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Abstract

Scientific discovery is a catalyst for human intellectual advances, driven by the1

cycle of hypothesis generation, experimental design, data evaluation, and iterative2

assumption refinement. This process, while crucial, is expensive and heavily3

dependent on the domain knowledge of scientists to generate hypotheses and4

navigate the scientific cycle. Central to this is causality, the ability to establish5

the relationship between the cause and the effect. Motivated by the scientific6

discovery process, in this work, we formulate a novel task where the input is a7

partial causal graph with missing variables, and the output is a hypothesis about8

the missing variables to complete the partial graph. We design a benchmark with9

varying difficulty levels and knowledge assumptions about the causal graph. With10

the growing interest in using Large Language Models (LLMs) to assist in scientific11

discovery, we benchmark open-source and closed models on our testbed. We12

show the strong ability of LLMs to hypothesize the mediation variables between a13

cause and its effect. In contrast, they underperform in hypothesizing the cause and14

effect variables themselves. We also observe surprising results where some of the15

open-source models outperform the closed GPT-4 model.16

1 Introduction17

Scientific discovery is a dynamic process driven by inquiry, hypothesis formulation, and data collec-18

tion Wang et al. [2023a]. Scientists refine hypotheses based on experimental data, form sub-questions,19

and iterate until the research question is resolved Kıcıman et al. [2023]. Causality plays a key role in20

assessing hypotheses, allowing interpretation beyond correlations. Tools like Randomised Control21

Trials (RCTs) establish causal relationships Kendall [2003], but the process heavily relies on expert22

guidance for hypothesis formation and experimental design Kıcıman et al. [2023]. However, domain23

knowledge can be challenging to formalize and collect Kıcıman et al. [2023].24

Recent advancements in Large Language Models (LLMs) Brown et al. [2020], OpenAI [2023] have25

spurred interest in using them for scientific discovery AI4Science and Quantum [2023]. LLMs have26

excelled in tasks like reasoning Srivastava et al. [2023], Wei et al. [2022] and are being explored in27

natural sciences AI4Science and Quantum [2023]. Despite their capabilities, LLMs have limitations28

such as hallucinations, requiring human oversight AI4Science and Quantum [2023]. Prior work29

suggests using LLMs as creative proposers of solutions with task-specific verification Romera-Paredes30

et al. [2023], Wang et al. [2023b], Qiu et al. [2024].31

Given the importance of causality in scientific discovery, we explore how LLMs can aid causal32

reasoning. LLMs have shown state-of-the-art results in identifying pairwise causal relationships using33

variable names Kıcıman et al. [2023] and refining them with causal discovery algorithms Abdulaal34

et al. [2024], Ban et al. [2023a], Vashishtha et al. [2023]. However, these methods presuppose35

predefined variables and often involve costly data collection.36
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Figure 1: Leveraging LLM to indentify the missing variable for a causal DAG in the presence of
out-of-context distractors (a), an in-context distractor along with out-of-context distractor (b).

Our work extends LLMs’ role in causal reasoning to hypothesize missing variables in partially37

known causal graphs, simulating a realistic scientific discovery process. This approach complements38

existing causal methods, leveraging LLMs’ general and domain knowledge without requiring them to39

determine pairwise causal relations or perform numerical calculations, sidestepping their limitations40

in these tasks Zečević et al. [2023], Jin et al. [2023a].41

In summary, our main contributions are:42

• We introduce a new task of LLM-assisted causal variable identification and hypothesizing.43

• We propose a benchmark for hypothesizing missing variables based on a diverse set of44

existing causal graph datasets.45

• We design experimental tests with varying difficulty levels and knowledge assumptions,46

such as open-world and closed-world settings, the number of missing variables, etc., and47

gather insights on LLMs’ capabilities and weaknesses.48

• We benchmark several state-of-the-art models and analyze their performance with respect to49

variable types.50

2 LLMs for Identifying and Hypothesizing Causal Variables51

In this work, we leverage language models (LLMs) to identify and hypothesize variables in a causal52

Directed Acyclic Graph (DAG). Following the approach of hypothesizing causal graphs from partially53

known structures Glymour et al. [2019], we assume that some elements of the graph are known and54

aim to incorporate additional variables to refine the causal structure.55

A causal DAG models relationships among N variables V = {V1, . . . , VN}, encoded as a graph56

G = (V,E), where E is a set of directed edges that form no cycles. Given a partially known DAG57

G∗ = (V∗,E) with V∗ ⊆ V, our goal is to identify missing variables, Vmissing = V \ V∗, to expand58

G∗ to G. This implies that all causal relationships among variables in V ∗ are fully represented in G∗.59

Our methodology explores LLMs’ ability to hypothesize causal variables through progressively60

challenging scenarios. Initially, we provide a partially known DAG and multiple-choice options for61

missing variables. Complexity is increased by removing multiple nodes, and eventually, we transition62

to an open-ended scenario where no ground truth is provided, requiring LLMs to hypothesize missing63

variables without explicit hints. Given LLMs’ limitation to textual input, we represent the graph G∗64

using a prompt template PLLM(·), enabling LLMs to parse the causal relationships within the DAG.65

2.1 Task 1: Out-of-Context Controlled Variable Identification66

This task (depicted in Figure 1a) evaluates LLMs’ ability to identify missing variables in a causal67

graph from a list of multiple choices, thereby reconstructing the original graph. The partial DAG G∗68

is created by removing one variable from the original DAG G. Let us denote the removed node as69

vx. Along with the partial graphs, we operate in the multiple-choice question answering (MCQA)70

paradigm. The role of the LLM is to select a variable from the multiple choices, MCQvx , that can be71

used to complete the graph. The multiple choices include the missing variable vx and out-of-context72

distractors. The out-of-context distractors are carefully chosen to be irrelevant to the given DAG and73
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Figure 2: Leveraging LLM to hypothesize missing variables in a causal DAG: (a) single variable, (b)
iterative hypothesizing of multiple mediators.

its context. Let v∗x represent the variable selected by the LLM to complete G∗.74

v∗x = PLLM(G∗,MCQvx) ∀vx ∈ V

2.2 Task 2: In-Context Controlled Variable Identification75

In practical applications, such as healthcare Robins [1986] and finance Hughes et al. [2019], dealing76

with missing data and unobserved latent variables is a major challenge Tian and Pearl [2012], Bentler77

[1980]. Therefore, identifying the missing variables and their underlying causal mechanism is an78

important task. To simulate this, a more challenging task is introduced (see Figure 1b). Here, instead79

of removing one node from the ground truth DAG G, two nodes, vx1 and vx2 , are now removed to80

create the partial graph, G∗.81

G∗ = G \ {vx1
, vx2
} for vx1

, vx2
∈ V

We use the MCQA paradigm to provide multiple choices that include the missing variables vx182

and vx2
. The task for the LLM here is to select the correct variable vx1

only, given an in-context83

choice vx2
and out-of-context choices. We introduce the non-parental constrain for vx1

and vx2
. This84

prevents the removal of both a parent node and its immediate child node in G∗.85

v∗x1
= PLLM(G∗,MCQvx1

,vx2
) ∀ vx1 , vx2 ∈ V and vx1 ̸→ vx2 , vx2 ̸→ vx1

2.3 Task 3: Hypothesizing in Open World86

So far, we have described the testbeds for variable identification in a partial DAG given the controlled87

world knowledge in the form of distractors. This assumption allows for the evaluation of the language88

model’s ability to select the correct answer from a set of options. However, in the open-world setting,89

we increase the complexity to provide no choices, as shown in Figure 2a. Hence the task is to predict90

the missing node vx given the partial graph G∗ to complete the ground truth graph G. Here, the model91

returns a set of potential hypotheses, {v∗x,1, ..., v∗x,k} where k is the number of hypotheses.92

{v∗x,1, v∗x,2, ..., v∗x,k} = PLLM(G∗) ∀ vx ∈ V

2.4 Task 4: Iteratively Hypothesizing in Open World93

We extend the search space by relaxing the number of missing variables, with partial DAGs derived94

by removing one or more nodes: G∗ = G \ {vx1 , . . . , vxM
}. Open-world results show that LLMs95

excel in identifying mediators, prompting us to iteratively hypothesize mediators in a causal DAG96

given a treatment and effect.97

The task setup (Fig. 2b) involves a partial graph G∗ with observed treatment and outcome variables,98

aiming to hypothesize mediators M = {vm1
, . . . , vmH

} that link treatment vt to outcome vy. In99

each iteration, the LLM hypothesizes a mediator, updates the graph, and uses the new partial graph to100

identify subsequent mediators.101

v∗mi
= PLLM(G∗ ∪ {v∗m1

, . . . , v∗mi−1
}) for i = 1, . . . ,H

3
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Figure 3: LLM accuracy in identifying missing causal variables from multiple choices with out-of-
context (a) and in-context distractors (b).

To study the influence of mediator order, we introduce the Mediation Influence Score (MIS), which102

measures the importance of each mediator via the Natural Direct Effect (NDE) and Natural Indirect103

Effect (NIE). MIS quantifies the mediator’s impact relative to the direct effect:104

MIS (vmi) =
NIE(vmi)

NDE(vmi)
for i = 1, . . . ,H

Mediators are generated based on MIS scores, prioritizing those with higher influence.105

3 Evaluation and Results106

We evaluate a variety of causal datasets spanning diverse domains. We use the semi-synthetic datasets107

from BNLearn repository, see Appendix . We evaluate our setups across different open-source and108

closed models.109

3.1 Task 1: Out-of-Context Controlled Variable Identification110

This task establishes a baseline to evaluate LLMs’ fundamental abilities in causal reasoning with111

partial causal graphs. The input includes the ground truth variable name, out-of-context multiple112

choices for the missing variable vx, and the partial DAG G∗. The model’s accuracy in identifying vx113

is computed as:114

Accuracy =
1

N

N∑
i=1

⊮(v∗x = vix)

115

Results. Figure 3a shows the accuracy of various LLMs in identifying missing variables. GPT-4116

and Mixtral perform best, achieving perfect accuracy on most datasets, followed by GPT-3.5, except117

on Insurance and Alarm datasets. Models like Mistral, Llama-70, and Zephyr show varied success,118

with Insurance proving the most challenging, likely due to its complex DAG structure. All models119

outperform the random baseline, suggesting they can identify missing causal variables in a partial120

graph G∗. However, this high accuracy may be driven by the task’s simplicity, relying on dataset121

context rather than true causal reasoning. To probe deeper, the next task introduces in-domain choices122

to better evaluate LLMs’ ability to discern causal variables beyond obvious correlations.123

3.2 Task 2: In-Context Controlled Variable Identification124

This task presents a more complex scenario to test LLMs’ causal reasoning by incorporating two125

missing nodes in the partial graph. The input includes out-of-context choices, the ground truth126

variable, and one missing node as an in-context distractor, requiring the model to reason about127

indirect causal relationships.128

We evaluate performance using two metrics: accuracy and False Node Accuracy (FNA), the latter129

measuring confusion in selecting the in-context variable over the ground truth:130

False Node Accuracy (FNA) ↓= 1

N

N∑
i=1

⊮(v∗x1
= vx2

)

131
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Cancer Survey Asia Alzheimers Child Insurance Alarm Avg

Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J

Zephyr 0.36 0.61 0.34 0.60 0.45 0.66 0.35 0.75 0.51 0.70 0.45 0.44 0.46 0.69 0.42 0.63
Mixtral 0.41 0.66 0.39 0.66 0.66 0.75 0.31 0.77 0.53 0.77 0.46 0.56 0.50 0.72 0.46 0.70
Neural 0.38 0.77 0.43 0.55 0.53 0.55 0.44 0.71 0.48 0.70 0.47 0.43 0.47 0.67 0.45 0.63
Llama 0.40 0.48 0.40 0.54 0.53 0.58 0.45 0.61 0.48 0.63 0.42 0.34 0.46 0.65 0.45 0.55
Mistral 0.33 0.67 0.44 0.65 0.60 0.73 0.34 0.76 0.48 0.68 0.46 0.47 0.47 0.71 0.44 0.67
GPT-3.5 0.48 0.74 0.42 0.79 0.47 0.61 0.39 1.00 0.36 0.60 0.47 0.52 0.48 0.73 0.44 0.71
GPT-4 0.49 0.90 0.51 0.67 0.66 0.76 0.47 0.98 0.36 0.53 0.52 0.56 0.49 0.75 0.50 0.73

Table 1: Average semantic similarity and LLM-as-Judge metrics to evaluate LLMs in hypothesizing
the missing variable in a causal DAG.
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(c) LLM-as-Judge.

Figure 4: Visualising each model’s performances, averaged across the different datasets, for Sink,
Source, Mediator, and Collider nodes.

Results. Figure 3b shows both accuracy and FNA across datasets. Ideally, accuracy should be 1.0132

and FNA 0.0, with random chance at 0.2. Most models on larger datasets exceed random performance.133

GPT-3.5 and GPT-4 consistently demonstrate high accuracy and low FNA, indicating their ability to134

reason causally and identify missing nodes without confusion from in-context distractors. In contrast,135

open-source models show variable performance. For example, Mistral excels on the Cancer dataset136

but struggles with the more complex Alarm dataset. Overall, most LLMs can identify causal variables137

even with multiple missing nodes and in-context distractions.138

3.3 Task 3: Hypothesizing in Open World139

In this task, we simulate a scenario where a user provides a partial causal graph without multiple140

choices, expecting the LLM to complete the causal DAG by hypothesizing missing variables. The141

model is prompted for k = 5 suggestions for the missing node vx.142

To evaluate the suggestions, we employ two metrics: semantic similarity and LLM-as-Judge.143

Semantic Similarity: Measures the cosine similarity of the model’s suggestions v∗x1:5
with the144

ground truth vx (details in Appendix B.4).145

LLM-as-Judge: This metric assesses the quality of suggestions through a two-step process, compar-146

ing them against ground truth variables for contextual semantic similarity (details in B.5).147

Results. Model performances using both metrics are reported in Table 1. We analyze each metric148

across different node types (sources, sinks, colliders, and mediators), with results shown in Figure 4.149

For detailed performance per dataset, see Figure 17.150

GPT-4 and Mistral achieve higher semantic similarity and LLM-as-Judge scores across most datasets.151

GPT-3.5 also performs well. Semantic similarity is stricter than LLM-as-Judge, as it cannot fully152

capture contextual information (see example in Table 7). Both metrics show a fair correlation.153

Models perform better on colliders and mediators, indicating proficiency in reasoning about common154

causes and indirect relationships. However, they struggle with sink nodes, suggesting difficulty in155

reasoning about potential outcomes. Source nodes also present challenges, particularly in datasets156

like Survey and Alzheimer’s. Additionally, model performance improves with more suggestions (k)157

and correlates with the number of edges in the graph, indicating that more context enhances reasoning158

abilities. Overall, LLMs show promise in hypothesizing mediators and colliders in a partial causal159

DAG, suggesting their potential utility in real-world applications.160
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Asia Child Insurance Alarm
Sim ∆ Sim ∆ Sim ∆ Sim ∆

Zephyr 0.61 −0.02 0.54 0.17 0.47 0.19 0.51 0.20
Mixtral 0.87 0.01 0.50 0.18 0.48 0.15 0.52 0.13
Neural 0.65 0.04 0.48 0.21 0.42 0.16 0.46 0.12
Llama 0.80 0.07 0.49 −0.05 0.44 0.21 0.51 0.07
Mistral 0.33 0.02 0.50 0.12 0.48 0.13 0.47 0.11
GPT-3.5 0.48 0.01 0.36 0.25 0.48 0.17 0.51 0.02
GPT-4 0.49 0.04 0.39 0.16 0.52 0.14 0.60 −0.07

Table 2: Sim: semantic similarity for iteratively hypothesizing mediator nodes in random order. ∆
measures prediction changes according to MIS.

3.4 Task 4: Iteratively Hypothesizing in Open World161

In our previous experiment, we found that LLMs excel at identifying mediators when treatments162

and outcomes are provided. This is particularly relevant in medical settings, where understanding163

mediators can reveal causal mechanisms.164

For unordered mediator evaluation, we hypothesize iteratively in random order. The evaluation165

mirrors the open-world setting, averaging semantic similarity across all mediators. For ordered166

evaluation based on the Mediation Influence Score (MIS), we introduce a metric ∆, which measures167

how the order of mediator realization influences predictions. We prompt the LLM in both ascending168

and descending orders of significance, calculating ∆ as the change in semantic similarity. We focus169

on datasets with multiple mediators, including Asia, Child, Insurance, and Alarm, which range from170

1 to 10 mediators. Results. Results are summarized in Table 11, with variances in Appendix D.1. In171

complex scenarios with multiple missing nodes, LLMs maintain performance. While GPT-4 shows172

consistent performance, it excels specifically in the Insurance and Alarm datasets. Positive ∆ values173

indicate that using MIS for prompting enhances semantic similarity between hypotheses and ground174

truth. Overall, LLMs effectively hypothesize multiple mediators in a DAG, and incorporating domain175

knowledge about mediators can further boost performance.176

3.5 Hypothesizing Confounder177

Sachs Alarm Ins

Zephyr 0.10
±0.01

0.45
±0.05

0.53
±0.06

Mixtral 0.95
±0.10

0.85
±0.09

0.63
±0.07

Neural 0.30
±0.03

0.45
±0.05

0.61
±0.06

Llama 0.20
±0.02

0.47
±0.05

0.63
±0.06

Mistral 0.20
±0.02

0.85
±0.09

0.61
±0.06

GPT-3.5 0.40
±0.04

0.49
±0.05

0.67
±0.07

GPT-4 0.95
±0.10

0.73
±0.07

0.78
±0.08

Table 3: Evaluating Confounders.

In causal inference, backdoor paths can confound the estima-178

tion of causal effects, leading to bias if not properly addressed.179

Thus, hypothesizing and controlling for confounders is crucial.180

We extracted confounder subgraphs from the Sachs Sachs et al.181

[2005], Alarm, and Insurance graphs. As shown in Table 3,182

some confounders were easily hypothesized by LLMs, achiev-183

ing perfect accuracy, while others, particularly in the genomic184

domain of Sachs, posed challenges due to potentially limited185

domain knowledge. Notably, GPT-4, while a large model, did186

not always perform best across all datasets, underscoring the187

necessity for diverse benchmarks to fully assess performance.188

While LLMs typically excel at hypothesizing colliders, results189

for confounders varied, highlighting the complexity of this190

task.191

4 Conclusion192

Most causality literature assumes necessary data is available193

and focuses on establishing causal relationships. Generating hypotheses about missing variables194

is usually done by human experts. We introduce a novel task where LLMs generate hypotheses195

about missing variables in causal graphs. Our formalized tests vary in difficulty and knowledge level,196

benchmarking models on identifying missing variables from various distractors and hypothesizing in197

open-world settings. Our findings suggest LLMs are effective for generating hypotheses, especially198

for mediators, which are often less known than treatments and outcomes.199
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A Preliminaries: Causal Graph326

A causal relationship can be modeled via a Directed Acyclic Graph (DAG). A causal DAG represents327

relationships between a set of N variables defined by V = {V1, ..., VN}. The variables are encoded328

in a graph G = (V,E) where E is a set of directed edges between the nodes ∈ V such that no cycle329

is formed. Mathematically it can be expressed as:330

G = (V,E), E = {ei,j | vi, vj ∈ V, i ̸= j} and vi → vj

Each edge ei,j ∈ E denotes causal relationship between vi and vj , vi
ei,j−−→ vj , emphasizing the influ-331

ence from vi to vj . Beyond visualization, causal DAGs allow for the mathematical characterization332

of different node types for a causal model to understand the influences and dependencies.333

We define d(v) as the degree of a node v, representing the total number of edges connected to v.334

din(v) is the in-degree, representing the number of incoming edges to v. dout(v) is the out-degree,335

representing the number of outgoing edges from v.336

Sources are variables vs with no incoming edges. Mathematically sources are din(vs) = 0 where din337

is the in-degree of the graph.338

Sinks are variables vk with no outgoing edges. Sinks are dout(vk) = 0 where dout is the out-degree of339

the graph.340

Treatment are variables vt, characterized as nodes din(vt) = 0 that are being intervened upon.341

Outcome are variables vy , characterized as the nodes dout(vy) = 0 that are observed for interventions342

from the treatments.343

Mediator are variables vm that have both incoming and outgoing edges (din(vm) > 0 and dout(vm) >344

0), acting as intermediaries in the causal pathways between treatment and outcome. Hence vk is a345

mediator if it is both a child of vi and a parent of vj .346

Confounder are variables vk that influence both treatment and outcome, exhibiting edges directed347

towards the treatment and outcome nodes (dout(vk) ≥ 2. Hence vk is a confounder if it is a parent of348

both vi and vj .349

Collider are variables vl that have two edges meeting, and have an in-degree greater than one350

din(vl) > 1. Hence vk is a collider if it is a child of both vi and vj .351

Mediation Analysis. Mediation analysis quantifies the treatment’s effect on the outcome through a352

mediator variable. This effect is decomposed into the Natural Direct Effect (NDE) and the Natural353

Indirect Effect (NIE). The NDE represents the treatment’s effect on the outcome without mediation,354

while the NIE represents the effect mediated by the mediator variable. Futher explanation can be355

found in Appendix D.356

NDE = E[vt=1, vm=0 − vt=0, vm=0]

NIE = E[vt=0, vm=1 − vt=0, vm=0]

B Implementation357

B.1 Experimental setup358

We evaluate a variety of causal datasets spanning diverse domains. We use the semi-synthetic datasets359

from BNLearn repository - Cancer:G(5, 4) Korb and Nicholson [2010], Survey:G(6, 6) Scutari and360

Denis [2021], Asia:G(8, 8) Lauritzen and Spiegelhalter [1988], Child:G(20, 25) Spiegelhalter [1992],361

Insurance:G(27, 52) Binder et al. [1997], and Alarm:G(37, 46) Beinlich et al. [1989]. We also362

evaluate our approach on a realistic Alzheimer’s Disease dataset:G(9, 16) Abdulaal et al. [2024],363

developed by five domain experts. These datasets span across different domain knowledge topics.364

These datasets have ground truth graphs along with their observational data. The simplest dataset365

used is the cancer dataset with 4 edges and 5 node variables. In addition to the semi-synthetic366

datasets from the BNLearn library, we also evaluate our approach on a realistic Alzheimer’s Disease367

dataset Abdulaal et al. [2024], which was developed by five domain experts. Given that each expert368

created a different causal graph, the final causal DAG comprises only those edges that were agreed369

upon by consensus.370

We evaluate our setups across different open-source and closed models. The models we use are GPT-371

3.5 Brown et al. [2020], GPT-4 OpenAI [2023], LLama2-chat-7b Touvron et al. [2023], Mistral-7B-372
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Dataset V E Description

Cancer 5 4 Factors around lung cancer
Survey 6 6 Factors for choosing transportation
Asia 8 8 Factors affecting dysponea
Alzheimer 9 16 Factors around Alzheimer’s Disease
Child 20 25 Lung related illness for a child
Insurance 27 52 Factors affecting car accident insurance
Alarm 37 46 Patient monitoring system

Table 4: Dataset description.

Instruct-v0.2 Jiang et al. [2023], Mixtral-7B-Instruct-v0.1 Jiang et al. [2024], Zephyr-7b-Beta Tunstall373

et al. [2023] and Neural-chat-7b-v3-1 Intel [2023].374

B.2 Reproducibility375

For reproducibility, we used temperature 0 and top-p value as 1 across all of the models. We also376

mentioned the snapshot of the model used.377

GPT-3.5 GPT-4 were accessed via API. Rest of the models were run on 1 A100 GPU. Since we used378

off-the-shelf LLM, there was no training to be performed. Since many of the models were run by379

API, it is difficult to calculate the entire compute, however, all of the experiments for each model380

took ≈ 6 hours.381

B.3 Controlled Variable Identification382

For variable identification, we generate multiple choices that remain consistent across all missing383

nodes and all of the datasets. The words were randomly chosen to be far enough from the nodes. The384

options chosen were weather, book sales, and movie ratings. We wanted to make sure that the options385

were not from one specific domain such that the LLM could do the process of elimination.386

B.4 Semantic Similarity387

Given the task of hypothesizing missing nodes in a partial graph G∗ in the absence of multiple-388

choices, we evaluate the semantic similarity between the model’s predictions and the ground truth389

node variable. We leverage an open model namely ’all-mpnet-base-v2’ to transform the textual390

representations of the model’s predictions and the ground truth into high-dimensional vector space391

embeddings. Post transforming textual representations into embeddings and normalizing them, we392

calculate the cosine similarity. Scores closer to 1 indicate a high semantic similarity, suggesting the393

model’s predictions align well with the ground truth. This metric gives a score of similarity without394

the contextual knowledge of the causal graph. We perform our experiments to consider every node of395

the ground truth as a missing node iteratively. For all the suggestions for a node variable, we calculate396

the semantic similarity. The average similarity reported is the highest semantic similarity for each of397

the variable suggestions.398
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Algorithm 1 Evaluating Semantic Similarity for Hypothesized Missing Nodes

1: Input: Partial graph G∗, Ground truth node variables VGT, Language model LM =
’all-mpnet-base-v2’

2: Output: Average highest semantic similarity score
3: procedure SEMANTICSIMILARITY(G∗, VGT, LM )
4: Initialize similarityScores as an empty list
5: for each node vGT in v do
6: predictions← GeneratePredictions(G∗, LM )
7: Initialize nodeScores as an empty list
8: for each prediction p in predictions do
9: embeddingGT ← Embed(vGT, LM )

10: embeddingp ← Embed(p, LM )
11: Normalize embeddingGT and embeddingp
12: score← CosineSimilarity(embeddingGT, embeddingp)
13: Append score to nodeScores
14: end for
15: maxScore←Max(nodeScores)
16: Append maxScore to similarityScores
17: end for
18: averageScore← Average(similarityScores)
19: return averageScore
20: end procedure

Ground Truth: Smoking status
LLM Suggestions: Smoking Alcohol Consumption Exposure to Radiation Poor Diet Genetic Predisposition
Semantic similarity : 0.72 0.38 0.22 0.22 0.17

Ground Truth: Employee or self-employed
LLM Suggestions: Income Level Job Location Environmental Awareness Lifestyle Preferences Health Consciousness
Semantic similarity : 0.30 0.25 0.17 0.15 0.10

Ground Truth: Dyspnea laboured breathing
LLM Suggestions: Shortness of breath Chest Pain Coughing Fatigue Weight Loss
Semantic similarity : 0.57 0.41 0.36 0.29 0.11

Ground Truth: Montreal Cognitive Assessment score
LLM Suggestions: Cognitive Function Neurological Function Mental Health Status Risk of Alzheimer’s Disease Memory Performance
Semantic similarity : 0.60 0.47 0.38 0.36 0.16

Ground Truth: Grunting in infants
LLM Suggestions: Respiratory distress Asthma Pneumonia Pulmonary infection Bronchopulmonary dysplasia (BPD)
Semantic similarity : 0.22 0.18 0.17 0.11 0.01

Ground Truth: Driving history
LLM Suggestions: Previous accidents Distance driven daily Type of car insurance Frequency of car maintenance Location of parking
Semantic similarity : 0.55 0.42 0.27 0.26 0.18

Ground Truth: Heart rate blood pressure
LLM Suggestions: Pulse Rate Blood Pressure Respiratory Rate EKG Reading Blood Oxygen Level
Semantic similarity : 0.78 0.78 0.57 0.49 0.42

Table 5: Examples of model suggestions from and the corresponding semantic similarity score for a
missing node variable from each of the datasets.
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B.5 LLM-as-Judge399

To capture the domain knowledge of the expert that selects the most relevant causal variable, we400

use LLM-as-Judge as a proxy expert. This also allows for evaluation based on contextual DAG401

knowledge as well. Given the impressive results of GPT-4 in Zheng et al. [2023], we use GPT-4 as a402

judge for all of the experiments.403

Algorithm 2 Evaluating Model Suggestions with LLM as Judge

1: Input: Partial graph G∗, Ground truth node variables VGT, Predictions P , Language model LLM
= GPT-4

2: Output: Average quality rating of model’s suggestions
3: procedure LLMASJUDGE(G∗, VGT, P , LLM)
4: Initialize qualityRatings as an empty list
5: for each node vGT in V do
6: suggestions← GenerateSuggestions(G∗, P , LLM)
7: bestSuggestion← SelectBestSuggestion(suggestions, vGT, LLM)
8: rating ← RateSuggestion(bestSuggestion, LLM)
9: Append rating to qualityRatings

10: end for
11: averageRating ← Average(qualityRatings)
12: return averageRating
13: end procedure
14: function GENERATESUGGESTIONS(G∗, P , LLM)
15: return A set of suggestions for missing nodes based on P
16: end function
17: function SELECTBESTSUGGESTION(suggestions, vGT,LLM)
18: Prompt LLM with G∗, vGT, and suggestions
19: return LLM’s choice of the best fitting suggestion
20: end function
21: function RATESUGGESTION(suggestion, LM )
22: Prompt LLM to rate suggestion on a scale of 1 to 10
23: return LLM’s rating
24: end function

Ground Truth: Education up to high school or university degree
Top ranked suggestion: Education level
Rating : 9.5

Ground Truth: Pollution
Top ranked suggestion: Smoking history
Rating : 2.0

Ground Truth: Bonchitis
Top ranked suggestion: smoking behavior
Rating : 2.0

Ground Truth: Lung XRay report
Top ranked suggestion: Lung Damage
Rating : 8.0

Ground Truth: Socioeconomic status
Top ranked suggestion: Driver’s lifestyle
Rating : 7.0

Table 6: Examples of model suggestions from and the corresponding LLM-as-judge score for a
missing node variable.

Shortcomings of LLM-as-judge. LLM-as-judge uses GPT-4 as a judge model which could be404

biased towards some data. Since the training datasets are not public for this model, it would be hard405
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Ground Truth: Dyspnea laboured breathing
LLM Suggestion: Shortness of breath

Semantic similarity to GT: 0.57
LLM-as-Judge score: 9.5

Table 7: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a
medical term for shortness of breath. In this example, the contextual information, beyond exact
matching, is better captured by LLM-as-Judge.

to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate406

using the semantic similarity.407

B.6 Iteratively Hypothesizing in Open World408

For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the sugges-409

tion with the highest semantic similarity to the context, and iteratively updates the partial graph with410

these mediators. ∆, quantifies the impact of mediator ordering by comparing the average highest411

semantic similarity scores obtained from both descending and ascending orders. This methodical412

evaluation sheds light on how the sequence in which mediators are considered might affect the LLM’s413

ability to generate contextually relevant and accurate predictions.414

Algorithm 3 Random Order Mediator Hypothesis

1: Input: Partial graph G∗ (where G∗ = G −H), Treatment vt, Outcome vy , Number of mediators
H , Number of suggestions k

2: Output: Updated graph G∗ with selected mediators
3: procedure GENERATEMEDIATORSRANDOM(G∗, vt, vy, H, k)
4: for i← 1 to H do
5: suggestions← Generate k suggestions for vmi

using PLLM(G∗)
6: Initialize highestSimilarity ← 0
7: Initialize selectedMediator ← null
8: for each suggestion in suggestions do
9: similarityScore← Calculate semantic similarity for suggestion

10: if similarityScore > highestSimilarity then
11: highestSimilarity ← similarityScore
12: selectedMediator ← suggestion
13: end if
14: end for
15: Update G∗ ← G∗ ∪ {selectedMediator}
16: end for
17: return G∗
18: end procedure

B.7 Related Work415

Our work is based on the framework of causality as proposed by Pearl [2009]. The intersection416

of language and causality is explored in [Girju et al., 2002, Hassanzadeh et al., 2020, Tan et al.,417

2023, ?] to extract causal relationships from a large corpus of text. With the advancements in418

LLMs and their ability to process large contexts, there has been an interest in using them for causal419

reasoning [Kıcıman et al., 2023]. Some works have focused on commonsense causality [Frohberg420

and Binder, 2021, Singh et al., 2021] and temporal causal reasoning [Zhang et al., 2020, 2022]. More421

recently Kıcıman et al. [2023], Long et al. [2023], ? introduced a method to discover causal structures422

by prompting LLMs with variable names. Ban et al. [2023b], Vashishtha et al. [2023], Ban et al.423

[2023a] extended this work by introducing ancestral constraints to refine the causal structures derived424

from LLMs. Abdulaal et al. [2024] combined data-based deep structural causal models, such as [Yu425

et al., 2019], with LLMs generated causal structure. Beyond using the ingested information for causal426

tasks, Jin et al. [2023b] focused on pure causal inference using LLMs. Recent work attempted to train427
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Algorithm 4 Ordered Mediator Generation and Evaluation Based on MIS

1: Input: Partial graph G∗, Treatment vt, Outcome vy, Set of potential mediators M , Number of
suggestions k

2: Output: ∆ - measure of the influence of mediator ordering
3: procedure CALCULATEMIS(vt, vy,M )
4: Initialize MISList as an empty list
5: for each mediator vmi in M do
6: Calculate NIE(vmi

) and NDE(vmi
)

7: MIS(vmi
)← NIE(vmi

)

NDE(vmi
)

8: Append MIS(vmi
) to MISList

9: end for
10: return MISList
11: end procedure
12: procedure GENERATEMEDIATORSORDERED(G∗, vt, vy,M, k)
13: MISList← CALCULATEMIS(vt, vy,M )
14: Sort M in descending order of MISList to get Mdesc
15: Sort M in ascending order of MISList to get Masc
16: averageDesc← GENERATEANDEVALUATE(G∗,Mdesc, k)
17: averageAsc← GENERATEANDEVALUATE(G∗,Masc, k)
18: ∆← |averageDesc−averageAsc|

averageDesc

19: return ∆
20: end procedure
21: function GENERATEANDEVALUATE(G∗,Morder, k)
22: Initialize similarityScores as an empty list
23: for each mediator vmi in Morder do
24: Perform the same steps as in the refined random order mediator generation
25: (Generate k suggestions, select the most similar, update G∗)
26: Append the highest similarity score to similarityScores
27: end for
28: return Average of similarityScores
29: end function

causal transformers ??, however, in this work we aimed to test the hypothesizing abilities of generalist428

LLMs. In contrast to previous work, we focus on the novel task of identifying and hypothesizing429

missing variables, a task that comes before data collection and evaluation, with LLMs as assistants.430

Additionally, existing works tested inductive hypothesis generation with LLMs [Gendron et al., 2023,431

Qi et al., 2023, Xu et al., 2023a,b, Qiu et al., 2024], although, we look at causal hypothesis generation.432
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C Confounders434

Sachs Alarm1 Alarm2 Ins1 Ins2 Ins3 Ins4 Ins5 Ins6 Ins7

Zephyr 0.12 0.37 0.29 0.45 0.49 0.37 0.29 0.33 0.46 0.73
Mixtral 0.89 0.54 0.57 0.57 1.0 0.32 0.23 0.38 0.28 1.0
Neural 0.34 0.27 0.28 0.42 0.47 0.34 0.48 0.48 0.38 0.48
LLama 0.27 0.39 0.44 0.55 1.0 0.29 0.22 0.57 0.45 1.0
Mistral 0.23 0.62 0.46 0.58 1.0 0.28 0.28 0.28 0.28 1.0
GPT-3.5 0.34 0.39 0.48 0.48 1.0 0.58 0.20 0.48 0.47 1.0
GPT-4 0.91 0.49 0.44 0.62 0.39 0.58 0.44 0.58 0.52 1.0

Table 8: Semantic similarity

Sachs Alarm1 Alarm2 Ins1 Ins2 Ins3 Ins4 Ins5 Ins6 Ins7

Zephyr 0.10 0.40 0.30 0.45 0.60 0.40 0.40 0.30 0.70 0.80
Mixtral 0.95 0.70 1.0 0.75 1.0 0.80 0.20 0.20 0.20 1.0
Neural 0.30 0.60 0.30 1.0 0.60 0.30 0.80 0.30 0.40 0.60
LLama 0.20 0.50 0.44 0.40 1.0 0.50 0.20 0.70 0.45 1.0
Mistral 0.20 0.90 0.80 0.55 1.0 0.30 0.20 0.70 0.30 1.0
GPT-3.5 0.40 0.50 0.48 0.30 1.0 0.75 0.40 0.75 0.60 1.0
GPT-4 0.95 0.65 0.80 0.60 0.70 0.80 0.85 0.80 0.75 1.0

Table 9: LLM judge

Intubation

MinvolVentlung

Figure 5: Alarm 1
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Intubation

VentalvVentlung

Figure 6: Alarm 2

CarValue

ThisCarCostTheft

Figure 7: Insurance 1

Age

GoodStudentSocioEcon

Figure 8: Insurance 2

SocioEcon

MakeModelRiskAverse

Figure 9: Insurance 3

SocioEcon

VehicleYearRiskAverse

Figure 10: Insurance 4

SocioEcon

HomeBaseRiskAverse

Figure 11: Insurance 5
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SocioEcon
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Figure 12: Insurance 6

Age

SeniorTrainRiskAverse

Figure 13: Insurance 7
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D Further results436

D.1 Variances437

For brevity we didnt add variance in the main text, the following results have variances:

Cancer Survey Asia Alzheimers Child Insurance Alarm Avg

Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J

Zephyr 0.36
±0.04

0.61
±0.06

0.34
±0.07

0.60
±0.05

0.45
±0.05

0.66
±0.04

0.35
±0.03

0.75
±0.03

0.51
±0.02

0.70
±0.04

0.45
±0.04

0.44
±0.05

0.46
±0.03

0.69
±0.02

0.42
±0.04

0.63
±0.04

Mixtral 0.41
±0.03

0.66
±0.04

0.39
±0.05

0.66
±0.06

0.66
±0.02

0.75
±0.03

0.31
±0.04

0.77
±0.02

0.53
±0.03

0.77
±0.02

0.46
±0.03

0.56
±0.04

0.50
±0.03

0.72
±0.06

0.46
±0.03

0.70
±0.05

Neural 0.38
±0.02

0.77
±0.05

0.43
±0.02

0.55
±0.03

0.53
±0.03

0.55
±0.04

0.44
±0.05

0.71
±0.03

0.48
±0.04

0.70
±0.03

0.47
±0.04

0.43
±0.05

0.47
±0.02

0.67
±0.03

0.45
±0.03

0.63
±0.04

Llama 0.40
±0.03

0.48
±0.05

0.40
±0.04

0.54
±0.05

0.53
±0.03

0.58
±0.06

0.45
±0.05

0.61
±0.03

0.48
±0.04

0.63
±0.03

0.42
±0.01

0.34
±0.05

0.46
±0.02

0.65
±0.03

0.45
±0.03

0.55
±0.04

Mistral 0.33
±0.01

0.67
±0.05

0.44
±0.05

0.65
±0.04

0.60
±0.03

0.73
±0.04

0.34
±0.04

0.76
±0.02

0.48
±0.04

0.68
±0.03

0.46
±0.03

0.47
±0.01

0.47
±0.03

0.71
±0.03

0.44
±0.03

0.67
±0.03

GPT-3.5 0.48
±0.03

0.74
±0.04

0.42
±0.00

0.79
±0.03

0.47
±0.04

0.61
±0.04

0.39
±0.05

1.00
±0.00

0.36
±0.05

0.60
±0.05

0.47
±0.07

0.52
±0.02

0.48
±0.04

0.73
±0.05

0.44
±0.04

0.71
±0.03

GPT-4 0.49
±0.02

0.90
±0.03

0.51
±0.06

0.67
±0.04

0.66
±0.02

0.76
±0.03

0.47
±0.02

0.98
±0.02

0.36
±0.05

0.53
±0.04

0.52
±0.03

0.56
±0.03

0.49
±0.06

0.75
±0.02

0.50
±0.04

0.73
±0.03

Table 10: Average semantic similarity and LLM-as-Judge metrics to evaluate LLMs in hypothesizing
the missing variable in a causal DAG.

438

D.2 Analysis of difference across tasks439

Since the metrics are different to evaluate each task, it is not meaningful or straightforward to compare440

the raw results. It must also be noted that the tasks are not linear. To address this, we rank the model441

performances across all models and datasets and present these rankings in Figure 14. This allows us442

to compare the relative performance of the models across different tasks.443

As we observe from the graph, GPT-4 model shows consistently top performances in Tasks 1-3,444

however, it has one of the lowest performances for Task 4. GPT-3.5 shows a strong performance445

in Task 2 and 4, ranking 2nd, but drops in Tasks 1 and 3. We observe that Zephyr, Neural and446

Mistral show consistently average performances. These observations motivate the significance of447

the tasks proposed in our benchmark. They highlight the variability in model performance across448

different tasks and emphasize the need for comprehensive and diverse benchmarks to fully assess the449

capabilities of these models.450

Asia Child Insurance Alarm
Sim ∆ Sim ∆ Sim ∆ Sim ∆

Zephyr 0.61
±0.03

−0.02
±0.01

0.54
±0.04

0.17
±0.02

0.47
±0.05

0.19
±0.02

0.51
±0.05

0.20
±0.02

Mixtral 0.87
±0.02

0.01
±0.01

0.50
±0.05

0.18
±0.02

0.48
±0.05

0.15
±0.02

0.52
±0.05

0.13
±0.01

Neural 0.65
±0.06

0.04
±0.02

0.48
±0.05

0.21
±0.02

0.42
±0.04

0.16
±0.02

0.46
±0.04

0.12
±0.01

Llama 0.80
±0.08

0.07
±0.02

0.49
±0.05

−0.05
±0.01

0.44
±0.06

0.21
±0.02

0.51
±0.05

0.07
±0.01

Mistral 0.33
±0.03

0.02
±0.01

0.50
±0.05

0.12
±0.01

0.48
±0.05

0.13
±0.02

0.47
±0.04

0.11
±0.01

GPT-3.5 0.48
±0.05

0.01
±0.01

0.36
±0.04

0.25
±0.03

0.48
±0.05

0.17
±0.02

0.51
±0.05

0.02
±0.01

GPT-4 0.49
±0.07

0.04
±0.01

0.39
±0.05

0.16
±0.02

0.52
±0.05

0.14
±0.02

0.60
±0.06

−0.07
±0.01

Table 11: Sim: semantic similarity for iteratively hypothesizing the mediator nodes when prompted
with random order. ∆ measures the change in the prediction of each model according to the MIS.
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Figure 14: Average Rank of each model against the different tasks. We ranked the mode since the
metrics are different to evaluate each task averaged across datasets
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Figure 15: L: Plot of semantic similarity with an increasing number of suggestions for GPT-4 on
the Alarm dataset. R: Plot of semantic similarity against the total number of incoming and outgoing
edges for GPT-4 on the Alarm dataset.
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Figure 16: Detailed spider plots for Semantic similarity

D.3 Breaking down the performance451

D.4 Fine grained model performance452

D.5 Effect of context453

We observed notable differences in the accuracy of LLM predictions for missing nodes within causal454

graphs when context was provided versus when it was absent. Specifically, the inclusion of contextual455

information about the causal graph significantly enhanced the LMs’ ability to generate accurate and456
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Figure 17: Detailed spider plots for LLM-as-judge metric

relevant predictions. In realistic settings, when this setup is being used by a scientist, they would457

provide the context of the task along with the partial graph. When context was not provided, the458

models often struggled to identify the most appropriate variables, leading to a decrease in prediction459

accuracy, especially for smaller models. Unsurprisingly, providing context was more important for460

smaller graphs than larger graphs. LLMs were able to understand the context of the graph via multiple461

other nodes in the graph for larger graphs.462

Cancer Survey Asia Insurance Alarm
X ✓ X ✓ X ✓ X ✓ X ✓

In-Context 0.75 1.00 0.67 1.00 0.68 0.88 0.85 0.90 0.96 0.96
Out-of-Context 0.00 0.25 0.33 0.33 0.53 0.61 0.58 0.58 0.60 0.57
Open world Hypothesis 0.39 0.41 0.40 0.39 0.63 0.66 0.49 0.50 0.44 0.46

Table 12: Model-Mixtral to evaluate the effect of context given in the prompt.

D.6 Using explanations463

While using LLMs for hypothesizing the missing nodes withing the causal graph for the open world464

setting, introduced an additional question to prompt the model to provide explanations for each of465

their predictions. This was motivated by the fact that incorporating a rationale behind each prediction466

might enhance the model’s semantic similarity. We present the results in the Table below: We467

observe that evaluating semantic similarity with explanations leads to a decrease in performance as468

compared to the earlier setting where the language model returned phrases. This is because semantic469

similarity, as a metric, evaluates the closeness of the model’s predictions to the ground truth in a470

high-dimensional vector space, focusing on the semantic content encapsulated within the embeddings.471

It is a metric that leaves little room for interpretative flexibility, focusing strictly on the degree of472

semantic congruence between the predicted and actual variables. The introduction of explanations,473

while enriching the model’s outputs with contextual insights, did not translate into improved semantic474

alignment with the ground truth.475

Cancer Survey Asia Insurance Alarm
X ✓ X ✓ X ✓ X ✓ X ✓

Sim 0.49
±0.02

0.38
±0.07

0.51
±0.06

0.44
±0.10

0.66
±0.02

0.57
±0.09

0.52
±0.03

0.40
±0.07

0.49
±0.06

0.40
±0.06

LLM-Judge 0.90
±0.03

0.91
±0.02

0.67
±0.04

0.69
±0.02

0.76
±0.03

0.76
±0.04

0.56
±0.03

0.55
±0.03

0.75
±0.02

0.75
±0.02

Table 13: Model-GPT 4. Evaluating the effect of explanations on different metrics from Task 3.
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Ambiguous predictions which semantically represent the same variable. An important linguis-476

tic concern that could be missed by semantic similarity is ambiguous hypothesis by the LLM that477

may have same semantics, which again breaks the semantic similarity metric. This further motivates478

LLM-judge metric whose input is - the context of the causal graph, the partial causal graph, the479

ground truth variable, and the model predictions. Given the rich context of the LLM-judge metric we480

suspect it would be able to overcome the ambiguity. We prompted the model to justify its hypothesis481

variables using explanations. We observe that evaluating semantic similarity with explanations leads482

to a decrease in performance as compared to the earlier setting where the language model returned483

just phrases. In Table 13 we observed a drop in performance for semantic similarity. In contrast, we484

observe a similar or slight improvement in the LLM-judge metric when the explanation of the model485

hypothesis is given.486

D.7 Chain of thought487

In recent times, Chain-of-Thought prompting has gained popularity due to its impressive perfor-488

mance in proving the quality of LLMs’ output Kojima et al. [2022] also in metadata-based causal489

reasoning Vashishtha et al. [2023]. We also incorporated COT prompting for our prompts. We490

perform ablation studies in Table. We observe that COT particularly improves the performance of the491

identification experiments.

Cancer Survey Asia Insurance Alarm
X ✓ X ✓ X ✓ X ✓ X ✓

In-Context 1.00 1.00 0.83 1.00 0.75 0.88 0.74 0.90 0.91 0.96
Out-of-Context 0.50 0.25 0.18 0.33 0.57 0.61 0.56 0.58 0.54 0.57

Table 14: Model-Mixtral to evaluate the effect of COT given in the prompt.

492

D.8 Iterative mediator search vs all at once493

For Task 4, we iteratively hypothesize the missing variables (mediators). Our choice was primarily494

driven by the complexity of Task 4, which involves predicting multiple missing mediators, ranging495

from 1 to 10. For a Task with 10 missing mediators, the model would have to predict 50 suggestions496

at once. We initially hypothesized that LLMs might struggle with making multiple predictions across497

different variables simultaneously. This was indeed reflected in our results and GPT-4 outputs from498

Table X. The iterative approach allows the model’s prediction to narrow the search space, which499

would not be possible in a non-iterative approach. This method is more aligned with the scientific500

discovery process, where hypotheses are often refined iteratively based on new findings. Furthermore,501

our approach simulates a human-in-the-loop scenario, where the most plausible answer is selected502

and used to guide the next prediction.503

Asia Child Insurance Alarm

Non-iterative 0.42 +- 0.07 0.33 +- 0.06 0.45 +- 0.09 0.54 +- 0.05
Iterative 0.49 +- 0.05 0.39 +-0.03 0.52 +- 0.02 0.60 +- 0.04

E Finetuning504

we aim to assess the LLM’s causal reasoning via prompting. Following are the reasons why fine-505

tuning is not the most practical solution:506

• Pretrained models come with a wealth of general knowledge, which we aim to leverage.507

Fine-tuning these models could potentially limit their ability to draw on this broad knowledge508

base. We aim to understand the utility of pretrained models, as fine-tuning large models like509

GPT-4 is not always feasible.510

• The training dataset is too small for fine-tuning. Despite considering a large 52-edged graph:511

Insurance, we would have just 27 datapoints or Alarm with 37 datapoint. Additionally:512
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1. Using the same graph as part of train and test would unfortunately lead to training data513

leakage.514

2. If we consider different graphs for train and test, there would exist a domain shift in the two515

graphs and the model may be overfitted to the domain of the train graph.516

However, to illustrate our hypothesis and alleviate the reviewer’s concern, we performed Supervised517

Fine-Tuning using QLoRA on the Mistral-7b-Instruct model for hypothesizing in the open world518

task. The train set here is all of the graphs minus the respective graph it was tested on. We tested on519

Survey, Insurance and Alzheimers graphs. The model was trained to give one best-fit suggestion for520

the missing variable.521

Insurance Survey Alzheimers

No fine-tuning 0.42 +- 0.03 0.44 +- 0.05 0.34 +- 0.04
Fine-tuned 0.39 +- 0.04 0.39 +- 0.03 0.36 +- 0.07

Table 15

From the above results, it is evident that finetuning does not significantly improve over the prompting522

results. This is because during training the LLM gets biased towards the domains of training datasets523

which are contextually distant from the test domain, given the diversity of datasets chosen. One may524

think that training might help the LLM to understand the task, but from prompt-based model output,525

it was evident that the LLM can instruction-follow. In summary, we were able to extract the LLM526

knowledge via prompting and domain-specific fine-tuning could be closely looked at in the future527

works.528
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F Causal graphs529
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G Prompt template530

Hello. You will be given a causal graph. The context of the graph [CONTEXT]. Please understand
the causal relationships between the variables - [VERBALISED DAG].531

532

Hello. You will be given a causal graph. The context of the graph is hypothetical patient monitoring
system in an intensive care unit (ICU). Please understand the causal relationships between the
variables - < anaphylaxis > causes < total peripheral resistance >. < arterial co2 > causes <
expelled co2 >. < arterial co2 > causes < catecholamine >. < catecholamine > causes < heart rate
>. < cardiac output > causes < blood pressure >. < disconnection > causes < breathing tube >.
< error cauter > causes < heart rate displayed on ekg monitor >. < error cauter > causes < oxygen
saturation >. < error low output > causes < heart rate blood pressure >. < high concentration of
oxygen in the gas mixture > causes < pulmonary artery oxygen saturation >. < heart rate > causes <
heart rate blood pressure >. < heart rate > causes < heart rate displayed on ekg monitor >. < heart
rate > causes < oxygen saturation >. < heart rate > causes < cardiac output >. < hypovolemia
> causes < left ventricular end-diastolic volume >. < hypovolemia > causes < stroke volume >.
< insufficient anesthesia > causes < catecholamine >. < intubation > causes < lung ventilation
>. < intubation > causes < minute volume >. < intubation > causes < alveolar ventilation >.
< intubation > causes < shunt - normal and high >. < intubation > causes < breathing pressure
>. < kinked chest tube > causes < lung ventilation >. < kinked chest tube > causes < breathing
pressure >. < left ventricular end-diastolic volume > causes < central venous pressure >. <
left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. < left
ventricular failure > causes < previous medical history >. < left ventricular failure > causes < left
ventricular end-diastolic volume >. < left ventricular failure > causes < stroke volume >. < the
amount of time using a breathing machine > causes < the intensity level of a breathing machine
>. < sudden blockage in the pulmonary arteries > causes < shunt - normal and high >. < sudden
blockage in the pulmonary arteries > causes < pulmonary artery pressure >. < pulmonary artery
oxygen saturation > causes < oxygen saturation >. < oxygen saturation > causes < catecholamine
>. < shunt - normal and high > causes < oxygen saturation >. < stroke volume > causes < cardiac
output >. < total peripheral resistance > causes < catecholamine >. < total peripheral resistance >
causes < blood pressure >. < alveolar ventilation > causes < arterial co2 >. < alveolar ventilation
> causes < pulmonary artery oxygen saturation >. < lung ventilation > causes < expelled co2 >.
< lung ventilation > causes < minute volume >. < lung ventilation > causes < alveolar ventilation
>. < the intensity level of a breathing machine > causes < breathing tube >. < breathing tube >
causes < lung ventilation >. < breathing tube > causes < breathing pressure >.
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
a patient’s health related to lung diseases. Please understand the causal relationships between the
variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured breathing
>. < individual has either tuberculosis or lung cancer > causes < positive xray >. < individual
has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < lung cancer >
causes < individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < lung
cancer >. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual
has either tuberculosis or lung cancer >.Based on your understanding and analytical skills, please
identify what the variable X could most likely be from the given multiple choices. It’s important to
note that you MUST select an option from the provided choices, as one of them is the correct answer.
The choices are: [ visited Asia; weather; book sales; movie rating ]. Please think step by step. Your
answer should be formatted as follows - Answer: X = choice. The choice must be one of the provided
options, and it should be formatted exactly as it appears in the choices. Generating your own options
is not allowed in this task.

Answer: X = visited Asia.My thought process is as follows:The causal graph suggests that X causes
tuberculosis, and tuberculosis is related to lung diseases. Visiting Asia is a possible explanation for
why an individual may have been exposed to tuberculosis, as the disease is more prevalent in some
Asian countries. Therefore, visited Asia is the most likely option for X.
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
a patient’s health related to lung diseases Please understand the causal relationships between the
variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured breathing
>. < individual has either tuberculosis or lung cancer > causes < y >. < individual has either
tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < lung cancer > causes <
individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < lung cancer
>. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual has either
tuberculosis or lung cancer >. Based on your understanding and analytical skills, please identify
what the variable X could most likely be from the given multiple choices. It’s important to note that
you MUST select an option from the provided choices, as one of them is the correct answer. The
choices are: [ weather; book sales; movie rating; positive xray; visited Asia ]. Please think step by
step. Your answer should be formatted as follows - Answer: X = choice. The choice must be one of
the provided options, and it should be formatted exactly as it appears in the choices. Generating your
own options is not allowed in this task.

Answer: Answer: X = visited Asia. My thought process is as follows:1. The graph shows that X
causes tuberculosis, which suggests that X is a variable related to healthcare or medicine. 2. The
graph also shows that bronchitis causes dyspnoea-laboured breathing, which further supports the
idea that X is a variable related to healthcare or medicine. 3. The graph shows that individual
has either tuberculosis or lung cancer causes y, which suggests that X could be a variable related
to diagnosing or treating lung diseases. 4. The graph shows that smoking cigarettes causes lung
cancer and bronchitis, which suggests that X could be a variable related to smoking or lung health. 5.
Based on the above observations, it seems unlikely that X would be weather, book sales, or movie
rating.6. Visited Asia is a variable that could potentially relate to healthcare or medicine, particularly
if the patient has traveled to a region with a high prevalence of tuberculosis or other lung diseases.7.
Therefore, based on the information provided in the graph, it seems most likely that X = visited Asia.
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
a patient’s health related to lung diseases. Please understand the causal relationships between the
variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured breathing
>. < individual has either tuberculosis or lung cancer > causes < positive xray >. < individual
has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < lung cancer >
causes < individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < lung
cancer >. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual has
either tuberculosis or lung cancer >. Using your causal knowledge, can you suggest what variable
X most likely? Give 5 suggestions for what variable X could be. Give reason for your suggestions.
Finally, return your answer (without reasoning) in the following format: <Answer> [first suggestion,
second suggestion, third suggestion .. and so on] </Answer> No explanations, no reasoning, just
answers as a list as described earlier. For example, if the suggestions are A,B,C,D,E then - <Answer>
[A, B, C, D, E] </Answer>

Answer: <Answer> [HIV/AIDS, Chronic respiratory conditions, Pneumonia, Exposure to asbestos,
Silicosis] </Answer>
Reasons:
1. HIV/AIDS: It is known to weaken the immune system, making the individual more susceptible to
infections like tuberculosis.
2. Chronic respiratory conditions: These can make an individual more susceptible to lung diseases
like tuberculosis.
3. Pneumonia: It is a lung infection that can lead to serious conditions like tuberculosis if not treated
properly.
4. Exposure to asbestos: Long-term exposure to asbestos can lead to lung diseases including lung
cancer and tuberculosis.
5. Silicosis: It is a lung disease caused by inhalation of silica dust, leading to inflammation and
scarring of the lung tissue, making the individual more susceptible to tuberculosis.
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
a patient’s health related to lung diseases. Please understand the causal relationships between the
variables - < visited asia > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured
breathing >. < individual has either tuberculosis or lung cancer > causes < positive xray >. <
individual has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < x >
causes < individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < x
>. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual has either
tuberculosis or lung cancer >. Using your causal knowledge, can you suggest what variable X most
likely? Give 5 suggestions for what variable X could be. Give reason for your suggestions. Finally,
return your answer (without reasoning) in the following format: <Answer> [first suggestion, second
suggestion, third suggestion .. and so on] </Answer> No explanations, no reasoning, just answers as
a list as described earlier. For example, if the suggestions are A,B,C,D,E then - <Answer> [A, B, C,
D, E] </Answer>

Answer: <Answer> [Lung Cancer, Chronic Obstructive Pulmonary Disease, Emphysema, Pneu-
monia, Asthma] </Answer>
Reasons:
1. Lung Cancer: Smoking is a major cause of lung cancer and lung cancer can lead to tuberculosis
or other lung diseases.
2. Chronic Obstructive Pulmonary Disease: Smoking is a leading cause of COPD and it can lead to
other lung diseases including tuberculosis and lung cancer.
3. Emphysema: It is a type of COPD often caused by smoking and can lead to other lung diseases.
4. Pneumonia: Smoking increases the risk of pneumonia and pneumonia can lead to other lung
diseases.
5. Asthma: Smoking can trigger asthma attacks and severe asthma can lead to other lung diseases.
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Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
the variables - < anaphylaxis > causes < total peripheral resistance >. < x > causes < expelled
co2 >. < x > causes < x3 >. < x3 > causes < x2 >. < x1 > causes < blood pressure >. <
disconnection > causes < x7 >. < error cauter > causes < heart rate displayed on ekg monitor >.
< error cauter > causes < oxygen saturation >. < error low output > causes < heart rate blood
pressure >. < high concentration of oxygen in the gas mixture > causes < x9 >. < x2 > causes
< heart rate blood pressure >. < x2 > causes < heart rate displayed on ekg monitor >. < x2 >
causes < oxygen saturation >. < x2 > causes < x1 >. < hypovolemia > causes < left ventricular
end-diastolic volume >. < hypovolemia > causes < stroke volume >. < insufficient anesthesia
> causes < x3 >. < intubation > causes < x5 >. < intubation > causes < minute volume >. <
intubation > causes < x4 >. < intubation > causes < shunt - normal and high >. < intubation >
causes < breathing pressure >. < kinked chest tube > causes < x5 >. < kinked chest tube > causes
< breathing pressure >. < left ventricular end-diastolic volume > causes < central venous pressure
>. < left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. < left
ventricular failure > causes < previous medical history >. < left ventricular failure > causes < left
ventricular end-diastolic volume >. < left ventricular failure > causes < stroke volume >. < the
amount of time using a breathing machine > causes < x6 >. < sudden blockage in the pulmonary
arteries > causes < shunt - normal and high >. < sudden blockage in the pulmonary arteries >
causes < pulmonary artery pressure >. < x9 > causes < x8 >. < x8 > causes < x3 >. < shunt -
normal and high > causes < x8 >. < stroke volume > causes < x1 >. < total peripheral resistance
> causes < x3 >. < total peripheral resistance > causes < blood pressure >. < x4 > causes < x >.
< x4 > causes < x9 >. < x5 > causes < expelled co2 >. < x5 > causes < minute volume >. <
x5 > causes < x4 >. < x6 > causes < x7 >. < x7 > causes < x5 >. < x7 > causes < breathing
pressure >. Using your causal knowledge, can you suggest what variable X most likely? Give 5
suggestions for what variable X could be. Give reason for your suggestions. Finally, return your
answer (without reasoning) in the following format: <Answer> [first suggestion, second suggestion,
third suggestion .. and so on] </Answer> No explanations, no reasoning, just answers as a list as
described earlier. For example, if the suggestions are A,B,C,D,E then - <Answer> [A, B, C, D, E]
</Answer>

Answer: <Answer> [ventilation rate, respiratory effort, airway resistance, lung compliance, alveolar
gas exchange] </Answer>
Reasons for the answer:
1. **Ventilation Rate**: The variable X causes both expelled CO2 and another variable (X3), which
indirectly influences heart rate, blood pressure, and oxygen saturation. The rate of ventilation directly
affects the amount of CO2 expelled from the body, making it a plausible candidate for X.
2. **Respiratory Effort**: This suggestion is based on the relationship between X and expelled CO2,
as well as the influence of X on another variable (X3) that affects cardiovascular and respiratory
parameters. Respiratory effort, which encompasses the work of breathing, could affect CO2 expulsion
and have downstream effects on the cardiovascular system.
3. **Airway Resistance**: Airway resistance could be a candidate for X because it directly influences
the amount of CO2 that can be expelled (a function of airflow) and could also affect other physiological
variables through its impact on ventilation efficiency.
4. **Lung Compliance**: Lung compliance, or the ease with which the lungs can expand, directly
affects ventilation and, consequently, the expulsion of CO2. It could also indirectly influence other
variables in the graph through its impact on gas exchange efficiency.
5. **Alveolar Gas Exchange**: This process directly determines the amount of CO2 expelled and
could influence the variable X3, affecting cardiovascular parameters. Efficient gas exchange is crucial
for maintaining appropriate oxygen and CO2 levels in the blood, impacting heart rate, blood pressure,
and oxygen saturation.
These suggestions are not explicitly mentioned in the input graph but are closely related to the
physiological processes and outcomes described. They offer plausible explanations for the causal
relationships involving the variable X, considering the context of patient monitoring in an ICU setting.
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Prompt: Strictly follow the format mentioned otherwise you will be disqualified.’, ’ello. You will
be given a causal graph. The context of the graph is hypothetical patient monitoring system in
an intensive care unit (ICU) Please understand the causal relationships between the variables - <
anaphylaxis > causes < total peripheral resistance >. < Alveolar Gas Exchange > causes <
expelled co2 >. < Alveolar Gas Exchange > causes < x2 >. < x2 > causes < x1 >. < x >
causes < blood pressure >. < disconnection > causes < x6 >. < error cauter > causes < heart rate
displayed on ekg monitor >. < error cauter > causes < oxygen saturation >. < error low output >
causes < heart rate blood pressure >. < high concentration of oxygen in the gas mixture > causes
< x8 >. < x1 > causes < heart rate blood pressure >. < x1 > causes < heart rate displayed on
ekg monitor >. < x1 > causes < oxygen saturation >. < x1 > causes < x >. < hypovolemia >
causes < left ventricular end-diastolic volume >. < hypovolemia > causes < stroke volume >. <
insufficient anesthesia > causes < x2 >. < intubation > causes < x4 >. < intubation > causes
< minute volume >. < intubation > causes < x3 >. < intubation > causes < shunt - normal and
high >. < intubation > causes < breathing pressure >. < kinked chest tube > causes < x4 >.
< kinked chest tube > causes < breathing pressure >. < left ventricular end-diastolic volume >
causes < central venous pressure >. < left ventricular end-diastolic volume > causes < pulmonary
capillary wedge pressure >. < left ventricular failure > causes < previous medical history >. <
left ventricular failure > causes < left ventricular end-diastolic volume >. < left ventricular failure
> causes < stroke volume >. < the amount of time using a breathing machine > causes < x5 >.
< sudden blockage in the pulmonary arteries > causes < shunt - normal and high >. < sudden
blockage in the pulmonary arteries > causes < pulmonary artery pressure >. < x8 > causes < x7 >.
< x7 > causes < x2 >. < shunt - normal and high > causes < x7 >. < stroke volume > causes
< x >. < total peripheral resistance > causes < x2 >. < total peripheral resistance > causes <
blood pressure >. < x3 > causes < Alveolar Gas Exchange >. < x3 > causes < x8 >. < x4 >
causes < expelled co2 >. < x4 > causes < minute volume >. < x4 > causes < x3 >. < x5 >
causes < x6 >. < x6 > causes < x4 >. < x6 > causes < breathing pressure >. Using your causal
knowledge, can you suggest what variable X most likely? Give 5 suggestions for what variable X
could be. Give reason for your suggestions. Finally, return your answer (without reasoning) in the
following format: <Answer> [first suggestion, second suggestion, third suggestion .. and so on]
</Answer> No explanations, no reasoning, just answers as a list as described earlier. For example, if
the suggestions are A,B,C,D,E then - <Answer> [A, B, C, D, E] </Answer>

Answer: <Answer> [cardiac output, heart function, blood flow, vascular resistance, cardiac cycle]
</Answer>
Reasons for the answer:
1. **Cardiac Output**: The variable X causes blood pressure and is caused by stroke volume. In
physiological terms, cardiac output is a primary factor influencing blood pressure, as it represents the
volume of blood the heart pumps per minute. Since stroke volume (the amount of blood pumped by
the left ventricle of the heart in one contraction) contributes to cardiac output, it’s logical to suggest
"cardiac output" as a potential identity for X.
2. **Heart Function**: Given that X is related to blood pressure and influenced by stroke volume,
it’s reasonable to infer that X pertains to the overall function of the heart. Heart function encompasses
various aspects of how the heart works, including pumping efficiency, which directly affects blood
pressure.
3. **Blood Flow**: Since X has a direct relationship with blood pressure and an indirect relationship
with factors affecting the heart’s pumping ability, "blood flow" could be a plausible suggestion. Blood
flow is crucial for maintaining blood pressure and is inherently linked to the heart’s ability to pump
blood effectively.
4. **Vascular Resistance**: X’s impact on blood pressure and its connection to total peripheral
resistance suggest that it might involve vascular resistance. Vascular resistance is the resistance that
must be overcome to push blood through the circulatory system and is a key determinant of blood
pressure.
5. **Cardiac Cycle**: The cardiac cycle involves all the events related to the flow of blood through
the heart during one complete heartbeat, including systole (contraction) and diastole (relaxation).
Given X’s influence on blood pressure and its relationship with stroke volume, considering the cardiac
cycle as a potential identity for X makes sense, as it encompasses the mechanisms affecting blood
pressure regulation.
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Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
the variables - < anaphylaxis > causes < total peripheral resistance >. << Alveolar Gas Exchange
> causes < expelled co2 >. < < Alveolar Gas Exchange > causes < x1 >. < x1 > causes < x >.
< Cardiac Output > causes < blood pressure >. < disconnection > causes < x5 >. < error cauter
> causes < heart rate displayed on ekg monitor >. < error cauter > causes < oxygen saturation >.
< error low output > causes < heart rate blood pressure >. < high concentration of oxygen in the
gas mixture > causes < x7 >. < x > causes < heart rate blood pressure >. < x > causes < heart
rate displayed on ekg monitor >. < x > causes < oxygen saturation >. < x > causes < Cardiac
Output >. < hypovolemia > causes < left ventricular end-diastolic volume >. < hypovolemia >
causes < stroke volume >. < insufficient anesthesia > causes < x1 >. < intubation > causes <
x3 >. < intubation > causes < minute volume >. < intubation > causes < x2 >. < intubation >
causes < shunt - normal and high >. < intubation > causes < breathing pressure >. < kinked chest
tube > causes < x3 >. < kinked chest tube > causes < breathing pressure >. < left ventricular
end-diastolic volume > causes < central venous pressure >. < left ventricular end-diastolic volume
> causes < pulmonary capillary wedge pressure >. < left ventricular failure > causes < previous
medical history >. < left ventricular failure > causes < left ventricular end-diastolic volume >. <
left ventricular failure > causes < stroke volume >. < the amount of time using a breathing machine
> causes < x4 >. < sudden blockage in the pulmonary arteries > causes < shunt - normal and high
>. < sudden blockage in the pulmonary arteries > causes < pulmonary artery pressure >. < x7
> causes < x6 >. < x6 > causes < x1 >. < shunt - normal and high > causes < x6 >. < stroke
volume > causes < Cardiac Output >. < total peripheral resistance > causes < x1 >. < total
peripheral resistance > causes < blood pressure >. < x2 > causes < < Alveolar Gas Exchange >.
< x2 > causes < x7 >. < x3 > causes < expelled co2 >. < x3 > causes < minute volume >. <
x3 > causes < x2 >. < x4 > causes < x5 >. < x5 > causes < x3 >. < x5 > causes < breathing
pressure > Using your causal knowledge, can you suggest what variable X most likely? Give 5
suggestions for what variable X could be. Give reason for your suggestions. Finally, return your
answer (without reasoning) in the following format: <Answer> [first suggestion, second suggestion,
third suggestion .. and so on] </Answer> No explanations, no reasoning, just answers as a list as
described earlier. For example, if the suggestions are A,B,C,D,E then - <Answer> [A, B, C, D, E]
</Answer>

Answer: <Answer> [patient anxiety level, patient consciousness level, patient pain level, patient
respiratory rate, patient skin temperature] </Answer>
Reasons for the answer:
1. **Patient Anxiety Level**: The variable X influences heart rate, blood pressure, oxygen satura-
tion, and cardiac output, which are all physiological parameters that can be affected by a patient’s
psychological state, such as anxiety. Anxiety can lead to increased heart rate and blood pressure,
changes in oxygen saturation, and alterations in cardiac output due to the body’s stress response.
2. **Patient Consciousness Level**: Consciousness level can impact heart rate, blood pressure,
and oxygen saturation due to the brain’s control over these vital signs. Changes in consciousness
level, such as becoming more alert or lapsing into unconsciousness, can significantly affect these
parameters, which are all influenced by variable X.
3. **Patient Pain Level**: Pain can cause physiological responses that include increased heart rate,
elevated blood pressure, changes in oxygen saturation due to hyperventilation or altered breathing
patterns, and potentially affect cardiac output as the body reacts to the stress of pain.
4. **Patient Respiratory Rate**: Given that X influences expelled CO2 and is affected by alveolar
gas exchange, it’s plausible that X could relate to the patient’s respiratory rate. Respiratory rate
directly impacts alveolar gas exchange, which in turn affects expelled CO2 levels, oxygen saturation,
and indirectly influences heart rate and blood pressure through changes in blood chemistry.
5. **Patient Skin Temperature**: While not directly related to the cardiovascular or respiratory
systems, skin temperature can be an indirect indicator of changes in these systems. For example,
changes in cardiac output and peripheral resistance can affect blood flow to the skin, thereby influenc-
ing skin temperature. Variable X’s impact on cardiac output and blood pressure suggests it could also
indirectly affect skin temperature.
These suggestions are based on the understanding that variable X has a broad impact on both
cardiovascular and respiratory parameters, indicating it could be a factor that influences or reflects
the overall physiological state of the patient.
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Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
the variables - < anaphylaxis > causes < total peripheral resistance >. << Alveolar Gas Exchange
> causes < expelled co2 >. < < Alveolar Gas Exchange > causes < x >. < x > causes <Patient
Respiratory Rate>. < Cardiac Output > causes < blood pressure >. < disconnection > causes
< x4 >. < error cauter > causes < heart rate displayed on ekg monitor >. < error cauter >
causes < oxygen saturation >. < error low output > causes < heart rate blood pressure >. <
high concentration of oxygen in the gas mixture > causes < x6 >. <Patient Respiratory Rate>
causes < heart rate blood pressure >. <Patient Respiratory Rate> causes < heart rate displayed on
ekg monitor >. <Patient Respiratory Rate> causes < oxygen saturation >. <Patient Respiratory
Rate> causes < Cardiac Output >. < hypovolemia > causes < left ventricular end-diastolic
volume >. < hypovolemia > causes < stroke volume >. < insufficient anesthesia > causes < x
>. < intubation > causes < x2 >. < intubation > causes < minute volume >. < intubation >
causes < x1 >. < intubation > causes < shunt - normal and high >. < intubation > causes <
breathing pressure >. < kinked chest tube > causes < x2 >. < kinked chest tube > causes <
breathing pressure >. < left ventricular end-diastolic volume > causes < central venous pressure >.
< left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. < left
ventricular failure > causes < previous medical history >. < left ventricular failure > causes < left
ventricular end-diastolic volume >. < left ventricular failure > causes < stroke volume >. < the
amount of time using a breathing machine > causes < x3 >. < sudden blockage in the pulmonary
arteries > causes < shunt - normal and high >. < sudden blockage in the pulmonary arteries >
causes < pulmonary artery pressure >. < x6 > causes < x5 >. < x5 > causes < x >. < shunt
- normal and high > causes < x5 >. < stroke volume > causes < Cardiac Output >. < total
peripheral resistance > causes < x >. < total peripheral resistance > causes < blood pressure >. <
x1 > causes < < Alveolar Gas Exchange >. < x2 > causes < x6 >. < x3 > causes < expelled
co2 >. < x3 > causes < minute volume >. < x3 > causes < x1 >. < x3 > causes < x4 >. <
x4 > causes < x3 >. < x4 > causes < breathing pressure > Using your causal knowledge, can
you suggest what variable X most likely? Give 5 suggestions for what variable X could be. Give
reason for your suggestions. Finally, return your answer (without reasoning) in the following format:
<Answer> [first suggestion, second suggestion, third suggestion .. and so on] </Answer> No
explanations, no reasoning, just answers as a list as described earlier. For example, if the suggestions
are A,B,C,D,E then - <Answer> [A, B, C, D, E] </Answer>

Answer: <Answer> [oxygen delivery, arterial blood gas, lung compliance, blood oxygen level,
respiratory efficiency] </Answer>
Reasons for the answer:
1. **Oxygen Delivery**: Given that "alveolar gas exchange" causes "X" and "X" in turn affects
"patient respiratory rate," it’s logical to infer that "X" could be related to how effectively oxygen is
being delivered throughout the body. Oxygen delivery is a critical aspect of respiratory function and
would directly impact respiratory rate.
2. **Arterial Blood Gas (ABG)**: ABG tests measure the levels of oxygen and carbon dioxide in the
blood and can indicate how well oxygen is being transported and carbon dioxide is being expelled,
which are functions influenced by alveolar gas exchange. Since "X" is caused by "alveolar gas
exchange" and affects "patient respiratory rate," it’s plausible that "X" could involve the measurement
or state of arterial blood gases.
3. **Lung Compliance**: This refers to the elasticity or flexibility of the lungs, which directly
impacts alveolar gas exchange and, consequently, the respiratory rate. Since "X" is linked to both
"alveolar gas exchange" and "patient respiratory rate," it could suggest a relationship with the
mechanical properties of the lung, such as compliance.
4. **Blood Oxygen Level**: This is a direct outcome of effective alveolar gas exchange and would
naturally influence the patient’s respiratory rate as the body adjusts to maintain adequate oxygenation.
Given the causal links mentioned, "X" could very well represent the level of oxygen present in the
blood.
5. **Respiratory Efficiency**: This encompasses how effectively the respiratory system can supply
oxygen to and remove carbon dioxide from the body. It’s influenced by alveolar gas exchange and
directly affects the respiratory rate, making it a plausible candidate for "X."
These suggestions are not explicitly mentioned in the input graph but are logically inferred based on
the described causal relationships and a basic understanding of respiratory physiology.
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H Assumptions550

The causal sufficiency of G, by definition, implies that for every pair of variables within V, all551

common causes are also included within V. Extending this assumption to G∗, we assume that the552

partial graph inherits causal sufficiency for its given that all edges among these variables are preserved553

as in G. This preservation ensures that the observed relationships within V ∗ are not confounded554

by omitted common causes. Since the faithfulness of G ensures that the observed conditional555

independencies among variables in V are accurately reflected by the causal structure represented556

by E. By maintaining the same set of edges E in G∗ for the subset V ∗, we uphold the faithfulness557

assumption within the partial graph.558

I NDE and NIE559

Average Treatment Effect (ATE) quantifies the expected change in the outcome vy caused by the unit560

change of the treatment vt. ATE is part of the causal do-calculus introduced by Pearl [2009]. We561

consider binary causal DAGs, i.e., each variable can either take 0 or 1 as values.562

ATE = E[vy|do(vt = 1)]− E[vy|do(vt = 0)]

where the do(·) operator, represents an intervention. The E[vy|do(vt = 1)] represents the expected563

value of the outcome variable vy when we intervene to set the treatment variable vt to 1 (i.e., apply564

the treatment), and E[vy|do(vt = 0)] represents the expected value of vy when we set vt to 0 (i.e., do565

not apply the treatment).566

I.1 Mediation Analysis567

Mediation analysis is implemented to quantify the effect of a treatment on the outcome via a third568

variable, the mediator. The total mediation effect can be decomposed into the Natural Direct Effect569

(NDE) and the Natural Indirect Effect (NIE). The Natural Direct Effect (NDE) is the effect of the570

treatment on the outcome variable when not mediated by the mediator variable. The Natural Indirect571

Effect (NIE) is the effect of the treatment variable on the outcome variable when mediated by the572

mediator variable.573

NDE = E[vt=1, vm=0 − vt=0, vm=0]

Here, NDE is calculated by comparing the expected outcome when the treatment variable is set to574

1 and the mediator is fixed at the level it would take under the control treatment vt = 0, with the575

expected outcome when both the treatment and the mediator are set to the control level.576

NIE = E[vt=0, vm=1 − vt=0, vm=0]

Here, NIE is calculated by comparing the expected outcome when the treatment variable is set to 1577

and the mediator is allowed to change as it would under the treatment, with the expected outcome578

when the treatment variable is set to 1 but the mediator is fixed at the control level.579
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