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Abstract

We study the robustness of machine read-001
ing comprehension (MRC) models to entity002
renaming—do models make more wrong pre-003
dictions when answer entities have different004
names? Such failures imply that models overly005
rely on entity information to answer ques-006
tions, and thus may generalize poorly when007
facts about the world change or questions008
are asked about novel entities. To systemat-009
ically audit this issue, we present a general010
and scalable pipeline to replace entity names011
with names from a variety of sources, rang-012
ing from common English names to names013
from other cultures to arbitrary strings. Across014
five datasets and three pretrained model archi-015
tectures, MRC models consistently perform016
worse when entities are renamed, with partic-017
ularly large accuracy drops on datasets con-018
structed via distant supervision. We also find019
large differences between models: SpanBERT,020
which is pretrained with span-level masking,021
is more robust than RoBERTa, despite hav-022
ing similar accuracy on unperturbed test data.023
We further experiment with different masking024
strategies as the continual pretraining objec-025
tive and find that entity-based masking can im-026
prove the robustness of MRC models.1027

1 Introduction028

The task of machine reading comprehension029

(MRC) measures machines’ understanding and rea-030

soning abilities. Recent research advances (Devlin031

et al., 2019; Yang et al., 2019; Khashabi et al.,032

2020) have driven MRC models to reach or even033

exceed human performance on several MRC bench-034

mark datasets. However, their actual ability to035

solve the general MRC task is still questionable036

(Kaushik and Lipton, 2018; Sen and Saffari, 2020;037

Sugawara et al., 2020; Lai et al., 2021). While hu-038

mans show robust generalization on reading com-039

prehension, existing works have revealed that MRC040

1Data has been uploaded and will be published with code.

[Passage]

[Question]

[Answer]

… Michael beat Jack and won the championship.
Perturbation: InDistName

… Ashvith beat Jack and won the championship.
Perturbation: DBName

… Uqlcs beat Jack and won the championship.
Perturbation: RandStr

… James beat Jack and won the championship.
Original

Robustness Evaluation

James
Model:

Michael

Ashvith

Uqlcs

Who got the first place in the game?

Model:

Model:

Model:

Figure 1: An illustrative example of the robustness to
entity renaming and our proposed perturbations for ro-
bustness evaluation. “Michael” is from the answer of
another test instance. “Ashvith” is a person name from
an external database. “Uqlcs” is a random string with
the same length as the original name.

models generalize poorly to out-of-domain data dis- 041

tributions (Fisch et al., 2019) and are brittle under 042

test-time perturbations (Pruthi et al., 2019; Jia et al., 043

2019; Jia and Liang, 2017). All these issues could 044

naturally happen to MRC systems deployed in the 045

wild, hindering them to make reliable predictions 046

on user inputs with great flexibility. 047

In this work, we focus on an important but under- 048

studied type of test-time distribution shift caused 049

by novel entity (e.g., people and companies) names. 050

For a MRC model, besides the evidence provided 051

by the surrounding context, it also has the capacity 052

to leverage the entity information to make predic- 053

tions. The information associated with the entity 054

name covers both world knowledge that can change 055

over time and dataset shortcuts that are unlikely to 056

generalize. While contributing to performance on 057

certain benchmarks, the over-reliance on specific 058

entity names leads to an overestimation of model’s 059

actual ability to read and comprehend the provided 060

passage (Peñas et al., 2011). It also hinders the 061

model to generalize to novel entity names, which 062

itself is challenging due to the large space of valid 063
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entity names induced by the flexibility of entity064

naming. For example, person names can be chosen065

from a large vocabulary depending on the culture,066

while companies can be named in an even more067

creative way, not to mention new names that are068

being invented every day. As illustrated in Figure069

1, keeping the reasoning context unchanged, a ro-070

bust MRC model is supposed to correctly locate the071

same span of a named entity as the answer, even072

after it gets renamed.073

To audit model robustness, we use entity renam-074

ing as test time perturbation to mimic the situation075

where a deployed MRC model encounters ques-076

tions asking for novel entity names in the emerging077

data. We design a general pipeline to generate078

natural perturbations of MRC instances by swap-079

ping the answer entity name with another valid080

name throughout the passage. We design perturba-081

tion rules and collect resources for three types of082

entities with large name space, including Person,083

Organization, and Geopolitical Entity.084

With the proposed analysis framework, we con-085

duct extensive experiments on five datasets and086

three pretrained language models. Data-wise, we087

find that distantly supervised MRC datasets lead to088

less robustness. Entity-wise, we find that Geopolit-089

ical Entity poses the greatest challenge than Person090

and Organization when renamed. Model-wise, we091

find that SpanBERT is more robust than BERT and092

RoBERTa, mainly due to less sensitivity to domain093

shift on names, which is likely to be the benefit of094

span-focused pre-training objectives. Inspired by095

this, we investigate several objectives via continual096

pretraining and find that an entity-based masking097

strategy can further enhance the robustness.098

2 Analysis Setup099

2.1 Extractive MRC100

The task of MRC tests a machine’ understanding101

and reasoning abilities by asking it to answer the102

question based on the provided passage. We focus103

on extractive MRC, where the answer is a span104

in the passage. Formally, given a question Q and105

a passage P of n tokens P = {x1 . . . , xn}, an106

extractive MRC model is expected to predict an107

answer span a = {xi, . . . , xi+k}(1 ≤ i ≤ i+k ≤108

n) in the passage P as a response to the question109

Q. We use exact match (EM) as the metric for110

MRC evaluation, which is the percentage of test111

instances that the model exactly predicts one of the112

gold answers.113

In both real-world scenarios and MRC datasets, 114

a large portion of questions ask about entities like 115

people, organizations and locations. While unmen- 116

tioned background knowledge about the entities 117

might be helpful for solving the questions, overly 118

relying on it makes the model hard to adapt to up- 119

dated facts provided by the passage and generalize 120

to novel entities. Especially, we contrast MRC with 121

closed-book QA, which requires a model to directly 122

answer questions without access to any document 123

passage. Closed-book QA tests a model’s ability 124

to pack knowledge into its parameters and retrieve 125

knowledge from parameters to answer the question. 126

On the contrary, we expect a MRC model to reason 127

based on the provided passage. 128

2.2 Evaluation Protocol 129

We study the robustness of MRC models via test- 130

time perturbation. Given an original test set Dtest 131

and a perturbation function fperturb (detailed in §3) 132

as inputs, we construct N perturbed test sets with 133

N different random seeds. We evaluate the model 134

on the N perturbed test sets. By averaging the 135

results, we get the average-case EM score as the 136

final metric, which measures the average impact on 137

the model performance caused by the names from a 138

certain perturbation. We set N = 5 in experiments. 139

2.3 Datasets 140

We choose five datasets with different characteris- 141

tics from the MRQA 2019 shared task (Fisch et al., 142

2019): SQuAD (Rajpurkar et al., 2016), Natural 143

Questions (NQ) (Kwiatkowski et al., 2019), Hot- 144

potQA (Yang et al., 2018), SearchQA (Dunn et al., 145

2017), and TriviaQA (Joshi et al., 2017) (statistics 146

in Appendix §A). As a major difference in data 147

collection, SQuAD, NQ, and HotpotQA employ 148

crowdworkers to annotate the answer span in the 149

passage, while SearchQA and TriviaQA use distant 150

supervision to match the passage with the question. 151

Distant supervision provides no guarantee that the 152

passage contains enough evidence to derive the an- 153

swer. The context where the entity span shows up 154

may not even be related to the question. 155

2.4 MRC Models 156

We experiment with three pretrained language mod- 157

els that have demonstrated strong performance 158

on popular MRC benchmarks. BERT (Devlin 159

et al., 2019) is trained on English Wikipedia 160

plus BookCorpus with masked language model- 161

ing (MLM) and next sentence prediction (NSP) as 162
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self-supervised objectives. RoBERTa (Liu et al.,163

2019) improves over BERT mainly by dropping164

the NSP objective and increasing the pretraining165

time and the size of pretraining data. SpanBERT166

(Joshi et al., 2020) masks random contiguous spans167

to implement MLM and replaces NSP with a span-168

boundary objective (SBO). All pretrained language169

models in the main experiments are case-sensitive170

and in their BASE sizes. The finetuning details are171

shown in Appendix §B.172

3 Entity Name Substitution173

In this section, we introduce our method for per-174

turbing a MRC test set with substitution entity175

names, i.e., the instantiation of fperturb. Generat-176

ing substitution names is at the core of our evalua-177

tion as different kinds of names measure a model’s178

behavior in different situations with different ro-179

bustness implications. We propose three categories180

of perturbations on three entity types and collect181

the corresponding name resources, aiming to audit182

a model’s robustness from different perspectives.183

3.1 Perturbation Pipeline184

As illustrated in Figure 2, our perturbation pipeline185

consists of four steps, which are introduced below.186

Step 1: Answer Entity Recognition. As we fo-187

cus on the effect of answer entity renaming, we188

first identify entities in the answers by perform-189

ing named entity recognition (NER) with spaCy190

(Honnibal et al., 2020) on the passage and extract191

the results on the answer spans. We identify three192

types of named entities: Person (PER), Organiza-193

tion (ORG), and Geopolitical Entity (GPE). All of194

them frequently appear as answers and have large195

space of valid names, making it important and chal-196

lenging for models to robustly handle.197

Step 2: Perturbable Span Identification. To fa-198

cilitate name substitution, we assign metadata to199

detected entity names by identifying perturbable200

spans within the entity name. For each type of en-201

tity names, we define the applicable span types in202

Table 1. For PER, we only consider names with one203

or two words. A one-word name is considered as204

a first name, while a two-word name is considered205

as a full name, with the first word being the first206

name and the second word being the last name. We207

infer the gender of the detected name to be male,208

female, or neutral with gender-guesser.2 For209

2
https://pypi.org/project/gender-guesser/

Entity Type Applicable Types of Perturbable Spans

PER
(4)

<First Name-Male> (e.g., Richard, Morton)
<First Name-Female> (e.g., Lauren, Jennifer)
<First Name-Neutral> (e.g., Shine, Frankie)
<Last Name> (e.g., Marx, Winfrey)

ORG
(5)

<NNP> (e.g., Celtic, Tiffany)
<Rare> (e.g., Hufflepuff, Pokemon)

GPE
(3)

<GPE-Country> (e.g., Iceland, Algeria)
<GPE-State> (e.g., New Brunswick, Ohio)
<GPE-City> (e.g., Boston, Sonsonate)

Table 1: Applicable metadata for each entity type in the
perturbation pipeline.

GPE, we detect its contained country names, state 210

names, and city names by string matching with 211

the Countries States Cities Database3. For ORG, 212

besides mentions of GPE names, we include two 213

additional types of perturbable words identified us- 214

ing Penn Treebank (PTB) (Marcus et al., 1993). 215

Words that are annotated as NNP(S) for more than 216

90% of the time in PTB are considered as proper 217

nouns (dented as <NNP>), which are usually spe- 218

cialized for naming an entity. Words outside PTB 219

are considered as rare words (denoted as <Rare>), 220

which are likely to be invented by people to name 221

an entity. These two kinds of words are weakly 222

related to the characteristics of the entity and thus 223

can be flexible. Note that given one or more entity 224

types of interest, in this step we filter the test data 225

to only keep a subset of instances with non-empty 226

metadata for the corresponding entity types, which 227

are instances that are ready to be perturbed. Sizes 228

of the perturbable subsets for different entity types 229

and their union (MIX) are shown in Appendix §A. 230

Step 3: Candidate Name Sampling. For each 231

perturbable span, we gets its substitution name by 232

querying an external dictionary with the span type. 233

The substitution name is randomly sampled from a 234

pool of names in the external dictionary that is la- 235

beled with the same span type. We collect multiple 236

dictionaries with names of different characteristics 237

serving for different analysis purpose, which are 238

detailed in §3.2. 239

Step 4: Name Substitution. Once we have a 240

candidate name for each perturbable span, we per- 241

form string mapping on the passage, question, and 242

the gold answer, to finish the entity renaming in 243

MRC instances. The name substitution changes all 244

mentions of the answer entity in the passage while 245

keeping the other reasoning context. 246

3
https://countrystatecity.in/

3

https://pypi.org/project/gender-guesser/
https://countrystatecity.in/


②

{𝑃3, 𝑄3, 𝐴3: }Los Angeles Dodgers
ORG

{𝑃2, 𝑄2, 𝐴2: }Panning

{𝑃4, 𝑄4, 𝐴4: }23

Jason: <First Name-Male>

Los Angeles: <GPE-City>

Germany: <GPE-Country>

DBName

Categorized 
Candidate 

Names

Jason Marsden
PER

{𝑃1, 𝑄1, 𝐴1: }

{𝑃5, 𝑄5, 𝐴5: }Germany
GPE

Answer Entity
Recognition

Perturbable Span
Identification

Candidate Name
Sampling

Name Substitution

{𝑃1, 𝑄1, 𝐴1}

Dodgers: <NNP>

Marsden: <Last Name>

Frank

Pritchard

Chicago

Braves

New Zealand

{𝑃1′, 𝑄1′, 𝐴1′}

{𝑃3, 𝑄3, 𝐴3} {𝑃3′, 𝑄3′, 𝐴3′}

{𝑃5, 𝑄5, 𝐴5} {𝑃5′, 𝑄5′, 𝐴5′}

(Jason ➜ Frank)
(Marsden➜ Pritchard)

(Germany ➜ New Zealand)

(Los Angeles ➜ Chicago)
(Dodgers➜ Braves)

Perturbable Span: <Span Type>

④① ③

Figure 2: The perturbation pipeline for performing entity name substitution on MRC instances.

3.2 Candidate Name Collection247

We consider three types of candidate names for248

perturbations in our main experiment to simulate249

the domain shift of entity names during test time.250

In-Distribution Name (InDistName). The set251

of candidate names along with their span types252

is the same as the perturbable spans along with253

their types identified from the gold answers in the254

test set. This ensures that the new names follow the255

same distribution as the original names.256

Database Name (DBName). We collect names257

in the real world by referring to relevant databases.258

For PER, we collect first names4 (with gender fre-259

quency) and last names5 from the official statistics260

of person names in the U.S.. (We experiment with261

names from other cultures in §4.2.) We regard a262

first name as a male/female name if its male/female263

frequency is two times larger than its frequency of264

the opposite gender. The remaining names are con-265

sidered as neutral. Following the practice for iden-266

tifying perturbable spans, we get the list of coun-267

try/state/city names using Countries States Cities268

Database and the NNP list using PTB. Rare words269

constitute an open vocabulary so they will not be270

substituted under the DBName perturbation.271

Random String (RandStr). The RandStr pertur-272

bation is different from the other two as it neglects273

the query span type when preparing the candidates.274

We generate a random alphabetical string of the275

same length and casing as the original perturbable276

span. Names from low-resource languages can277

look quite irregular to the pretrained language mod-278

els. Random string as an extreme case provides an279

4
https://www.ssa.gov/oact/babynames/limits.html

5
https://www.census.gov/topics/population/

genealogy/data/2010_surnames.html

Accuracy (%) PER ORG GPE

Perturbable Span Identification 93.3 86.7 93.3
Name Substitution 86.7 96.7 96.7

Table 2: Validity of the two key steps in the pertur-
bation pipeline on 30 randomly sampled TriviaQA in-
stances for each entity type.

estimation of the performance in this scenario. 280

3.3 Perturbation Quality 281

The validity of the perturbed instances depends on 282

the quality of the perturbation pipeline (§3.1). We 283

manually check the accuracy of the perturbation 284

steps on TriviaQA, which demonstrates the largest 285

performance drop as we will show. Out of the four 286

steps in the pipeline (Figure 2), we evaluate the ac- 287

curacy of step 2 (“Perturbable Span Identification”) 288

and step 4 (“Name Substituion”). The accuracy 289

of step 2 is evaluated based on whether the per- 290

turbable spans and their corresponding span types 291

are all correct for an instance, which also implies 292

the quality of step 1 (“Answer Entity Recognition”) 293

as different entity types have different applicable 294

span types. The accuracy of step 4 is evaluated 295

based on whether the string mapping function suc- 296

cessfully locates all mentions of the perturbable 297

spans in the passage to perform string mapping. 298

The quality of step 3 can be inferred from the ac- 299

curacy of step 2 for InDistName perturbation. For 300

DBName, we assume the database is of accept- 301

able quality in the sense that all names it provides 302

belongs to the correct span type, which is guaran- 303

teed by the source of the data — PTB is annotated 304

by human experts, U.S. names come from official 305

statistics, and GPE names are actively maintained 306

by its creator and the community for more than 3 307

years. RandStr is proposed to stimulate the extreme 308

4

https://www.ssa.gov/oact/babynames/limits.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html


BERT@MIX SQuAD NQ HotpotQA SearchQA TriviaQA

Original 81.2±0.3 64.4±1.0 60.0±0.2 69.5±1.1 73.4±0.8

InDistName 78.7±0.6 62.0±1.2 56.8±0.4 53.6±1.3 59.0±1.4

DBName 78.8±0.9 62.1±1.3 54.9±0.3 50.2±1.8 50.4±1.6

RandStr 76.9±1.0 59.0±1.7 49.5±0.8 23.6±1.2 25.4±1.4

Table 3: Comparison of different datasets. EM
scores of BERT on the original and perturbed test sets
of the MIX entity type.

case, and we therefore do not evaluate its quality.309

As shown in Table 2, our method gets acceptable310

accuracy on the three entity types, confirming the311

quality of the perturbation pipeline.312

4 Results and Analysis313

4.1 Main Results314

The EM scores of the three models on the origi-315

nal and perturbed test sets are presented in Figure316

3. We analyze the results from several angles by317

aggregating across certain dimensions.318

Training on MRC datasets created with distant319

supervision leads to less robustness. In Table320

3, we show the results of BERT on the original321

and perturbed test sets, while results of RoBERTa322

and SpanBERT show similar patterns. The per-323

turbations on all 3 entity types are combined324

(shown as “MIX”). We find that models trained325

on SQuAD, NQ, and HotpotQA (with at most 6%326

performance drop under the DBName perturbation)327

are significantly more robust than models trained328

on SearchQA and TriviaQA (with about 20% per-329

formance drop under the DBName perturbation).330

While the first group of datasets are human-labeled,331

the later group of datasets are constructed using332

distant supervision. Such correlation indicates that333

training noise due to mismatched questions and pas-334

sages harms model’s robustness. We hypothesize335

the reason to be that, the passage in the human-336

annotated datasets usually provides enough evi-337

dence to derive the answer, so a model is able to338

learn the actual task of “reading comprehension”339

from the data. On the contrary, SearchQA and Triv-340

iaQA use web snippets as the source of passages.341

The labeling process of distant supervision assumes342

that “the presence of the answer string implies the343

document does answer the question” (Joshi et al.,344

2017), while the document may or may not contain345

all facts needed to support the answer. In this case,346

because the actual reading comprehension task is347

difficult to learn due to lack of evidence, the model348

could be prone to use entity-specific background349

BERT SQuAD NQ HotpotQA SearchQA TriviaQA

PER-Original 82.8±0.4 69.3±0.9 63.1±0.1 69.7±1.4 73.6±0.7

PER-DBName 81.7±0.8 68.0±1.0 60.8±0.2 54.6±2.3 54.6±1.6

PER-∆ 1.1 1.3 2.3 15.1 19.0

ORG-Original 79.7±0.6 52.1±1.2 58.0±0.3 66.7±1.5 73.8±1.5

ORG-DBName 77.5±1.4 50.8±0.8 55.0±0.6 54.2±1.6 57.0±1.5

ORG-∆ 2.2 1.3 3.0 12.5 16.8

GPE-Original 79.1±1.0 54.5±1.7 55.8±0.6 74.4±0.8 76.4±0.6

GPE-DBName 73.7±1.1 49.5±2.7 43.9±1.3 40.1±0.8 40.1±1.3

GPE-∆ 5.4 5.0 11.9 34.3 36.3

Table 4: Comparison of different entity types. EM
scores of BERT on the Original and DBName test sets.

MIX BERT RoBERTa SpanBERT

Original 69.5±1.1/73.4±0.8 74.1±0.2/78.6±0.4 73.2±0.7/79.1±0.1

InDistName 53.6±1.3/59.0±1.4 60.7±0.4/67.8±1.1 60.3±1.4/68.3±0.8

DBName 50.2±1.8/50.4±1.6 54.0±1.0/60.5±0.9 57.9±1.0/63.1±0.8

RandStr 23.6±1.2/25.4±1.4 21.0±4.8/35.6±0.2 41.5±3.2/51.9±2.3

Table 5: Comparison of different models. EM scores
on the original and perturbed test sets of the MIX entity
type on SearchQA/TriviaQA.

knowledge (e.g. assuming that “Jack Higgins” is 350

a British author regardless of the context) or learn 351

dataset-specific shortcuts associated with certain 352

names via memorization (e.g., choosing “Jack Hig- 353

gins” whenever it’s mentioned in the passage and 354

the question asks for an author), which causes the 355

robustness issue. 356

GPE renaming poses the greatest robustness 357

challenge. The renaming of PER and ORG 358

are similarly less challenging. In Table 4, we 359

present the performance drop caused by the DB- 360

Name perturbation for each entity type. GPE 361

renaming shows the largest performance drop. 362

The comparison of PER and ORG differs across 363

datasets, but their corresponding performance 364

drops are generally similar. The reason is likely to 365

be that the model is only exposed to a small number 366

of distinct GPE names during finetuning compared 367

to PER and ORG. In the training set of TriviaQA, 368

there are 40k ORG names and 54k PER names, 369

but only 12k GPE names. The lack of seen names 370

makes it hard to learn the generalization ability. 371

On distantly supervised datasets, SpanBERT is 372

more robust than RoBERTa, which is more ro- 373

bust than BERT. In Table 5, we show the per- 374

formances of the three models under perturbations 375

of the MIX entity type on SearchQA and TriviaQA. 376

While RoBERTa and SpanBERT show compara- 377

ble performances on the original and InDistName 378

test sets, SpanBERT’s improvement over RoBERTa 379

becomes larger as the substitution names become 380
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Figure 3: Main results. EM scores for MRC models evaluated on datasets under different perturbations.

more out-of-distribution. Meanwhile, BERT shows381

even larger performance decreases than RoBERTa.382

The models’ performance differences are mainly383

attributed to their different pretraining strategies.384

RoBERTa’s improvement over BERT indicates that385

a better pretraining configuration (as measured by386

the performance on the in-domain original test set)387

is also beneficial to the performance on the per-388

turbed test sets, suggesting better generalization389

ability to the out-of-domain data. This correla-390

tion is consistent with the findings in Miller et al.391

(2021). SpanBERT’s particular advantage on the392

perturbed test sets indicates its span-focused pre-393

training objective (span-based MLM and span pre-394

diction based on boundary tokens) is especially395

helpful for the span-related robustness, which is396

desired for the MRC task.397

Both loss of entity knowledge and domain shift398

on names happen during renaming. Span-399

BERT’s superior robustness over RoBERTa is400

mainly from handling domain shift. The infor-401

mation associated with the entity name that can402

be leveraged by the model includes both entity403

knowledge and name clues. Entity knowledge404

refers to the world knowledge about with the re-405

ferred entity, like “Michelle Obama is the wife of406

Barack Obama,” while name clues refer to statisti-407

cal clues associated with the name’s surface form,408

like “Barack Obama is likely to be a male name”, 409

“Barack Obama as an in-distribution name is likely 410

to be the answer for this dataset”. While all per- 411

turbations break the entity knowledge about the 412

original entity, InDistName doesn’t introduce do- 413

main shift on names and largely preserve the name 414

clues. Going from InDistName to other perturba- 415

tions, the substituted names can be more and more 416

out of the dataset distribution. This performance 417

drop can be attributed to the model’s sensitivity to 418

name-related domain shift. From SearchQA and 419

TriviaQA results in Table 5, we find that RoBERTa 420

and SpanBERT rely similarly on the entity knowl- 421

edge (~13% performance drop from Original to In- 422

DistName on SearchQA and ~11% on TriviaQA). 423

SpanBERT’s advantage over RoBERTa is mainly 424

on its good robustness to domain shift on names, 425

shown by the perfromance drop from IndistName 426

to other perturbations. BERT relies slightly more 427

on entity knowledge but much more sensitive to 428

domain shift on names. 429

4.2 Bias Exhibited by Person Names 430

Cultural Bias. As the DBName perturbation 431

uses person names in the U.S., it cannot fully reflect 432

the model’s robustness behavior when encounter- 433

ing real-world names from diverse cultural back- 434

grounds. Therefore, we additional collect names 435
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Country/
Language

BERT RoBERTa SpanBERT

U.S. 54.6±2.3/54.6±1.6 58.1±0.9/66.1±0.6 63.0±1.1/69.1±0.7

French 55.5±2.2/56.1±1.7 58.2±1.1/66.0±0.5 63.0±1.2/68.8±0.9

India 53.5±2.5/51.9±2.7 56.5±1.9/63.9±0.8 63.0±1.1/68.0±0.4

Arabic 53.3±3.1/48.8±3.2 56.3±2.1/61.8±0.9 62.8±1.0/66.2±0.8

China 46.2±2.5/44.8±3.6 54.0±0.8/63.0±1.4 59.3±2.0/65.2±0.4

RandStr 25.0±1.6/28.9±1.6 22.0±4.7/41.3±0.8 44.6±4.0/57.4±2.4

Table 6: Performance comparison of person names
from different cultures. EM scores on the origi-
nal and perturbed test sets of the PER entity type on
SearchQA/TriviaQA.

(sources listed in Appendix §D) from more coun-436

tries (India, China) and languages (French, Arabic)437

to study the cultural bias in MRC models. We use438

the romanized form of names. Table 6 shows the439

performance comparison of models when evalu-440

ated with the person names from different cultures441

on SearchQA and TriviaQA. Names form the U.S.442

and French-speaking countries generally achieve443

the highest EM scores. Names from China get the444

lowest performance for the most of time, with sig-445

nificant EM drop (8.4% on SearchQA and 9.8% on446

TriviaQA for BERT) from U.S. names. The per-447

formance gap between different cultures becomes448

smaller with more robust models.449

Other Factors. We also consider other factors450

of a name that could be related to biased model451

performance. We limit our scope to the U.S. first452

names and sample 1500 names from the database.453

We consider two features for each name. Gender454

polarity is defined as max(fmff ,
ff
fm

), where fm, ff455

are the male frequency and female frequency of a456

name provided by the database. It measures the457

gender ambiguity of the name. Popularity is de-458

fined as fm + ff . We calculate the EM score for459

a name by evaluating on a test set where all an-460

swer first names get replaced with this name. For461

what we have tried, we didn’t find evidence to sup-462

port a correlation between each factor and the EM463

score. For example, with SpanBERT on TriviaQA,464

names with top 20% gender polarity gets 72.7%465

EM; while the bottom 10% names gets 72.8% EM.466

The numbers are 73.0% vs 72.7% for popularity.467

We leave exploring factors that correlate with the468

difficulty of a name as future work.469

4.3 Improving Robustness with Continual470

Pretraining471

SpanBERT’s advantage over BERT suggests that472

some variants of MLM could be helpful for model473

robustness. To further robustify SpanBERT, we 474

adopt a training paradigm with an inserted con- 475

tinual pretraining stage and compare MLM with 476

different masking strategies as the objectives. 477

Training Paradigm Existing works mainly seek 478

to robustify the model during finetuning with strate- 479

gies like data augmentation (Ribeiro et al., 2019; 480

Min et al., 2020), but they usually increase finetun- 481

ing time and requires additional data. Some recent 482

works (Gururangan et al., 2020; Ye et al., 2021) 483

have explored improving a pretrained language 484

model with “continual pretraining” — continuing 485

to train a pretrained model for more steps with the 486

some objective. This can generate a checkpoint 487

that can be used as for finetuning on any dataset in 488

the standard way with no additional cost. 489

Experimental Setup The masking policy in 490

MLM plays an important role in instructing model 491

learning, which can be potentially used to robus- 492

tify the model. Inspired by previous works, we 493

experiment with four heuristic masking policies as 494

baselines to implement the MLM objective: MLM 495

(vanilla), MLM (whole word), MLM (span), and 496

MLM (entity). They perform masking at token, 497

whole-word, span, and entity level repestively. 498

Starting from SpanBERT (-BASE), we run contin- 499

ual pretraining with the above objectives for 8,000 500

steps. More details are described in Appendix §C. 501

Results The results for models finetuned from 502

SpanBERT and different continually pretrained 503

models are shown in Table 7. On SQuAD, all mask- 504

ing policies slightly downgrade the performance. 505

With no much room for robustness improvement, 506

running continual pretraining is probably at the cost 507

of slightly sacrificing the performance due to the 508

inconsistent objective and discontinuous learning 509

rate that are applied when starting the continual 510

pretraining. On SearchQA and TriviaQA, out of 511

the four masking policies, the entity-based masking 512

policy shows clear improvement over SpanBERT. 513

As analyzed in §4.1, name-related domain shift is 514

a major challenge for the model to handle. By pre- 515

dicting the masked entity, the model is exposed to 516

the diverse entities in the pertraining corpus in a 517

more explicit way, and gain a better sense of the en- 518

tity boundaries. All these are helpful for the model 519

to robustly handle novel entities. 520
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SQuAD SearchQA TriviaQA

Model / Perturbation (MIX) Original DBName RandStr Original DBName RandStr Original DBName RandStr

SpanBERT 86.8±0.5 84.9±0.4 83.0±0.1 73.2±0.7 57.9±1.0 41.5±3.2 79.1±0.1 63.1±0.8 51.9±2.3

SpanBERT w/ continual pretraining
+ MLM (vanilla) 85.6±0.5 83.9±0.2 81.8±0.2 72.3±0.8 57.0±0.3 34.8±2.9 78.9±0.8 64.1±0.2 48.1±2.9

+ MLM (whole word) 86.0±0.7 84.5±0.3 82.7±0.4 72.9±0.4 58.0±0.2 41.6±3.3 79.1±0.5 64.2±0.4 50.1±0.9

+ MLM (span) 85.7±0.2 84.1±0.1 82.6±0.1 73.3±0.5 57.9±0.8 39.5±2.4 79.4±0.8 64.3±0.4 54.1±1.5

+ MLM (entity) 86.0±0.4 84.3±0.3 82.7±0.1 73.4±0.4 59.3±1.1 48.1±4.6 79.6±0.6 65.9±1.1 55.5±2.7

Table 7: EM scores on the original and perturbed test sets of TriviaQA for different continually pretrained models.

5 Related Work521

Robustness of MRC Models. The robustness of522

MRC models are usually evaluated against test-523

time perturbations and out-of-domain data. Re-524

search on test-time perturbation proposes perturba-525

tion methods at different levels as attacks (Si et al.,526

2021), such as word replacement with neighbors in527

the vector space (Rychalska et al., 2018; Jia et al.,528

2019), question paraphrasing (Gan and Ng, 2019;529

Ribeiro et al., 2018), sentence distractor injection530

(Jia and Liang, 2017; Zhou et al., 2020). Another531

line of research (Fisch et al., 2019; Sen and Saffari,532

2020) tests a model on data with out-of-domain533

passage or question distributions, usually from dif-534

ferent datasets. Our work mainly falls into the535

category of test-time perturbation. We distinguish536

from previous work by focusing on the effect of537

entity replacement, with the motivation that entities538

can have flexible and diverse names in the real life.539

Model Robustness to Entity Substitution. It is540

non-trivial for NLP models to be able to properly541

handle the large space of named entities. With dif-542

ferent types of candidate names, previous works543

audit NLP models’ sensitivity to entity substitu-544

tion with different implications. Agarwal et al.545

(2020) replace original entities in the NER datasets546

with entities of different national origin to study547

NER model’s robustness and fairness. Lin et al.548

(2021) study NER model’s reliance on name and549

context with entity substitution under the same fine-550

grained class. For other tasks, Balasubramanian551

et al. (2020) investigate the robustness of models552

trained on several NLP benchmarks with person553

name replacement. However, they only experiment554

on SQuAD for MRC and conclude it to be quite555

robust, failing to unveil the actual challenge. The556

contemporaneous work of Longpre et al. (2021)557

mainly analyzes the memorization behavior of gen-558

erative open-domain QA models using knowledge559

conflicts. The use entity substitution to create test560

passages that contain facts contradicting to what the 561

model has learned during training time. In contrast, 562

we analyze extractive MRC model’s robustness 563

when encountering new entities, by evaluating on 564

modified test sets without intentionally introduced 565

knowledge conflicts. The extractive task formu- 566

lation also makes the model unable to output its 567

memorized knowledge as generative models, lead- 568

ing to different analysis questions and methods. 569

6 Conclusion 570

In this paper, we systematically study the robust- 571

ness of MRC models to entity name substitution. 572

Specifically, we propose a substitution framework 573

along with candidate names of different implica- 574

tions. We experiment with three pretrained lan- 575

guage models on five MRC datasets. We find that 576

models trained on distantly-supervised datasets are 577

susceptible to entity name substitution, while mod- 578

els trained on human-annotated datasets are rela- 579

tively robust, with GPE renaming harder than PER 580

and ORG renaming. The lack of robustness can 581

be further attributed to model’s overreliance on en- 582

tity knowledge and name clues. We also find that 583

SpanBERT, which is pretrained using span-level 584

objectives, shows better robustness than BERT and 585

RoBERTa. Leveraging these insights, we study de- 586

fense approaches based on continual pretraining 587

and demonstrate that entity-based masking policies 588

are beneficial to model’s robustness. 589
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A Statistics of Evaluation Datasets813

As the official test sets of the MRQA datasets are814

hidden, we use the development set as the in-house815

test set, and hold out 10% of the training data as816

the in-house development set. Their statistics are817

shown in Table 8.818

Dataset # Train # Dev # Test DS?

SQuAD 77,929 8,659 10,507 7

NQ 84,577 9,367 12,836 7

HotpotQA 65,636 7,292 5,901 7

SearchQA 105,646 11,738 16,980 3

TriviaQA 42,569 4,696 7,785 3

Table 8: Evaluation datasets. “DS?” indicates whether
distant supervision is used for data collection.

We show the sizes of the perturbable subsets for819

different entity types and their union6 (MIX) in820

Table 9.821

Dataset # PER # ORG # GPE # MIX

SQuAD 1,170 1,095 602 2,613
NQ 3,257 1,207 1,414 5,150

HotpotQA 1,351 824 788 2,614
SearchQA 5,707 2,450 2,248 8,688
TriviaQA 2,747 1,276 1,270 4,351

Table 9: Statistics of the perturbable subsets for differ-
ent entity types and their union (“MIX”).

B MRC Model Training822

The pretrained language models are finetuned on823

the MRC dataset to predict the start and end tokens824

of the answer span based on the concatenated ques-825

tion and passage. We train using mixed precision,826

with batch size of 16 sequences for 4 epochs. The827

maximum sequence length is set to 256 tokens. We828

use the AdamW optimizer (Loshchilov and Hutter,829

2019) with an initial learning rate of 2e-5 that is830

linearly decayed to 0 during finetuning.831

C Details for Continual Pretraining832

MLM (vanilla) refers to the masking strategy833

used by BERT (Devlin et al., 2019), where the834

masked tokens are randomly sampled. MLM835

(whole word) always masks all tokens correspond-836

ing to a word at once. MLM (span) uses the mask-837

ing strategy proposed by Joshi et al. (2020), which838

6Some answer spans contain multiple entities of different
types. Some entities are recognized as different types for their
different mentions in the passage.

masks random spans rather than individual whole 839

words or tokens. MLM (entity) masks a random 840

entity for 50% of the time, and uses MLM (span) 841

for the other 50% of the time. The idea is inspired 842

by salient span masking proposed in Guu et al. 843

(2020). 844

To eliminate domain shift during continual pre- 845

training as a possible explanation for any improve- 846

ments, we keep the corpus for continual pretraining 847

consistent with the pretraining corpus used by Span- 848

BERT, which is the concatenation of BookCorpus 849

and English Wikipedia. We train using mixed pre- 850

cision, with effective batch size of 2,048 sequences 851

for 8,000 steps, with 256 tokens per sequence. We 852

use the AdamW optimizer with a constant learning 853

rate of 1e-4. 854

D Sources for Person Names from More 855

Cultures 856

Spanish 857
https://data.world/axtscz/ 858
spanish-first-name/workspace/file? 859
filename=ESGivenMale.json 860

https://data.world/axtscz/ 861
spanish-first-name/workspace/file? 862
filename=ESGivenFemale.json 863

https://www.kaggle.com/migalpha/ 864
spanish-names?select=male_names.csv 865

India 866
https://gist.github.com/mbejda/ 867
7f86ca901fe41bc14a63 868

https://gist.github.com/mbejda/ 869
9b93c7545c9dd93060bd 870

https://github.com/merishnaSuwal/ 871
indian_surnames_data/blob/master/indian_ 872
caste_data.csv 873

Arabic 874
https://github.com/zakahmad/ 875
ArabicNameGenderFinder 876

https://parenting.firstcry.com/ 877
baby-names/unisex/religion/muslim/ 878

https://en.wikipedia.org/wiki/Category: 879
Arabic-language_surnames 880

French 881
https://www.kaggle.com/haezer/ 882
french-baby-names 883

https://en.wikipedia.org/wiki/Category: 884
French-language_surnames 885

China 886
http://www.cjki.org/samples/chin100mil. 887
htm 888

https://github.com/psychbruce/ 889
ChineseNames 890
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