @}, to clients, who return
Vo fi(0y). The server constructs Gy, computes 01 = 0, — aGwy, and sends 0.1 to clients. Clients respond with
fri1 = [f1(Oks1),- - fn(HkHN)}T and G411 = [Vof1(0k+1), .-, Vofn(0k+1)]. The server then updates w1 via

(T0), with hy, = wy, + oG] Gry1Wi — Bfxr1, and computes 01 via ([I). This requires two communication
rounds: one for @), and gradients, another for 81 and client responses.
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Remark 1. While our method requires two communication rounds per training epoch, this does not necessarily imply a
doubling of total communication rounds compared to standard FL. We highlight a key factor that mitigate this cost.
Introducing w as a decision variable offers additional flexibility in minimizing the loss (see (6)), which accelerates
convergence of the global model parameters (see Figure |S|in the Supplementary). To fairly compare methods, we
evaluate performance based on total communication rounds. Figure[8|shows that FedLAW achieves higher test accuracy
within the same communication round. As a result, the total number of rounds required to reach a target accuracy by
our method may be only marginally higher, or even lower than that of competing methods.

We conclude this section by discussing the server-side overhead relative to standard FL. The only extra step in our
method is the aggregation weight update (I0), while the model update remains identical to that in standard FL. The
following proposition quantifies the complexity of the extra step.

Proposition 1. The memory complexity of server-side aggregation weight update based on (10) is O(dn) per round,
and the computational complexity of the projection in the server is O(nmin(s,logn) + s2), where d is the number
of model parameters, n is the number of clients, and s is the sparsity level.

Proof. See Section[H.5|in the Supplementary. O
4 THEORETICAL ANALYSES

4.1 BYZANTINE-RESILIENT ANALYSIS

The main method proposed in (6)) is designed for Byzantine-resilient federated learning through optimized aggregation
weights. The following theorem establishes its resilience property, as formalized in Definition [5] (Section [A]in the
Supplementary).

The first step in our resilience analysis is to make the objective in (6)) analytically tractable. We use Taylor’s theorem
with an exact remainder to reformulate it, revealing that it is governed by the quadratic form w? G G, w. By denoting
Vi,i = Vo fi(0r), we can show this term is equivalent to an expression involving pairwise gradient distances:

n n n
wGLGw = = willvialld + DD wiwlvei — ve ;13-
i=1 i=1 j=1
From here, the proof exploits the terms || vy ; — Vi, ;|3 with a novel, especially tailored approach to establish Byzantine
resilience. Although gradient differences are exploited in other Byzantine-resilient methods, here they appear naturally

from the structure of (6)) using our novel derivations. Note that the nested structure of (3)), leading to (6), is an essential
building block.

It is important to highlight that, unlike Definition[5] we consider a more general setting where population losses and
gradients are non-iid. To improve practicality, our analysis also focuses on the case where the aggregator relies on
mini-batch gradients rather than full-batch gradients, which is a more realistic scenario.

We now state the formal assumptions for our theoretical analysis.

Assumption 1 (Formal Setup for Theoretical Analysis). We analyze the setting where each honest client i € H provides
a mini-batch gradient ¥y, ; of size B. Let vy, ; = Vo [i(0k) be the full batch population gradient. We assume the
following:

(A) Client loss functions
(Al) (Smoothness) Each client loss function f;(0) is L;-smooth, with Ly, = maxi<i<n L;.
(A2) The weight objective function ®i(w) in {7) with respect to w is L.,-smooth.

(B) Step-size Schedule

(B1) Algorithm [Z] employs a hybrid schedule where the step-size « is a fixed constant 0 < « < 1/Lyax, and
the weight step-size { S} is an adaptive schedule satisfying the standard Robbins-Monro conditions (), >

0,8k = 0,5 Br = 00,> 87 < 00) and Py, < 1/ L.
(C) Stochastic Gradient Model

(C1) The deviation of any single-sample gradient from its full batch population is bounded by ||V f;(0k; z) — vy i|| <
Ry on one single data point z.

(D) Population Heterogeneity
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(D1) We assume the population gradients and losses at round k, { f;(0%), Vi i tien is Vi ~ Gri E{Vi,i} = 8k

with g = ﬁ > icn 8k Mk = B{fi(0r)} with mayy = Wll > my,;, and
i€H

* Directional Heterogeneity: ﬁ > gk —gl* < HE
i€EH

* Magnitude Heterogeneity: ||gk.i||* — |lg||*| < K2

o Inter-Client Variance: E{||vy; — gi.i||3} < doi.

* Loss Heterogeneity: ﬁ Y ien IMei — Mavg| < k.
(E) Byzantine Clients and Aggregator

(El) Attackers submit arbitrary gradients by, ; and non-negative losses fkﬂ- > 0, subject to the norm constraint
[b,il| < max [ ;2.
JEH

Theorem 2 (High-Probability Byzantine Resilience). Under Assumption|!|(excluding A2 and B1) and let assume by
min-batch gradient updates vy, ; are replaced with their Byzantine counterparts by, ; at any round k with 2by 4+ 2 < n.

Let the aggregator F be computed as follows
F=> weiVei+ Y weibr; (12)
1€EH jeHC

where wy, represents the optimal weight vector obtained from (6)), for a step-size 0 < o < Quay in which

1 Chr 2R log(2d/0)
max - b 9 - 77 1
amax = min { oG] s =/ = (13

2d0,%(2n — bf — 2) + 28251))0
n—bf n—bf n—bf

Then, with probability at least 1 — 6, the aggregator F is Byzantine-resilient. Specifically, its expected bias with respect
to the true global mean g is bounded by:

IE{F} — gl < m. (14)

where the error bound ny, is explicitly decomposed into the distinct sources of error:

%
I H, +eg (15)

w/n—bf

Furthermore, if the signal-to-noise condition ny, < ||g|| holds, then the angle ( between the expected aggregated
gradient BE{F'} and the true global gradient g is bounded by sin { < H%CH'

- H? K2
77k = \/Qbf (gk + Chg[ + Lmaxa(Tk + Tk + dO']% + 523)) +

Proof. See Section [Ein the Supplementary. O

Theorem [2] provides a comprehensive resilience guarantee for the proposed method. The key insight is the error
decomposition in Eq. (T3)), which shows that the total error 7?7 is a sum of four distinct and well-characterized sources:
loss heterogeneity, gradient heterogeneity, inter-client variance, and mini-batch sampling noise. The bound explicitly
shows that the sampling noise is controllable, as it vanishes when the mini-batch size B increases.

The assumptions underpinning this result are standard and practically justifiable. The condition ||bg ;|| < max 1Vl
JjE

is enforced in practice by a standard gradient clipping mechanism on the server side: each incoming update is projected
onto an ¢5-ball of radius C. Honest updates remain untouched when C' exceeds their typical norm, whereas malicious
updates cannot exceed the threshold. This adds no extra communication and is already commonplace in FedAvg,
DP-Fed, and similar protocols. Similarly, assuming bounded heterogeneity (H7, K7) is a standard prerequisite for
any non-IID analysis. In addition, in practice ¢, is typically very small even under a high heterogeneity, thereby
mitigating the effect of the 1/« scaling in (T3). Additionally, Byzantine resilience under the scenario where both the
losses and gradients are replaced with Byzantine versions is established separately in Theorem 9] (see Section [Fin the
Supplementary).
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4.2 CONVERGENCE ANALYSIS

A key difficulty in Algorithm[2]is the arbitrary behavior of the adversary, which complicates the convergence analysis
of our alternating minimization scheme to optimize 6 and w jointly. We tackle this by viewing the method through the
lens of a hybrid step-size schedule. This perspective yields a strong stability guarantee: even under attack, the adaptive
weights not only stabilize, but their limit is a critical point of the exact (non-approximated) objective in (6). Building on
this result, the following theorem establishes convergence to a neighborhood of the optimum of problem (IJ) in both
non-convex and strongly convex regimes under adversarial conditions.

Theorem 3. Let the sequences { (0, wy)}72, be generated by Algorithm 2| Let the aggregator be Fi,(w) = Gypw
with bounded variance Var(Fk (Wk)) < U%’k, where Gy, contain mini-batch honest gradients as well as arbitrary
Byzantine gradients. Assume Assumption|l|holds and suppose:

o |E{Fr(Wi)} — gkl < Cp where gi, = >0 wi i B{vi}.

* As k — 0o, we have (; — (oo, 0%, — 0% o, and o} — 02,

Then, the aggregation weights satisfy Wi11 — Wy, as k — oo with limits point w*, which is a critical point of (0)) for
k — oo. Moreover, the following convergence guarantees hold:

1. (L-smooth, Non-Convex Case) The sequence generated by our algorithm converges to a neighborhood of a
stationary point of the main loss function (1)). In particular, with probability at least 1 — 0, the time-averaged

squared gradient norm is bounded as: T

T-1 Cox

. 1 2 k=1 2 2
Jim sup kz—o lgr]|” < tim e, T O (¢ +0F )

where C1 = 1(1 — aLyax) > 0, £5 = \/@, and
2 + (G +4C1G)?
Cop = 20ks1y/ K2+ do? + €% + (C,f + a%k, + ak\/&./cg + ‘712%) + (2¢k+1 ié 1Ck) )
1

2. (Strongly Convex and L-smooth Case) If the client loss functions f; are u-strongly convex, then the algorithm
converges to a neighborhood of the global optimum. Moreover, with probability at least 1 — §, we have

. * CQ,oo
klggo sup E{Q (O, wy) — Q*} < do? + 9uC =0 (& + 0'12:‘700 +02).
in which Q(0, w) denotes loss function in (1)). Also, Q* is its global minimum when w = w*, evaluated under
honest gradients.

In addition, the bound (~ < 1o holds, where 1 is the upper bound from (14) in Theorem |2} representing the
Byzantine resilience guarantee of the update rule (6) as k — oo.

Proof. See Section|[Glin the Supplementary. O

Theorem [3|establishes that our algorithm converges to a bounded neighborhood of the optimum, with the error radius
scaling directly with the adversary’s influence. The final error bound is determined by the asymptotic bias and variance
of the aggregator ((~, 0 F,0), highlighting a powerful property: as the aggregator improves (e.g., (; — 0), the algorithm
converges to increasingly precise solutions.

The key insight of our work lies in the formal link between these two results. Theorem [2] provides a per-iteration
resilience guarantee ();,), while Theorem [3]strengthens this by showing that the asymptotic bias is bounded by the same
guarantee, (o, < 7). Together, they establish that the long-term bias of the converged system is controlled by the
same mechanism that ensures step-wise robustness. This unifies the static resilience of the aggregator with the dynamic
convergence of the algorithm, demonstrating that robustness at the aggregation level directly translates into stability and
convergence at the system level.

This theoretical foundation is strongly supported by our empirical results. Our experiments (e.g., Figs. [I]and d) show
the practical outcome of this theory: the algorithm effectively neutralizes attackers by learning to assign them zero
weight, which is empirical evidence that the bias (; converges to zero. Furthermore, the theoretical insights in Section B
explain the mechanism by which our objective function enables the detection of malicious clients, providing a clear
rationale for the algorithm’s observed success.
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Furthermore, in Appendix we show that if each f; is L;-smooth and has bounded gradients with upper bound C,
then V., @ (w) is L,,-Lipschitz continuous with

L, < aC? <n3/2 +n 4+ anLyax + %)7
where o = V2 + 12 with k = [1/t] and 7 =1 — kt € [0,2).

5 NUMERICAL STUDY

In this section, we evaluate the performance of the proposed FedLAW algorithm, and compare it against state-of-the-art
Byzantine-robust FL baselines on diverse attack scenarios and datasets.

5.1 EXPERIMENTAL SETUP

Datasets and Models: We conduct experiments on the MNIST (LeCun & Cortes| [2010) and CIFAR10 (Krizhevsky
et al.|[2009) datasets. We train a 3-layer fully connected network on MNIST, and a 4-layer convolutional neural network
with group normalization on CIFAR10.

Data Distribution and Client Configuration: We simulate a federated setting with 200 clients and distribute the data
in a non-IID fashion using the method from |Cao et al.[(2021). To control the degree of data heterogeneity, we introduce
a concentration parameter ¢: each training example with label [ is assigned to the [-th group with probability ¢, and
to the remaining L — 1 groups with probability %, where L = 10 is the total number of labels in our experiments.
Within each group, data is uniformly distributed to clients. We consider ¢ € {0.6,0.9} to simulate moderate and high
levels of data heterogeneity, respectively. The proportion of malicious clients varies across {0.1,0.2,0.3,0.4}.

Attack Types and Baselines: We evaluate robustness under five adversarial attacks: label-flipping, inverse-gradient,
backdoor, a combined (double) attack, and the LIE (Little Is Enough) attack. For comparison, we consider several
baseline defenses: Krum, Trimmed Mean, Bulyan, Coordinate-wise Median (CwMed), CCLIP (Centered CLIPping
(Karimireddy et al.,2020)), RFA (Robust Federated Averaging (Pillutla et al., 2022)), Huber aggregator (Zhao et al.,
2024)) and Bucketing combined with Bulyan, RFA, or CCLIP. As a non-robust reference, we also include FedAvg, the
standard aggregation without defense.

Evaluation Protocol: Each dataset is split into 80% training, 10% validation, and 10% testing. We report average test
accuracy and malicious client detection accuracy over five independent runs. Standard deviations are provided in tables
(not included here) for completeness.

Additional experimental details, including computational complexity, hyperparameter settings, and sensitivity analysis,
are provided in Section [H]of the Supplementary.

5.2 EXPERIMENTAL RESULTS

Results on MNIST (see Figure 2}a and Table[3): Our experiments show that FedLAW delivers consistently strong
results, typically surpassing robust baselines. The advantage is especially pronounced under severe contamination
and heterogeneity; for example, under the inverse-gradient attack with 40% malicious clients, FedLAW attains a
test accuracy 3.6% higher than the next-best defense. While several methods remain competitive at low attack rates,
defenses such as RFA, RFA-bucketing, CClip, and CClip-bucketing deteriorate markedly as the attacker fraction grows,
with some even diverging. For example, under the double attack, the accuracy of RFA and RFA-bucketing decreases by
more than 31% with rising heterogeneity, and both CClip and CClip-bucketing diverge, whereas FedLAW maintains
robustness.

A defining strength of FedLAW is its stability. Whereas competing defenses degrade sharply, FedLAW’s accuracy
remains notably consistent across attacker fractions, exhibiting graceful degradation. This robustness stems from
a two-pronged design: it (i) identifies and removes malicious clients and (ii) adaptively reweights the remaining
honest updates. Unlike traditional approaches that revert to uniform weights after filtering suspected clients, FedLAW
continuously learns optimal weights, enhancing both robustness and representational fairness.

Results on CIFAR10 (see Figure[2|b and Table[d): The more complex CIFAR10 dataset presents additional challenges
due to its higher dimensionality and visual diversity. Nevertheless, FedLAW consistently shows strong resilience across
all attack types and configurations. Under label flipping with ¢ = 0.6 and 40% adversaries, FedLAW reaches 70.5%
accuracy, an +8.3 percentage-point gain over the best baseline (Bulyan at 62.2%). For inverse-gradient attacks with
g = 0.9 and 40% adversaries, it delivers a +3.1 percentage-point improvement over the best baseline (59.38% vs.
56.24%), while RFA and CClip variants diverge. In the challenging Double attack, FedLAW delivers the best results
among state-of-the-art methods. Likewise, in Lie Attack, FedLAW performs on par with the strongest baselines, while
substantially outperforming many others that suffer severe accuracy degradation.

A key observation is the rapid convergence of the weights. In our experiments, the weights w typically stabilize within
the first 20 rounds, after which further updates have negligible effect.
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Figure 2: Defending against attacks on MNIST and CIFAR10

This paper introduces FedLAW, a Byzantine-robust Federated Learning framework that treats aggregation weights as
learnable parameters, optimized alongside the global model. By enforcing a sparsity constraint, our method effectively
neutralizes the influence of malicious clients while adaptively balancing contributions from benign clients. To solve
the resulting joint optimization problem, we develop an alternating minimization algorithm that updates weights and
model parameters in tandem. We prove convergence guarantees and establish theoretical resilience to adversarial
behavior. Extensive empirical results on MNIST and CIFAR10 datasets under multiple attack scenarios demonstrate
the robustness and effectiveness of FedLAW. Compared to existing Byzantine-robust algorithms, our method achieves
consistently higher accuracy, especially in highly non-IID and adversarial environments. These findings highlight the
benefits of integrating adaptive aggregation into the learning process, paving the way for more secure and equitable FLL
deployments.
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Algorithm 1 CLIENTUPDATE

Require: current global model 8; learning-rate «; local epochs E; batch-size B; private data D;
Y — 0 > initialize local model parameters
: fore=1to F do o> full local epochs
for all mini-batches 5 C D; of size B do
Wi < i — aVy fi(i, B)
end for
end for

i

gi — — 5 > gradient at 0

fi = fi(i)
return (gi, fL)

R A A o e

Algorithm 2 FedLAW (Federated Learning with Learnable Aggregation Weights)

Require: initial model 6; learning rates «, 3; total epochs T'; local epochs F; batch-size B; sparsity level s; cap t;
number of clients n
1: initialize weights wq + 11
2: fork=0toT — 1do

/4 collect client updates V4
3: broadcast @y, to all clients
4: for all clients i =1:n in parallel do
5: (gi, fi) < CLIENTUPDATE(O, o, E, B)
6: end for
V4 server step 1 ——//
E Bagg < Z?:l Wi &i
8: 0111 — 95 — O Bagg }
broadcast 61 and collect (g;, f;) via CLIENTUPDATE
V4 server step 2 (weight update) V4
10: 9:[517 7~gn]’ G:[gh 7gn]
1 f=[fi,.. ., fal" i
12: hk%WkﬁLOéﬂGTGWk*ﬂf
13: Whal ¢ PrOjAH (hy) with s via (I0)
’ V4 server step 3 (second model update) V4
14: agg E?:l Wk+1,i 8i
15: Oii1 <+ O — A Bagg
16: end for

17: return O

A MATHEMATICAL FOUNDATIONS

In this section, we first introduce key mathematical concepts used throughout the paper. We then present specific
structural properties and feasibility results related to our proposed optimization framework.

We begin with the definition of proximal mapping.

Definition 1. (Parikh & Boyd, 2014) Let p: dom,, — (—o0,+00| be a proper and lower semi-continuous (PLSC)
function. Then the proximal mapping of p at x € R" is defined as

1
prox,(x) = argmin {2||x —ul + p(u)} . (16)

u€&domy,

Definition 2. (Attouch et al.||2011) The subdifferential of a PLSC function g at x € R"™ is defined as
A .
9g(x) ={¢ € R" [ Ix), = x, g(xx) = g(x), Gk — ¢ € 0G(xx)}
where 0G(xy,) is the Fréchet subdifferential of g at x), € R", defined as

[9(v) — 9(x) — (v —x,0)] > o} . am

V#X, VX ||V — XH%

0g(xy) = {C € R"| liminf

13
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Definition 3. (Attouch et al.| 2011) A point X* is called a critical point of a PLSC function f(x) if 0 € 0 f(x*).

Definition 4 (Operator Py, ). The operator Py, (w) leaves the s largest elements (based on their values, not magnitudes)
of the vector w unaltered and sets all other entries to zero.

Lemma 4 (Descent lemma (Bolte et al.,[2014)). Let f : R™ — R be a continuously differentiable function whose
gradient V f is L-Lipschitz continuous. Then, for all x,y € R™:

F(y) < 00+ (V560 y =) + 2y —xl3 18)

Definition 5 ((¢, by)-Byzantine Resilience (Blanchard et al., 2017)). Let ( be any angular value in the interval
[0,7/2), and by be any integer in {0,1,...,n}. Consider n independent identically distributed (i.i.d.) random vectors
Vi,...,Vp in R with v; ~ G where E{G} = g, and by random vectors by, ..., by, in RY, possibly dependent on the
vi's. A choice function F is said to be (C, by )-Byzantine resilient if, for any 1 < ji < --- < jy, < n, the vector

F=F(vy,...,b b, ;e Vi) (19)

.jl""’

satisfies:

1. It maintains alignment with the expected gradient:

(E{F},g) > (1 —sina)|g|* > 0.

2. E{|F|I"} (for r = 2,3,4) satiates the following condition:
E{|F|"} < C> E{|G|"}, where > r;i=r.

Definition 6 (Kurdyka-F.ojasiewicz Property (Attouch & Bolte, 2009)). A function f : R — R U {+oc} satisfies
the Kurdyka-Lojasiewicz (KL) property at a point & € dom(0f) if there exist ) > 0, a neighborhood U of T, and a
continuous concave function ¢ : [0,1) — [0, +00) with ¢(0) = 0, ¢ differentiable, and ¢'(s) > 0 for s € (0,7n), such
that for all x € U with f(z) < f(z) < f(Z) +n,

f(x) = f()) - dist(0,0f (x)) > 1,

¢'(
where dist(0,0f(z)) = inf{||v]| | v € Of (x)}. A function satisfying the KL property at all points in dom(0f) is called
a KL function.

Proposition 2. Consider the sparse-unit capped simplex

A::E(] = {WER” |Zwi:1,wi20,wi§t, ||W||0§s} (20)

=1

with t = nfbf and s = n — by. Then any weight vector w € Azfzo has exactly n — by non-zero weights, each equal to

1

by and the remaining by weights are zero.

Proof. Let w have k < n — by non-zero weights indexed by S, so Zies w; = 1,0 < w; < ﬁ foralli € S. If
k <n — by, we have:

. 1 1
§ <k —by)- -1
4 w; <k — < (n—by) — )

which cannot satisfy > ; w; = 1. Thus k=mn—by.

n—by
1 n—>br—1
Z w;=1—w; >1-— = ! .
" n — bf n — bf
The maximum sum for the remaining n — by — 1 weights, each capped at nfbf, is ngfgl Since the required

—b —b;—1 . . L .
sum Y "7 w; > 2L exceeds the maximum possible sum, this is impossible. Thus, w; < —— leads to a
=2 n—bf _bf

n
contradiction. Similarly, w; > ﬁ violates the upper bound w; < n_lbf.

Hence, all n — by non-zero weights must be - and the remaining by weights are zero, satisfying all constraints. [J

b s
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In the following lemma, we determine when the sparse, unit-sum, t-capped simplex is non-empty, a key condition
for selecting valid sparsity and cap parameters in the proposed method (I). We also compute an upper bound of the
Euclidean distance between any two vectors in this set that we will use in later results.

Lemma 5 (Feasibility and Distance in Sparse Unit-Capped Simplex). Consider the sparse unit-capped simplex in
which, n > 2, s € {1,...,n}, andt € (0,1]. Then ALO # 0 iff st > 1, and for any w1, wy € ALO,

w1 — wallz < /2 (kE2 + r2). @1)

where k = |1/t| andr = 1 — kt € [0,t). If 1/t € N, the bound simplifies to |w1 — W[ < /2t.

Proof. (=) 1If A:” P # (), then there exists a t-capped, s-sparse vector summing to 1. Since each nonzero entry is at
most ¢, we must have st > 1.

(<) If st > 1, we can construct a feasible vector by setting k = |1/t], r = 1 — kt, and defining
w*=1[t...,t,r0,...,0]
——
k times
which has at most s nonzero entries and sums to 1, so w* € A?‘ 0"

The maximum ¢ norm in A&D is achieved by w* = [t,...,t,r,0,...,0] with |w*||2 = kt?> + 2. For any
k times
Wi, Wy € A;feo, we have
Iwi = wall3 = [[w1l3 + lw2]|3 — 2(w1, wa) < 2(kt* +12),

because (w1, wy) > 0 (all entries are non-negative). Taking square roots yields the result. O

B OPTIMIZING THE JOINT LOSS FUNCTION: FEDLAW AND BSUM

A core contribution of this paper is to address Byzantine-robust federated learning by formulating and solving the

following joint optimization problem over global model parameters @ € R? and aggregation weights w = [wy, ..., wy]:
min w; (), (22)
OcRrd,weA’ Z ( )

t.0g i=1

where A&D ={weR" | Y w =1w >0,w <t |wlo < s}

As detailed in Section [3.2] our primary solution to this problem is the FedLAW algorithm, whose pseudocode is
provided in Algorithm[2] As another contribution, we adapt the Block Successive Upper-bound Minimization (BSUM)
method (Razaviyayn et al., 2013) to solve (22)), providing a baseline for our novel algorithm. By comparing FedLAW
and BSUM, we demonstrate that FedLAW’s integrated use of loss and gradient information results in more robust and
efficient learning under adversarial conditions. Below, we detail both methods and their comparative performance.

B.1 BSUM: A BASELINE FOR COMPARISON

BSUM alternates between updating the global model parameters 6 and client weights w, minimizing a local upper
bound approximation of the objective for each block while fixing the other. At iteration k + 1, it performs the following
operations:

1. Update 0: With w = wy, solve:

min Z wg,; fi(0). (23)

d
Oer? i

Assuming differentiable f;(6), we provide a quadratic upper bound f;(8) of f;(6)

£10:00) = (04) + (V0:(04).0 — 01) + 5|0 — 04 . (4

15
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where o > 0 is a step size. Substituting this quadratic upper bound into 23) gives
n

ék-}-l = argminZwifi(O; 0r) = 0 — aGpwy, (25)
Ocrd ;4

in which Gy, = [Vo f1(0k), -+, Vo fn(O)].
2. Update w: With 8 = ékﬂ, solve:

n

Wi1 = argmin Z w; fi(Ogt1). (26)
WEAt+ £ i=1
This is a linear program in w, constrained by the sparse unit-capped simplex Aj ¢,- 1o ensure a fair comparison with
our method, which uses the most recent weights to update 8 for enhanced robustness, we apply an extrapolation step,
updating:

0k+1 = gk — ()éGk.Wk_H.

This extrapolation aligns BSUM’s @ update with our method’s strategy, using the latest weights w1 optimized at
041 to reflect current client reliability assessments. By incorporating w1, which downweights malicious clients
via the sparse capped simplex, the update improves robustness against Byzantine attacks, ensuring that performance
differences arise from the algorithm design rather than the precise ordering of updates.

B.2 FEDLAW vs. BSUM: CAPTURING JOINT OPTIMIZATION DYNAMICS

A key difference distinguishes our method (Equation (6)) from BSUM. In BSUM, ékJrl is fixed when updating w,
simplifying to a linear objective. In contrast, our method minimizes:

> wifi(0k — aGrw). (27)

i=1

When the weight vector w inside f; is fixed to wy, our method (Equation (6)) reduces to BSUM’s linear program
(Equation (26)), revealing that BSUM is a suboptimal approximation. This raises a key question: how does our method
compare to BSUM in Byzantine-robust federated learning? BSUM updates w by minimizing >, w; f;(6%1), relying

solely on client losses f;(01+1) to detect malicious clients. However, attacks like the inverse gradient attack, where
malicious clients submit flipped gradients but benign losses, are not immediately detectable in losses, delaying BSUM’s
exclusion of malicious clients and slowing convergence. In contrast, our method optimizes Z:L:l w; fi (0 — aGrw),
leveraging both losses and gradients to enhance robustness.

Our algorithm solves (6) via the projection in Equation (), where w11 = prox A%, (hg) and hy, = wy +
~ ~ 4o

ﬂaGgGk_;,_ka — Bf(Ok — OszWk). Here, Gk+1 = [ngl(ak — OAGka),...,ngn(ek — OZGka)} and

£(0r — aGrwy) = [f1(0r — aGrwy),. .., fn(0r — aGrwyg)]. The vector hy, incorporates two factors for de-

tecting malicious clients:

1. Losses (f(6; — aGywy)): This term, similar to BSUM, assesses client losses. It is effective against attacks
like data poisoning, which directly alter losses, but is less reliable when losses remain benign despite malicious
gradients.

2. Gradient Alignment (G} Gy1): This inner product quantifies the alignment between gradients at 6, and
0. — aGw, across consecutive rounds. In attacks such as the inverse gradient attack, malicious gradients
typically misalign in direction relative to benign ones, enabling early detection and exclusion through the
sparsity constraint ||w|jo < s.

To substantiate this comparison, we provide an empirical evaluation of our method against BSUM (labeled as "Fed LAW-
BSUM?” in the figures), offering evidence to support the theoretical advantages.

Empirical comparison. Figures [3]and 4 compare our method with BSUM under four adversarial attack scenarios on
MNIST: flipping label, inverse gradient, backdoor, and double attack.
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Figure 3: Test accuracy on MNIST for four attack settings (¢=0.9, 10 clients, 40% malicious), contrasting
Fed LAW-BSUM (solid blue) with FedLAW (dashed green).

Figure 3] shows the test accuracy over 200 epochs. Across all attack settings, our method (FedLAW, dashed green)
either matches or surpasses the performance of BSUM (solid blue), with the most significant improvements observed
under gradient-based attacks. In particular, under the inverse gradient and double attack scenarios, FedLAW converges
faster and reaches a higher final accuracy, highlighting its enhanced robustness in detecting and mitigating subtle
gradient manipulations.

Figure [ further illustrates the client-weight evolution under these adversarial conditions. The top two rows correspond
to FedLAW, and the bottom two rows to BSUM. Each subplot displays how the aggregation weight of each client evolves
across 100 epochs. While both methods eventually suppress malicious clients (red/orange), FedLAW consistently
achieves this suppression earlier, especially under inverse gradient and double attacks, due to its reliance on both loss
and gradient information. In contrast, BSUM, which only considers losses, fails to immediately detect malicious clients
whose losses remain close to benign ones, delaying their exclusion.

These findings demonstrate that FedLAW more effectively captures the joint optimization dynamics in (22) by
incorporating both loss and gradient-based alignment into the weight update process compared to BSUM. FedLAW
not only detects malicious behavior earlier but also maintains better model accuracy and stability in the presence of
sophisticated adversaries.

C PROJECTION ONTO THE UNIT-CAPPED SIMPLEX

The purpose here is to solve the following optimization problem:

1
Xpr = Par(y) = argmin §||X -vl3 (28)
XEA]

where Af = {w e R" | >0, w; = 1,w; > 0,w; < t}. InWang & Lu|(2015), using Karush-Kuhn-Tucker (KKT)
conditions, a solution for the above projection is determined which is formulated in Algorithm 3]

For more details on this algorithm, see|Wang & Lu|(2015).
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Figure 4: Client-weight dynamics on MNIST under four adversarial settings (¢=0.9, 10 clients, 40% malicious). Two
top row: FedLAW. Two bottom row: FedLAW-BSUM. Each panel tracks the aggregation weight of every client
during the first 100 global epochs for a three-layer MLP (batch size 64, three local epochs). Across all attacks, benign
clients (grey) quickly converge to a stable weight, while malicious clients (red/orange) are pushed towards negligible

influence. Notably, FedLAW suppresses attackers faster than BSUM, especially for the gradient-based attacks (inverse
gradient, double attack), illustrating its stronger resilience.
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Algorithm 3 Projection onto the unit capped simplex

Require: y € R" is sorted in ascending order: y; < yo < --- <y,
1: Setyg = —oo and yp,4+1 = 00

k
2: Compute partial sums Ty = 0 and Ty, = % ‘2:1 yjfork=1,...,n
j:

3: fora=0,1,...,ndo

4 if (1 ==n—a) and (yo11 — Yo > t) then
5: Setb=a

6: break

7 end if

8 forb=a+1,...,ndo

9: Compute v = W

10: if (Y2 4+~ <0)and (2= +~ > 0) and (¥ +~ < 1) and (¥5=* > 1) then
11: break

12: end if

13: end for

14: end for

15: Output: x = [0,...,0,Yat1 + 7, ..., yp + v,y ..., 1]

D PROOF OF THEOREM

To prove Theorem|[I| we draw inspiration from the analysis used in the proof of Theorem 2 in Kyrillidis et al.| (2013).
However, it is crucial to highlight a key difference: while Kyrillidis et al.|(2013) establishes convergence for the sparse
projection onto the unit simplex, our goal is to demonstrate the convergence of the proposed method for the sparse
unit-capped simplex, which introduces additional constraints.

To prove Theorem|[I] we use the following two steps.

STEP 1: THE s-LARGEST ELEMENTS SHOULD BE IN THE SOLUTION

Let w be an optimal projection of hj, onto At+ ¢,» and assume that there exists an index ¢ among the s-largest entries of

hy, such that w; = 0. Suppose also that there exists an index j ¢ supp(Pr, (hg)) where w; > 0. Define a new vector
W by setting w; = 0 and w; = w;, while keeping all other entries unchanged. Consequently

[w =i ll3 = 1% = g3 + 2u; (b, — 1) (29)
Since w; (hi — hl) > 0, it follows that |w — hy||3 > || % — hy||3, contradicting the assumption that w is the optimal

projection. Thus, the s-largest coordinates of w should be in the solution.

STEP 2: ENSURING THE SIMPLEX CONSTRAINT IS SATISFIED

Once the support set S* (of size s) in (T0) is determined, the optimal solution is obtained by projecting ws~ onto the
unit-capped simplex. For the projection we utilized the proposed method in Wang & Lu|(2015) and established in
Algorithm[3] Since the proposed method used the KKT conditions for this projection, using and (28)), we have

2, VW € A (30)

[Wkt1s- — hag«ll2 < [|[W — hys-

This guarantees that w1 g. is the optimal projection of h - onto Af.

At the final step we show that solutions with support |S| = s are as good as any other solutions with |S| < s.
Suppose there exists a solution w with support |S| < s. Consider extending |S| to a set |S’| = s by adding any
elements and its protection onto unit-capped simplex results in wy. Since according to (30), the new solution satisfies
|lw's —hyg/|l2 < ||[ws — hygl|e. This results in ||w’ — hy|j2 < ||w — hy||2-

E PROOF OF THEOREM

In this section, we present the proof of Theorem [2]
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To simplify the notation, we omit the iteration index k throughout this proof, as the analysis holds for any arbitrary
round k. We thus denote the true gradient of client ¢ as v; := Vg f;(0}) (instead of vy, ;) and its mini-batch estimate as

v; (instead of vy, ;).

E.l OPTIMAL SOLUTION OF (6)

To make the objective in (6) analytically tractable, our first step is to use Taylor’s theorem with an exact remainder to

reformulate the cost function. For any client ¢, we can express the projected loss as:

fi(0r — aGiw) = fi(0r) + (V[fi(Ok), —aGrw) + R;(w)

where the remainder term R;(w) is bounded by:

Lmax
|Ri(w)| < 5 laGrwl|* =

Using (31)), we have

i=1

= szfz(ek) - OZWTG{GkW + szRz(W)
i=1

i=1
Using Gy, = [v1, -+ ,Vy], in which v; = Vg f;(0}), we have
v?vl v?vQ v?vn
ViVa V5Vy VaVnp
GIG, = :
viv, viv, vliv,
2 2 2
Substituting v7v; = Wela vl ZIvimvilz 5 the above matrix yields
~ T Lam L
in which ka and Gz are given by
0 [vi = v2|3 [vi— V|
ca |Ivi=v2]3 0 [V = V|
k= :
[vi=val3 [[ve —v2l3 0
vild il + a3
ar - [vallz + [Ivaliz 2[|va|3
[vall3 +Ivall3  [[vall3 + Ivall3
By defining k = [||v]3, -+, [v.|[3]T and 1,, = [1,--- , 1], the matrix G}* can be written by

Gl=1,0k" +k®1,".

n
Using the above representation and the property > w; = 1, we have

i=1

n
wlGl'w = 22“”““”%
i=1

20

Lmax
02 G

Y wifi(Or — aGrw) =Y wifi(0r) — alY_wiVfi(0r), Grw) + Y wRi(w)
i=1 i=1 i=1

vall3 + Va3
[Vall2 + (12l

(3D

(32)

(33)

(34)

(35)

(36)

(37
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Replacing (34) in (32) and using the above equation, we obtain

D wifi(0r — aGrw) =Y wifi(6r) + %WTGzW - %WTGZLW +) wiRi(w)
i=1 i=1 i=1

_szfl (6k) + %ggwiwjﬂvifvjﬂgfaZwi||Vi||§+ZwiRi(w) (38)
—sz (£:(61) — allvil3) Zzwwjnvz vg||2+sz

i=1 j=1
Let J( ) = Z? L w;i fi(0), — G w) be the true objective function and Jypprox (W) = Y1 wi(fi(Ok) — af|v;||3) +
S D1 2y Wiw;[|vi — v |2 be the approximate objective from (32). Consequently,
J(W) = approx Z w; R z = approx( ) + Elaylor(“’)a

where Eyior(W) = >0 wiR;(w).

Substituting the cost function in (6) with the above expression, we obtain the optimal weights expressed as

n

a n
w? = argmin sz i(8r) — allvill3) + bY Zzwiwj”"i - Vj”g + Etaylor(W). (39)

weAL, =1 i=1 j=1

To exclude by clients, based on Proposition it requires setting ¢t = n_lbf and s = n — by in the constraint set A:‘ZO:

S if i€ Ay
wf = (40)
0, ifieAl,

where A,, = supp(w?) and its complement is denoted by AEJ. The indices in A, corresponding to benign and Byzantine
clients are denoted by A€ and A®, respectively.

Next, we need to check the first condition in Definition I in which it is required to compute |[E{F'} — gl|3. It is
important to highlight that, unlike Definition[5} we consider a more general setting where population losses and gradients
are non-iid. To improve practicality, our analysis also focuses on the case where the aggregator relies on mini-batch
gradients rather than full-batch gradients, which is a more realistic scenario. In this case, our function F’ which is a
weighted summation of the gradients with the obtained weight w® from the optimization problem (39), is given by

F=F(@1, 9ny, i by,) = (Zvl-i—z ) 41)

i€AC JEAP

where A,, = A¢|JA®. Tt is important to note that in the above equation, ¥; is the mini-batch gradient of size B for an
honest client 7 for ¢ = 1,...,n — by. To maintain consistency with the notation in Definition 5| we denote the honest
and Byzantine gradients as v; and b, respectively. Also, the ideal aggregator, I, is a theoretical construct. It is the
output of (6) if it were run using the true, unobserved population gradients {v;} i € V1 <4 < n — by instead of v;.

E.2 HIGH-PROBABILITY BOUND VIA HOEFFDING’S INEQUALITY

This section provides a formal proof for the high-probability bound on the intra-client sampling deviation.

Lemma 6 (High-Probability Sampling Deviation Bound). Let v; be the mini-batch gradient of size B for an honest
client i, and let v; = Vo f;(0) be the corresponding population gradient. We assume that the deviation of any
single-sample gradient from its population mean is bounded:

Vo fi(Or; 2) — vi| < Rg.

Then, for any failure probability 6 € (0, 1), the following bound on the sampling deviation holds with probability at
least 1 —§:
2R? log(2d/§
|V — vil| <eg, where eg =1 —E =177 oz( / )
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Proof. The proof relies on a vector version of Hoeffding’s inequality. We define the zero-mean random variable
X, = Vg fi(0g; zj) — v;. It is straightforward to show that E{X;} = 0. The sampling deviation is the average of B
such independent random variables:
B
- 1
V; —V; = E Z Xj.
j=1

Based on the bounded deviation assumption, we know ||V f;(0%; z) — v;|| < R. Applying the Hoeffding’s inequality
for the average of B independent, zero-mean random vectors X; € R?, where ||Xj l2 < Ry for all j, states that for any

B
1 > Bt?

In our case, the average is the sampling deviation, ||v; — v;||. Substituting this into the general form gives:

. Bt?
P(||v; —vi|]| > t) <2d-exp <2R;2€> .

We set the failure probability to be at most § and solve for the bound t = €g:

Solving this inequality for g:

) 2d < Be?,

oo [ 2= —=S

S\5 ) =

2R2 log(2d/§

Llos(24/9) _

. . 2R2 log(2d/$) o .. . . .

This shows that if we choose 5 = \/ =% —g~——=, the probability of the deviation exceeding this value is at most J.

Therefore, the bound holds with probability at least 1 — 4. O

E.3 DECOMPOSING THE ERROR WITH THE TRIANGLE INEQUALITY

We can relate the practical error to the ideal error by adding and subtracting the ideal aggregator, F:
IE{F} —gll = |E{F — F + F} — g||
= [|(B{F} —E{F}) + (E{F} — g)
<|[E{F-F}|+ [E{F}—g

Perturbation Error Ideal Heterogeneity Error

We now bound each of these two terms separately.

Bounding the Perturbation Error: The first term, |[E{F — F'}|, represents how much the mini-batch noise perturbs
the output of the aggregator. Consequently,

For—_1 > (Fi—vi).

n—bs X

With high probability 1 — §, using Lemma 6] we have ||v; — v;|| < £5. This leads to a bound on the perturbation:
A < o
b — )

||F—F||§r
f

Taking the expectation: } y
[B{F — F}| < E{|[[F - F|[} < es. (42)
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Bounding the Ideal Error : To compute the error |[E{F'} — g||, we first define the vector s as follows

|A°]

1

in which e; is the j-elements in the set £, which is constructed as follows:

1. If [A¢| > |AY|, € is constructed by a random selection of |A®| elements from the set V = {v;,Vj € A°}.
2. If |A¢| < |AY|, € is constructed as

E=ZV,....V,P (44)
H/_/
z times

b —
in which z = LIACIJ and P is constructed as a random selection of |[A®| — z|A°| entries from V.

Taking the expectation from both sides of (@3)) results in
|A]

B(s) = - 2 Blvil+ ZE{eJ} gy 2 B

fiene T iena T e
in which A = {1,2,...,n — b} \ A°. Based on the definition of the set &, using E{v;} = g;, |A°| + |A®| = n — by,
andg = ﬁZj ff g, we have

E{vi} (45)

n—by |A®] |A®|

Blsh ==y, Lowt 5 D E(v) =

zEAd zeAd

(46)
in which each vector e; is mapped to one of the vectors v; forall 1 < i < n — by, i.e. €j = Vpap(j). Now, we compute
Ab

[E{F} — gl3. Since E{s} + L5~ >icra 8 — 75, Z'j:l' Bmap(i) = &

|A°]

JE(F) ~ gl = IELF) —Efs} = S 3 i+ i > Buralz <

A°]

IELE = s}l2 + Z | gmapi) — &1l 47

5 3 el

7€Ad

Since fbf S g — gl S H,%, using Cauchy-Schwarz inequality WZZ{M lgi — gl <

n =

i Sien s — g3 VTR <

we have

Qbf

\/n—bf

[E{F} —gll2 < [[E{F —s}{l2 + H, (48)

Substituting F' and s in the above inequality results in

A" A

(sz +Y b= vi- Zey)}llz IIE{ (Zb Zej)}ug. 49)

i€Ae JEAD i€EAC JEAD j=1

IE(F—s}I3 = JB{

Using Jensen inequality, we have

|A°

et <2l (2w Se) ) - (e o)) <
e {zubw—%u}
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Based on the definition of the set £, e; is one of the vectors in the set V which includes all vectors v; for all j € A°.
Consequently,

IB(F )13 < o pms B 3 oy~ }s PE{ 2 2 v byl =

JEAP 1€EAC jEAD

A
n|_b| 7 ZE{”W bj12 } (51)

1EAC jEAD

Thus, to bound the squared error of the aggregation rule, |E{F — s}||3, we need to compute an upper bound for
IE{ lvi — b, ||§} The remainder of the proof addresses this step.

Theorem 7. If all the assumptions stated in Theorem 2 hold, then the corresponding result follows.

Proof. 1t is crucial to note that, if some honest gradients v; are replaced by their Byzantine counterparts b;, the
optimization problem (39) involves a mixture of both Byzantine and honest gradients. Furthermore, under the
assumption stated in the above lemma, the aggregator has access to all honest losses f;(6y). Without loss of generality,
we assume that the last by gradient vectors have been replaced with their Byzantine versions. As a result, the gradient
matrix can be expressed as:

Gk:[V17"' 7V7L—bf7b17”' 7bbf]' (52)

In the above equation, since the aggregator F' operates on the true population gradients, we denote the honest and
Byzantine gradients by v; and by, respectively, for ¢ = 1,...,n — by. From (@I}, and noting that w° is the minimizer
of (39), we obtain

waz (01) —a 3 wflvilly —a Y wflbil3+ 5 (30 D2 wiwgllvi - byl3+

€A i€ Ab 1EAC jEAD
n—by
>3 wiwdlvi = vil3+ D D wiwdlb = byl3) + uyi(w?) < Zwtfz (6 = 3 uilwili+
i€AC jEAC iEAD JEAD
n—by n—by
520 Y whwllvi = Vill3 + Buayor(w) (53)
i=1 j=1

in which w? is a feasible set of weights given by

W,lfl<'£<n—bf
w! = (54)
0, ifn—b;+1<i<n.

Based on the inequality (33)), we have

—Zwa]||vZ—ij2<Zw fi(0r) — Zw fi(O) —&—az OHVz”z‘*‘aZ wy||bil[5—

i€AC jEAb i€A€ i€EAD
nfbf nfbf nfb_f
(0%
a Y wilvilli+5 >0 Y wiwjlvi = vl + Bayior(W') = Brayior(w?) (55)
i=1 i=1 j=1

Replacing wg and w! based on and in the above inequality results in

o5 2 2 i bil < (zfzek ijek) f)ZHbHQ

1€EAC jEAD icAd JEAD iEAD
n—by n—by
Z lvill3 + 2 Z Z lvi —v;li3 + Buaylor(W") = Etayior(w°) (56)
zEAd i=1 j=1
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in which A = {1,2,...,n — by} \ A°, implying |[A?| = n — by — |A¢| = |A®|. Using the assumption |/b;|| <

maxjey ||\71||, we have
aby
( Z fz ok Z fJ 0k ) )”Vmap(k)H2

=02 Z Y llvi—byl5 <

1EAC jEAD 1€EAD JEA®
n— bfn bf
Z Ivill3 + N —b)° Yo D Vi vill3 + Bayior (W) — Eyior(w°) (57)
i€AD i=1 j=1

where map(k) that was selected by the optimizer.

BOUNDING THE LOSS HETEROGENEITY TERM

The first term on the right-hand side of the above inequality captures the effect of non-1ID losses. We take its expectation:

D omi= ) m

i€Ad JEA?

E{Loss Term} =

Let my = Maug + Ok, Where 0, = my — Maug.

YOLTED SETED SITINTIE I

i€ JEAD i€Ad JEAD
= (A% = A Dy + | 30— D 6
ieAd JEAD
Since |A?| = |A®|, the m,,, terms cancel perfectly. We are left with bounding the sum of the deviations. Taking the

absolute value:

STa =161 S0+ S 1= DD I — magl.

i€AD JEAD i€Ad JEAD keAIUAL

Since the set of selected and discarded clients is a subset of all honest clients, this sum is bounded by the total sum of

deviations over all honest clients:
E |mk - ma'ug| < E |mk' - mavg|-

keAIUA® keH
Using our new assumption, Y, _,/ Mg — Mavg| < (n — by )ey. Therefore:

(n—bylex
Z(s D ol < p— = ¢p. (58)

ieAd JEAD

E{Loss Term}‘ =

BOUNDING THE PAIRWISE DISTANCE TERM

First, we find an upper bound for the average expected squared distance between any two honest clients.
E{llvi - v; 13} = E{ll(g: — &) + ((vi — &) — (v; — &;))lI3}
= llgi — &;l13 + E{ll(vi — &) — (v; — &))l13}
= |lgi — gll3 + Var(v; — v;)
< llgi — g3 + 4do.
To bound the average of ||g; — g;/3, we add and subtract g and note that ), (g — g) = 0:

o L e sl = 22|| ;-8B

i,JEH
_bf
2(n —by) £ 2 2 2 2
— 77 - < — . (n—by)H; =2H;.
(n—by)? ];:1 lgr —8gll2 < n— by (n—by)Hj; k
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Therefore, the average expected squared distance is bounded as:

1 4do?)(n—br —1
=02 > E{|lvi — v,ll3} <om? ’“)T(L_bff ) (59)
i,jJEH

BOUNDING THE NORM-DIFFERENCE TERM
This section provides a formal proof for the bound on the term D = "\, E{[|b;[|3] — Y=, xa E{||vi[[3}, which is a
key component of the main resilience proof for the practical mini-batch aggregator.

Lemma 8 (Bound on the Mini-Batch Norm-Difference Term). Under assumptions (1) and assume that ||b;|| <
maxjey || Vil

Then, with probability at least 1 — § (over the mini-batch sampling events), the norm-difference term D is bounded by:
D < bp(2K}7 + dop + %). (60)

Proof. To prove the lemma, we begin with the definition of D. The attacker’s gradient norm is bounded by max; ey, || V|-
Therefore, for each Byzantine client j € A?, its expected squared norm is bounded by the expected squared norm of
some honest client ‘map(k)‘ that was selected by the optimizer. This allows us to write:

D=3 E{lbl3} - > E{lvill3}

JEADP ieAd

IA

brE{ V(i 13} — > B{|Ivill3} | , 61)

ieAd

The mini-batch gradient v, is an unbiased estimate of the population gradient v, meaning Epyen{Vi} = vi. The total
expectation is taken over both the mini-batch sampling and the population distribution. We have:
E{|[vx[3} = E{[vk + (V& — vi)ll5}
= E{||Vell3 + 2(vi, Vi — vi) + [|[V& — vil3}.

The cross-term vanishes under the total expectation because the inner expectation over the batch is zero: E{(v, v} —
viy} = E{(vi, Evacn{Vik} — vi} = E{(vk, vi — vi} = 0. Consequently,

E{Ivxl3} = E{Ilvell3} + E{|Ivr — vil3}- (62)
We now substitute into (61)), resulting in

D < | by (B{|[Vaap(i) 13} + E{ Il devimap[13}) — > E{|Ivil3}
i€AD

where dev denotes the sampling deviation vector (v — v). We first bound the population level. Using E{|v.|3} =
lgxll3 + Var(vi) < llgkll3 + do:

> EB{Vmapw 13} = B{UVEIZY) < D ((lgmapaol3 + doi) = llgell3) = > (llgmapao I3 — g l13) + bsdo.
i€Ad i€Ad i€\

We now apply the Bounded Norm Deviation assumption (/K ?) to the difference of squared norms:
mapco 13 = 13| = [(lgmapaoll3 — 1813) — (g3~ ligl3)]
< |lemapoll3 — 1813 + [I:113 - llgl3| < 25

This gives the final, ||g||2-independent bound for the norm-difference term:

by by
> (B[ Vaapo 13} = E{[IVel3}) <D 2KR + bpdo} = by (2K} + doy). (63)
k=1 k=1
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Next, we bound the sampling deviation. The high-probability bound states that ||dev||? < £% for any client. To get an
upper bound on the difference, we have: ) )
E{lldevmap|l2} < €%

Summing over the by clients, this entire term is bounded by bye%.

Finally, combining the bounds for the two separated terms, we arrive at the final result. With probability at least 1 — d:
D < (by (2K} + dop)) + (bged) = by (2K} + doj + £3).

This completes the proof of Lemma ] O

BOUNDING THE TAYLOR ERROR TERM

The new term introduced by the exact analysis is Enew = (Elaylor(W') — Eaylor(W?)). We now bound its magnitude.
Buewl = | (Do w!Rilw!) = > wf Ra(w?) ) |
< (DS whR (W) + Y wilRiw?)))

L

< %Of" (I1GLw!|I* + [|Gxw?|?)
Linax?

= m;x (I1GLw!|* + [|IGxw?|?)

To get a concrete bound, using the assumption ||b;|la < maxjey ||[Vi]]2, and since w is in the simplex,
57 (Ciene ¥+ Sear b ) I < s (Siene I9:lB+5en 10513) < 5257 (Siene 19313+07 19 mapcol3 ).
Similarly, ||Grwe||? < L (Z;Zlbf ||\71||§) Consequently,

’I’L*bf

n—b
- ! - - -
E{|Bnenl} < 5220 (57 E{Il3} + D ELISil3} + brE{¥mapaol13} )
2(n — by) =1 ieNe
Lmaxa2 "y 2 2 2 2 2 .
< m( > E(IVilBY + > BV} + b B Vnapwll3}) + Lmaxa®ed byusing@D)  (64)

i=1 ieAe
Rearranging and using the assumption that Var(v;) < do?, we get:
E{vil*} = llg:ll* + Var(vs) < |lgil® + dog

‘We now sum the above result over all n — by honest clients:

’n,*bf nfbf nfbf
YO E(VilPY < D leill® +do) = | D lleall® | + (n—by)doi
=1 i=1 i=1

The final piece is to bound the sum of squared population gradients using the heterogeneity constant H and the mean
gradient g. We use the ”add and subtract g” trick:

n—bf n—bf
dollel? =D e —g+gl’
i=1 i=1

nfbf

> (lgi —gl* +2(gi — g,8) + lgl?)
i=1

n—by n—by n—by
> llgi —gll* + 2< > (gi— g),g> + > el
i=1 i=1

=1

The middle term is zero because E?:_lbf (gi—g)=0_8)—(n—-bp)g=(n—>bs)g— (n—>bs)g = 0. This leaves

us with:
’I’L*bf nfbf

Yo leil® =" llgi —gl® + (n—bp)lgl?
i=1 =1
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Using the heterogeneity assumption from your proof, Z;:lbf llg: —gll* < (n—by)HE, we get our final bound on this

sum:
n—by

Z Igill® < (n—by)Hf + (n — by)|gl? (65)

To compute the upper bound for ZieAc IE{||VZ 13} + b E{||Vinapao |3}, we have

> E{IVi I3} + b E{IVmapw 3} < (0= b)dof + D [lgill3 — lgl3| + bl gmaaoll3 — gli3] + (0 — bp)lg3
1€EAC ieAc

< (n = by)doi + (n = bp)Ki + (n = by)llgll3 (66)
Replacing (63) and (66) into (64) gives us:
H? K?
E{|Enew|} S Lmaxa2 <||g2+2k+2k+d0,3+€§> (67)

ASSEMBLING THE RESULT FOR IDEAL ERROR

We substitute the bounds from (38), (39), (60), and into the expectation of the main inequality (57).
(2ado?)(n — by — 1)

- 2 o 2 2, .2 2
i€Ac,jEAD
H? K} 2K7ab Zab do?)(2n — by — 2
QH? 4 Lnco® ([gl? + 2 4 Bk 4 o2 4 2] = o o 2R000 | E50by g (0doy)(@n = by 22)
2 2 n — bf n — bf n—bf
H? K}
Lmauxa2 ||gH2 =k + -+ dUk: + <r':S
2 2
Dividing the entire inequality by /2, we obtain the final bound on the expected distance:
4KEby  2e%bs 9 (2do?)(2n — by — 2)
E{[lvi — by} < 2% 580 4 9p 4
G o Bl bty < o (G 2 o) ¢ B
ZGALJGA!’
H? K}
+ 2L pax <||g|2 2’“ + 7 +dop, + as> (68)

To eliminate the ||g||? dependency and using o < -, we absorb the 2L,,ax||g||* part of the Taylor error into the

same budget:
C(het

Lmax, 2Lmax||gH2

}

QLW,L,(aHgH2 < Chee = a < min{

where where the constant ”absorption budget” Cjg is defined as:

4K?2b 2do?(2n — by — 2 2ech
Cloy 1= ——k ! Y oH? 4 0, (2n — by )+ e5by
n—bf ’I’L—bf n—bf

Using inequality with 2L, a]|g||? < Che in and noting that |A?| < by results in

2 2

2e H K
IE(F — s}]l2 < \/bf (=F + 20k + 2Lmaxa( G2 + - + dof +¢2)) (69)

Incorporating the above inequality in @8], we obtain

€ H? K? 2b
|E{F} —gll2 < \/2bf (5’“ + Chet + erla)(cx(7’c + 7’“ +do} + 523)) + 7fka (70)
n— 0y
Combining the above results with @2)) gives us
" e HZ K? 2,
E{F} — <\/2b (—+C +Lm.xa—k+—k+d02+52)+71{ +e 71
IE{EY —gllz < /205 + Chet ax( = 5 i ted) N e (71)

n

28



Under review as a conference paper at ICLR 2026

By assumption, 77 < ||g]|2, i.e. E{F'} belongs to a ball centered at g with radius 7. This implies

(E{F},g) > (lgll2 — n)lgll2 = (1 —sina)|g]3 (72)

To finalize the proof, we need to verify the second condition of DeﬁnitionE] using our method. To do this, we have

(ZV1+Zb)||2 i+ > byl (73)

i€ JEAD i€AC JEAD

I1F]|2 =

Using the triangle inequality in the above equation and ||b;||3 < max;cy || V;||3 results in

(Z 1¥illz+ > Byl ) < —

JEAP

1Fl: < = 5 ( 3 Il +by ma ¥4 ) (74)

Using maxjey [|Vi|| < D7y [Vi]|2, we have

1
b <Z 1Vill2 +bfmaX||Vz||>

S

||F||2 S

1+0
(Z ||Vl||2+bfZVl||2> = Z||Vl||2

leH leH le?—t

Finally, using the inequality (a + b)” < 2"~1(a" + b") and the multinomial theorem, we have

’n.*bf
e < (LA 00)" g
Flly < =0 ( ; ~byes) <
1715 < gy ( 3 il (n=bp)es) <
271 4+ by)" . n! .
W(("—bf) €s + Z W”Vlﬂzln‘@” ‘ -||Vn||2"> (75)
s
Since Gy, . .., G, are independent, we obtain
| 2T71(1+b )T TL' B P r— r_r
E{|[F|3} < (n—ib)f Z WHE{|‘G2H9}+2 Y1+ by) e (76)
Ve =
This concludes the proof of Theorem O

F BYZANTINE RESILIENCE AGAINST ADVERSARIAL LOSS AND GRADIENT

Theorem 9. If all the assumptions stated in Assumption [Z] hold, and suppose by mini-batch gradient updates v; and the

corresponding loss values f; are replaced with their Byzantine counterparts b; and f;, respectively (e.g. data poisoning

Cher

1 G
T’ e g (W€ have

attack) with 2by + 2 < n. Then, for a step-size 0 < o < oumax in Which amax = min

- by H2 K? 2bs
|E{F} —gll2 < \/2bf< ek + — myy ——Maug) + Cher + mea(T’c + 7’“ + do? +e§)) + ﬁm +es
i
(77)
and if 1] < ||g||2, we have
(E{F},g) > (gl —D)lgllz = (1 —sina)llg|3- (78)

Proof. The proof of the above lemma closely follows the approach used in Theorem 7] However, unlike Theorem 7]
which considers only the presence of Byzantine gradient updates, this theorem accounts for both Byzantine gradient
updates and Byzantine loss values, requiring additional care in the analysis.
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The main difference between the results of both loss and gradient attacks, compared to the model attack, is that some
losses are replaced with their Byzantine versions. So, based on (57), we need to replace the losses of adversarial clients
with the Byzantine version, resulting in

S o 2 vl <

( > 00 = > Fi(00)+

1€EAC jEAD i€Ad JEA®
n—by n—by
Z Ioil|3 — = Z [[vill3 + = b2 Yo D Vi = VilI3 + Baytor(W") = Eayior(w) (79)
1EAD icAd i=1 j=1
terml

Using the assumptions that ||b;||3 < max %113, the byzantine losses f; are nonnegative, and using m; = E{fi(8)},
€
we have

=072 > D E{lvi— bl < Z mi+= E{terml} (80)

i€EAC jEAY zEAd

term?2
It is worth noting that term1 is exactly the same as the term following the loss difference in the right-hand side of the
inequality (57). Using (68), we can write

2 2

2 AK2b,  2e%b (2do?)(2n — by — 2) H K
ZE{t 1) = kYf sYf 2H2 k f 2Lm N 2 k k d 2 2 .
81

1
—by

Now we need to bound the term term?2. Based on Assumption |1} we know Z" bs |m; — Mawg| < ek and using
n g
|A?| < by, we have
2

a(n — bf

2 2 by
7 av av Si 7 av b av)gf — 5 v 82

Using @ and (82) in (80) yields to
2 by
2 Z Z E{|lvi — b, H }< a(Ek + n— bfmavg)+

i€AC jEAb

4K,%bf + 2€Sbf
n—bf n—bf

(2do?)(2n — by — 2)
n— bf

H? K
2o (|g||2 LI +ss> (83)

2H?
+ k) + 5 5

The rest of the proof is the same as the one used in the proof of Theorem [/| Consequently,

2

2 by H K}
HE{F}_g”2 < \/2bf( (‘Sk+ bfmavg)'i_chet"_Lmaxa(T"‘? +d0—;%+525)) + MH]C—’_ES
. (84)
By assumption, 7j < ||g||2, i.e. E{F'} belongs to a ball centered at g with radius 7. This implies
(E{F},g) > (lgll2 =D lgl2 = (1 —sina)g]3- (85)
The remainder of the proof proceeds by following the same reasoning as the argument presented after (72)).
This concludes the proof of Theorem[9] O

G PROOF OF THEOREM AND DETERMINING LIPSCHITZ CONSTANT L,,

G.1 PROOF OF THEOREMFOR L-SMOOTH (ITEM 1)

In this section, we provide the proof of Item 1 of Theorem 3}

Theorem 10. Consider the cost function (1) under Assumptzonl | The sequence {0, wy}7° | generated by Algorithm
[ satisfies the corresponding result of Item 1 of Theorem[3]
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Proof. To streamline notation and maintain consistency with Assumption[I} we denote the true population gradient by
Vi, = Vo fi(0), and the mini-batch gradient by vy, ;. It is important to note that, in the optimality condition of our
method—since it is solved on the server side—we work with mini-batch gradients, whereas in the descent lemma we
analyze the true gradients.

Since each f; is continuously differentiable and its gradient Vg f; is L;-Lipschitz continuous, Lemma 4] directly implies
that

- - L; -
fi(Or41) < fi(Ok) + (Vi,is O1 — O) + ?Hgk—&-l — 0kl3. (86)
Multiplying both sides of the above inequality by wy, ; and summing over 7 = 1 to n, we have:
n n n Z wk:,iLi
wiié < W fi(0k) + Wk iV i,é -0 —‘rLé — 042 87
; ki fi(O41) ; i fi(Ok) <; k,iVik,is Ok+1 — k) 5 [0k+1 — Okll2 (87

It is important to note that in the above inequality, all gradients {vy, ; }7* ; are honest ones; otherwise, the descent lemma
breaks. We use the notation F$(wy) = 2?21 wy, ; Vk,; for the all honest gradients.

In the first step of our proposed method to find the 6, we utilize (3)). Since, ék+1 =0, — aGrwy = 0, — aFy(wy) is
the minimizer of (5) when w = w¥, we can write

) . 1
<; Wk i Vi + ZHG Wi, ib,is Ory1 — Or) + %||0k+1 — 03 <0. (88)
i ic

Here, the term Zie?—t Wk,i Vi, + Zie?—tﬂ wy,;br,; accounts for both the contributions from the set of honest clients H

and the complement set HE. Crucially, because the optimization problem (3)) is solved at the server side, the gradients
of Byzantine clients may be arbitrarily substituted by by, ;. This explains why the inequality above involves by, ; rather
than the true gradients.

Adding the above inequality to gives us

n ~ 1 . n
> wifi(Org1) + (Fr(wi), —aFk(wi)) + £||0k+1 —0kll3 <> wi i fi(Or)+

i=1 i=1

n
_Z Wi Ly

(Fg(w), —aFy(wy)) + =——

51151 = 6413 (89)

Simplifying this inequality and using » wy ;L; <
i=1

n
Wk i Lmax < Limax, We have
7 =1

(2

Lmax 1
5~ 5g) ) IF(wr)llz 00

Y wiifiOre1) <Y wifi(0k) + alFi(wi) = Fi(wi), Fie(wi)) + (

i=1 i=1
On the other hand using Lemmafor wlf(0; — aGyw) results in
n n
D wisifi(Ok — aGrwWis1) < ) wiifi(O) — aGrw)+
i=1 i=1
T Loy 2
<wak f(Bk — OszWk),Wk_,_l — Wk> + 7||Wk+1 — WkH2 ©n

In terms of Oy 1 = 0 — oG w1 and ék+1 = 0, — aGwy, this inequality reads

n n ~ _ L
Zwarl,ifi(akJrl) < Zwk,ifi<9k+1) + (VWL (Or 1), Wit1 — Wi) + 7HW1€+1 — w3 (92)

i=1 i=1
In the above inequality, since we are writing a descent lemma, all gradients are true.

It is straightforward to show that the optimization problem (9) is equivalent to the following formulation:

Wiyl = argmin (VWi f(0), — aGrwy), w — wy) W — w2 + 6At+€0 (w). (93)

+ -
208141
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The term Vw7 £(8) — aGywy,) = f(811) — aGT G 1wy, in the above inequality. However, the similar term
in (©2) does not include Byzantine data, so we just replace # = {1,--- ,n} in (92), using notation G7,_ , instead of
G-

From (93)), since w1 minimizes the objective function, its corresponding objective value is less than or equal to that
of any other feasible choice, including w = wy,. This yields the inequality:

- 5 1
<Vu; Zwk,ifi(9k+l)awk+1 - Wk> + 27||Wk+1 — WkH% + 5A+ (WkJrl) S 6A+ (Wk) (94)
i=1 Br+1 t,0 Teo

Adding the above inequality to (92)) yields:

Zwarl,ifi(ekJrl) + 5A¢€0 (Wht1) < Zwk,ifi(ék+1)+
i1 i1
L,

. . 1
(@G (Grp1 — Gy ) )Wiy Wit — Wi) + (2 — o)W — W[5+ 64+ (W) 95)
2 2Bk .o

It is straightforward to show that the above inequality can be written

Zwk+1,ifi(0k+1) + 5At+€0 (Wry1) < Zwk,ifi(ék+l)+

i=1 ' i=1

c Lw 1 2
(Fr(Wi+1) = Fre(We), Frpa(wi) — Fiog(We)) + (- = 57— )IWkt1 — Wil + 04+ (wWg)  (96)
2 208141 t:to

Adding inequality (Q0) to the above inequality yields:

Zwk+1,ifi(0k+1) + Zwk,ifi(ék+1) + 5Aj£0 (Wit1) < Zwk,ifi(ek) + Zwk,ifi(ék+l)+
' =1

i=1 i=1 =1 =
A(Fr(Wet1) — Fre(wi), Frpa(wi) — Fi g (W) + a(Fr(wi) — Fi(wg), Fr.(wg))+
Lw 1 2 Lmax 1 2
(7 - m)”wkﬂ = w2 + ( 5 %)H6k+1 —0k3+ %% (W) O7

Simplifying the above inequality results in:

Qi+1 < Qi + a(Fr(Wit1) — Fr(wi), Frp1(wi) — Fiyy (W) + a(Fr(wi) — Fi(wg), Fr(wg))

Ekt1 Tk
Lnax 1 9 9 L, 1 5
E— Fi(w — — ) |lWrp1 — W 98
+( 5 2(1)04 [Frk(Wet1)ll2 +< 5 25k+1> [Wk+1 k2 (98)

Fk

where Q41 = > iy Wit1,ifi(Ok+1) +5A+ﬁ (Wg+1). To guarantee the exclusion of exactly by clients, we sett = 1/s
t,Lg

and s = n — by (see proposition [2). With this choice, the nonzero weights become 1/(n — by), ensuring that our
algorithm removes precisely by clients.

To continue the proof, we take the expectation of the above inequality over all sources of randomness. We first focus on
deriving an upper bound for the expectation of the cross-time-step error term:

Evrr = a (Fe(Wrp1) — Fr(wi), Fepr(We) — Fi g (we))
which is formalized in the following lemma.

Lemma 11. Let Item B2 of Assumptions|[I|hold. The expected error is bounded by:
E[€k11] < 2,41 (IngH + /K2 + do? +sg>. (99)

Proof. The proof proceeds by first separating the randomness from different time steps.
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Let E[-] denote the expectation conditioned on all information up to step k. We rewrite the total expectation using the

law of total expectation, E[-] = Ex[Eg+1[]]. Let E?; = Frpa(wr) — Fg o (we).

E[Spi1] = o - By [<Fk(wk+1) — Fr(wi), Ex [EELI])] -

The inner expectation is the bias of the aggregator at step k + 1 using the weights from step k. By our Bias Assumption,
its norm is bounded by (x1. Applying the Cauchy-Schwarz inequality:

E[€k 1] < aler - E[|AFL], (100)
where AFy, = F(Wgy1) — Fi(wy). The problem is now reduced to finding an upper bound for E[|| A Fy||].

The change in the aggregator is AFy, = Gy (Wg41 — Wy). Let my, be the number of clients whose weights are swapped
between iterations. Under the simplified weight structure, AF), = rlmt(zze Ac Vi D e A by — > jers Vi —

> jERY by, ;) in which by, ; is Byzantine gradient of client j at round k. The change in weights from wy, to Wy

occurs because some clients are removed from the active set and replaced by others. We formally define these sets of
swapped clients:

» Let A, = supp(w1) \ supp(wy) be the set of “added” clients.

* Let Rj, = supp(wy) \ supp(wy41) be the set of “removed” clients.

Since the size of the active set is constant at s = n — by, we have | Ay | = |R| = my. We can further partition these
sets into honest () and Byzantine (HC) clients:

 Added honest/Byzantine: AS = A, NH, .Az = A, NHC.
* Removed honest/Byzantine: R = Ry N H, Rl,:; =R N HC.

Under the simplified weight structure where non-zero weights are 1/(n — by), the change in the aggregator AFj, can be
written explicitly as:

AFy, = nlbf D Vkit Y bri| = | DD kit D biy

i€ Af icAb JERY, JERY

To bound E[||AFy]|], we first bound the expected squared norm, E[[|AF}||?], using the assumption ||by ;| <
max;ey ||Vk,:||2 and then use Jensen’s inequality.

2 2

2
2 ~ ~
E[[|[AF:|7] < [CETBE E Z Vi + Z by i +E Z Vit Z by.i

i€AL icAb iERE i€ERY

2 N - - -
< g | (2 BTl LAk 18}) + 70 (3 B9l [REE Ve 3})
i€Af JERK

where map(i) = argmax;c,/||Vk,i||2. The next step is to bound the expected squared norm of an arbitrary client’s
gradient, E[||vy ;||%]. For an honest client 4 , using (62), and E{||vy;[*} < |lgx|* + K} + do?

E[I[¥5,ill] < lell® + K + dojl + 5.
Substituting this in:
Ami;(lgell” + K3 + dof + 5)
(n—by)?
Using Jensen’s inequality, E[X] < {/E[X 2], we get the bound on the expected norm:

4 2 2 KQ d 2 2
E[”AFkHS\/ mk(Hng + k+ Uk+€S). (101)

E[|AF]?] <

(n—bs)?
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The bound in (TOT) depends on ||g||. To split it, we use the inequality /= +y < \/z + \/y for z,y > 0.

\/||gk||2 + K7 +doi + €% < V/llgrll? + K} + dof + €% = gl + \/ K + dof + €3

Let Cx = \/K} + do? + £%. Substituting this into the bound for E[|| AF}||]:

2m
E[|AF[] < —

(el + )

using the above inequality from (100) and m;, < n — by, we have:
E[€xt1] < aletr - E[[[ AF|]
ka
< a1 - ——(llgxll + Ck)
n — bf

< 2aCk+1] gkl + 2alk4+1Ck.

This completes the proof of Lemma [T T]

Next, we focus on deriving the upper bound of the expectation of Z;, in (98).

Lemma 12 (Bound on the Single-Step Bias Term). Let Assumptions[I|hold. Then, the expectation of the single-step

bias term is bounded by:

Eefa(Fi — Fo P} < o (Gellgwll + G+ oh + onVdy [+ 0%, ).

Proof. The derivation proceeds by decomposing the inner product with respect to the true gradient gj,. The constant «

can be handled at the end. We focus on finding an upper bound for Z;, = E,[(Fy, — Fy, Fy)].

First, we have
(Fio = F, Fio) = ((Fe — 8r) — (F¢ — 8k), 8k + (Fi — 8k))-
We can expand this inner product, which results in four terms:

(Fy — F¢, Fr) = (Fy — g, 8k) + || i — gkl

Term 1 Term 2
— (Fy — 8k>8k) — (Fg — 8k, Fir — ) -
Term 3 Term 4

We now take the conditional expectation E[-] of each of the four terms.

* Term 1: Since gy, is deterministic at step k£, we have:

Ex[(Fk — 8k, 8k)] = (Ex[Fk] — 8k, 8k)-

By the Cauchy-Schwarz inequality and the bounded bias assumption:

(Ex[Fk] — gk, 8k) < |Ex[Fr] — gkl - gkl < Ckllgkll-

* Term 2: This is the Mean Squared Error (MSE) of our aggregator, which decomposes into squared bias and

variance:
Erll|Fr — gkll*] = IEx[Fr] — grll” + Vark(Fr) < G2 4 0F

* Term 3: Since the clean aggregator Fy is unbiased (Ej[F] = g), this term’s expectation is zero:

Ex[(Fy — gk, gr)] = (Ex[Ff] — 8k.8k) = (8k — &k, 8k) = 0.
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* Term 4: For the final cross-term, we use the Cauchy-Schwarz inequality for random vectors, |E[{X,Y)]| <
E[IXPIE{IY (7).

—Ex[(F{ — 8k, Fis — k)] < |Ex[(F§ — 8k, Fr — 81)]|

< VER[IFE — grll?] - VER[lI Fr — gxll?]
<\/doi-\/C} +J%_’k = 051 /d((? +O'%7k).

Summing these four bounds gives the result for Z;,. Multiplying by « completes the proof of Lemma|[12]

O
Next, we focus on deriving the lower bound of the expectation of Fy, in (98).
Lemma 13 (Bound on the Expected Squared Aggregator Norm). Let Assumptions[I|hold. Then, we have:
ExlllFl3] > llgrl — 2¢kllgrllo- (103)
Proof. We know
Ex[|| Fil3] = Vare(Fy) + [[Ex[Fi][13- (104)
Since Vary (Fy) > 0, we can therefore drop this term, resulting in
Ex [l Full3] > IE[F3]3- (105)
Using the inequality ||a + b||% > (||al| — ||6]))% = [|a||* — 2]|a||||b]| + ||b]|?, we can write
IEL[Fll3 = llgr + Ex[Fr] — gi)l3 > llgrll3 — 2llgnll2IEx[F] — gll2 + [Ex[F] — gkll3-
We now use our aggregator’s bias assumption, ||Ex[F)] — gr|| < (& . We can substitute this into the inequality:
IBx[F]I3 > llgklls — 2¢kllgkll2 + 1Bk [Fr] — g ll3.
Since the final term is non-negative, we can drop it from the right-hand side. This gives us:
IE&[FRI13 > llgels — 2¢kllgwll2- (106)
Using (106) in (T03) yields to
Er[|Fkll3] > [Ex[FR13 > llgrll3 — 2¢kllgwll2-
This completes the proof of Lemma[[3] O

Now we return to (98). We take the expectation E|[-] and substitute the bounds for &1, Z, and Fy, from (©9), (102),
and (103), respectively.

E{Qis1} < E{Q4) +20Ci (ngkn Ko+ 525) (from &)

+ (alGullgnll + G2 + o+ 0V /G +02,)) (from T;)

— Cac? (llgll3 — 2¢kllgkll2) (fromFy)
= Cpp Bl Wit — Wk||§}- (Weight Descent)
Let C, = (% _ Ln;x) > 0and Cg,,, = (ﬁ - LT‘“) > 0, resulting in o < ﬁ and Bi1 < i We group

terms by their dependence on ||gg||. Let Bra = a(2(k+1 + Cx + 2Chaly) be the coefficient of the rebound term. Let
Corrit1 = 21/ K7 + doi + % + (C,f + 0% + ok Vi, /¢ + a%,k> which collects all constant error terms.

E{Qr+1} < E{Qk} — Cac?®|lgkll5 + Brallgkll + Cerrprrc — Cp, Bl [Wii1 — wi 3],
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The term By||g || is positive and could counteract the main descent. We use Young’s inequality, ab < Za® + - b2 on
Billgel:

22
0 5 Bia
Bra < = —
relgrll < 2||gk|| + 2
Here, 7y is a free parameter. We make a standard strategic choice to ensure descent: we set the “rebound” from Young’s
inequality to be half of the main descent, i.e., 2 = $Cha?, so v = C,a®. The combined coefficient of ||g||* becomes
Coa? Coa®
—Cha? + T - —Cpa? + =2 2

B @ Liyaxa?
2 2 2 4 4 '
Consequently,

This is strictly negative for v < 1/L,,ax, guaranteeing descent. The other constant term from Young’s inequality i 2—5
E{Qr+1} < E{Qi} — Crallgrl® + Coner = Cp Bl wirr — wiell3], (107)
where C7 = %(1 — Liaxar) > 0for 0 < a < 1/Lpax, and Cy i, is the constant that groups all bias and variance terms
2
C2,k = Cerr,k:Jrl + 4BTICI

Taking the total expectation from the above inequality, since gy, is deterministic, and sum fromk =0to 7 — 1

-1
Crox Z Hng2 Z Cﬁk+1 (W1 — Wk”%] (E[Qo] -
k=0

Z Ca par. (108)
Now, we keep the first term of the left hand side of the inequality resulting in

T-1 T
Cra Yy lgrl® < (B[Qo] — E[Qr]) + ) Coa.
k=0

k=1

Let Q* =

infg . Q(0, w) be the minimum value of our objective, which we assume is bounded. By definition, for any
k, Qr > @Q*, and therefore:

E[Qo]
Substituting this back into our main sum

- E[Qr] < Qo — Q" (109)

CmZ lgxll* < (Qo — Q") +202 kQ

k=1
Dividing by T'C1 o:
T
> Cox
* )
—Zug (R A== S
TC «

TC,

Taking the limit as 7" — oo, the first term on the right-hand side vanishes, leaving the final bound on the average of the
squared gradients:

T-1
L 11 > Coy
. 2 2 . k=1
Fim s 2 el < Jim, S 1o
Now, we provide a detailed analysis of the order of this final error rate
Since C =

O(1), the final error rate is determined by C5 ;. Based on the definition of C5 j, we have

2 + (¢, 4 2C,0)3
Cok = 21y K2 + do? + €2 + (<,§+a%,k+ak\/3,/g,§+o%k)+( G fg ) (111)
1
Cerrk+1

N
8,
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As k — 0o, we have (; — (o, aF T aF - and o7 — o2 . This implies the limits of the coefficients are:

khm Cerrk+1 = 2000 \/ KI% +doZ, + 5%‘ + (Czo + 0%.00 + Uoo\/g CZ + J%oo) = 0((20 + O—%’oo)
—o00 ' , )

Bi (2000 + oo +4C1(0)?
li k. _ 00 0 cra—| 2 . 112
i 52, i ) "
For the upper bound in (IE!_U[) we use a fundamental result from analysis: if a sequence x;, converges to a limit L, then

its Cesaro mean (average) >~ xy, also converges to L. Since we established that C 5, converges to Cs . Using (112),
we have

T-1

. 1 2 2 2
m sup — E < + 0o .
Th sup T p Hng = O(Coo F,oo) (113)

Now, we need to show that for the hybrid step-size schedule in Assumption [I] the aggregation weight w1 converges
to wy as k — oo.

Lemma 14. Consider the inequality (T08) with the hybrid step-size schedule in Assumption[l] The expected weight
updates will vanish:

lim E[||wgy1 — w|*] = 0.

k—oc0

Proof by Contradiction Let z;, := E[||wry1 — wg||?]. We begin from (T08) with neglecting non-negative term
Cra 1~y llekl|? from left hand side of inequality and using (TOD):

T-1

1 I T-1
- )2 <Qo—Q + > Copa. 114
S (g3 < @-@ X O (114

Assume for contradiction that {z} does not converge to 0. This implies the existence of a constant € > 0 and an
infinite set of indices K such that x;, > € for all k € K with Kr = K N{0,...,T — 1}. Following the standard
contradiction argument, this leads to the inequality:

Taking the limit of the above inequality when 7" — oo give us:

lim — — <1 lim —
g X (gan o 5) <dm O ve g ZCM
T

The first term on the right-hand side of the above inequality converges to zero as 7' — oo because () — Q* is bounded.
The second term is a Cesaro mean of the sequence {C5 x }, and as shown converges to C . The key step is to analyze
the asymptotic growth of both sides. So, we have

Rt 1 Ly,
. _ — < .
€ fm o > <26k+1 D ) < aChoo
keKr

Since Bi+1 — 0, the terms (1/(28k+1) — Lw/2) — oo. The Cesaro mean (average) of a sequence that diverges to
infinity also diverges to infinity. Thus, the left-hand side is infinite, leading to the contradiction co < aC . The
assumption must be false, and therefore limy_, o, 5 = 0. This concludes the proof of Lemma O]

Now, we need to show that the aggregation weight wy, converges to the critical point of (6) as k¥ — co. As we know
limy,—, 0o W, = W*, which is a fixed point. Using (), we have

w* = argmin @ (W) + (VO (W*), w — w*) + 2B —|w— w3+ 6A+ (W) (115)
w
Using the optimality condition for the above equation gives us
1
0€ VP (W )+F(w —w)+85A+e (w™) (116)
[eS) t.to
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where 0 denotes subgradient. As k — 00, oo — 0, so B%.o(w* — w*) = 0. Using this point results in
0 Vo, (w")+ 86Af[ (w™), (117)
©0

which is exactly the optimality condition for (6). Since this represents the optimal solution of () as & — oo, it also
satisfies the Byzantine resilience bound @]) in the limit. Hence, we conclude that (o, < 7).

This concludes the proof of Theorem [I0} O

G.2 PROOF OF THEOREMFOR L-SMOOTH AND STRONGLY CONVEX (ITEM 2)

We extend the previous analysis to the case where each loss function f;(0) is u-strongly convex.

Theorem 15. Consider the cost function (1)) under the assumptions of TheOremand Item 2. The sequence {0, wj }7° |
generated by Algorithm[2| satisfies the corresponding result of Item 2 of Theorem

Proof. To prove the above theorem, since f;(0) is a p strongly convex function, we need to show that the Q (8, w) is
also p- strongly convex with respect to 8, which is formulated in the following lemma.

Lemma 16. Let the function be Q(0,w) = > 7" w; fi(0) + §A+[ (w). If each f;(0) is p-strongly convex with respect
t,f0

to 0 and w is on the unit sparse capped simplex, then Q(0,w) is also p-strongly convex with respect to 6.

Proof. The proof analyzes convexity with respect to @ for a fixed, valid w. The term ¢ .+ (w) is constant with respect
t,L0

to 6, and adding a constant does not affect the convexity or the strong convexity parameter of a function. Therefore,
Q(6,w) is p-strongly convex with respect to @ if the weighted sum H (0, w) = >_"" | w; fi(0) is p-strongly convex.

We use the definition that a function k(@) is y-strongly convex if h(8) — 4|0]|? is convex. We analyze this for H (0, w):
HOw) L1012 = (S wisi@)) - (S w ) o)
0. w) ~ Sl = (S wifi0) ) — (S wi ] Lol
i=1 i1

=Y ui (1(0) - Llol?).

By assumption, each function f;(8) is p-strongly convex, so each term (f;(8) — 410||?) is convex. Since the weights
w; > 0, the expression above is a non-negative weighted sum of convex functions, which is itself a convex function.

Thus, H(6,w) is u-strongly convex. As established, this implies that (6, w) is also u-strongly convex with respect
to 6. O

To continue the proof, we define:

n

F (0, wy) = Zwk,ifi(ek) + 5A:fe0 (Wi), VoF(0,wy) = Zwk,ivéfi(ek) (118)

i=1 i=1

in which f;(0) and Vg f;(0y) for all 1 < ¢ < n denote the honest losses and gradients. Additionally, according to
Lemrna F(6,w) is u-strongly convex with respect to 6.

Next, we need to determine the variance of the global true gradients, which is formalized in the following lemma.
Furthermore, as mentioned, we exclude b clients, so in our algorithm we have t = 1 /sands=n—1b 7

Lemma 17. Under Assumption|I] the variance of the global true gradient is bounded:

O';k = var(VoF (0, wi)) = E [[|[VoF (0r, wi) — gxll3] < doj.
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Proof. We start from the definition of 037 1. and substitute the definition of F'(0y, wy,):

0'2 =E ||V (Z wk,ifi(ek)> —-E |V <Zwk,ifi(9k)>] 3
i i=1

=1
=E|[|> weiV i) =) wk,iEWfiwk)]H%] by linearity of V, E

=1 i=1

=E |I>_ wei (Vi(Br) — E[V£:(61)]) ||§1 :

i=1

N N
We use the inequality || Y- x,[|3 < N Y ||x;||3 and the property capped in A}, ,i.e. w} ; <t Here, N <'s.

i=1 =1

oo SSPE | Y |VSi(6k) —E[VA(O0)]]3
ieSupp(wy)

=st® Y E[|V£i(0r) — E[V£i(0x)]]I3] by linearity of E
i€ESUPP(wi)

= st? Z var(V f(0r)).

i€SUpp(wy)
Now, we apply the given bound var(V f;(0x)) < doz:
O’;k < st? Z (do?)
iesupp(wy)
25 2
< (st)*doj.

Replacing s = n — by and t = 1/s gives us the proof of Lemma O
Since F(0,w) in (LI8) is u-strongly function with respect to @, applying this to generated sequence {6y, wy} by

Algorithm 2] yields to
20(F (O, wi) — F (0", wy)) < ||VoF(0x, wi)|[3.

Since the adversary just replaces the honest gradients with Byzantine gradients, so F'(0y, wi) = Q(0y, wy). Using
this point and taking the expectation from both side of the above inequality yields to

21 E{Q(O, wy,) — Q(0", wi)} < E [||VoF 6y, wi)|3] - (119)

The term E[|| Vo F(0), wy)||3] can be written
E [[[VoF (01, wi)l3] = [E[VoF(0r, wi)I3 + E [ Vo F (0r, i) — E[VoF(0r, wi)]l3]
= ll&nll3 +var(VoF (0, wy))
= llglls + ogu- (120)
Substituting the decomposition from (T120) back into our main inequality (T19):
2uE{Q (O, wi) — Q(0, wi)} < llgkll5 + o -
Using Lemmato bound o2 < do, we get a lower bound on ||gg 2
2UE{Q (8%, i) — Q(0%, wy)} — doy < lgxll3- (121

According to (T07), by neglecting the negative term — Zg;ol Cs, . E{||Wis1 — wy||3} and replacing ||gy |3 by the
lower bound (121)), we have

Eyy1 < (1 —a)Ey, + adoi + aB{Q*(wy) — Q*} + Ca xav. (122)
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where By 11 = E{Q(Ok11,Wrt1) — Q*} and Ey, = E{Q(0x, wi) — Q*} where Q* = Q(6*, w*) and w* be a limit
point of the sequence, i.e. limg_, o, Wi = W*

0" = argmin F(0, w*) by using (T18)
0
This allows us to analyze the asymptotic behavior of the recurrence in (122)). The inequality is a standard form of a
Robbins-Siegmund-type lemma, Fx11 < (1 — a)Ej + by, where:
e a=2uCia.
s by=ua (da,% + E{Q*(wy) — Q*}) + Cs .

The convergence of such a sequence is determined by the asymptotic behavior of the error term by, relative to the descent
term a. Specifically, we analyze the limit of their ratio:

by : Co
lim — =1 do? + E{Q* —-Q* : .
= i ( ok HEAQT(wWi) = QT+ 5 )
From Lemma [T4] we have established w1 — wj, with limit point w* and using the continuity of @, we have
limy, 0o E{Q* (W) — Q*} = 0. Consequently,

i bi Cr,0
limsup — = do? + —=22
k:—)oop a o 2,U01

In this case, the optimization error converges to a neighborhood of the optimum, with the size of the error ball given by

this limit: o
limsup Fy < do? + 2,00
k—oc0 o 2//’101

This completes the proof of Lemma [I3] O

=0(E +0pa+0k).

G.3 DETERMINING LIPSCHITZ CONSTANT L,,

In the following lemma, we derive a bound for the Lipschitz constant L,,, assuming Vg f; is Lipschitz continuous and
Vo fi(8)]]2 < C for all 6.

Lemma 18. Let f; : RY — R be continuously differentiable with Vg f; being L;-Lipschitz continuous and bounded,
IVofi(0)|| < Cforall® € RYandi=1,...,n. Define:

h(w) = "wifi [0—a> w;Vef;(0) |, (123)
i=1 j=1

forw € A;LZU ={weR": Y w =1Lw >0,w <tl|wlo<s} a>0 and fixed 0. Then, V,,h(w) is
L.,-Lipschitz continuous with:

LIIlaXQ
st
L;, and 0 = /2 (kt? + r2) as defined in Equation ()fLemma

Ly, < aC? (n3/2 +n+ anlmax + an? (124)

where Ly, = max
i=1,...,n

Proof. Define z(w) = 0 — aGw, where G = [V £1(0),...,Vyfn(0)] € R¥*™ Then:

h(w) = Z w; fi(z(w)).

The gradient is: ~
Voh(w) = f(z) — aGTG(w)w,
where f(z) = [f1(2), ..., fa(2)]T, and G(W) = [V f1(2), ..., Vo fn(z)] € R¥". We need to show that:
[Vwh(w2) = Viyh(wi)la < Ly|wa — wil|2.
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We compute
Vuwh(ws) — Vyh(wy) = £(z9) — £(z1) — aGT(G(Wg)Wg — é(wl)wl),
where z; = 0 — aGw;, j = 1,2. Thus:
IVwh(wa) = Vh(wi)ll2 < [[f(22) — £(z1)]|2 + af|GT (G (w2)wa — G(w1)w1) 2.

First Term (||f(z2) — £(z1)||2): Since f; is L;-smooth, the descent lemma gives:

fi(z2) — fi(z1) < Vofi(z1)" (22 — z1) + %||Z2 -z

Since zo — 71 = aG(w1 — ws), and |G| r < /nC (as [|[Ve f:(0)|| < O):
||Z2 - Z1|| S Oé\/ﬁCHWQ - W1||2.
Similarly, we can write

filz1) — fi(z2) < Vofi(z2)" (21 — 22) + %||Z2 —z3.

(125)

(126)

(127)

Since [|[Vofi(z1)|l2 < C, using (126), (127), and the result ZI) in Lemma [5| |[we — wi|l2 < o where o =

V2 (kt2 +12) < V/2:
lz2) — Fim)| < (i + 22na)C?ws — wall>,
Thus:

1£(z2) — £(z1)[l2 <> |fi(z2) = fi(z1)| <@y _(Vn+ %HQ)CQH‘W —will2 <

=1 i=1

an’? + C?||wa — wil|2.

nzaLmaxQ)
2
Second Term (||GT (G (w2)wa — G(w1)w1)||2):

n

G(Wz)wz — é"(W1)W1 = sz’,z (Vo fi(z2) — Vo fi(z1)) + Z(wm —w;1)Vafi(z1).
i=1 i=1
Using the Lipschitz property of V f;
Ve fi(z2) — Vo fi(z1)ll2 < Lillz2 — 21]|2 < Liay/nC|[wz — w1 2.

Utilizing the property Y7, w;2L; < Linax iy Wi2 = Limax

Zwm (Vo fi(z2) — Vo fi(z1))
i=1

2 i=1
Also, we have

n

Z(wi,g —w; 1)V fi(z1)

i=1

Combining (T30) and (129) gives us

|GT(G(W2)wa — G(w1)W1) |2 < [|G | p(@LmaxyvnC + Cv/n)||wa — wi |2 <

(@LmaxnC? + C%n)||wa — w1 |2

n
< Z w2 — w;1|C < CV/n|lwy — wil|2.

2 =1

So, we have
a||GT(G(W2)W2 — G(wp)wy)|l2 < a(aLmaxnC2 + C2n)||W2 —wi|2-

Replacing (128) and (131) in (123):

Lmax
L, < ozC’Q(n?’/2 +n+ anlp.x + an2ig).

2
Thus, V,,h(w) is L,,-Lipschitz continuous.

n
< ZmeiOé\/ﬁCHWQ — Wi ll2 € @LmaxvV/nC|lwa — wilf2.

(128)

(129)

(130)

(131)

(132)
O

The Lipschitz constant L,, can be determined in two ways. A more precise approach is to compute L, directly by
analyzing the gradient of h(w) defined in (123), though this may be computationally complex. Alternatively, when

direct computation is challenging, L,, can be bounded as in (I32) under the assumptions of Lemma|T8]
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H ADDITIONAL EXPERIMENTAL SETUPS AND RESULTS

H.1 EXPERIMENTAL FRAMEWORK OVERVIEW

Implementation Details: We implemented our federated learning framework using Python 3.12.7 and PyTorch as the
primary deep learning library. All experiments were conducted on GPU-accelerated hardware to ensure efficient training
and evaluation. Specifically, we utilized CUDA for GPU support and ran our models on a variety of high-performance
GPUgs, including NVIDIA A100, NVIDIA A40, and Tesla V100-SXM2-32GB. These resources allowed for large-scale
parallelization and significantly reduced computation time during training. For further implementation details, we have
shared the complete source code.

Data Heterogeneity and Malicious clients: In this study, we utilize two datasets, MNIST and CIFAR10, both of which
contain ten labels. As described in Subsection[5.1] the number of groups corresponds to the number of labels, which is
ten. A training example with label [ is assigned to group [ with probability ¢, and to other groups with probability lg—q.
Each group consists of a subset of clients, and since this study involves 200 clients divided into ten groups, each group
contains 20 clients.

For selecting malicious clients, we adopt a group-oriented approach. Specifically, we randomly select ng,, =

[ mumber of malicious__7 groyps, Malicious clients are first chosen from within a single group. If there are remaining
number of clients per group

malicious clients to be assigned, we select them from other groups, repeating this process until all malicious clients
have been selected.

For example, for a fraction of malicious clients 0.3 in this study, the number of malicious clients is 60. Since the number
of clients per group is 20, the malicious clients are selected from three random groups.

Now, a question may arise: why is this methodology employed instead of randomly selecting malicious clients? In
fact, this methodology is a specific case of random selection and represents one of the most difficult and challenging
cases. Assume the fraction of malicious clients is 0.3 and the selected random groups are i, j, and k (¢ # j # k). Itis
straightforward to show that the attack corrupts all datasets with labels 4, 7, and k with probability g + 2%‘1 = % + %,
which can be a high probability, especially for non-IID data with a high degree of non-IIDness, as considered in the
numerical study (¢ = {0.6,0.9}).

In this case, if we cannot detect the malicious clients, they can significantly reduce the test accuracy. In contrast, if the
malicious clients are selected randomly, they may be distributed among all groups (for example, uniform selection). In
this scenario, the attack may have a minor effect because the benign data dominates the malicious data.

Furthermore, we examine the effect of group-oriented malicious selection compared to random selection on FedAvg.
We observed that the test accuracy of FedAvg drops significantly for group-oriented selection compared to random
selection. In summary, this explanation demonstrates that group-oriented selection is one of the most difficult and
challenging scenarios for detecting malicious clients. This allows us to compare the proposed method to state-of-the-art
Byzantine-robust FL approaches in a highly challenging setting.

Attacks:

* Flipping label: Malicious clients train the model using a poisoned dataset, where the label of each class [ is
changed to L — | — 1, where L represents the total number of labels (in our study L is 10).

* Backdoor attack: Malicious clients train the model using a poisoned dataset, where a black square of size
8 x 8 pixels is added to the center of the image, and its label is randomly changed to a label between 0 and
L—1

* Inverse gradient: Malicious clients compute gradients based on their local datasets to minimize the loss
function and then flip the sign of their gradients.

* Global parameter attack: At each round, the server sends the global parameters to the clients. Malicious
clients add Gaussian noise, NV (v 1, v202), into the global parameters 6, where 1 represents the mean of the
global parameters, o denotes their standard deviation, v; and v» > 0 are arbitrary real-valued constants. In
this study, we set 1 = —5 and v5 = 1.5.

* Double attack: In this scenario, during a communication round, an attack targets a fraction of clients. In a
subsequent communication round, a different attack affects a separate set of clients that were not impacted by
the initial attack. Specifically, this study assumes that the first attack, an inverse gradient, takes place during
the second communication round, targeting 50% of the malicious clients. Later, in the fifth communication
round, a global random parameter attack is executed, affecting the remaining 50% of malicious clients who
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were not involved in the first attack. For instance, if the proportion of malicious clients is 40%, then 20% of the
clients are impacted by the inverse gradient attack, while the random parameter attack targets the other 20%.

» LIE (Little Is Enough) attack: Malicious clients first compute the coordinate-wise mean 5, and standard
deviation o, of the client updates in round k. They then submit forged updates of the form

by =pur+zor, Vje€ HC,

where z > 0 is a small constant ensuring that the forged updates remain within a plausible range. In our
experiments, we use the original stealth bound for z as proposed in|Baruch et al.|(2019).

H.2 HYPERPARAMETER SETTINGS

We detail the hyperparameter configurations used for all state-of-the-art methods and our proposed algorithm. For Krum,
the retained clients were set to (1 — fraction of malicious) X total clients — 2, and for Trimmed Mean, the trimming
fraction matched the fraction of malicious clients. All methods with tunable hyperparameters (e.g., Bulyan, FedLAW,
CClip, Huber) were tuned via grid search using a dedicated validation split (80 % for training, 10 % for validation, and
10 % for testing). The chosen values corresponded to the settings that achieved the highest validation accuracy after 200
communication rounds on MNIST and 400 rounds on CIFAR-10. All methods shared a common training configuration
with the learning rate « = 0.01, a batch size of 64 for the MNIST dataset and 16 for CIFAR-10, and 3 local epochs.
The total number of communication rounds used to update the global model parameters was 200 for MNIST and 400
for CIFAR-10. An overview of the selected hyperparameters for each method is summarized in Table

Table 1: Selected hyper-parameters for all defences.

Method Hyper-parameter(s) Chosen value
Krum Retained clients (1 — fraction of malicious) X n — 2
Trimmed Mean Trimming fraction fraction of malicious
Bulyan Candidate pool size grid: 20/40/50
Inner aggregation size (1 — fraction of malicious) X n — 2
FedLAW B grid: 1 x 1072 —1x 107
Sparsity budget s (1 — fraction of malicious) X n
Client weight upper bound ¢ 1/(s —10)
CClip Clipping radius 7 grid: 0.1, 10
Fixed-point iterations 1
CClip + Bucketing Clipping radius 7 grid: 0.1, 10
Fixed-point iterations 1
Bucketing factor 2
RFA (Geometric Median) Smoothing v 106
Iterations R 3
RFA + Bucketing Same as RFA v=10"% R=3
Bucketing factor 2
Huber Threshold T grid: 0.12, 0.2

Coordinate-wise Median - -

FedLAW: sensitivity to 3. We evaluated the impact of the FedLAW hyperparameter 3 under the flipping label attack
with a strongly non-IID split (¢ = 0.9) and 40 % malicious clients. The test accuracy (mean =+ standard deviation across
runs) is reported in Table 2} accuracy curves with error bars appear in Figs.[5]and [§]

For MNIST, accuracy remains consistently high across a wide range of 3, staying above 86 % for all 8 > 6.3 x
10~*. Performance peaks around 87.7 % when 3 = 1072, but values between 6.3 x 10~* and 10~2 yield nearly
indistinguishable results.

For CIFAR-10, accuracy generally stays in the 55-60% band, with some variance at a few values of 3. The best mean
accuracy of 59.7 % is achieved at 3 = 1072, and most settings in the 10~ —10~2 range perform comparably.

Overall, FedLAW is robust to the choice of 3; near-optimal performance is obtained without extensive tuning, especially
for 3 in the 1073 —10~2 range.
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Table 2: FedLAW [-sweep with 40 % flipping label attack (¢=0.9). Reported values are mean test accuracy =+ standard
deviation across 5 runs.

154 MNIST Acc. (%) CIFAR-10 Acc. (%)
1x 1072 87.67 £0.97 59.66 £+ 0.77
6.3 x 1073 86.80 = 0.97 57.83 +1.80
4.0x107° 86.54 + 0.46 58.91 +0.01
1.6 x 1073 86.43 £+ 0.64 59.12 + 0.42
1.0 x 1073 86.27 £ 2.69 5423 +17.52
6.3 x 107 86.97 £+ 0.64 58.03 £ 0.24
4.0x 1074 83.59 £+ 5.31 59.11 4+ 2.08
1.0x 1074 84.12 £ 4.61 55.17 £0.16
6.3 x 107° 82.49 +4.40 55.27 £ 0.39
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Figure 5: FedLAW sensitivity to § on MNIST (¢=0.9, 40% flipping label attack). Error bars denote +1 standard
deviation across 5 runs.

Bulyan: sensitivity to inner aggregation size and candidate pool size. In our main experiments, we fix the inner
aggregation size to (1 — fraction of malicious) X total clients — 2 and tune only the candidate pool size. However, in
Fig. [/} we sweep both hyperparameters to study their joint effect. Under the flipping label attack with 40 % malicious
clients and ¢=0.9, we observe that inner aggregation size has limited impact, whereas performance is notably more
sensitive to the candidate pool size. For the MNIST dataset, the best or near-best results are typically achieved when
the candidate pool size is set to 40 or 50. It is important to note that these experiments violate Bulyan’s theoretical
guarantee, which requires the number of Byzantine clients f to satisfy f < (n — 3)/4, where n is the total number
of clients (Guerraoui et al., 2018)). Theoretical results guarantee that, under this assumption, the deviation of each
aggregated coordinate from any honest one is bounded by O(c/v/d), where o is the variance among honest updates and
d is the model dimension. Since the assumption is violated in our setting, the theoretical bound does not formally apply.
Nevertheless, as shown in Fig. [/ Bulyan still achieves strong empirical robustness in highly adversarial conditions.

H.3 FEDLAW: CLIENT-WEIGHT DYNAMICS UNDER FOUR ADVERSARIAL SETTINGS.

To investigate how FedLAW responds to various adversarial behaviors during training, we analyze the evolution of
client aggregation weights in four distinct attack settings: flipping label, inverse gradient, backdoor attack, and a double
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Figure 6: FedLAW sensitivity to 8 on CIFAR-10 (¢=0.9, 40% flipping label attack). Error bars denote +1 standard
deviation across 5 runs.
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Figure 7: Bulyan sensitivity to inner aggregation size and candidate pool size on MNIST under the flipping label attack
(g=0.9, 40 % malicious clients).

attack scenario. We conduct the experiments on the MNIST dataset with a non-iid partitioning factor of ¢ = 0.9 across
10 clients, of which 40% (i.e., 4 clients) are malicious. In the double attack setting, two adversaries apply inverse
gradient manipulation while the other two send randomly perturbed global parameters. Each client trains a three-layer
fully connected MLP using a batch size of 64 for three local epochs per round. The aggregation is performed using
FedLAW with sparse weighting.

Figure ] displays the per-client weight trajectories over 100 global training epochs. Grey curves denote benign clients,
red curves indicate malicious clients executing single-strategy attacks, and in the double attack panel, blue curves
represent global parameter attackers while red curves indicate inverse gradient attackers. Across all settings, FedLAW
effectively distinguishes between benign and malicious behavior. Benign clients consistently receive stable, high
weights, while malicious clients are rapidly down-weighted, either immediately (in flip-label and inverse gradient
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attacks) or gradually (in the backdoor and double attack settings). The results demonstrate FedLAW’s ability to suppress
diverse attack strategies in real-time during training.

H.4 EVALUATION OF MALICIOUS CLIENT DETECTION

To comprehensively evaluate the performance of our method in detecting malicious clients, we report four standard
classification metrics: Precision, Recall, F1 Score, and Accuracy. We define the counts of true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN) using the following strategy, where M represents the set of
malicious clients.

Formally, for each client 7, we define the following indicator variables:

Here:

The total counts are computed as:

FP,»:{
FNi:{
TNZ-:{

ifi ¢ Mandw; <e,

ifi € Mand w; < ¢,
otherwise,

otherwise,

, ifi e Mand w; > ¢,
otherwise,

, ifi ¢ Mandw; > ¢,

, otherwise.

(133)

(134)

(135)

(136)

* True Positives (TP): Counts the number of malicious clients that are correctly identified as malicious by the

method.

* False Positives (FP): Counts the number of benign clients that are incorrectly flagged as malicious.
* False Negatives (FN): Counts the number of malicious clients that are mistakenly identified as benign.

* True Negatives (TN): Counts the number of benign clients that are correctly identified as benign.

¢ Precision:

which measures the proportion of clients flagged as malicious that are actually malicious.

¢ Recall:

¢ F1 Score:

F1 Score = 2 x

Precision =

Recall =

Precision x Recall

TP = iTPi, FP = Zn:FPi, FN = ZL:FN TN = i:TNi.
=1 =1 =1 =1

Using these counts, we compute:

TP
TP + FP’

TP

TP + FN’
which measures the proportion of actual malicious clients that are successfully detected.

Precision + Recall’

providing a balance between precision and recall.
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* Accuracy:

TP +TN
Accuracy = ———,
n

which measures the overall fraction of correctly classified clients (both malicious and benign), where n is the
total number of clients.

We set ¢ = 10~% to ensure that clients with very small aggregation weights are identified as malicious for evaluation.
This threshold is appropriate, as fewer than 200 clients typically remain after excluding detected malicious ones. In the
equal-weight case, benign clients receive weights above 5 x 1073, well above ¢, allowing a clear distinction between
benign and malicious clients.

Table[7] summarizes FedLAW’s performance in detecting malicious clients on MNIST and CIFAR-10 under four attack
types: Flipping Label, Inverse Gradient, Backdoor Attack, and Double Attack. We evaluate across different data
heterogeneity levels (¢ = 0.6 and ¢ = 0.9) and malicious client fractions (0.1 to 0.4), using Precision, Recall, F1 Score,
and Accuracy. Results are reported as the mean + standard deviation across five independent runs.

Recall and Accuracy are especially important: high Recall ensures most malicious clients are caught, which boosts
Accuracy. This is critical when the malicious fraction is high. Precision helps avoid false positives, but its impact is less
critical in practice when benign clients are the majority.

FedLAW consistently shows strong detection capabilities. For Flipping Label, Inverse Gradient, and Backdoor Attacks,
often it achieves Recall values close to or equal to 1.0, often resulting in high Accuracy (>0.92). CIFAR-10 generally
yields better results than MNIST, likely due to its more complex features, which may help us in the detection procedure.
Precision and F1 scores are also high (typically > 0.9), confirming robust overall performance.

The Double Attack poses a greater challenge due to its hybrid and dynamic nature. On CIFAR-10 with ¢ = 0.9 and
40% malicious clients, FedLAW still secures solid Recall (0.899), but lower Precision (0.848) and F1 (0.872) pull
Accuracy down to 0.897. On MNIST with ¢ = 0.6 and 10% malicious clients, Recall falls to 0.7 and Accuracy to 0.940.
At low malicious fractions, even minor misclassifications can significantly affect metrics, though their practical impact
remains limited due to the low number of malicious. It is important to note that FedLAW’s performance under the
double attack is slightly lower compared to other attack types, reflecting the increased complexity of this scenario. The
double attack is used specifically to assess the method’s robustness in the most demanding settings.

In summary, FedLAW provides reliable and accurate detection of malicious clients across all four attack types and
under highly heterogeneous data distributions, conditions that closely resemble real-world federated learning settings.
Its consistently high Recall and Accuracy make it an effective and practical defense mechanism for secure federated
learning systems.

Table 3: Test accuracy (%) on MNIST under four attack types, two non-IID levels (¢) and varying fractions of malicious
clients. Reported as mean =+ std over five runs and are also depicted in Figure @a.

Algorithm Fraction of Malicious Clients
q=0.6 q=0.9
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Attack: Flipping Label
FedLAW 92.63+0.07 92.71+£0.05 92.39+£0.07 92.22+0.20 | 89.60+0.24 89.55+0.57 88.30+£0.28 87.45+0.26
Bulyan 92.06+0.04 91.86+0.32 91.684+0.20 91.14+£0.45 | 89.01+0.06 87.59+0.95 87.03+£0.66 87.53+0.35
Bulyan-Bucketing | 92.18+£0.24 91.89+0.35 91.69+0.36 91.224+0.28 | 83.61+0.37 87.41+£1.09 85.994+0.38 85.36+1.37
Krum 86.08+0.21 86.294+0.80 86.37+£0.56 86.43+£0.24 | 76.46+0.84 76.72£1.26 76.16£0.96 75.55+0.60
Trimmed Mean | 92.15+0.29 91.584+0.17 91.024+0.32 90.13£0.75 | 88.544+0.34 86.544+0.06 82.13£1.26 71.21+£3.74
CClip 92.444+0.25 91.894+0.39 88.974+0.54 72.70+2.53 | 87.00+0.49 78.314+0.76 66.36+£0.68  54.45+1.97
CClip-Bucketing | 92.464+0.05 91.554+0.39 89.514+0.75 73.56+3.36 | 86.724+0.34 79.11+0.69 63.50+£1.92  54.00+2.45
RFA 92.60+£0.16 92.34+0.24 92.0640.38 89.90+1.41 | 88.60+£0.47 86.22+0.82 72.43£3.79 55.20£2.16
RFA-Bucketing | 92.894+0.67 92.84+0.73 92.16+0.46 88.29+£2.49 | 89.004+0.27 86.17+0.86 71.12+2.49 54.82+1.41
CwMed 92.09+0.28 91.64+0.20 91.034+0.14 90.25+0.23 | 88.12+0.45 86.09+0.32 82.68+0.54 72.82+3.87

Continued on next page

47



Under review as a conference paper at ICLR 2026

Table 3 (continued) from previous page

Algorithm Fraction of Malicious Clients
q¢=0.6 9=0.9
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Huber Aggregator | 92.48+0.17 92.17+£0.36 91.55+0.49 88.35£1.42 | 87.31+£0.66 78.66+1.75 65.22+1.99 54.84+2.56
FedAVG 92.65+0.03 92.234+0.13 89.56+0.19 77.71+0.61 | 88.05+0.29 80.04+0.13 67.74+£0.88 56.114+0.37

Attack: Inverse Gradient

FedLAW 92.40£0.19 91.88+0.46 91.83+0.33 91.62+0.33 | 88.71+0.55 88.45+0.18 86.86+0.15 87.41+1.39

Bulyan 91.59£0.38 91.26+0.16 90.29+0.27 89.11+0.33 | 87.09+0.06 85.88+£0.23 82.54+0.96 83.80+1.83
Bulyan-Bucketing | 91.31+£0.27 91.18+0.14 90.39£0.59 88.44£1.41 | 85.89+£0.97 8597+1.13 82.06£4.05 81.44+2.81
Krum 81.99+3.34 80.43+4.33 75.72+1.59 76.88+1.10 | 68.89+1.25 66.25+£5.60 64.39+£3.56 61.93£8.41
Trimmed Mean | 91.38+£0.32 90.63+0.08 88.49+1.00 84.35+1.52 | 84.49+0.75 77.76£2.30 66.53+£3.91 52.38%1.55
CClip 84.98+3.19 73.78+1.31 10.00+0.00 10.00£0.00 | 10.004£0.00 10.00+0.00 10.00+0.00  10.00£0.00
CClip-Bucketing | 83.02£1.36 73.73+0.18 10.00+0.00 10.00+0.00 | 10.00+0.00 10.00£0.00 10.00£0.00  10.0040.00
RFA 91.824+0.29 90.701+0.15 87.85+4.97 60.88+3.61 | 84.92+1.08 76.15£1.00 65.85+£2.18 10.0040.00
RFA-Bucketing | 92.18+£0.04 90.32£0.13 89.14£0.88 59.05+0.26 | 84.54£0.87 76.69£0.18 67.39+0.94  10.00+0.00
CwMed 91.41£0.29 90.66+0.44 88.90+0.61 83.89+1.93 | 85.33+0.41 80.72£2.19 68.27+£0.93 52.114+2.89
Huber Aggregator | 91.71+£0.32 84.81+£3.37 65.26£1.16 57.09£1.55 | 82.08£1.34 73.28%1.32 64.00£0.94 55.40+1.30
FedAVG 84.16£1.05 74.06+0.44 10.00+0.00 10.00£0.00 | 10.00£0.00 10.00+0.00 10.00+0.00  10.00£0.00

Attack: Backdoor

FedLAW 92.324+0.14 92.644+0.30 92.19+0.13 92.46+0.27 | 89.69+0.42 89.17+1.77 88.81+£0.71 87.88+1.16

Bulyan 92.15£0.07 91.73+0.22 69.23+£1.95 59.66+3.32 | 88.79+0.04 83.28+£2.40 51.79+£8.79 33.89+1.80
Bulyan-Bucketing | 92.11+0.16 91.62+0.27 90.17£0.09 88.54£0.44 | 88.27£0.19 85.22+1.69 79.39+4.89 72.17+3.84
Krum 27.60£3.99 28.16£0.97 15.83+4.34 22.64+6.54 | 15.21+0.35 16.36+2.40 18.68+2.33 16.90£2.69
Trimmed Mean | 91.74£0.07 91.244+0.21 90.40+0.16 88.77+0.60 | 88.51+0.58 86.84+£0.99 81.08+£1.04 74.45+2.48
CClip 92.21£0.22 91.66+0.17 90.89+0.46 90.36+0.19 | 88.35+0.22 87.87£1.03 84.94+0.83 81.45*1.11
CClip-Bucketing | 92.15£0.15 91.314+0.12 91.15+0.18 90.38+0.31 | 88.57+0.84 87.17+£1.19 84.57+0.88  80.52+0.73
RFA 93.72+£0.27 92.544+0.12 91.22+0.42 90.51+0.33 | 89.27+0.53 87.42+£0.43 86.53+1.22 79.33+2.19
RFA-Bucketing | 93.484+0.37 92.30+0.18 90.99£0.22 90.51+£0.11 | 89.55+£0.41 86.97+1.35 84.31£0.60 80.17+3.38
CwMed 91.61+£0.26 91.02+0.30 90.404+0.33 88.44+0.69 | 87.784+0.48 86.23+0.41 81.17+2.18 67.89+4.39
Huber Aggregator | 92.40+0.08 91.48+0.28 90.73+0.39 89.93+0.35 | 88.79+£0.43 87.424+0.29 84.94+1.22  80.80£2.65
FedAVG 91.99£0.06 91.34+0.19 91.03+0.16 89.93+0.24 | 88.43+0.63 87.13£1.17 85.00+£0.53  79.74%2.65

Attack: Double Attack

FedLAW 92.57£0.05 92.394+0.02 92.34+0.46 92.31+0.23 | 89.93+0.21 89.76+0.11 89.35+£0.24  87.47+0.95

Bulyan 91.98+0.11 91.694+0.08 91.22+0.13 90.79+0.22 | 88.80+0.22 87.50+0.23 87.01+1.13  85.47+0.31
Bulyan-Bucketing | 92.06+0.33 91.5940.23 91.49£0.03 90.571+0.68 | 88.84+£0.68 87.83£0.68 84.91+0.69 83.50+3.44
Krum 82.24+3.66 80.82+2.03 79.2841.60 80.7742.15 | 71.20+0.52 71.83+2.64 71.25+1.57 62.43£5.90
Trimmed Mean | 92.00£0.04 91.61+0.40 90.68+0.67 89.744+0.26 | 88.32+0.45 85.02+1.05 82.01+2.83 76.10£1.22
CClip 92.08+£0.12 91.67+0.08 90.78+0.62 82.99+4.99 | 89.12+0.29 80.84£1.60 68.12+3.87  10.0040.00
CClip-Bucketing | 92.27£0.18 91.72+0.21 90.47+0.38 86.45+4.14 | 87.97+1.15 82.27+£2.20 74.48+2.68 10.00+0.00
RFA 94.37£1.39 94.294+0.21 94.13+0.17 93.58+0.30 | 91.59+0.50 83.74+4.85 85.23+2.65 57.15+1.60
RFA-Bucketing | 94.941+0.23 94.78+0.25 94.07£1.53 91.50£5.75 | 91.13£1.46 89.97+£0.14 76.23£5.72  60.54+4.33
CwMed 91.924+0.22 91.03+0.10 90.77+0.58 89.63+0.56 | 87.58+0.54 86.18+£0.86 82.78+2.90 76.71+2.63
Huber Aggregator | 91.97+0.31 91.28+0.51 90.08+1.04 85.00£2.90 | 86.06+£1.28 78.47+2.42 66.62+0.95 57.96+0.35
FedAVG 92.294+0.21 91.62+0.11 90.83+0.40 85.68+6.05 | 89.424+0.46 86.79+1.64 71.49+6.16 68.28+3.67

Continued on next page
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Table 3 (continued) from previous page

Algorithm Fraction of Malicious Clients
q¢=0.6 9=0.9
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Attack: Lie Attack
FedLAW 92.724+0.04 92.2440.02 90.70+0.08 86.88+4.02 | 90.15+0.05 89.51+0.11 86.30+£0.14 70.10%2.17
Bulyan 92.16£0.02 91.444+0.56 89.41+£1.36 50.15433.52 | 88.80+0.37 86.16£1.92 58.924+22.98 21.23+13.09
Bulyan-Bucketing | 92.21+0.16 91.88+0.03 90.40£0.05 86.94£0.05 | 89.14+0.16 87.53+0.68 81.73£2.54 29.98+2.07
Krum 92.3240.17 90.924+0.40 88.06+0.53 39.53+11.36 | 89.49+0.33 83.84+1.01 26.56+1.91 11.624+0.23
Trimmed Mean | 92.21£0.25 92.074+0.20 90.66+0.01 87.584+0.23 | 88.944+0.11 88.42+0.15 81.78+0.49 56.70+£4.70
CClip 92.57+£0.09 92.56+0.16 92.094+0.33 90.60+0.12 | 89.90+£0.42 88.85+0.18 86.47£1.21 81.63£2.68
CClip-Bucketing | 92.76+0.14 92.764+0.07 92.11£0.14 90.64+0.09 | 89.91+£0.27 89.13+0.26 87.96£1.15 82.69+1.09
RFA 92.2540.10 91.70+0.18 90.9440.12 89.154+0.09 | 89.69+0.44 86.76+0.28 82.25+2.92 55.50+3.14
RFA-Bucketing | 92.524+0.19 91.74+0.12 91.03£0.21 89.29+£0.59 | 89.13+£0.47 87.35+0.95 82.16£1.63  57.39+7.07
CwMed 92.31£0.14 91.564+0.15 90.12+0.15 87.06+0.33 | 87.96+0.41 86.36+£1.03 79.07+£2.32 56.03+2.68
Huber Aggregator | 92.454+0.13 92.04+0.02 92.09+£0.30 90.69+0.12 | 90.08+0.44 89.34+0.48 86.19£1.03 68.83+£14.50
FedAVG 92.67+£0.11 92.61+0.21 91.91+£0.03 90.16+0.01 | 90.06+0.69 88.54+1.10 86.92+0.88 84.224+2.34

Table 4: Test accuracy (%) on CIFAR-10 under four attack types, two non-IID levels (q) and varying fractions of
malicious clients. Reported as mean =+ std over five runs and are also depicted in Figure Qb.

Algorithm Fraction of Malicious Clients
q=0.6 q=0.9
0.1 0.2 0.3 0.4 0.1 0.2 0.3 04
Attack: Flipping Label
FedLAW 74.59+0.54 73.21+0.09 72.434+0.23 70.52£0.16 | 66.86+0.50 64.85+0.24 62.39+0.51 58.86+2.22
Bulyan 73.53+0.71 70.55+0.75 68.60+0.53 62.20£1.97 | 64.93+0.57 61.84+0.92 60.00+0.94 53.57+10.37
Bulyan-Bucketing | 70.52+£3.66 71.56£0.68 67.17+3.08 45.86+£12.96 | 59.48+6.86 58.33+6.53 58.56+£6.54 47.82+5.42
Krum 27.66+£4.51 24.774£2.19 27.19+0.45 24.9940.14 | 21.23+0.40 17.64+2.69 11.94+0.00 15.97+0.18
Trimmed Mean | 73.12£0.03 71.724+0.03 67.39+0.30 51.184+0.74 | 62.244+0.33 59.27+0.29 53.02+1.97 43.45£2.09
CClip 72424044 66.19+1.13 60.12+5.46 39.98+8.15 | 61.93+0.91 55.58+£1.91 47.93£2.25 42.22+1.57
CClip-Bucketing | 72.31+0.37 66.891+0.87 55.85+6.59 41.97£9.59 | 61.65+0.81 54.95+1.17 49.944+221 41.34+2.04
RFA 72.61+0.75 69.70+2.29 64.16+3.89 50.96+£4.01 | 62.66+1.07 57.76+0.66 51.424+2.16 42.11£0.80
RFA-Bucketing | 73.81£0.63 71.45£1.69 67.51+£4.59 53.384+1.80 | 63.10£0.78 57.10£1.05 49.06+2.86 40.1940.62
CwMed 73.50+0.42 71.03+0.31 68.66+1.03 52.44+2.28 | 63.91+0.41 59.80+1.26 53.40+1.68 44.92+3.49
Huber Aggregator | 73.50+0.54 70.80£1.04 66.18+0.25 55.77£1.04 | 62.66£0.86 57.13+0.24 51.06+5.03 38.95+1.61
FedAVG 72.19£0.64 67.63+0.61 52.23+7.76 51.21+£9.39 | 61.70+0.73 54.91+£0.78 48.59+1.52 41.24+1.78
Attack: Inverse Gradient

FedLAW 74.45+0.58 73.16+0.63 72.05+0.55 70.32£0.24 | 66.26+0.67 64.41+0.37 62.95+1.13 59.38+1.14
Bulyan 72.82+0.66 70.56+0.30 67.62+0.73 65.98+0.11 | 64.55+1.31 60.46+1.38 57.53+1.79 56.24+£1.19
Bulyan-Bucketing | 72.424+0.35 71.504+0.26 68.01£0.78 52.84+3.32 | 64.13£0.34 61.57£1.11 59.58+£1.28 47.2010.63
Krum 29.68+£0.71 30.11£0.98 29.154+2.62 24.48+1.44 | 19.23£3.51 17.59+2.46 21.32+3.50 17.03+1.57
Trimmed Mean | 71.05£0.25 67.184+0.39 59.22+0.86 42.444+3.84 | 61.56+1.73 55.27+1.55 48.16%£1.34 38.17£1.37
CClip 71.40£0.29 67.61+0.47 67.09£1.48 10.00+0.00 | 61.174+0.73 55.01£1.27 53.53+£5.57 10.00£0.00
CClip-Bucketing | 71.44£0.61 67.39+1.09 67.20+0.63 10.00+0.00 | 62.89+1.58 56.77+£0.31 52.09£3.76 10.00£0.00
Continued on next page
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Table 4 (continued) from previous page

Algorithm Fraction of Malicious Clients
q¢=0.6 q=0.9
0.1 0.3 0.4 0.1 0.2 0.3 04
RFA 70.81£0.61 65.37+1.74 10.00+£0.00 10.00+0.00 | 60.98+2.00 10.00+£0.00 10.00£0.00 10.00£0.00
RFA-Bucketing | 71.37+1.07 66.71£1.17 10.00£0.00 10.00£0.00 | 61.26£1.18 10.00£0.00 10.00+0.00 10.0040.00
CwMed 71.93£0.78 68.08+0.40 60.48+1.74 42.89+1.86 | 62.08+0.36 56.74+1.67 49.294+2.31 34.10+£4.47
Huber Aggregator | 72.00+0.78 67.56+0.16 65.55+1.39 10.00£0.00 | 61.96+£1.68 56.37+0.76 47.93+2.93 10.004-0.00
FedAVG 67.83+1.58 10.004+0.00 10.004+0.00 10.0040.00 | 10.004+0.00 10.00+0.00 10.00+0.00 10.00+0.00
Attack: Backdoor
FedLAW 74.21£0.05 72.894+0.14 71.77+0.11 70.10+0.38 | 66.53+0.22 64.73£0.90 63.07+0.43 59.90+0.17
Bulyan 73.05+£0.27 66.66+1.16 47.46+0.07 30.93+0.32 | 62.85+0.21 54.52+0.84 35.38+2.69 18.62+2.53
Bulyan-Bucketing | 71.61+£0.34 69.734+0.51 67.06+0.72 60.394+0.48 | 63.53+0.33 58.58+1.21 53.70+0.91 48.04+0.84
Krum 25.36+£1.17 16474035 15.18+1.60 12.1243.10 | 13.204+3.32 13.764+5.08 9.794+0.29  10.06+0.08
Trimmed Mean | 74.69+£0.39 73.114+0.29 70.72+1.24 66.07+0.76 | 65.66+0.20 64.05+0.18 59.45+1.63 52.9242.76
CClip 73.61+£0.48 72.94+0.47 71.324+0.24 68.59+0.50 | 65.91£0.29 64.13+0.94 60.60+1.18 56.54+0.99
CClip-Bucketing | 74.16£0.50 73.094+0.31 71.24+0.29 69.33+0.74 | 65.944+0.65 63.45+£0.21 60.30+0.80 56.31+0.42
RFA 74.15£0.51 73.00+0.15 71.90+£0.47 69.87+0.66 | 66.22+0.41 64.00£0.65 62.05+0.49 59.04+0.63
RFA-Bucketing | 73.80+0.63 72.56+0.49 71.67+£0.46 69.69+0.45 | 66.10+0.73 63.70£1.25 62.394+0.16 59.69+0.50
CwMed 73.83+0.44 72.074+0.33 69.79+0.64 65.50+2.24 | 65.444+0.64 63.66+£1.28 57.91+1.28 52.14£0.59
Huber Aggregator | 74.07+0.14 71.73+£0.25 69.15£0.65 65.30£1.46 | 65.12+£0.70 62.13+0.89 60.26+0.30 55.3040.30
FedAVG 74.36+0.18 72.884+0.37 71.24+0.38 69.71+0.28 | 66.35+0.23 63.21+£0.68 60.62+1.92 55.94+0.86
Attack: Double Attack
FedLAW 74.09£0.31 72.894+0.28 71.63+£0.29 70.54+0.70 | 66.45+0.08 64.95+0.14 62.89+0.57 59.98+1.25
Bulyan 73.56£0.53 70.601+0.18 69.44+0.34 69.01+0.36 | 64.86+0.36 62.14+£1.28 60.15+1.44 59.02+1.02
Bulyan-Bucketing | 72.85+0.11 72.09+£0.31 71.20£0.41 64.51£0.23 | 64.47+£0.19 64.10+0.51 61.77+0.55 53.64+1.19
Krum 2541+£1.33 29.3542.74 23.43+2.81 26.554+1.57 | 18.94+1.51 18.02+3.86 17.60+3.54 17.95+2.79
Trimmed Mean | 72.7240.67 69.814+1.93 67.26+0.72 62.76+0.06 | 63.304+0.13 60.16+£0.11 56.54+£1.20 50.95+1.11
CClip 72.4940.29 70.71+0.35 67.77+£0.96 63.34+0.78 | 63.27+0.86 59.31+1.02 52.724+0.48 46.01+£2.03
CClip-Bucketing | 72.81+0.82 69.91+0.32 67.43+1.01 63.02+1.23 | 63.27+£1.46 59.48+0.88 53.144+1.73 45.99+1.49
RFA 58.99+£2.02 64.97+2.37 55.804+3.36 10.004+0.00 | 66.194+2.71 59.29+1.40 46.31£5.51 10.00£0.00
RFA-Bucketing | 64.33+3.61 70.754+3.30 57.14£3.17 10.00+0.00 | 66.90+1.67 60.26£2.12 10.00£0.00 10.00£0.00
CwMed 73.224+0.61 70.79+0.47 66.95+0.67 62.99+0.77 | 64.65+0.89 61.84+0.79 57.2840.39 52.12+1.44
Huber Aggregator | 73.11+0.05 70.17+£0.06 67.61£0.47 63.06£0.86 | 64.06£0.51 60.20+2.26 53.12+1.82 46.73+1.73
FedAVG 71.98+0.53 68.73+0.15 65.74+0.82 58.39+1.36 | 62.11+1.10 56.41£1.07 46.83+1.30 39.48+1.05
Attack: Lie Attack
FedLAW 74.20£0.30 71.961+0.26 60.91+£0.37 41.56+3.28 | 66.49+0.19 61.79£0.50 46.22+1.76 28.34+0.44
Bulyan 73.524+0.20 50.184+0.61 31.19+£2.30 10.00+0.01 | 65.57+0.63 40.99+1.13 13.82+3.44 10.00£0.00
Bulyan-Bucketing | 73.19+0.27 64.14+£0.51 42.53+£2.28 27.45£1.14 | 64.99+£0.21 51.494+0.31 32.16+1.41 11.694+2.99
Krum 65.43+0.76 45.04+1.09 28.70+1.52 10.004+0.00 | 52.684+0.60 35.39+1.33 13.32+3.13 10.01+£0.02
Trimmed Mean | 74.66£0.25 69.01+0.48 45.98+1.21 27.65+0.40 | 67.00+0.68 57.22+0.41 35.47+1.48 10.00£0.00
CClip 74.07+£0.17 72.784+0.17 63.91+0.02 42.544+0.27 | 66.35+0.14 64.08+£0.59 49.48+0.25 34.11£1.04
CClip-Bucketing | 74.10£0.64 72.804+0.32 64.31+0.18 43.05+0.74 | 66.75+0.67 64.39+0.01 52.474+0.18 31.59+1.50
RFA 74.2740.12 65.25+0.46 50.53+0.62 33.524+2.06 | 66.18+0.06 52.98+1.13 39.494+1.08 22.14+1.86
RFA-Bucketing | 74.47+0.04 66.18+£0.48 50.92+0.15 35.05£1.12 | 66.184+0.54 54.56+1.37 40.71+£0.27 25.5640.28

Continued on next page
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Figure 8: Convergence on CIFAR-10 under two adversarial settings (¢ = 0.9, 40% malicious clients; see Sectionfor
details). Each panel shows the average test accuracy over 5 independent runs; shaded regions denote +1std. FedLAW
uses two communication rounds per model update, so 400 rounds correspond to 200 global epochs. All other methods
run for 400 global epochs. We report results for one data poisoning attack (backdoor) and one model attack (inverse
gradient), which are representative of the broader attack space. Methods excluded from the inverse gradient plot did not
converge.

Table 4 (continued) from previous page

Algorithm Fraction of Malicious Clients
q=20.6 q=09
0.1 0.2 0.3 04 0.1 0.2 0.3 04
CwMed 72.04£0.08 58.56+0.77 43.48+0.81 21.37+2.06 | 60.80+0.19 47.00£2.13 31.23+3.98 10.00+0.01
Huber Aggregator | 74.33+0.10 68.08+0.18 51.65+£0.29 36.16£1.98 | 67.08+£0.91 61.23+0.14 45.58+1.24 26.4942.58
FedAVG 74.30£0.06 73.51+0.20 64.04+0.88 44.70+2.87 | 66.54+0.99 64.30+£0.41 51.71+0.80 33.04£2.57

H.5 COMPUTATIONAL COMPLEXITY

Communication Overhead between Server and Clients: As demonstrated in Table[3] state-of-the-art Byzantine-robust federated
learning methods typically do not update aggregation weights, incurring zero communication rounds for this step. In contrast, our
proposed method, FedLAW, optimizes the aggregation weights w alongside the global model parameters 6, requiring an additional
20 communication rounds for w updates. Since Byzantine attacks are assumed to occur early in training and w converges quickly,
we restrict its updates to the first 20 rounds, ensuring a fixed and limited communication overhead.

To ensure a fair comparison with existing methods and maintain a standardized benchmark, we align the number of communication
rounds for updating € with those used by state-of-the-art approaches in our numerical study. This setup allows for a direct evaluation
of FedLAW’s performance under equivalent conditions for 8 updates. However, as highlighted in Remarkmand illustrated in Fi gure@
FedLAW achieves the target accuracy with fewer 8-update rounds compared to other methods, owing to the joint optimization of w
and 6. This flexibility enhances convergence speed, effectively offsetting the additional 20 rounds for w updates and potentially
reducing the total communication cost in practical settings.

Finally, we note that the CIFAR-10 dataset requires more @-update rounds than MNIST due to its higher complexity, which
necessitates additional training effort to achieve robust convergence across all methods.

Memory Complexity of Server-Side Weight Update: In our method, the server updates both the global model parameters and the
aggregation weights. The weight update involves computing the vector

hy, = wi + BaGE Grriwr, — BE(Or41) (137)
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Algorithm Dataset # of Rounds to Update 6 # of Rounds to Update w
FedLAW (ours) MNIST 200 20
CIFARI10 400 20
Bulyan MNIST 200 0
CIFARI10 400 0
Krum MNIST 200 0
CIFARI10 400 0
Trimmed Mean MNIST 200 0
CIFARI10 400 0
FedAVG MNIST 200 0
CIFARI10 400 0

Table 5: Number of communication rounds for updating 8 and w in
each algorithm.

where w, € R" are the aggregation weights, Gr = [Vofi(0k), - ,Vofu(Ok)] € REx™, ék+1 =

[Vofi (ék+1), e 7v0fn(ék+1)] € R¥*™ are gradient matrices, and f(ékH) € R"™ denotes the losses of all clients. The
vector hy, is then projected onto the sparse unit-capped simplex.

To analyze the memory requirements for computing hy, we summarize the necessary data stored on the server in Table[§]

Symbol Shape | Purpose Memory Cost
W n | Aggregation weights O(n)
Gy d x n | Previous round gradients O(dn)
Gyt d x n | Current round gradients O(dn)
f(Ori1) n | client losses O(n)
Intermediate z = G 1wy, | d | Matrix-vector product scratch O(d)
Projection buffer n Sparse simplex projection O(n)

Table 6: Memory components required for computing aggregation weights.
The dominant memory cost arises from storing the two gradient matrices G, and ék+1, each of size O(dn). The other components
contribute lower-order terms, resulting in an overall memory complexity of O(dn).
Note that forming the product GFGri1wi naively would require constructing an O(n?) matrix. However, this can be avoided by
computing it in two steps:
1. Compute z = Gk+1Wk with cost O(dn).

2. Then compute G z with cost O(dn).

In summary, the memory required for server-side weight updates scales linearly with both the number of model parameters and the
number of clients. Therefore, the total memory requirement per round is O(dn).

Computational Complexity of Projection onto the sparse unit capped simplex: According to (I0), the projection onto the sparse
unit-capped simplex involves the following steps:
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MNIST CIFAR-10

Attack Type q | Frac. Mal. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc.
0.6 04 0.990 £0.010  0.998 +£0.006 0.994 +0.006 0.995 +0.005 | 0.976 + 0.055 1.000 0.987 £0.029  0.989 +0.025
0.3 0.990 + 0.022 1.000 0.995+0.011 0.997 £0.007 | 0.971 +0.065 1.000 0.984 +0.035 0.990 +0.023
0.2 0.963 £ 0.051 1.000 0.980 £ 0.027 0.992+0.011 | 0.959 +0.091 1.000 0.977 £0.051  0.990 + 0.023
Flipping Label 0.1 0.982 +0.041 1.000 0.990 £ 0.021  0.998 +0.005 | 0.964 +0.101 1.000 0.979 £0.059  0.995 +0.014
0.9 04 0.921 £0.052 0948 £0.072 0.934 +£0.060 0.946 +0.049 | 0.954 £0.048 0.950 £0.054 0.952+0.051 0.961 +0.041
0.3 0.963 £0.045 0.966+0.047 0.965+0.046 0.979+0.028 | 0.937 £0.058 0.987 £0.014 0.960 £0.026 0.975 +0.017
0.2 0.970 £0.021  0.975+0.025 0.972+0.023 0.989 +0.009 | 0.932+0.073 0.965+0.029 0.947 £0.044 0.978 £0.019
0.1 0.972 +0.041 1.000 0.986+0.021 0.997 £0.005 | 0.948 £0.064 0.939+0.082 0.944+0.073 0.989 +0.014
0.6 04 0.880 £0.045 0.874+0.052 0.877 £0.049 0.902 +0.039 | 0.956 +0.063 0.973 £0.061 0.964 +£0.060 0.971 + 0.048
0.3 0.824 £0.166 0.823 £0.165 0.824+0.165 0.895 +0.098 | 0.975 + 0.037 1.000 0.987 £0.019  0.992 +0.012
0.2 0.913+0.140 0917 +0.138 0.915+0.139 0.965 +0.056 | 0.963 + 0.082 1.000 0.980 £0.045  0.991 +0.020
Inverse Gradient 0.1 0.913+£0.194 0.930+0.157 0.921+0.177 0.983 £0.039 | 0.968 + 0.092 1.000 0.981 £0.053  0.996 +0.012
0.9 0.4 0.899 £0.072  0.904 +£0.064 0.902+0.068 0.922+0.054 | 0.997 +£0.006 0.997 £0.006 0.997 +£0.006 0.998 + 0.005
0.3 0.833+£0.071 0.833+0.071 0.833+0.071 0.899 +0.043 | 0.969 +0.048 0.997 +£0.008 0.982 +0.029 0.989 +0.018
0.2 0.825+£0.071 0.825+0.071 0.825+0.071 0.929 +0.029 | 0.943 +0.087 0.985+0.034 0.963 £0.061 0.984 + 0.026
0.1 0.707 £0.033  0.857 £0.131 0.774 +0.073 0.953 +0.008 | 0.901 £0.140 0.990 +£0.022 0.939 +£0.088 0.986 + 0.021
0.6 04 0.979 +0.018 1.000 0.989 +0.009 0.991 +0.008 | 0.968 + 0.068 1.000 0.983 +0.037 0.985+0.033

0.3 0.980 + 0.030 1.000 0.990 +0.015 0.994 +0.010 1.000 1.000 1.000 1.000
0.2 0.970 + 0.023 1.000 0.985+0.012 0.994 +0.005 | 0.963 + 0.090 1.000 0.979 £0.050  0.991 +0.023

Backdoor Attack 0.1 0.900 + 0.039 1.000 0.947 £0.022  0.989 + 0.005 1.000 1.000 1.000 1.000
0.9 0.4 0.997 + 0.006 1.000 0.998 £ 0.003  0.999 +0.003 | 0.966 + 0.064 1.000 0.981 £0.035 0.984 +0.031
0.3 0.988 +0.016 1.000 0.994 £0.008 0.996 +0.005 | 0.972 +0.061 1.000 0.985 £0.033  0.990 + 0.022
0.2 0.959 +0.035 1.000 0.979+£0.018 0.991 +0.008 | 0.968 + 0.095 1.000 0.981 £ 0.056 0.991 +0.027

0.1 0.915 +0.085 1.000 0.954 £0.048 0.990 +0.011 1.000 1.000 1.000 1.000
0.6 04 0.874 £0.010 0.874+0.010 0.874+0.010 0.899 +0.008 | 0.855+0.093 0.897 £0.130 0.875+0.111 0.899 +0.088
0.3 0.825+£0.026 0.825+0.026 0.825+0.026 0.896+0.015 | 0.856 +£0.042 0.909 +£0.070 0.881 £0.054 0.927 +0.032
0.2 0.807 £0.028 0.800 +0.025 0.803 +0.026 0.921+0.011 | 0.826 £0.029 0.960 +0.065 0.887 £0.041  0.952 +0.017
Double Attack 0.1 0.696 £ 0.037 0.707 £0.027 0.701 £0.031 0.940 +0.008 | 0.681 £0.015 0.990 +0.022 0.807 £0.018 0.952 + 0.005
0.9 04 0.804 £0.133  0.810+0.132 0.807 £0.132 0.845+0.106 | 0.848 £0.100 0.899 £0.141 0.872+0.119 0.897 +0.095
0.3 0.804 £0.039  0.804 +£0.039 0.804 +0.039 0.882+0.025 | 0.848 +0.129 0.888 £0.162 0.867 £0.145 0.920 + 0.086
0.2 0.756 £0.039  0.750 £0.043 0.753 £0.041 0.901 £0.016 | 0.776 £0.121 0.823 £0.164 0.799 £0.141  0.918 +0.057
0.1 0.697 £0.133  0.697 £0.133  0.697 £0.133  0.939 +0.027 | 0.764 £0.082 0.970 £0.045 0.852 +0.055 0.966 + 0.015

Table 7: Precision, recall, F1 score, and accuracy of FEDLAW under different attack types, values of ¢, and fractions of
malicious clients on MNIST and CIFAR-10. Results are reported as the mean + standard deviation over 5 independent

runs.

* Sparsity enforcement: h), = Pr_(hy), selecting the top-s elements from h, € R™. This step can be performed in
O(nmin(s,logn)) (Kyrillidis et al., 2013).

* Support selection: S* = supp(h. ), identifying the indices of the top-s elements, which requires O(n) time.

* Unit-capped simplex projection: wii15. = P+ (has-), Whil(g+)8 = 0. This projection onto the unit-capped
t

simplex has a computational complexity of O(s?) (Wang & Lul 2015).

The total complexity of the projection step is O(n min(s, logn) + s2).
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