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Abstract. Perspective distortion (PD) causes unprecedented changes in shape,
size, orientation, angles, and other spatial relationships of visual concepts in im-
ages. Precisely estimating camera intrinsic and extrinsic parameters is a chal-
lenging task that prevents synthesizing perspective distortion. Non-availability of
dedicated training data poses a critical barrier to developing robust computer vi-
sion methods. Additionally, distortion correction methods make other computer
vision tasks a multi-step approach and lack performance. In this work, we pro-
pose mitigating perspective distortion (MPD) by employing a fine-grained pa-
rameter control on a specific family of Möbius transform to model real-world
distortion without estimating camera intrinsic and extrinsic parameters and with-
out the need for actual distorted data. Also, we present a dedicated perspectively
distorted benchmark dataset, ImageNet-PD, to benchmark the robustness of deep
learning models against this new dataset. The proposed method outperforms ex-
isting benchmarks, ImageNet-E and ImageNet-X. Additionally, it significantly
improves performance on ImageNet-PD while consistently performing on stan-
dard data distribution. Notably, our method shows improved performance on
three PD-affected real-world applications—crowd counting, fisheye image recog-
nition, and person re-identification—and one PD-affected challenging CV task:
object detection. The source code, dataset, and models are available on the project
webpage at https://prakashchhipa.github.io/projects/mpd.

Keywords: Perspective Distortion · Self-supervised Learning · Robust Repre-
sentation Learning

1 Introduction

Perspective distortion (PD) in real-world imagery is omnipresent and poses challenges
in developing computer vision applications. PD arises from various factors, including
camera positioning, depth, intrinsic parameters such as focal length and lens distortion,
and extrinsic parameters such as rotation and translation. These factors collectively in-
fluence the projection of 3D scenes onto 2D planes [42], altering semantic interpretation
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Fig. 1: MPD synthesizing perspective distortion with different orientations corresponding to pa-
rameter c : (creal, cimag).

and local geometry. Precisely estimating these parameters for perspective distortion cor-
rection is challenging, presenting a critical barrier to developing robust computer vision
(CV) methods.

Previous studies in distortion correction predominantly concentrated on the correc-
tion of PD, with limited emphasis on enhancing the robustness of CV applications.
Consequently, these correction methods transform CV tasks, such as image recogni-
tion and scene understanding, into a two-stage process: firstly, rectifying the distortion,
and secondly, engaging in task-specific learning. GeoNet [29] employs CNN to predict
distortion flow in images without prior distortion-type knowledge. PCL [57] uses per-
spective crop layers in CNNs to correct perspective distortions for 3D pose estimation.
A cascaded deep structure network [46] corrects wide-angle portrait distortions with-
out calibrated camera parameters. Another study [62] predicts per-pixel displacement
for face portrait undistortion. PerspectiveNet [25] and ParamNet [25] predict perspec-
tive fields and derive camera calibration parameters, respectively. Methods for fisheye
image distortion correction are also developed [54, 56]. Zolly [51] corrects perspective
distortion by adjusting focal lengths in human mesh reconstruction tasks.

Since the correction methods are fundamentally not focused on robust represen-
tation learning for CV tasks, they essentially follow an inefficient two-step process.
One possible approach is to focus on developing task-specific methods where PD is
noticeable, such as crowd counting [22, 55], object re-identification [2], autonomous
vehicle [52], and recognizing texts in scene [39]. Further, [9] meta-learning based ap-
proach to adapt 3D human pose estimation to varying degrees of camera distortion.
SPEC [26] tackled PD by estimating the camera parameters directly from in-the-wild
images to improve the accuracy of 3D human pose predictions. These task-specific ap-
proaches fall short in providing generalizable and robust representation learning for PD
mitigation, a crucial step for advancing CV research towards distortion robustness.

The core reason behind the lack of generalizable and robust representation learning
CV methods to mitigate PD is the absence of a real-world PD-affected training dataset.
Both capturing real-world PD data and synthesizing PD-affected image data using pa-
rameter estimation are far from reality. Although existing benchmarks (ImageNet-X
[23], ImageNet-E [28]) are partially affected by PD, a dedicated benchmark is needed.
Therefore, there is a need to artificially synthesize PD in existing data without esti-
mating camera intrinsic and extrinsic parameters. Since PD is non-linear in nature, the
focus should be shifted from affine to potential non-linear transformation.

One potential non-linear family of transformation is Möbius transform [1, 37] in
complex theory. Due to its conformal nature (preserving angles during transforma-
tion), [63] utilized the Möbius transform for eight specific transformations, including
various twists and spreads, as a data augmentation strategy to enhance model perfor-
mance on standard data distributions. In other works, Möbius convolution [36], the
authors design a Möbius-equivalent convolution operator in spherical CNN for shape
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classification and image segmentation tasks. OmniZoomer [5] integrates Möbius trans-
formations into a neural network, enabling movement and variable zoom on omnidirec-
tional images while addressing the challenges of blur and aliasing associated with such
transformations. MöbiusGCN [3] addresses the limitation of existing graph convolution
network GCNs in explicitly encoding transformations between joints in 3D human pose
estimation. None of these works focus on perspective distortion.

Due to the non-linear characteristics of Möbius transforming geometry in complex
space while ensuring conformality, it is a potential approach to imitate perspective dis-
tortion when adapted to image data. Therefore, in the proposed mitigating perspective
distortion (MPD) method, we mathematically model PD in the images by employing
fine-grained parameter control on Möbius. It is governed by four parameters a, b, c and
d (Eq. 1). MPD focuses on a specific family of transforms corresponding to the pa-
rameter c to synthesize PD artificially. The core contribution of our method, MPD, is
controlled parametrization for orientation (Fig. 1) and varying intensity (Fig. 2), which
is capable of representing real-world perspective distortion.

MPD transforms input image coordinates into complex vectors and performs a PD-
specific family of Möbius transforms. Transformed complex vectors are then remapped
to real-valued pixels, later discretized to obtain images mimicking perspective distortion
while maintaining the integrity of visual concepts. Optionally, padding is applied to
replace the black background with boundary pixel values to achieve another variant
called integrated padding background variant (refer Fig. 15 in suppl. material). Notably,
MPD achieves this without estimating intrinsic and extrinsic parameters, thus bypassing
the need for actual distorted data.

Incorporating PD in computer vision is beneficial for robustness since it can be
used as an augmentation, resulting in improved performance on different computer vi-
sion tasks. To address the non-availability of a suitable benchmark, we have developed
a dedicated perspectively distorted benchmark dataset, ImageNet-PD, derived from the
ImageNet [11] validation set to evaluate the robustness of deep learning models against
perspective distortion. We showcase a lack of robustness of standard deep learning mod-
els against perspective distortion by benchmarking them on ImageNet-PD.

We employ ImageNet-PD in our proposed MPD method and extensively investigate
it across supervised and self-supervised learning methods (SimCLR [7], DINO [6]).
MPD demonstrates improved performance on existing benchmarks, ImagNet-E [28],
and ImageNet-X [23]. MPD improves 10% on ImageNet-PD while consistently main-
taining the performance on the original ImageNet validation set. MPD shows perfor-
mance improvements when adapted to multiple real-world CV applications. Specifi-
cally, MPD advances crowd counting with a novel method, MPD-AutoCrowd, achiev-
ing the highest performance (to the best of our knowledge) with a mean absolute er-
ror of 50.81 on ShanghaiTech-Part-A [60] and 96.80 on UCFCC50 [21]. It demon-
strates effective knowledge transfer in fish-eye image recognition, improving perfor-
mance by 3% on the VOC-360 [14] dataset. MPD combined with a transformer-based
self-supervised method, Clip-ReIdent [15], excels in person re-identification, achiev-
ing mean average precision of 97.02 and 98.30 with and without re-ranking, respec-
tively, on the DeepSportradar dataset [48]. Also, MPD adapted for object detection with
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FasterRCNN [43] and FCOS [47] methods gain up to 3% performance improvement on
COCO [30] dataset. The main contributions of this paper are as follows:

1. We mathematically model perspective distortion within deep learning by develop-
ing MPD, a method that successfully mimics perspective distortion without esti-
mating the intrinsic and extrinsic camera parameters.

2. We develop a dedicated perspectively distorted dataset (ImageNet-PD) derived from
the ImageNet [11] validation set to benchmark the robustness of computer vision
models against PD to address the non-availability of a suitable benchmark.

3. We demonstrate MPD’s generalizability, transferability, and adaptability across dif-
ferent learning paradigms, architectures, and real-world applications.

4. Additionally, we develop the MPD-AutoCrowd method in crowd counting to aug-
ment crowd and corresponding ground truth in scene images.

2 Methodology

Möbius from complex theory [1, 37] is a family of non-linear and conformal transfor-
mations. It is defined on complex number z where transformation is governed by four
parameters, namely a, b, c, and d. Möbius transformation, Φ(z) is given in Eq.1:

Φ(z) =
az + b

cz + d
, ad − bc ̸= 0 (1)

Non-linearity: Given Möbius transformations for variables z1 and z2, Möbius trans-
formation of their sum z1 + z2:

Φ(z1 + z2) =
a(z1 + z2) + b

c(z1 + z2) + d
=

az1 + az2 + b

cz1 + cz2 + d
,→ Φ(z1 + z2) ̸= Φ(z1) + Φ(z2) (2)

However, Eq. (2) is not equal to the sum of the individual transformations (Φ(z1) +
Φ(z2)); therefore, non-linear.

Conformality: Conformal transformations preserve angles between curves. The an-
gle between two curves at a point is given by the argument of the complex ratio [19] of
their derivatives. Let f(z) and g(z) represent curves in complex space. Their Möbius
transforms are Φ(f(z)), and Φ(g(z)). If transformation preserves this ratio, it preserves
angles. Eq. 3 shows that the angles are preserved, hence conformal [37]. Theoretical
details and theorem are in suppl. material ( refer sec. 5 and 6).

arg((f(z))/g(z))) = arg(
d

dz
(Φ(f(z)))/

d

dz
(Φ(g(z))) (3)

Möbius transform has been used in [63], which defined parameter estimation for eight
specific transformed appearances such as clockwise twist, clockwise half-twist, spread,
spread twist, counterclockwise twist, counterclockwise half-twist, inverse, and inverse
spread. These appearances are used as data augmentation in image classification on
CIFAR and Tiny ImageNet datasets. However, their parameter estimation does not focus
on exploring a specific family of Möbius transform to synthesize perspective distortion
due to a lack of fine-grained parameter control.
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2.1 Mitigating perspective distortion (MPD)
The proposed MPD method mathematically models perspective distortion in the image
using a family of Möbius transform. First, it maps the discrete coordinates (x, y) of
the input image I from pixel space to complex vector z = x + iy in complex space.
Second, it applies Möbius transform to z and achieves corresponding non-linear trans-
formed representation zm = xm + iym by notably controlling real and imaginary
parts of parameter c in Eq. 1. Next, the transformed complex vector zm is mapped
to real-valued pixel space (xm, ym), which is discretized to get discrete pixel coordi-
nates (xd, yd). Obtained discrete pixel coordinates provide transformed image IMPD

mimicking perspective distortion. Optionally, padding is applied to replace black back-
ground by boundary pixel to obtain integrated padding variant of transformed image. In
this manner, MPD can synthesize perspective distortion artificially without estimating
intrinsic and extrinsic parameters of perspective distortion. Noticeably, It eliminates the
need for perspectively distorted real image data. The core part of MPD in modeling

the PD lies in controlling the transformation through parameter c. Parameter c, being a
complex number has real (creal) and imaginary (cimag) components; it is noteworthy
that these components introduce real-world varieties of PD in the input image. creal
perspectively distorts the in input image horizontally whereas cimag perspectively dis-
torts the in input image vertically. The sign of creal dictates the direction (+ve for left
view and −ve for right view) of distortion, whereas magnitude defines the intensity of
applied distortion. Similarly, the sign of cimag dictates the direction (+ve for top view
and −ve for bottom view) of distortion, whereas magnitude defines the intensity of ap-
plied distortion. The impact of signs of creal and imaginary cimag is depicted in Fig. 1.
The synthesis of the increasingly distorted left view of the input image is demonstrated
in Fig. 2 by controlling the intensity of creal component of MPD. Demonstrations of
increasingly distorted right, top, bottom, and other views are provided in Fig. 17 in the
suppl. material. The main contribution of our MPD method is its ability to control pa-
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rameterization for varying intensity and orientation, effectively representing real-world
perspective distortions. One of the ways to incorporate MPD is augmentation, which is
investigated in this work. MPD is effortlessly employable to incorporate into the learn-
ing process to make networks robust against perspective distortion, materializing the
proposed approach to shifting the focus from exclusion to inclusion of PD. The above-
described method MPD is presented in Algorithm 1. MPD returned a transformed image
of a ’cat’ as shown in step 11. Four regions are marked with colors (green, red, blue,
and yellow) to observe the correspondence between input and transformed images. Al-
though the current work does not focus on other parameters (a, b, and d), their impact
on transformation is worth mentioning. The real component of parameters a and d con-
trols scaling, and the imaginary components control rotations. The real component of
parameter b controls horizontal translations, and the imaginary component controls ver-
tical translations. Their visualizations are provided in Fig. 18 in the suppl. material. The
transformation parameters are set as: a = 1.0 + 0.0i, b = 0.0 + 0.0i, d = 1.0 + 0.0i.
The real and imaginary components of c range from 0.2 to 0.3 to mimic perspective dis-
tortion. These values are uniformly applied in all experiments unless otherwise stated.
The influence of MPD to control perspective distortion is carried out via parameter c
and given probability P to which MPD is applied during training. We establish the

Fig. 2: Demonstrate controlled scaling of distortion in MPD-transformed image. distortion is
controlled by the intensity of the real component of complex parameter creal ranging from -0.1
to -0.5 to synthesize perspectively distorted left-views on example image of ’cat’.

following objectives to thoroughly assess the proposed methodology in the context of
perspective distortion.

– Objective 1- Robustness evaluation of existing models: Investigation of existing
trained models for robustness against perspective distortion by evaluating them on
the PD-dedicated newly developed benchmark ImageNet-PD.

– Objective 2- MPD’s effects on supervised learning: Investigation of the effect of
MPD in making supervised learning approach robust against perspective distortion.

– Objective 3- MPD’s effects on self-supervised learning: Investigation of the ef-
fect of MPD in learning robust self-supervised representations against PD.

– Objective 4- MPD’s generalizability: Investigating the effectiveness of MPD on
cross-domain adaptability on diverse PD-affected real-world CV applications.

3 Experiments & Results
Naming convention and experimental details: MPD defines the proposed transfor-
mation (shown in Fig. 1). In addition, we also have another variant, MPD IB (integrated
padding background), which replaces the black background with boundary foreground
pixel values of the transformed image (shown in Fig. 16 in suppl. material). ImageNet-
PD benchmark dataset has eight subsets (Fig. 3); four corresponding to four orientations
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(left, right, top, bottom) with black background (PD-L, PD-R, PD-T, PD-B). The other
four subsets have the same orientations with integrated padding background, namely
PD-LI (PD Left -Integrated padding background), PD-RI, PD-TI, and PD-BI.

Standard ResNet50 denotes ResNet50 model [16] with ImageNet-1k weights from
torchvision library [40]. Supervised:MPD and Supervised:MPD IB indicate ResNet50
models trained on ImageNet [11] with MPD and MPD IB as augmentation respec-
tively with defined probability P , following training protocol in torchvision guide [40].
ssl:MPD and ssl:MPD IB refer to ResNet50 encoders trained on ImageNet [11] in-
corporating MPD and MPD IB additional augmentation in a self-supervised approach
using contrastive learning method, SimCLR [7] with P = 0.8, batch size of 512, and
linear learning rate. After self-supervised pretraining (on a relatively smaller batch size
of 512), models are fine-tuned for classification following the torchvision [40] proto-
col. ssl:DINO-MPD refer to ViT small encoder trained on ImageNet [11] incorporat-
ing MPD transformation in a self-supervised approach using DINO [6] method, with
P = 0.8 and batch size of 512, following linear evaluation protocol described in [6].
Details on MPD adaptations in CV applications are described in respective sections.

3.1 Existing models’ robustness evaluation

Fig. 3: Perspectively distorted image examples from ImageNet-PD benchmark dataset. (a) Orig-
inal image, (b) Left view (PD-L), (c) Right view (PD-R), (d) Top view (PD-T), (e) Bottom view
(PD-B), (f) Left view with integrated padding background (PD-LI), (g) Right view with inte-
grated padding background (PD-RI), (h) Top view with integrated padding background (PD-TI),
(i) Bottom view with integrated padding background (PD-BI).

New benchmark dataset- ImageNet-PD: To introduce perspective distortion by mim-
icking through the proposed transform MPD and its variant MPD-IB, we developed a
new benchmarking dataset, ImageNet-PD (Fig. 3), derived from the ImageNet valida-
tion set. ImageNet-PD has eight subsets (Fig. 3), four corresponding to four orienta-
tions (left, right, top, bottom) with black background (PD-L, PD-R, PD-T, PD-B). The
other four subsets have the same orientations but integrated padding backgrounds using
boundary pixels (PD-LI, PD-RI, PD-TI, PD-BI). In our evaluation across various deep
learning architectures, from classical CNNs like ResNet, VGG, and AlexNet to modern
structures like EfficientNet and Vision Transformers (ViT), we consistently observe a
significant drop in model accuracy when faced with images exhibiting perspective dis-
tortions, refer Fig. 4 (also in Tables 7, 8 in suppl. material). AlexNet shows a drop from
56.52% to 37.25% in Top-1 and from 79.06% to 61.04% in Top-5; EfficientNet-b2 falls
from 80.60% to 66.71% in Top-1 and from 95.31% to 86.30% in Top-5; and even Vi-
sion Transformer models like VIT-B-16 decline from 81.07% to 74.09% in Top-1 and
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Fig. 4: Top1 and Top5 accuracies of ImageNet trained models with standard architectures on
ImageNet-PD subsets. Blue bars shows performance on original ImageNet validation set, green
bars shows mean performance on ImageNet-PD subsets with black background, and orange bars
shows mean performance on ImageNet-PD subsets with integrated padding background.

Fig. 5: Activation maps of the ’beaker’ example in ImageNet-PD subsets. Standard ResNet50
model (row 1), supervised:MPD (row 2), and ssl: MPD (row 3).

from 95.32% to 90.98% in Top-5, as demonstrated by activation maps for a standard
ResNet50 (Fig. 5, row 1). The uniform decrease in Top-1 and Top-5 accuracies across
various models on ImageNet-PD vs. original ImageNet shows perspective distortion as
a real challenge in computer vision.

3.2 MPD’s effects on supervised learning

Existing Benchmarks: Both supervised:MPD and supervised:MPD IB models are
trained on ImageNet dataset and evaluated on existing benchmarks and ImageNet-PD.
ImageNet-X [23] and ImageNet-E [28]) considered as they are partially affected by
perspective distortion. ImageNet-E [28] is a recent benchmark dataset specifically de-
signed to evaluate the robustness of image classifiers concerning object attributes, in-
cluding background settings, object sizes, spatial positioning, and orientation. ImageNet-
X [23] introduces a set of sixteen human annotations focusing on attributes like pose,
background, and lighting derived from the ImageNet. Fig. 6 demonstrates that both
models improved performance on ImageNet-E by and reduced the accuracy drop (im-
proving absolute accuracy) in position (2.91%), direction (2.14%), and size (1.19%)
changes; supported by activation maps in Fig. 7. Other variants of MPD in supervised
and self-supervised approaches consistently follow the robustness trend. Results are in
Table 11 and Fig. 21 in suppl. material. Both supervised:MPD and supervised:MPD
IB models outperform standard ResNet50 on the ImageNet-X dataset [23], achieving
63.23% accuracy compared to ResNet50’s 60.64% and a lower error ratio of 1.44 ver-
sus 1.55 (refer Fig. 8). This improvement is particularly evident in handling perspective-
related factors like size and shape variations. Detailed results are in Table 12 in suppl.
material.
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Fig. 6: ImageNet-E [28]: Drop of Top1 accuracy under background changes, size changes, ran-
dom position (rp), random direction (rd), and average over 11 subsets. Lower is better. The mean
is reported for size and background-related subsets. Average reports the mean of all subsets.

Fig. 7: Activation maps (ImageNet-E). ’redbone’ from rd and ’peke’ from rp subset.

Fig. 8: ImageNet-X [23]: Error ratio (close to 1.0 is best) of 16 factors in the plot. Accuracy
is reported in numbers for each subset. Average reports the mean accuracy of all factors. Both
supervised:MPD and ssl:MPD models improved the error ratio with higher accuracy.

Benchmarking on ImageNet-PD: Both supervised:MPD and supervised:MPD IB
demonstrate notable improvements (Fig. 9 (a)-(b)) on ImageNet-PD subsets, achiev-
ing average Top-1 accuracy enhancements of 9.42% and 9.54% respectively, over the
standard ResNet50 model. Please refer to Table 1 and Table 10 for detailed comparison;
Table 10 is in suppl. material. Concurrently, these models maintain performance on the
original ImageNet validation set, highlighting their efficacy and adaptability amidst per-
spective distortion. The activation maps shown in Fig. 5 (row 2) further corroborate this
outperforming trend. Ablation on the probability of applying MPD and MPD IB as a
data augmentation (Fig. 9 (c)-(d)) exhibits consistent performance. MPD also compared
with other popular augmentation methods (Mixup [58], Cutout [12], AugMix [17], and
Pixmix [18]) on ImageNet-PD and ImageNet-E, consistently outperforming them. De-
tailed results are in the suppl. material (refer to Table 17).
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Table 1: Comparative analysis of MPD trained on supervised (supervised:MPD model) and self-
supervised (ssl:MPD model) approaches and evaluated on original ImageNet and ImageNet-PD
subsets (black background). The probability P of applying MPD in model fine-tuning is in the
first column. More results on probabilities 0.0 and 1.0 in Table 9 in suppl. material.

P Original Validation Set Perspectively Distorted
Top-view (PD-T)

Perspectively Distorted
Bottom-view (PD-B)

Perspectively Distorted
Left-view (PD-L)

Perspectively Distorted
Right-view (PD-R)

Top1 Top 5 Top1 Top 5 Top1 Top 5 Top1 Top 5 Top1 Top 5
Supervised training from scratch

0.0 76.13±0.04 92.86±0.01 63.37±0.06 83.61±0.02 61.15±0.04 81.86±0.01 65.20±0.03 85.13±0.03 65.84±0.06 85.64±0.02
0.2 76.05±0.03 92.99±0.02 72.48±0.02 91.02±0.01 72.12±0.02 91.08±0.02 72.57±0.03 91.13±0.03 72.80±0.05 91.35±0.02
0.4 76.17±0.04 93.03±0.02 73.13±0.03 91.33±0.01 72.94±0.02 91.42±0.01 73.19±0.06 91.48±0.01 73.38±0.01 91.69±0.01
0.6 76.19±0.05 93.14±0.03 73.23±0.02 91.46±0.03 73.01±0.05 91.34±0.02 73.47±0.02 91.66±0.01 73.54±0.06 91.61±0.02
0.8 76.34±0.02 93.03±0.02 73.00±0.02 90.69±0.02 72.31±0.03 90.81±0.03 73.50±0.04 91.33±0.03 72.91±0.02 91.29±0.02

Self-supervised pre-taining on contrastive learning integrating MPD (probability for pre-training=0.8)
0.2 76.37±0.05 93.60±0.02 72.34±0.02 90.81±0.02 72.24±0.03 90.95±0.02 72.48±0.04 91.08±0.01 72.81±0.03 91.16±0.01
0.4 76.77±0.02 93.40±0.01 73.23±0.03 91.39±0.01 73.06±0.04 91.54±0.02 73.55±0.03 91.53±0.03 73.54±0.05 91.65±0.03
0.6 76.14±0.04 93.58±0.02 73.39±0.02 91.50±0.02 73.29±0.03 91.57±0.01 73.57±0.03 91.66±0.02 73.73±0.04 91.58±0.02
0.8 76.29±0.03 92.78±0.02 73.61±0.04 91.49±0.03 73.27±0.05 91.48±0.03 73.60±0.06 91.69±0.01 73.81±0.02 91.71±0.02

Fig. 9: (a)-(b)[x-axis: ImageNet-PD subsets, y-axis: accuracy] → Top-1 accuracy comparison of
standard ResNet50 & supervised:MPD and supervised:MPD IB models on ImageNet-PD subsets.
(c)-(d)[x-axis: accuracy, y-axis: probability]→ Mean top-1 accuracy across ImageNet-PD subsets
for supervised:MPD and supervised:MPD IB models with varied probability. 0.0 refers standard
ResNet50. Original-original ImageNet validation set.

3.3 MPD’s effects on self-supervised learning

MPD as data augmentation integrated in SimCLR [7] and DINO [6] (small ViT [13]
backbone), as in Fig. 19 and 20 in suppl. material. Models are pre-trained and finetuned
/ liner-probed on ImageNet and evaluated on existing benchmarks and ImageNet-PD.

Existing Benchmarks: ssl:MPD and ssl:MPD IB models demonstrate efficacy in han-
dling perspective-related variations in ImageNet-E as shown in Fig. 6. Specifically, it
shows a reduction in the accuracy drop for position (1.21%), direction (1.41%), and size
(0.48%) changes compared to the standard ResNet50, indicating its robustness. On the
ImageNet-X benchmark, ssl:MPD and ssl:MPD IB models outperform with an aver-
age accuracy of 62.99%, compared to the standard ResNet50’s 60.64%, and also show
a reduced error ratio of 1.41 against the ResNet50’s 1.55 (refer Fig. 8). Notably, perfor-
mance improvement is evident in managing variations in size and shape, showcasing its
robustness against PD. Detailed results are in Table 12 in suppl. material.

Benchmarking on ImageNet-PD: ssl:MPD model (Fig. 10 (a)) shows an average
improvement of approximately 10.32% across the PD subsets, while the ssl:MPD IB
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Fig. 10: (a)-(b)[x-axis: ImageNet-PD subsets, y-axis: accuracy] → Top-1 accuracy comparison of
standard ResNet50 and ssl:MPD & ssl:MPD IB models on ImageNet-PD subsets. (c)-(d)[x-axis:
accuracy, y-axis: probability]→ Mean top-1 accuracy across ImageNet-PD subsets for ssl:MPD
model with varied probability. 0.0 refers standard ResNet50.

(Fig. 10 (b)) demonstrates an average increase of around 10.14%. In addition, both
variants display robust performance on the original ImageNet validation set. Please
refer to Table 1 and Table 10 for detailed comparison in suppl. material. The activation
maps depicted in Fig. 5 (row 3) further validate the improved performance. Moreover,
ablation on the probability of applying MPD and MPD IB as data augmentation (Fig.
10 (c)-(d)) demonstrates a consistent increase in performance. We have also performed
linear evaluations on self-supervised method SimCLR [7] and DINO [6] (refer Table 15,
16; Fig. 22 for detailed results in suppl. material). Similarly, significant improvement
is noticed on ImageNet-PD subsets while maintaining the performance on standard
ImageNet as shown in Fig. 11 (refer Table 13, 14 for detailed results in suppl. material).

Fig. 11: Linear evaluation of SimCLR [7] and DINO [6] with MPD and MPD IB augmentations.

3.4 MPD’s generalizability

This section discusses MPD’s adaptability in diverse applications, namely crowd count-
ing (CC), fisheye, and person re-identification, and challenging CV tasks such as object
detection, where perspective distortion is evident.

Crowd counting: Numerous human heads within a single image present challenges
due to the variations in size, orientation, and shape, naturally including perspective
distortion. We investigate the potential of MPD in crowd counting on several publicly
available datasets, including ShanghaiTech (SHTech) Part A and Part B [60] and UCF-
CC50 [21]. The ShanghaiTech Part A features highly congested scenes, and Part B



12 Chhipa et al.

consists of sparser scenes captured on a busy street. The UCF-CC50 dataset comprises
50 diverse scenes featuring a considerable variation in the crowd.

MPD-CC: MPD is adapted to CC by extending its capability to transform scene
images and their CC labels, as mentioned in steps 4-7 of algorithm 2.

MPD-AutoCrowd: We introduce MPD-AutoCrowd (Algorithm 2), a novel approach
for the automated augmentation of the crowd in scene images by upgrading MPD-CC. It
seamlessly integrates synthetic crowds into the background regions of transformed im-
ages, complete with corresponding labels. This approach facilitates scene-level crowd
augmentation without human supervision (Fig. 12). MPD-CC and MPD-AutoCrowd

Fig. 12: MPD-AutoCrowd: Artificially augments crowd & labels. (a) Original image with labels,
(b) transformed image & labels, (c) Transformed image with augmented crowd, (d) Transformed
image with augmented crowd & labels (yellow box).

are integrated with P2P-Net [45] to evaluate the effectiveness of MPD in crowd count-
ing. Training parameters, CNN architecture (VGG16), and evaluation configuration are
used as mentioned in P2P-Net [45]. The probability of applying MPD-CC and MPD
AutoCrowd is 0.1, and real and imaginary components of c range from 0.2 to 0.6.
This method has yielded improved results, surpassing previous state-of-the-art perfor-
mance. Refer to Table 2 for a detailed comparison with other CC methods. MPD-CC
and MPD-AutoCrowd outperform on multiple benchmarks. MPD-AutoCrowd has a

MAE of 50.81 on SHTech Part A and 6.73 on SHTech Part B. The performance on
the UCF-CC50 ( a highly dense crowds) dataset, where MPD-AutoCrowd has an MAE
of 96.80 and a Mean Squared Error (MSE) of 139.50, significantly outperforms other
models. We further improved results on UCF-CC50 with ResNet50 encoder as shown
in Table 18 in suppl. material. We also adapted other perspective transforms [59] [38]
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and RandAug [10] augmentation for crowd counting and compared with MPD-CC and
MPD-AutoCrowd which shows that our proposed methods outperform. Details are in
suppl. material (refer Table 19 and Fig. 23 in sec. 14.1).

Table 2: Comparison of different crowd-counting methods with the proposed work. MPD-CC &
MPD-AutoCrowd outperform on multiple benchmarks

Method Venue SHTech PartA SHTech PartB UCF_CC-50
MAE MSE MAE MSE MAE MSE

CAN [31] CVPR’19 62.3 100 7.8 12.2 212.2 243.7
Bayesian+ [34] ICCV’19 62.8 101.8 7.7 12.7 229.3 308.2
S-DCNet [53] ICCV’19 58.3 95 6.7 10.7 204.2 301.3

SA+SPANet [8] ICCV’19 59.4 100 6.5 9.9 232.6 311.7
SDANet [35] AAAI’20 63.6 101.8 7.8 10.2 227.6 316.4
ADSCNet [4] CVPR’20 55.4 97.7 6.4 11.3 198.4 267.3
ASNet [24] CVPR’20 57.78 90.13 - - 174.84251.63

AMRNet [32] ECCV’20 61.59 98.36 7.02 11 184 265.8
AMSNet [20] ECCV’20 56.7 93.4 6.7 10.2 208.4 297.3

DM [49] NeurIPS’20 59.7 95.7 7.4 11.8 211 291.5
P2P-Net [45] ICCV’21 52.74 85.06 6.25 9.9 172.72256.18

SDA(best) [33] ICCV’21 52.90 87.30 - - 159.1 239.4
ChfL [44] CVPR’22 57.50 94.30 6.90 11.0 - -

DMCNet [50] WACV’23 58.46 84.55 8.64 13.67 - -
MPD-CC ours 51.93 84.3 6.73 9.82 101.30140.65

MPD-
AutoCrowd ours 50.81 85.01 6.61 9.58 96.80 139.50

Transfer learning on fisheye images Fisheye image distortions, caused by a wide
field of view, are handled by spherical perspective models in [27, 61]. MPD simulates
spherical views in pixel space and improves representation learning for fisheye im-
ages. We showcase the transferable capability of models trained with MPD and MPD
IB through supervised and self-supervised methods on the ImageNet dataset, applying
them to the VOC-360 fisheye dataset [14]. This dataset has 39,575 fisheye images with
multi-label classification labels. We fine-tune these models on the VOC360, running
for 100 epochs with a batch size 16. We show the performance of supervised and self-
supervised models for the multi-label classification task in Table 3. ResNet50 is used as
backbone. Ablations on label efficiency (Table 20, 21, and Fig. 24) are in suppl. mate-
rial. supervised:MPD and supervised:MPD IB models fine-tuned on VOC-360 dataset

Fig. 13: Activation maps of ’horse’ and
’person’ on VOC-360 dataset.

Table 3: MPD performance on VOC-360.
Transfer Learning Accuracy Precision Recall
No transfer learning 82.02 94.90 89.96

Baseline 91.32 97.24 95.67
supervised: MPD IB 91.87 97.00 96.22

supervised: MPD 92.69 97.76 96.23
ssl: MPD IB 92.43 97.16 96.50

ssl: MPD 94.79 98.17 97.44

achieve accuracies 92.69% and 91.87% respectively. ssl:MPD and ssl:MPD IB models
fine-tuned on VOC-360 achieve 92.43% and 94.79% respectively. ssl:MPD performs
best among all models. Fig. 13 depicts the activation maps.

Person Re-Identification: The DeepSportRadar re-identification dataset [48] includes
video frames with varying poses and camera angles, offering training (436 queries,
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8133 gallery images) and testing sets (50 queries, 910 gallery images) to address per-
spective variability in re-identification tasks. We incorporated the MPD within the state-
of-the-art CLIP-ReIdent method [15]. The probability of applying MPD is 0.1, and
real & imaginary components of c range from 0.2 to 0.6. CLIP-ReIdent is CLIP [41]-
adapted contrastive image-image pre-training for person re-identification, leveraging
transformer architecture. MPD-incorporated Clip-ReIdent models improve performance
with both backbone architectures, ViT-L-14 and ResNet50x16 (ref. Table 4). Ablations
on MPD parameters are in suppl. material in Table 22. In addition, it boosts perfor-
mance across different frame counts, achieving competitive results with limited frames
and performance further enhanced by longer training (refer Table 5).

Table 4: MPD improves the performance of
the person re-identification. RR:re-ranking.

Method Encoder mAP
(w/o RR)

mAP
(with RR)

Baseline
ViT-L-14

72.70 -
Clip-ReIdent 96.90 98.20

MPD (Clip-ReIdent) 97.02 98.30
Clip-ReIdent ResNet50x16 88.50 94.90

MPD (Clip-ReIdent) 91.95 97.50

Table 5: Label efficiency shown in terms of
frame counts.
epoch 6 frames 10 frames 20 frames

8 w/o re-ranking 95 95.19 97.02
with re-ranking 98 98.05 98.3

30 w/o re-ranking 95.68 96.42 97.02
with re-ranking 98.24 98.27 98.3

Object Detection: We applied MPD method for the object detection (MPD-OD) by
transforming image and bounding boxes as augmentation to mimic PD (fig. 14). We
have trained FasterRCNN [43] and FCOS [47] with MPD-OD on COCO [30]. Applying
MPD-OD to 50% probability (P=0.5), we achieved 3% and 1.6% gain over original
models (Table 6). Ablations are in suppl. material (Table 23 and Fig. 25 in sec. 14.4).

Method Original MPD-OD (IoU=0.50:0.95/IoU=0.50)
FasterRCNN [43] 37.10/55.80 40.00/61.10

FCOS [47] 38.60/57.40 40.20/60.30

Table 6: MPD-OD on COCO dataset. Fig. 14: MPD-OD examples

4 Conclusion

We address perspective distortion for robust computer vision applications. The pro-
posed MPD method models real-world distortions by applying a family of Möbius
transforms on existing data without estimating camera parameters or relying on actual
distorted data. We develop a perspectively-distorted ImageNet-PD dataset to bench-
mark the robustness of the computer vision models and reveal that existing models
lack robustness. Further, MPD-incorporated models improve performance on exist-
ing benchmarks ImageNet-E and ImageNet-X and significantly enhance results on the
ImageNet-PD while maintaining consistent performance on standard data. Also, MPD
incorporated in practical applications such as crowd counting, fisheye image recogni-
tion, person re-identification, and object detection improved performance. We believe
that our work on mitigating PD could inspire future work for other CV challenges.
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Supplementary Material

5 Non-linearity and Conformality of Möbius

Non-linearity Given Möbius transformations for variables z1 and z2, Möbius transfor-
mation of their sum z1 + z2:

Φ(z1) =
az1 + b

cz1 + d
, Φ(z2) =

az2 + b

cz2 + d
(4)

Φ(z1 + z2) =
a(z1 + z2) + b

c(z1 + z2) + d
=

az1 + az2 + b

cz1 + cz2 + d
(5)

Φ(z1 + z2) ̸= Φ(z1) + Φ(z2) (6)

However, Eq. (6) is not equal to the sum of the individual transformations (Φ(z1) +
Φ(z2)); therefore, non-linear.
Conformality Conformal transformations preserve angles between curves. The angle
between two curves at a point is given by the argument of the complex ratio [19] of
their derivatives. Let f(z) and g(z) represent curves in complex space. If transformation
preserves this ratio, it preserves angles.

Möbius transformation Φ of f(z) and g(z) is given as:

Φ(f(z)) =
af(z) + b

cf(z) + d
, Φ(g(z)) =

ag(z) + b

cg(z) + d
(7)

To find the derivatives of the transformed functions, we apply the chain rule:

Φ′(f(z)) =
d

dz
(Φ(f(z))) =

d

dz

(
af(z) + b

cf(z) + d

)
Φ′(g(z)) =

d

dz
(Φ(g(z))) =

d

dz

(
ag(z) + b

cg(z) + d

) (8)

The angle between the original and transformed curves is given by the argument of
the ratio [19]:

arg((f(z))/g(z))) ≡ arg
(

d

dz
(f(z))

)
− arg

(
d

dz
(g(z))

)
(9)

arg(Φ′(f(z))/Φ′(g(z))) ≡

arg
(

d

dz
(Φ(f(z)))

)
− arg

(
d

dz
(Φ(g(z)))

)
(10)

Eq. 11 indicates conformality [37].

arg((f(z))/g(z))) = arg(Φ′(f(z))/Φ′(g(z))) (11)
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6 Theorem: MPD complies semantic-preserving property in pixel
space by approximating conformality

Proof: Consider I : D → C as the discrete representation of an image over the domain
D, corresponding to the pixel grid, and let Φ : C → C be the continuous Möbius
transformation given by Φ(z) = az+b

cz+d . MPD applies discrete transformation T to each
point p in D, which approximates Φ. The transformation T is constructed to preserve
the angles between points in D as follows:

T (p) =
{

a·I(p)+b
c·I(p)+d , c · I(p) + d ̸= 0, (12)

The preservation of angles in the discrete domain is approximated by consider-
ing the discrete differential ∆I at a point p in D, defined as the vector of differences
between I(p) and I(q) evaluated at neighboring points. For any two adjacent points
p, q ∈ D, the discrete differential ∆I(p) and ∆I(q) form vectors that subtend an angle
θ in the original pixel space. The transformation T aims to approximate the preservation
of θ such that the angle between ∆T (p) and ∆T (q), denoted as θ̃, is close to θ in the
transformed image space. This is expressed as ∆T (p) and ∆T (q) approximating the
original vectors in a manner that the cosine of the angles is nearly preserved:

cos(θ) =
∆I(p) ·∆I(q)

∥∆I(p)∥∥∆I(q)∥
≈ ∆T (p) ·∆T (q)

∥∆T (p)∥∥∆T (q)∥
. (13)

Since T approximates Φ, and Φ is conformal, T aims to preserve the cosines of angles
between points in D, thus achieving an approximation of conformal mapping in the
discrete pixel space. MPD utilizes this property of T to maintain the visual integrity of
the original image I in the transformed image I ′, where I ′(p) = T (p) for all p ∈ D.

7 Perspectively distorted views synthesis through MPD

MPD distorts the original image to synthesize perspective distortion based on steps
shown in Algorithm 1 in main paper, resulting in a distorted image with a black back-
ground (variant 1, Fig. 15). Optionally, to remove the black background, replication
padding is used to obtain integrated padding variant (variant 2, Fig. 15) of transformed
image in step 9 of Algorithm 1.

Fig. 15: MPD transformed images - (black background) variant 1 and (integrated padding back-
ground) variant 2
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In connection to Fig. 1, we additionally show the integrated padding background
variants of different orientations views synthesizing PD in Fig. 16.

Fig. 16: MPD IB (integrated padding background) synthesizes perspective distortion with differ-
ent orientations corresponding to the parameters. It replaces the black background with boundary
foreground pixel values of the transformed image.

Fig. 17 Demonstrate controlled scaling of distortion in MPD-transformed image for
different views in detail. It showcases the capabilities of MPD to mimic real-world dis-
tortions synthetically, which are otherwise challenging to capture and train the models.

8 Exploration of parameters a, b, and d

Fig. 18 shows the effect of parameters a, b, and d, representing subsets of affine trans-
formations.

9 MPD in self-supervised learning methods

We present a comprehensive investigation into the application of MPD (Geometry-
Exploring Encoded Transformation) within self-supervised learning (SSL) approaches,
with a primary focus on its integration with the contrastive learning method SimCLR
[7], shown in Fig. 19. Our core objective is to assess MPD’s effectiveness in enhanc-
ing SSL’s representation learning capacities by adapting to perspective variations. Sec-
tion 3.3 in the main paper explains the detailed results of MPD incorporation with
simCLR contrastive learning to mitigate perspective distortion. Further Table linear
evaluation results are included in Section 12. Furthermore, we extend our exploration
to evaluate MPD’s compatibility and performance in conjunction with another SSL
method, DINO [6], which is grounded in knowledge distillation-based self-supervised
approaches. Results on MPD incorporation in DINO (Fig. 20) are presented in Table
15 and Fig. 22 in Section 12. Probability of 0.8: Incorporating MPD with a proba-
bility of 0.8 within the SimCLR contrastive learning shows a well-balanced strategy.
This allocation ensures that each of the four perspective views—left, right, top, and
bottom—receives an equitable opportunity approximately 20% of the time, fostering
diversity and divergence within the training data. This design navigates the intricate
terrain of the diversity-consistency trade-off with precision, enabling our model to gain
insights from multiple angles while maintaining the stability and consistency garnered
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 17: Demonstrate controlled scaling of distortion in MPD-transformed images for different
views. a) distorted left view by varying c_real from −0.1 to −0.5 b) distorted right view by
varying c_real from +0.1 to +0.5 c) distorted top view by varying c_imag from +0.1 to +0.5
d) distorted bottom view by varying c_imag from −0.1 to −0.5 e) distorted left-top view by
varying c_real from −0.1 to −0.5 with fixed c_imag to +0.2 f) distorted left-bottom view by
varying c_real from −0.1 to −0.5 with fixed c_imag to −0.2 g) distorted right-top view by
varying c_real from +0.1 to +0.5 with fixed c_imag to +0.2 h) distorted right-bottom view by
varying c_real from +0.1 to +0.5 with fixed c_imag to −0.2. Current work experiments only
use left, right, top, and bottom view synthesis.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 18: Visualizing the effect of parameters a, b, and d, representing subsets of affine transfor-
mations. a) imitating resizing by controlling parameter (increasing value decreases size) areal

1.0 to 1.5 b) rotating (anti-clockwise) by controlling parameter aimag 0.1 to 0.5 c) imitating ver-
tical translation by controlling parameter breal 0.1 to 0.5 d) imitating horizontal translation by
controlling parameter bimag 0.1 to 0.5 e) imitating resizing by controlling parameter (increasing
value increase size) dreal 0.1 to 0.5 f) imitating rotation by controlling parameter (clockwise)
dreal 0.1 to 0.5
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Fig. 19: ssl:MPD - MPD integrated in SimCLR [7] contrastive learning self-supervised method.
MPD introduces perspective distortion by transforming the views of the input image. Standard
SimCLR and ssl:DINO-MPD both are pretrained for 100 epochs with a batch size of 512 and
linear evaluation for 100 epochs with a batch size of 256. ResNet50 is backbone.

Fig. 20: ssl:DINO-MPD - MPD integrated in DINO [6] knowledge distillation based self-
supervised method. MPD introduces perspective distortion by transforming the input image be-
fore the creation of views. Standard DINO and ssl:DINO-MPD both are pretrained for 100 epochs
with a batch size of 512 and linear evaluation for 100 epochs with a batch size of 256. ViT-small
is backbone.

from the original, unaltered views. The empirical validation of our approach under-
scores its efficacy, as it not only enhances the model’s ability to recognize objects and
scenes from varying perspectives but also fortifies its robustness against real-world per-
spective distortions. The DINO method applies MPD to the original input image before
creating local and global views (as defined in the DINO method), so the MPD proba-
bility is kept at 0.4. All the results described with standard deviation are repeated three
times.

10 Continuation (Sec. 3.1): Existing models’ robustness evaluation

Extended evaluations on the ImageNet-PD benchmark dataset, detailed in Tables 7 and
8, reveal how different architectures respond to perspective distortions, extending the
main paper’s insights (Fig. 4). Models like ResNet50 and VIT-L-16 show varied ro-
bustness to distortions such as Left-view (PD-L and PD-LI), with ResNet50 maintain-
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ing 63.37% Top-1 accuracy for PD-L compared to 61.15% for PD-B, and VIT-L-16
at 74.34% for PD-LI versus 71.73% for PD-BI. With their self-attention mechanisms,
Vision Transformers demonstrate a smaller performance drop than traditional CNNs
under perspective distortions, indicating their potential to maintain representational ro-
bustness. As discussed in our main paper, this analysis underscores the need for adap-
tive, perspective-aware models like MPD in real-world applications.

Table 7: Detailed results of ImageNet trained models with standard CNN and transformer archi-
tectures; evaluated on original validation set and ImageNet-PD subsets with black background.
Results in continuation of Fig. 4 (first plot).

Model Original Validation Set
Perspectively Distorted

Top-view (PD-T)
Perspectively Distorted
Bottom-view (PD-B)

Perspectively Distorted
Left-view (PD-L)

Perspectively Distorted
Right-view (PD-R) PD Average

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5
AlexNet 56.52 79.07 36.74 60.02 37.08 61.21 37.87 61.87 37.33 61.06 37.26 61.04

EfficientNet-b2 80.61 95.31 67.14 86.49 64.97 84.84 67.60 87.11 67.15 86.77 66.71 86.30
GoogleNet 69.78 89.53 54.63 76.97 55.29 78.45 55.39 78.24 54.68 77.72 55.00 77.85

Inception-v3 77.29 93.45 55.09 76.76 52.79 74.83 54.45 76.19 54.86 76.58 54.30 76.09
MobileNet-v2 71.88 90.29 57.60 79.78 56.26 78.73 57.40 79.91 56.87 79.54 57.03 79.49

ResNet101 77.37 93.55 65.86 85.58 65.17 85.29 65.62 85.46 65.40 85.49 65.51 85.46
ResNet50 76.13 92.86 63.37 83.61 61.15 81.86 65.20 85.13 65.84 85.64 63.89 84.06

ResNet50 (SSL) 76.36 92.99 63.76 84.12 61.71 82.91 65.20 85.13 65.96 86.11 64.16 84.57
ResNet34 73.31 91.42 59.23 80.84 58.65 80.60 59.72 81.25 58.79 80.76 59.10 80.86
ResNet18 69.76 89.08 56.00 78.52 55.07 77.90 55.68 78.73 55.27 78.01 55.50 78.29
VGG19 72.38 90.88 58.50 80.36 58.09 80.36 58.00 80.13 57.64 79.67 58.06 80.13
VGG16 71.59 90.38 57.94 80.54 57.32 79.89 57.47 79.91 57.75 80.15 57.62 80.12

VIT-B-16 81.07 95.32 73.94 90.87 73.63 90.73 74.50 91.31 74.30 91.06 74.09 90.99
VIT-L-16 79.66 94.64 74.05 91.06 74.30 90.97 74.34 91.08 73.93 90.91 74.15 91.00

Table 8: Detailed results of ImageNet trained models with standard CNN and transformer archi-
tectures; evaluated on original validation set and ImageNet-PD subsets with integrated padding
background. Results in continuation of Fig. 4 (second plot).

Model Original Validation Set
Perspectively Distorted

Top-view (PD-TI)
Perspectively Distorted
Bottom-view (PD-BI)

Perspectively Distorted
Left-view (PD-LI)

Perspectively Distorted
Right-view (PD-RI) PD Average

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5
AlexNet 56.52 79.07 40.73 64.47 41.09 65.36 42.53 66.32 41.13 65.08 41.37 65.31

EfficientNet-b2 80.61 95.31 67.83 87.28 66.29 85.95 68.16 87.43 68.12 87.48 67.60 87.04
GoogleNet 69.78 89.53 54.68 77.22 56.84 79.51 57.24 79.68 56.01 78.82 56.19 78.81

Inception-v3 77.29 93.45 56.77 78.36 54.32 76.23 55.94 77.56 56.81 78.55 55.96 77.68
MobileNet-v2 71.88 90.29 57.34 79.68 57.84 80.20 58.18 80.42 57.26 79.96 57.66 80.07

ResNet101 77.37 93.55 64.30 84.47 65.57 85.64 66.55 86.14 65.69 85.70 65.53 85.49
ResNet50 76.13 92.86 62.26 83.07 63.39 83.91 63.81 84.17 63.57 84.16 63.26 83.83

ResNet50 (SSL) 76.24 92.90 61.73 82.50 61.91 83.07 65.58 85.74 65.79 86.11 63.75 84.36
ResNet34 73.31 91.42 58.29 80.11 59.61 81.38 60.65 82.22 59.20 81.06 59.44 81.19
ResNet18 69.76 89.08 55.85 78.58 56.27 79.13 56.87 79.83 56.05 78.57 56.26 79.03
VGG19 72.38 90.88 57.68 80.06 59.28 81.43 58.05 80.41 57.58 79.73 58.15 80.41
VGG16 71.59 90.38 56.26 78.97 58.58 80.94 57.96 80.37 57.41 80.07 57.55 80.09

VIT-B-16 81.07 95.32 70.49 88.58 71.89 89.49 72.45 89.93 71.51 89.27 71.59 89.32
VIT-L-16 79.66 94.64 70.71 88.73 71.73 89.41 71.87 89.49 71.25 89.16 71.39 89.20

11 Continuation (section 3.2): MPD’s effects on supervised
learning

In the extended analysis presented in Tables 9 and 10, we observe a shift in the per-
formance of MPD and MPD IB when applied at a probability of 1.0, approximately
following the trends reported in the main paper up to a probability of 0.8 (Fig. 9). For
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MPD at P=1.0, a marginal decrease in Top-1 accuracy on the original ImageNet vali-
dation set (74.10%± 0.03) compared to P=0.8 (76.34%± 0.02), the robustness against
perspective distortions on ImageNet-PD subsets is maintained, with accuracies between
71.57%± 0.04 to 72.05%± 0.04. This highlights a nuanced balance between handling
distortions and achieving peak performance on standard datasets. Similarly, MPD IB at
P=1.0 follows a comparable pattern. The Top-1 accuracy on the standard ImageNet set
slightly reduces to 74.62%± 0.03 from 75.63%± 0.05 at P=0.8. However, its perfor-
mance on the ImageNet-PD subsets, though marginally lower than MPD, remains con-
sistent with Top-1 accuracies in the range of 68.23%± 0.04 to 70.30%± 0.03. These
results emphasize the trade-offs involved in fully applying MPD and MPD IB and the
importance of finding a balanced approach to optimize performance across both stan-
dard data and perspective distortion present in data.
ImageNet-E: In our extended analysis of MPD and MPD IB within a supervised ap-
proach (Table 11 and Fig. 6), we observe notable performance improvements in size
change scenarios of ImageNet-E, indicative of enhanced robustness against perspec-
tive distortion. These models, specifically in size-related subsets (full, 0.10, 0.08, 0.05),
show a reduced drop in Top-1 accuracy and higher absolute accuracy than standard
ResNet50. However, in background change subsets, MPD and MPD IB’s performance
occasionally falls behind ResNet50, reflecting their focus on perspective distortions
over background variations. This further aligns with the findings on MPD’s capabilities
in perspective-centric scenarios.
ImageNet-X Detailed analysis in Table 12 extends the findings from the main paper
(Fig. 8), showcasing the superior performance of supervised MPD models on ImageNet-
X, especially in managing perspective-related factors. These models demonstrate a
marked improvement in handling size variations (’larger’ and ’smaller’) and complex
scenarios involving ’object blocking’ and ’person blocking’ compared to the standard
ResNet50. The error ratio and absolute accuracy across these factors highlight the ro-
bustness of MPD in dealing with perspective challenges, reflecting the conclusion about
MPD’s enhanced learning capabilities in diverse visual conditions.

12 Continuation (section 3.3): MPD’s effects on self-supervised
learning

SimCLR [7] self-supervised MPD models demonstrate notable effectiveness on ImageNet-
E and ImageNet-X, detailed in Tables 11 and 12. On ImageNet-E, self-supervised MPD
variants show a marked reduction in error ratios in size-related subsets, with error ra-
tios like 1.44 for ’larger’ and 1.46 for ’smaller’, indicating a strong grasp of perspective
challenges. In ImageNet-X, these models excel in handling ’object blocking’ (error ratio
1.61) and ’person blocking’ (error ratio 1.97) factors, achieving higher absolute accu-
racy compared to standard ResNet50, as illustrated in Fig. 8. The detailed analysis in
Fig. 21 further emphasizes the models’ enhanced adaptability in self-supervised super-
vised learning, underlining their robustness in understanding complex visual scenarios.
Linear evaluation results of SimcLR [7] self-supervised MPD (ssl:MPD) and MPD IB
(ssl:MPD IB) models, presented in Tables 13 and 14, align remarkably with the trends
observed in their fine-tuned counterparts (Tables 7 and 8). This complementary relation-
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Table 9: Extended comparative analysis of MPD trained on supervised (supervised:MPD model)
and self-supervised (ssl:MPD model) approaches and evaluated on original ImageNet and
ImageNet-PD subsets (black background). The probability P of applying MPD in model fine-
tuning is in the first column. Added results for probability values 0.0 and 1.0 in continuation to
Table 1.

P Original Validation Set Perspectively Distorted
Top-view (PD-T)

Perspectively Distorted
Bottom-view (PD-B)

Perspectively Distorted
Left-view (PD-L)

Perspectively Distorted
Right-view (PD-R)

Top1 Top 5 Top1 Top 5 Top1 Top 5 Top1 Top 5 Top1 Top 5
Supervised training from scratch

0.0 76.13±0.04 92.86±0.01 63.37±0.06 83.61±0.02 61.15±0.04 81.86±0.01 65.20±0.03 85.13±0.03 65.84±0.06 85.64±0.02
0.2 76.05±0.03 92.99±0.02 72.48±0.02 91.02±0.01 72.12±0.02 91.08±0.02 72.57±0.03 91.13±0.03 72.80±0.05 91.35±0.02
0.4 76.17±0.04 93.03±0.02 73.13±0.03 91.33±0.01 72.94±0.02 91.42±0.01 73.19±0.06 91.48±0.01 73.38±0.01 91.69±0.01
0.6 76.19±0.05 93.14±0.03 73.23±0.02 91.46±0.03 73.01±0.05 91.34±0.02 73.47±0.02 91.66±0.01 73.54±0.06 91.61±0.02
0.8 76.34±0.02 93.03±0.02 73.00±0.02 90.69±0.02 72.31±0.03 90.81±0.03 73.50±0.04 91.33±0.03 72.91±0.02 91.29±0.02
1.0 74.10±0.03 91.50±0.03 71.57±0.04 90.31±0.03 71.65±0.03 90.44±0.02 71.88±0.04 90.62±0.03 72.05±0.04 90.60±0.03

Self-supervised pre-taining on contrastive learning integrating MPD (probability for pre-training=0.8)
0.2 76.37±0.05 93.60±0.02 72.34±0.02 90.81±0.02 72.24±0.03 90.95±0.02 72.48±0.04 91.08±0.01 72.81±0.03 91.16±0.01
0.4 76.77±0.02 93.40±0.01 73.23±0.03 91.39±0.01 73.06±0.04 91.54±0.02 73.55±0.03 91.53±0.03 73.54±0.05 91.65±0.03
0.6 76.14±0.04 93.58±0.02 73.39±0.02 91.50±0.02 73.29±0.03 91.57±0.01 73.57±0.03 91.66±0.02 73.73±0.04 91.58±0.02
0.8 76.29±0.03 92.78±0.02 73.61±0.04 91.49±0.03 73.27±0.05 91.48±0.03 73.60±0.06 91.69±0.01 73.81±0.02 91.71±0.02
1.0 74.13±0.04 91.89±0.03 71.70±0.03 90.42±0.03 71.79±0.04 90.65±0.02 71.96±0.04 90.70±0.02 72.20±0.03 90.88±0.02

Fig. 21: Detailed performance comparison on ImageNet-E [28]: Detailed results on Drop of Top1
accuracy under background changes, size changes, random position (rp), random direction (rd),
and average over 11 subsets. Lower is better. Average reports the mean of all subsets. MPD vari-
ants outperforms standard ResNet50 on subsets which are affected with perspective distortion,
e.g., size, position, and direction. Corresponding details on absolute accuracy measure are in Ta-
ble 11. Detailed analysis in continuation of Fig. 6; Fig. 6 is given in main paper.

ship underscores the robustness of MPD models in both linear and fine-tuned scenarios.
Specifically, ssl:MPD and ssl:MPD IB demonstrate impressive handling of perspective
distortion in the ImageNet-PD subsets during linear evaluation, with ssl:MPD achiev-
ing an average Top-1 accuracy of 50.33±0.04, and ssl:MPD IB even more impressive
at 51.62±0.03. These figures notably surpass the standard self-supervised model’s per-
formance, which scores 35.08±0.04 and 32.53±0.04, respectively. This substantial im-
provement in handling perspective distortions is consistent with the fine-tuned results,
where both ssl:MPD and ssl:MPD IB models maintained high accuracy levels, show-
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Table 10: Extended comparative analysis of MPD IB trained on supervised (supervised:MPD IB
model) and self-supervised (ssl:MPD IB model) approaches and evaluated on original ImageNet
and ImageNet-PD subsets (black background). The probability P of applying MPD BI in model
fine-tuning is in the first column.

P Original Validation Set Perspectively Distorted
Top-view (PD-TI)

Perspectively Distorted
Bottom-view (PD-BI)

Perspectively Distorted
Left-view (PD-LI)

Perspectively Distorted
Right-view (PD-RI)

Top1 Top 5 Top1 Top 5 Top1 Top 5 Top1 Top 5 Top1 Top 5
Supervised training from scratch

0.0 76.13±0.04 92.86±0.01 61.59±0.04 82.39±0.03 61.80±0.05 82.40±0.02 65.30±0.05 85.09±0.02 66.11±0.05 85.92±0.02
0.2 75.78±0.04 92.76±0.02 71.68±0.01 90.48±0.03 71.83±0.04 90.48±0.02 72.09±0.04 90.73±0.01 72.26±0.05 90.90±0.01
0.4 75.88±0.03 92.92±0.03 72.37±0.04 90.35±0.02 72.31±0.04 90.78±0.03 72.43±0.05 91.12±0.03 72.77±0.05 91.09±0.03
0.6 76.14±0.06 93.05±0.03 72.99±0.03 90.78±0.03 72.59±0.04 91.24±0.03 73.11±0.03 91.41±0.02 73.42±0.01 91.52±0.01
0.8 75.63±0.05 92.73±0.02 73.11±0.06 91.23±0.02 73.02±0.02 91.43±0.02 73.33±0.02 91.62±0.02 73.51±0.06 91.50±0.01
1.0 74.62±0.03 91.88±0.02 68.23±0.04 87.80±0.02 69.02±0.02 88.48±0.03 69.83±0.03 89.19±0.03 70.30±0.03 89.39±0.02

Self-supervised pre-taining on contrastive learning integrating MPD (probability for pre-training=0.8)
0.2 75.43±0.02 92.59±0.01 72.38±0.06 90.71±0.02 72.26±0.04 90.83±0.03 72.40±0.05 90.88±0.01 72.61±0.04 90.91±0.02
0.4 75.58±0.03 92.67±0.01 72.87±0.01 91.28±0.01 73.17±0.04 91.39±0.02 73.34±0.03 91.58±0.03 73.41±0.02 91.49±0.03
0.6 75.41±0.04 92.64±0.03 73.43±0.06 91.41±0.01 73.01±0.05 91.50±0.02 73.37±0.02 91.64±0.01 73.61±0.05 91.60±0.02
0.8 75.23±0.01 92.46±0.01 73.54±0.03 91.59±0.02 73.41±0.02 91.57±0.01 73.60±0.03 91.73±0.02 73.79±0.04 91.84±0.02
1.0 74.98±0.02 91.35±0.02 68.44±0.03 88.10±0.03 69.46±0.01 89.05±0.02 70.08±0.03 89.88±0.03 70.88±0.02 90.24±0.02

Table 11: Detailed results on ImageNet-E: (a) Drop of Top1 accuracy (Lower is better) and (b)
Absolute Accuracy (Higher is better) under background changes, size changes, random position
(rp), random direction (rd), and average over 11 subsets.

(a) Drop of Accuracy
Original Background changes Size changes Position DirectionModels Inver λ = -20 λ = 20 λ = 20-adv Random Full 0.10 0.08 0.05 rp rd Avg.

standard ResNet50 92.69 1.97 7.30 13.35 29.92 13.34 2.71 7.25 10.51 21.26 26.46 25.12 15.72
supervised: MPD (ResNet50) 92.51 1.75 6.94 11.53 29.66 13.40 3.22 6.07 9.11 18.54 23.55 22.98 13.34

supervised: MPD IB 92.39 1.63 7.42 13.67 31.16 14.32 2.62 6.23 9.82 19.09 24.75 22.10 13.89
ssl: MPD (ResNet50) 92.51 1.38 7.26 12.22 31.53 13.76 2.85 6.85 10.12 20.91 26.31 24.43 14.33

ssl:MPD IB 92.30 1.82 7.38 12.18 30.79 13.97 2.40 6.90 10.21 20.29 25.25 23.71 14.08
(b) Absolute Accuracy

Original Background changes Size changes Position DirectionModels Inver λ = -20 λ = 20 λ = 20-adv Random Full 0.10 0.08 0.05 rp rd Avg.

standard ResNet50 92.69 90.72 85.39 79.34 62.77 79.35 89.98 85.44 82.18 71.43 66.23 67.57 78.22
supervised: MPD (ResNet50) 92.51 90.76 85.57 80.97 62.84 79.11 89.29 86.44 83.40 73.97 68.96 69.53 79.17

supervised: MPD IB 92.39 90.76 84.97 78.72 61.24 78.08 89.77 86.16 82.57 73.30 67.65 70.29 78.50
ssl: MPD (ResNet50) 92.51 91.13 85.25 80.28 60.98 78.75 89.66 85.66 82.39 71.60 66.20 68.08 78.18

ssl:MPD IB 92.30 90.49 84.93 80.12 61.51 78.33 89.90 85.40 82.09 72.01 67.05 68.59 78.22
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Table 12: Detailed results on ImageNet-X [23]: (a) Error ratio (close to 1.0 is best) and (b) Abso-
lute accuracy (higher is better) of 16 factors. Average reports the mean accuracy of all factors. De-
tailed results also includes supervised:MPD IB and ssl:MPD IB models besides supervised:MPD
and ssl:MPD models. All the models achieves improved error ratio with higher accuracy consis-
tently across factors. Detailed results in continuation of Fig. 8; Fig. 8 is given in main paper.

(a) Error Ratio
Factor standard ResNet50 supervised: MPD ssl: MPD supervised: MPD IB ssl: MPD IB
pose 0.70 0.72 0.74 0.73 0.72

pattern 0.77 0.89 0.78 0.87 0.87
partial_view 1.13 0.89 0.86 1.07 0.90
background 1.14 1.08 1.09 1.09 1.07

brighter 1.17 1.09 1.09 1.19 1.13
color 1.19 1.21 1.18 1.23 1.20
larger 1.32 1.30 1.22 1.24 1.35

smaller 1.50 1.44 1.50 1.46 1.50
darker 1.72 1.52 1.51 1.46 1.53
shape 1.75 1.63 1.61 1.53 1.59

object_blocking 1.92 1.66 1.61 1.75 1.62
style 1.93 1.73 1.63 1.80 1.71

multiple_objects 1.97 1.76 1.72 1.84 1.86
subcategory 2.10 1.92 1.90 1.88 1.98

person_blocking 2.17 1.95 1.97 1.94 2.03
texture 2.39 2.20 2.18 2.21 2.16

Avg 1.55 1.44 1.41 1.45 1.45
(b) Absolute Accuracy

Factor standard ResNet50 supervised: MPD ssl: MPD supervised: MPD IB ssl: MPD IB
pose 82.40 81.47 80.55 81.12 81.00

pattern 80.48 77.28 79.55 77.41 77.27
partial_view 71.32 77.27 77.49 72.41 76.24
background 71.13 72.37 71.53 71.87 71.85

brighter 70.45 72.10 71.32 69.30 70.38
color 69.85 69.12 68.96 68.18 68.44
larger 66.67 66.67 68.00 68.00 64.67

smaller 62.07 63.11 60.62 62.30 60.66
darker 56.56 61.17 60.47 62.28 59.93
shape 55.67 58.32 57.88 60.47 58.32

object_blocking 51.28 57.50 57.69 54.64 57.50
style 51.16 55.81 57.38 53.33 55.13

multiple_objects 50.00 55.00 55.00 52.50 51.16
subcategory 46.84 50.94 50.09 51.28 48.03

person_blocking 45.00 50.00 48.33 49.91 46.67
texture 39.36 43.62 42.91 42.91 43.26

Avg 60.64 63.23 62.99 62.37 61.91

ing their efficacy in learning robust representations. Furthermore, the linear evaluation
results reveal that these improvements are not at the expense of general performance.
Both ssl:MPD and ssl:MPD IB sustain competitive accuracies on the standard ImageNet
validation set, mirroring the fine-tuning outcomes where they demonstrated broad appli-
cability and versatility. These findings from the linear evaluation and fine-tuning phases
collectively reinforce the conclusion in our main paper about the enhanced capabili-
ties of MPD models in self-supervised learning environments. They affirm the mod-
els’ ability to learn perspective-aware representations that are not only applicable to
specialized scenarios involving perspective distortions but also effective across a wide
range of visual recognition tasks. Linear evaluation results for ssl:MPD and ssl:MPD
IB strongly reinforce the claim made in our main paper about their enhanced ability
in self-supervised learning contexts. These models show not just incremental but sig-
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nificant improvements in handling complex visual distortions, establishing MPD as a
powerful tool for self-supervised learning in real-world applications where perspective
variations are prevalent.

Table 13: Linear evaluation performance comparison for self-supervised models, standard Sim-
CLR [7] and ssl:MPD model on original ImageNet validation set and ImageNet-PD subsets
(black background). Self-supervised pretraining was performed on ImageNet dataset with batch
size of 512 on linear learning rate for 100 epochs, refer SimCLR [7]. Top-1 accuracy reported.
The probability of MPD is set to 0.8 for self-supervised pre-training and linear evaluation.
ResNet50 is common backbone.

Model Original Validation Set
Perspectively Distorted

Top-view (PD-T)
Perspectively Distorted
Bottom-view (PD-B)

Perspectively Distorted
Left-view (PD-L)

Perspectively Distorted
Right-view (PD-R)

standard SimCLR 60.14 34.22 32.87 36.33 36.89
ssl:MPD 60.02±0.03 50.63±0.03 49.65±0.03 50.41±0.03 50.64±0.05

Table 14: Linear evaluation performance comparison for self-supervised models, standard Sim-
CLR [7] and ssl:MPD IB model on original ImageNet validation set and ImageNet-PD sub-
sets (with integrated padding background). Self-supervised pretraining was performed on batch
size of 512 on linear learning rate for 100 epochs, refer SimCLR [7]. Top-1 accuracy reported.
The probability of MPD IB is set to 0.8 for self-supervised pre-training and linear evaluation.
ResNet50 is common backbone.

Model Original Validation Set
Perspectively Distorted

Top-view (PD-TI)
Perspectively Distorted
Bottom-view (PD-BI)

Perspectively Distorted
Left-view (PD-LI)

Perspectively Distorted
Right-view (PD-RI)

standard SimCLR 60.14 30.41 30.18 34.81 34.72
ssl:MPD IB 60.05±0.04 51.30±0.03 51.45±0.04 51.81±0.03 51.93±0.03

MPD with DINO: Incorporating MPD into the knowledge distillation-based self-supervised
method DINO [6] demonstrates MPD’s adaptability and effectiveness across differ-
ent SSL approaches. The linear evaluation results for ssl:DINO-MPD and ssl:DINO-
MPD IB, as detailed results presented in Tables 15 and 16, demonstrate the signifi-
cant impact of integrating MPD and MPD IB into the DINO method. Both ssl:DINO-
MPD and ssl:DINO-MPD IB models substantially improves robustness against perspec-
tive distortion when evaluated on the ImageNet-PD subsets. Specifically, ssl:DINO-
MPD achieves an average Top-1 accuracy of 60.70±0.04, while ssl:DINO-MPD IB fur-
ther enhances this performance, achieving an even higher average Top-1 accuracy of
61.30±0.02. The integration of MPD and MPD IB into DINO demonstrates their adapt-
ability and effectiveness in improving performance across self-supervised approaches,
especially in scenarios involving perspective distortion.

Furthermore, the activation maps from ssl:DINO-MPD, as visualized in Fig. 22,
qualitatively demonstrate its superior understanding of perspective distortion in input
images. These maps reveal a more focused and relevant visual attention, indicating
a deeper comprehension of the image structure and content, especially in perspec-
tively distorted scenarios. The success of ssl:DINO-MPD in both quantitative perfor-
mance and qualitative visual attention underscores the versatility of MPD. It shows that
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Table 15: Linear evaluation performance comparison for knowledge distillation based self-
supervised method DINO [6]. Standard DINO is original method pretrained for 100 epochs with
batch size of 512 and ssl: DINO-MPD model is MPD integrated DINO, following same pre-
training hyperparameters. Post-pretraining, both the models are linearly trained for 100 epochs
with batch size of 256. Top-1 accuracy reported. Evaluated on original ImageNet validation set
and ImageNet-PD subsets (black background). The probability of MPD is set to 0.4 for self-
supervised pre-training and 0.8 for linear evaluation. ViT-small transformer [13] is common back-
bone.

Model Original Validation Set
Perspectively Distorted

Top-view (PD-T)
Perspectively Distorted
Bottom-view (PD-B)

Perspectively Distorted
Left-view (PD-L)

Perspectively Distorted
Right-view (PD-R)

standard DINO 74.00 46.31 46.05 46.15 45.98
ssl:DINO-MPD 72.36±0.01 60.72±0.02 60.86±0.02 60.63±0.02 60.58±0.02

Table 16: Linear evaluation performance comparison for DINO-MPD IB: Standard DINO [6] is
original method pretrained for 100 epochs with batch size of 512 and ssl: DINO-MPD IB model
is MPD IB integrated DINO, following same pretraining hyperparameters. Post-pretraining, both
the models are linearly trained for 100 epochs with batch size of 256. Top-1 accuracy reported.
Evaluated on original ImageNet validation set and ImageNet-PD subsets (with integrated padding
background). The probability of MPD IB is set to 0.4 for self-supervised pre-training and 0.8 for
linear evaluation. ViT-small transformer [13] is common backbone.

Model Original Validation Set
Perspectively Distorted

Top-view (PD-T)
Perspectively Distorted
Bottom-view (PD-B)

Perspectively Distorted
Left-view (PD-L)

Perspectively Distorted
Right-view (PD-R)

standard DINO 74.00 45.22 44.80 44.05 45.66
ssl:DINO-MPD IB 72.05±0.01 61.04±0.01 61.50±0.02 60.98±0.03 61.66±0.02

MPD can be effectively combined with various SSL methods, preserving their inherent
strengths and augmenting them to handle better the challenges posed by perspective
distortions. This enhances the claims made in our main paper about MPD’s capabili-
ties, providing a strong case for its widespread applicability in diverse self-supervised
learning approaches.

13 MPD vs. other augmentations

Table 17 demonstrates the effectiveness of MPD against other popular augmentation
methods on the ImageNet validation set, ImageNet-PD subsets, and ImageNet-E [28].
Augmentation methods such as Mixup [58], Cutout [12], AugMix [17], and Pixmix [18]
showed slight improvements on the ImageNet-PD benchmarks. For instance, Mixup im-
proved the Top-1 accuracy to 65.46% on PD-T and 68.43% on PD-R, but these meth-
ods generally degraded performance on ImageNet-E, with Mixup dropping to 82.38%.
This suggests that these augmentations do not adequately capture the characteristics
of perspective distortions. In contrast, MPD-trained models, both in supervised and
self-supervised settings, consistently outperformed all other methods on the perspec-
tive distortion benchmarks and ImageNet-E. The supervised MPD model achieved im-
pressive Top-1 accuracies of 73.00%, 72.31%, 73.50%, and 72.91% on PD-T, PD-B,
PD-L, and PD-R, respectively, and 85.92% on ImageNet-E. The self-supervised MPD
model further enhanced performance, achieving Top-1 accuracies of 73.23%, 73.06%,
73.55%, and 73.54% on PD-T, PD-B, PD-L, and PD-R, respectively, and 86.66% on
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Fig. 22: Activation maps of visual attention: Comparison of attention maps between DINO and
MPD integrated DINO (ssl:DINO-MPD model). First attention head is used to visualize the atten-
tion. Example taken from ImageNet-PD set with original image. Both the models are pretrained
for 100 epochs using ViT small architecture. DINO-MPD demonstrates on learning perspective
distortion in input image.

ImageNet-E. These results indicate that MPD effectively addresses perspective distor-
tions, maintaining high accuracy across both the original and distorted datasets.

14 Continuation (section 3.4): MPD’s generalizability

This section extents the results for MPD’s adaptability in Fisheye, Crowd counting, and
Person re-identifiation.

14.1 Crowd counting

ResNet50 encoder is employed in P2P-Net [45], the integration of MPD and MPD-
AutoCrowd continue to demonstrate remarkable improvements, shown in Table 18. For
instance, the standard P2P-Net with ResNet50 records an MAE of 299.5 and an MSE of
382.48 on the UCF-CC50 dataset. In contrast, the incorporation of MPD significantly
enhances performance, yielding an MAE of 95.10 and an MSE of 132.47. Moreover,
MPD-AutoCrowd further improves these metrics, achieving an MAE of 105.4 and an
MSE of 124.61. These results underscore the capability of MPD to effectively deal with
the complexities of crowd scenes, even when coupled with a different encoder. This ab-
lation study complements the findings presented in Table 2 from the main paper, where
MPD-CC and MPD-AutoCrowd outperform other crowd-counting methods across var-
ious benchmarks. The consistent improvement across different datasets and encoder
configurations, especially with the challenging UCF-CC50 dataset, highlights MPD’s
robustness and adaptability. MPD-AutoCrowd’s notable performance in handling var-
ied crowd densities with high accuracy, particularly with an MAE of 96.80 and MSE of
139.50 on UCF-CC50, further validates the efficacy of MPD in specialized applications,
e.g., crowd counting.

Further, We adapted three augmentation methods tailored for crowd counting and
observed MPD outperforms them, as shown in Table 19. Specifically, we compared
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Table 17: Comparisons of MPD with other popular augmentation methods. ResNet50: baseline
model trained on ImageNet [11] and subsequent models incorporates mentioned augmentation
methods. All the models are evaluated on original ImageNet validation set, ImageNet-PD subsets
(black background), and Imagenet-E. Both MPD trained models (supervised and SimCLR [7]
self-supervised) outperformed on perspective distortion benchmark ImageNet-PD and ImageNet-
E while maintain performance on original ImageNet validation set.

Method
Original
Val set

ImageNet PD
ImageNet-E

Top-view
(PD-T)

Bottom-view
(PD-B)

Left-view
(PD-L)

Right-view
(PD-R)

Top1 Top1/Top5 Top1/Top5 Top1/Top5 Top1/Top5 Top1
ResNet50 [40] 76.13 63.37/83.61 61.15/81.86 65.20/85.13 65.84/85.64 84.28
+Mixup [58] 77.46 65.46/85.15 66.79/85.91 68.02/86.98 68.43/87.22 82.38
+Cutout [12] 77.08 64.27/84.20 62.04/82.86 65.45/85.40 65.61/85.46 79.58

+AugMix [17] 77.53 64.12/84.01 62.90/82.33 65.95/85.94 66.49/86.03 80.97
+Pixmix [18] 77.37 65.52/85.21 64.76/84.54 67.26/86.67 67.56/86.80 82.38

+MPD 76.34 73.00/90.69 72.31/90.81 73.50/91.33 72.91/91.29 85.92
+MPD
(SSL)

76.77 73.23/91.39 73.06/91.54 73.55/91.53 73.54/91.65 86.66

Table 18: Ablation on encoder part of crowd-counting method P2P-Net with MPD-CC & MPD-
AutoCrowd

Method Encoder UCF_CC-50
MAE MSE

P2P-Net standard VGG16 172.72 256.18
MPD standard VGG16 101.30 140.65
MPD-

AutoCrowd
standard VGG16 96.80 139.50

P2P-Net standard ResNet50 299.5 382.48
MPD standard ResNet50 95.10 132.47
MPD-

AutoCrowd
standard ResNet50 105.4 124.61

MPD with RandAugment [10], OpenCV PT [59], and AugLy PT [38] across three
datasets: SHHA, SHHB, and UCF_CC_50. MPD consistently achieved lower MAE
and MSE values, indicating superior performance in handling crowd counting tasks.
For instance, MPD-CC achieved a MAE of 51.93 and MSE of 84.3 on SHHA, sig-
nificantly outperforming AugLy PT’s 56.18 MAE and 107.67 MSE. Furthermore, the
samples shown in Fig. 23 illustrates that perspective transform augmentations from [38]
and [59] do not capture the non-linearity inherent in real-world perspective distortions,
as they primarily rely on affine transformations or translations. This limitation under-
scores the effectiveness of MPD in capturing complex distortions, leading to its supe-
rior performance in crowd counting benchmarks. These results affirm the main paper’s
assertion about the potential of MPD in complex visual recognition tasks and demon-
strate its versatility in adapting to different encoder configurations while maintaining
high performance.
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Table 19: Comparisons on augmentation methods in crowd counting. PT: Perspective Transform.
Metrics: MAE and MSE errors

Method
SHHA SHHB UCF_CC_50

MAE MSE MAE MSE MAE MSE
RandAugment [10] 59.81 113.48 10.03 19.84 187.62 271.28
OpenCV PT [59] 57.73 109.82 7.78 13.41 181.05 263.52
AugLy PT [38] 56.18 107.67 8.09 14.05 174.74 259.08

MPD-CC 51.93 84.3 6.73 9.82 101.3 140.65
MPD-AutoCrowd 50.81 85.01 6.61 9.58 96.8 139.5

Fig. 23: Applied augmentations on crowd counting

14.2 Transfer learning on Fisheye images

Extended empirical findings, as illustrated in the accompanying graph ( Fig. 24), con-
sistently demonstrate that the ssl:MPD and ssl:MPD IB models excel in multi-label
classification tasks on the VOC-360 fisheye dataset, showing a marked improvement in
accuracy with an increasing percentage of labels used.

Complementing these results, Tables 20 and 21 provide further insights into the
models’ performances across a spectrum of MPD probabilities. The data reveal an op-
timal probability threshold for the MPD transformation application, which maximizes
label efficiency. Notably, a probability setting of 0.5 for MPD yields the highest ac-
curacy when all labels are utilized, indicating a non-linear relationship between the
transformation probability and classification accuracy.

Table 20: Label efficiency on Fisheye multi-label classification across different probabilities of
MPD. ResNet50 is encoder.

Probability Labels (%)
20 40 60 80 100

0.2 38.98 56.52 59.33 82.09 86.76
0.3 37.19 51.50 58.80 78.69 88.03
0.4 38.46 52.46 61.19 78.98 89.24
0.5 38.63 57.14 66.38 76.56 91.63
0.8 38.78 48.45 64.88 81.41 92.69

The results substantiate MPD’s versatility and adaptability across different learning
approaches and datasets, which is pivotal for real-world applications where perspective
distortion is a significant challenge.
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Fig. 24: Label efficiency on Fisheye multi-label classification: Performance comparison across
variants of MPD in supervised and self-supervised models with baseline (standard ResNet50)
and no-transfer-learning model. All the models evaluated with 20%, 40%, 60%, 80%, and 100%
labels.

Table 21: Label efficiency on Fisheye multi-label classification across different probabilities of
MPD IB. ResNet50 is encoder.

Probability
Labels (%)

20 40 60 80 100
0.2 32.88 51.61 62.62 81.24 87.57
0.3 34.01 51.87 61.35 83.01 89.23
0.4 41.39 48.34 66.68 66.37 86.26
0.5 38.07 52.62 70.44 76.90 91.87
0.8 38.22 48.66 58.65 70.23 89.24

14.3 Person Re-Identification

Our ablation studies further substantiate MPD’s efficacy within the CLIP-ReIdent method
by demonstrating additional results on the ResNet50x16 backbone, suggested in the
original work [15]. As shown in Table 4, incorporating MPD with a ResNet50x16 en-
coder significantly outperforms the baseline Clip-ReIdent. The configuration with creal
and cimag components ranging from 0.4 to 0.6 achieves the highest mAP of 91.95%
without re-ranking and 97.50% with re-ranking. These results are in line with the
transformer-based enhancements reported in the main paper and highlight MPD’s broad
applicability in addressing perspective distortions across diverse architectures.

14.4 Object Detection

Table 23 presents the object detection performance of MPD-OD on the COCO [30]
dataset, with varying probabilities of applying MPD-OD during training. Figure 25
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Table 22: Ablation on the person re-identification for MPD (Clip-ReIdent) with CNN back-
bone: Explores multiple configurations of perceptiveness components with ResNet50x16 en-
coder. MPD probability set to 0.1, same as before. Min. (component) and Max. (component)
defines the range of randomly incorporated perspective distortion. Component selection takes
place between c-real and c-imaginary, with equal probability. Direction of each component also
chosen with equal probability being positive or negative.

Method Min. (component) Max. (component) mAP
(w/o re-ranking)

mAP
(with re-ranking)

Clip-ReIdent - ResNet50x16 - - 88.50 94.90
MPD (Clip-ReIdent) - ResNet50x16 0.2 0.6 91.51 97.40
MPD (Clip-ReIdent) - ResNet50x16 0.2 0.8 90.60 96.38
MPD (Clip-ReIdent) - ResNet50x16 0.4 0.6 91.95 97.50

shows more MPD-OD transformed image examples. The results show that as the prob-
ability of applying MPD-OD increases from 0.1 to 0.5, there is a consistent improve-
ment in detection performance for both FasterRCNN [43] and FCOS [47] models.
Specifically, FasterRCNN gradually increases IoU=0.50:0.95 from 37.60 to 40.00 and
IoU=0.50 from 58.10 to 61.10. Similarly, FCOS shows an improvement from 39.10 to
40.20 in IoU=0.50:0.95 and from 58.50 to 60.30 in IoU=0.50. These trends indicate
that higher probabilities of applying MPD-OD during training lead to better object de-
tection performance, highlighting the effectiveness of MPD-OD in enhancing model
robustness and accuracy. The consistent performance gains across different probabili-
ties demonstrate the adaptability and efficacy of MPD-OD in handling diverse training
scenarios and further strengthen the general usefulness of MPD.

Table 23: Object detection performance of MPD-OD on COCO [30] dataset. Ablations on prob-
ability to apply MPD-OD on examples during training. Metrics: IoU=0.50:0.95 / IoU=0.50

Method Original MPD-OD
P=0.1 P=0.2 P=0.3 P=0.4 P=0.5

FasterRCNN [43] (NeurIPS’15) 37.10/55.80 37.60/58.10 39.20/59.40 39.50/60.60 39.70/60.80 40.00/61.10
FCOS [47] (ICCV’19) 38.60/57.40 39.10/58.50 39.50/59.10 39.90/59.70 40.00/59.90 40.20/60.30

Fig. 25: MPD transformed input & bounding boxes during training
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