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Abstract

We study the robustness of machine read-
ing comprehension (MRC) models to entity
renaming—do models make more wrong pre-
dictions when answer entities have different
names? Such failures imply that models overly
rely on entity information to answer ques-
tions, and thus may generalize poorly when
facts about the world change or questions
are asked about novel entities. To systemat-
ically audit this issue, we present a general
and scalable pipeline to replace entity names
with names from a variety of sources, rang-
ing from common English names to names
from other cultures to arbitrary strings. Across
five datasets and three pretrained model archi-
tectures, MRC models consistently perform
worse when entities are renamed, with partic-
ularly large accuracy drops on datasets con-
structed via distant supervision. We also find
large differences between models: SpanBERT,
which is pretrained with span-level masking,
is more robust than RoBERTa, despite hav-
ing similar accuracy on unperturbed test data.
We further experiment with different masking
strategies as the continual pretraining objec-
tive and find that entity-based masking can im-
prove the robustness of MRC models.!

1 Introduction

The task of machine reading comprehension
(MRC) measures machines’ understanding and rea-
soning abilities. Recent research advances (Devlin
et al., 2019; Yang et al., 2019; Khashabi et al.,
2020) have driven MRC models to reach or even
exceed human performance on several MRC bench-
mark datasets. However, their actual ability to
solve the general MRC task is still questionable
(Kaushik and Lipton, 2018; Sen and Saffari, 2020;
Sugawara et al., 2020; Lai et al., 2021). While hu-
mans show robust generalization on reading com-
prehension, existing works have revealed that MRC
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[Question] Who got the first place in the game?

[Passage] [Answer]
Original Model: o
... James beat Jack and won the championship. James
Robustness Evaluation ‘
! Perturbation: InDistName Model: () |
! ... Michael beat Jack and won the championship.  Michael
Perturbation: DBName Model: (** i
i ... Ashvith beat Jack and won the championship.  Ashvith
' Perturbation: RandStr Model: () |
' ... Uglcs beat Jack and won the championship. Uglcs

Figure 1: An illustrative example of the robustness to
entity renaming and our proposed perturbations for ro-
bustness evaluation. “Michael” is from the answer of
another test instance. “Ashvith” is a person name from
an external database. “Uqlcs” is a random string with
the same length as the original name.

models generalize poorly to out-of-domain data dis-
tributions (Fisch et al., 2019) and are brittle under
test-time perturbations (Pruthi et al., 2019; Jia et al.,
2019; Jia and Liang, 2017). All these issues could
naturally happen to MRC systems deployed in the
wild, hindering them to make reliable predictions
on user inputs with great flexibility.

In this work, we focus on an important but under-
studied type of test-time distribution shift caused
by novel entity (e.g., people and companies) names.
For a MRC model, besides the evidence provided
by the surrounding context, it also has the capacity
to leverage the entity information to make predic-
tions. The information associated with the entity
name covers both world knowledge that can change
over time and dataset shortcuts that are unlikely to
generalize. While contributing to performance on
certain benchmarks, the over-reliance on specific
entity names leads to an overestimation of model’s
actual ability to read and comprehend the provided
passage (Pefias et al., 2011). It also hinders the
model to generalize to novel entity names, which
itself is challenging due to the large space of valid



entity names induced by the flexibility of entity
naming. For example, person names can be chosen
from a large vocabulary depending on the culture,
while companies can be named in an even more
creative way, not to mention new names that are
being invented every day. As illustrated in Figure
1, keeping the reasoning context unchanged, a ro-
bust MRC model is supposed to correctly locate the
same span of a named entity as the answer, even
after it gets renamed.

To audit model robustness, we use entity renam-
ing as test time perturbation to mimic the situation
where a deployed MRC model encounters ques-
tions asking for novel entity names in the emerging
data. We design a general pipeline to generate
natural perturbations of MRC instances by swap-
ping the answer entity name with another valid
name throughout the passage. We design perturba-
tion rules and collect resources for three types of
entities with large name space, including Person,
Organization, and Geopolitical Entity.

With the proposed analysis framework, we con-
duct extensive experiments on five datasets and
three pretrained language models. Data-wise, we
find that distantly supervised MRC datasets lead to
less robustness. Entity-wise, we find that Geopolit-
ical Entity poses the greatest challenge than Person
and Organization when renamed. Model-wise, we
find that SpanBERT is more robust than BERT and
RoBERTa, mainly due to less sensitivity to domain
shift on names, which is likely to be the benefit of
span-focused pre-training objectives. Inspired by
this, we investigate several objectives via continual
pretraining and find that an entity-based masking
strategy can further enhance the robustness.

2 Analysis Setup

2.1 Extractive MRC

The task of MRC tests a machine’ understanding
and reasoning abilities by asking it to answer the
question based on the provided passage. We focus
on extractive MRC, where the answer is a span
in the passage. Formally, given a question () and
a passage P of n tokens P = {z1...,2z,}, an
extractive MRC model is expected to predict an
answer spana = {z;, ..., T4k} (1 <i <i+k <
n) in the passage P as a response to the question
(). We use exact match (EM) as the metric for
MRC evaluation, which is the percentage of test
instances that the model exactly predicts one of the
gold answers.

In both real-world scenarios and MRC datasets,
a large portion of questions ask about entities like
people, organizations and locations. While unmen-
tioned background knowledge about the entities
might be helpful for solving the questions, overly
relying on it makes the model hard to adapt to up-
dated facts provided by the passage and generalize
to novel entities. Especially, we contrast MRC with
closed-book QA, which requires a model to directly
answer questions without access to any document
passage. Closed-book QA tests a model’s ability
to pack knowledge into its parameters and retrieve
knowledge from parameters to answer the question.
On the contrary, we expect a MRC model to reason
based on the provided passage.

2.2 Evaluation Protocol

We study the robustness of MRC models via test-
time perturbation. Given an original test set Dieg
and a perturbation function fperurs (detailed in §3)
as inputs, we construct N perturbed test sets with
N different random seeds. We evaluate the model
on the N perturbed test sets. By averaging the
results, we get the average-case EM score as the
final metric, which measures the average impact on
the model performance caused by the names from a
certain perturbation. We set N = 5 in experiments.

2.3 Datasets

We choose five datasets with different characteris-
tics from the MRQA 2019 shared task (Fisch et al.,
2019): SQuAD (Rajpurkar et al., 2016), Natural
Questions (NQ) (Kwiatkowski et al., 2019), Hot-
potQA (Yang et al., 2018), SearchQA (Dunn et al.,
2017), and TriviaQA (Joshi et al., 2017) (statistics
in Appendix §A). As a major difference in data
collection, SQuAD, NQ, and HotpotQA employ
crowdworkers to annotate the answer span in the
passage, while SearchQA and TriviaQA use distant
supervision to match the passage with the question.
Distant supervision provides no guarantee that the
passage contains enough evidence to derive the an-
swer. The context where the entity span shows up
may not even be related to the question.

2.4 MRC Models

We experiment with three pretrained language mod-
els that have demonstrated strong performance
on popular MRC benchmarks. BERT (Devlin
et al.,, 2019) is trained on English Wikipedia
plus BookCorpus with masked language model-
ing (MLM) and next sentence prediction (NSP) as



self-supervised objectives. ROBERTa (Liu et al.,
2019) improves over BERT mainly by dropping
the NSP objective and increasing the pretraining
time and the size of pretraining data. SpanBERT
(Joshi et al., 2020) masks random contiguous spans
to implement MLM and replaces NSP with a span-
boundary objective (SBO). All pretrained language
models in the main experiments are case-sensitive
and in their BASE sizes. The finetuning details are
shown in Appendix §B.

3 Entity Name Substitution

In this section, we introduce our method for per-
turbing a MRC test set with substitution entity
names, i.e., the instantiation of fyerurb. Generat-
ing substitution names is at the core of our evalua-
tion as different kinds of names measure a model’s
behavior in different situations with different ro-
bustness implications. We propose three categories
of perturbations on three entity types and collect
the corresponding name resources, aiming to audit
a model’s robustness from different perspectives.

3.1 Perturbation Pipeline

As illustrated in Figure 2, our perturbation pipeline
consists of four steps, which are introduced below.

Step 1: Answer Entity Recognition. As we fo-
cus on the effect of answer entity renaming, we
first identify entities in the answers by perform-
ing named entity recognition (NER) with spaCy
(Honnibal et al., 2020) on the passage and extract
the results on the answer spans. We identify three
types of named entities: Person (PER), Organiza-
tion (ORG), and Geopolitical Entity (GPE). All of
them frequently appear as answers and have large
space of valid names, making it important and chal-
lenging for models to robustly handle.

Step 2: Perturbable Span Identification. To fa-
cilitate name substitution, we assign metadata to
detected entity names by identifying perturbable
spans within the entity name. For each type of en-
tity names, we define the applicable span types in
Table 1. For PER, we only consider names with one
or two words. A one-word name is considered as
a first name, while a two-word name is considered
as a full name, with the first word being the first
name and the second word being the last name. We
infer the gender of the detected name to be male,
female, or neutral with gender—guesser.? For

2https ://pypi.org/project/gender—-guesser/

Entity Type ‘ Applicable Types of Perturbable Spans

<First Name-Male> (e.g., Richard, Morton)
PER <First Name-Female> (e.g., Lauren, Jennifer)

“4) <First Name-Neutral> (e.g., Shine, Frankie)
<Last Name> (e.g., Marx, Winfrey)

<NNP> (e.g., Celtic, Tiffany)
<Rare> (e.g., Hufflepuff, Pokemon)

ORG ‘
(6))

<GPE-Country> (e.g., Iceland, Algeria)
<GPE-State> (e.g., New Brunswick, Ohio)
<GPE-City> (e.g., Boston, Sonsonate)

GPE
©)

Table 1: Applicable metadata for each entity type in the
perturbation pipeline.

GPE, we detect its contained country names, state
names, and city names by string matching with
the Countries States Cities Database®. For ORG,
besides mentions of GPE names, we include two
additional types of perturbable words identified us-
ing Penn Treebank (PTB) (Marcus et al., 1993).
Words that are annotated as NNP(S) for more than
90% of the time in PTB are considered as proper
nouns (dented as <NNP>), which are usually spe-
cialized for naming an entity. Words outside PTB
are considered as rare words (denoted as <Rare>),
which are likely to be invented by people to name
an entity. These two kinds of words are weakly
related to the characteristics of the entity and thus
can be flexible. Note that given one or more entity
types of interest, in this step we filter the test data
to only keep a subset of instances with non-empty
metadata for the corresponding entity types, which
are instances that are ready to be perturbed. Sizes
of the perturbable subsets for different entity types
and their union (MIX) are shown in Appendix §A.

Step 3: Candidate Name Sampling. For each
perturbable span, we gets its substitution name by
querying an external dictionary with the span type.
The substitution name is randomly sampled from a
pool of names in the external dictionary that is la-
beled with the same span type. We collect multiple
dictionaries with names of different characteristics
serving for different analysis purpose, which are
detailed in §3.2.

Step 4: Name Substitution. Once we have a
candidate name for each perturbable span, we per-
form string mapping on the passage, question, and
the gold answer, to finish the entity renaming in
MRC instances. The name substitution changes all
mentions of the answer entity in the passage while
keeping the other reasoning context.

3 . .
https://countrystatecity.in/
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Perturbable Span: <Span Type>
PER

{Py, Q1, A{: Jason Marsden }
Marsden: <Last Name>
{P,, Q;, Ay: Panning }
ORG .
{P;, Qs, As: Los Angeles Dodgers } Los Angeles: <GPE-City>
Dodgers: <NNP>
{Py, Qq, Agr 23}

GPE

{Ps, Qs, As: Germany }

® Answer Entity

@ Perturbable Span
Recognition

Identification

Jason: <First Name-Male> —

Germany: <GPE-Country> —

DBName (Jason =» Frank)

(Marsden =» Pritchard)

— Frank
{P1, Q1, A} — {P1,; Qll’ All}
— Pritchard
(Los Angeles =¥» Chicago)
___ Categorized _ Chicago (Dodgers =» Braves)
Candidate

{P3, Q3, A3} — {P3’, Q3’, A3’}

Names  — Braves

(Germany =» New Zealand)
— NewZealand {Ps, Qs, As} —— {Ps’, Q5', A5’}

@ Candidate Name

. (@) Name Substitution
Sampling

Figure 2: The perturbation pipeline for performing entity name substitution on MRC instances.

3.2 Candidate Name Collection

We consider three types of candidate names for
perturbations in our main experiment to simulate
the domain shift of entity names during test time.

In-Distribution Name (InDistName). The set
of candidate names along with their span types
is the same as the perturbable spans along with
their types identified from the gold answers in the
test set. This ensures that the new names follow the
same distribution as the original names.

Database Name (DBName). We collect names
in the real world by referring to relevant databases.
For PER, we collect first names* (with gender fre-
quency) and last names’ from the official statistics
of person names in the U.S.. (We experiment with
names from other cultures in §4.2.) We regard a
first name as a male/female name if its male/female
frequency is two times larger than its frequency of
the opposite gender. The remaining names are con-
sidered as neutral. Following the practice for iden-
tifying perturbable spans, we get the list of coun-
try/state/city names using Countries States Cities
Database and the NNP list using PTB. Rare words
constitute an open vocabulary so they will not be
substituted under the DBName perturbation.

Random String (RandStr). The RandStr pertur-
bation is different from the other two as it neglects
the query span type when preparing the candidates.
We generate a random alphabetical string of the
same length and casing as the original perturbable
span. Names from low-resource languages can
look quite irregular to the pretrained language mod-
els. Random string as an extreme case provides an

4https://www.ssa.gov/oact/babynames/limits.html

5https://www.census.gov/topics/population/
genealogy/data/2010_surnames.html

Accuracy (%) | PER ORG GPE
Perturbable Span Identification | 93.3 86.7 93.3
Name Substitution 86.7 96.7 96.7

Table 2: Validity of the two key steps in the pertur-
bation pipeline on 30 randomly sampled TriviaQA in-
stances for each entity type.

estimation of the performance in this scenario.

3.3 Perturbation Quality

The validity of the perturbed instances depends on
the quality of the perturbation pipeline (§3.1). We
manually check the accuracy of the perturbation
steps on TriviaQA, which demonstrates the largest
performance drop as we will show. Out of the four
steps in the pipeline (Figure 2), we evaluate the ac-
curacy of step 2 (“Perturbable Span Identification™)
and step 4 (“Name Substituion”). The accuracy
of step 2 is evaluated based on whether the per-
turbable spans and their corresponding span types
are all correct for an instance, which also implies
the quality of step 1 (“Answer Entity Recognition™)
as different entity types have different applicable
span types. The accuracy of step 4 is evaluated
based on whether the string mapping function suc-
cessfully locates all mentions of the perturbable
spans in the passage to perform string mapping.
The quality of step 3 can be inferred from the ac-
curacy of step 2 for InDistName perturbation. For
DBName, we assume the database is of accept-
able quality in the sense that all names it provides
belongs to the correct span type, which is guaran-
teed by the source of the data — PTB is annotated
by human experts, U.S. names come from official
statistics, and GPE names are actively maintained
by its creator and the community for more than 3
years. RandStr is proposed to stimulate the extreme
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BERT@MIX ‘ SQuAD NQ HotpotQA  SearchQA  TriviaQA BERT ‘ SQuAD NQ HotpotQA  SearchQA  TriviaQA
Original | 81.2003 644110 60.0002  69.5011  73.4s0s PER-Original | 82.8:04 69.3100 63.1t01  69.7:14  73.6x07
InDistName | 787106 620412 568404 536113 59.0414 PERPgSfiame 81‘1%0-8 68'f§1-0 Goff'-? 541-2i12-3 541";%1-6

DBName | 78.8:109 62.1:i13 549103 50.2:18 50411 - : : = 5. .
RandStr 76.9410 59.0417  49.5408 23.6+1.2 25.441.4 ORG-Original | 79.7406 52.1112 58.0403 66.7+1.5 73.8415
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Table 3: Comparison of different datasets. EM

L GPE—Original 79<1i1.0 54-5i1.7 55.8i0_5 74-4i0.8 76-4iﬂ.6
scores of BERT on the original and perturbed test sets GPE-DBName | 73.7411 495107 439413  40.1.s 40.1p53

of the MIX entity type. GPE-A 54 5.0 11.9 343 363

case, and we therefore do not evaluate its quality.
As shown in Table 2, our method gets acceptable
accuracy on the three entity types, confirming the
quality of the perturbation pipeline.

4 Results and Analysis
4.1 Main Results

The EM scores of the three models on the origi-
nal and perturbed test sets are presented in Figure
3. We analyze the results from several angles by
aggregating across certain dimensions.

Training on MRC datasets created with distant
supervision leads to less robustness. In Table
3, we show the results of BERT on the original
and perturbed test sets, while results of RoOBERTa
and SpanBERT show similar patterns. The per-
turbations on all 3 entity types are combined
(shown as “MIX”). We find that models trained
on SQuAD, NQ, and HotpotQA (with at most 6%
performance drop under the DBName perturbation)
are significantly more robust than models trained
on SearchQA and TriviaQA (with about 20% per-
formance drop under the DBName perturbation).
While the first group of datasets are human-labeled,
the later group of datasets are constructed using
distant supervision. Such correlation indicates that
training noise due to mismatched questions and pas-
sages harms model’s robustness. We hypothesize
the reason to be that, the passage in the human-
annotated datasets usually provides enough evi-
dence to derive the answer, so a model is able to
learn the actual task of “reading comprehension”
from the data. On the contrary, SearchQA and Triv-
1aQA use web snippets as the source of passages.
The labeling process of distant supervision assumes
that “the presence of the answer string implies the
document does answer the question” (Joshi et al.,
2017), while the document may or may not contain
all facts needed to support the answer. In this case,
because the actual reading comprehension task is
difficult to learn due to lack of evidence, the model
could be prone to use entity-specific background

Table 4: Comparison of different entity types. EM
scores of BERT on the Original and DBName test sets.

MIX ‘ BERT RoBERTa SpanBERT
Original | 69.511.1/73.4x08 7T4.1102/78.6:04 73.210.7/79.110.1
InDistName | 53.6413/59.0414 60.7104/67.8411 60.3414/68.3 108
DBName | 50.211.8/50.4416 54.041.0/60.510.9 57.941.0/63.1108
RandStr 23.641.2/25.4414 21.0448/35.6402 41.5132/51.9493

Table 5: Comparison of different models. EM scores
on the original and perturbed test sets of the MIX entity
type on SearchQA/TriviaQA.

knowledge (e.g. assuming that “Jack Higgins” is
a British author regardless of the context) or learn
dataset-specific shortcuts associated with certain
names via memorization (e.g., choosing “Jack Hig-
gins” whenever it’s mentioned in the passage and
the question asks for an author), which causes the
robustness issue.

GPE renaming poses the greatest robustness
challenge. The renaming of PER and ORG
are similarly less challenging. In Table 4, we
present the performance drop caused by the DB-
Name perturbation for each entity type. GPE
renaming shows the largest performance drop.
The comparison of PER and ORG differs across
datasets, but their corresponding performance
drops are generally similar. The reason is likely to
be that the model is only exposed to a small number
of distinct GPE names during finetuning compared
to PER and ORG. In the training set of TriviaQA,
there are 40k ORG names and 54k PER names,
but only 12k GPE names. The lack of seen names
makes it hard to learn the generalization ability.

On distantly supervised datasets, SpanBERT is
more robust than RoBERTa, which is more ro-
bust than BERT. In Table 5, we show the per-
formances of the three models under perturbations
of the MIX entity type on SearchQA and TriviaQA.
While RoBERTa and SpanBERT show compara-
ble performances on the original and InDistName
test sets, SpanBERT’s improvement over RoOBERTa
becomes larger as the substitution names become
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Figure 3: Main results. EM scores for MRC models evaluated on datasets under different perturbations.

more out-of-distribution. Meanwhile, BERT shows
even larger performance decreases than RoOBERTa.
The models’ performance differences are mainly
attributed to their different pretraining strategies.
RoBERTa’s improvement over BERT indicates that
a better pretraining configuration (as measured by
the performance on the in-domain original test set)
is also beneficial to the performance on the per-
turbed test sets, suggesting better generalization
ability to the out-of-domain data. This correla-
tion is consistent with the findings in Miller et al.
(2021). SpanBERT’s particular advantage on the
perturbed test sets indicates its span-focused pre-
training objective (span-based MLM and span pre-
diction based on boundary tokens) is especially
helpful for the span-related robustness, which is
desired for the MRC task.

Both loss of entity knowledge and domain shift
on names happen during renaming. Span-
BERT’s superior robustness over RoOBERTa is
mainly from handling domain shift. The infor-
mation associated with the entity name that can
be leveraged by the model includes both entity
knowledge and name clues. Entity knowledge
refers to the world knowledge about with the re-
ferred entity, like “Michelle Obama is the wife of
Barack Obama,” while name clues refer to statisti-
cal clues associated with the name’s surface form,

like “Barack Obama is likely to be a male name”,
“Barack Obama as an in-distribution name is likely
to be the answer for this dataset”. While all per-
turbations break the entity knowledge about the
original entity, InDistName doesn’t introduce do-
main shift on names and largely preserve the name
clues. Going from InDistName to other perturba-
tions, the substituted names can be more and more
out of the dataset distribution. This performance
drop can be attributed to the model’s sensitivity to
name-related domain shift. From SearchQA and
TriviaQA results in Table 5, we find that RoOBERTa
and SpanBERT rely similarly on the entity knowl-
edge (~13% performance drop from Original to In-
DistName on SearchQA and ~11% on TriviaQA).
SpanBERT’s advantage over RoBERTa is mainly
on its good robustness to domain shift on names,
shown by the perfromance drop from IndistName
to other perturbations. BERT relies slightly more
on entity knowledge but much more sensitive to
domain shift on names.

4.2 Bias Exhibited by Person Names

Cultural Bias. As the DBName perturbation
uses person names in the U.S., it cannot fully reflect
the model’s robustness behavior when encounter-
ing real-world names from diverse cultural back-
grounds. Therefore, we additional collect names



Country/ BERT RoBERTa SpanBERT
Language
US. | 54.6103/54.6216 58.1:00/66.1105 63.0:1.1/69.107

French 55.5.190/56.111.7
India 53.542.5/51.9497
Arabic 53.3133/48.813_2
China 46.2125/44.85{_5

RandStr | 25.011.6/28.941.6

58.241.1/66.0+05
56.3+2.1/61.810.9
54.040.8/63.0+1.4

22.044.7/41.310.8

63.041.2/68.840.9
63.041.1/68.040.4
59.342.0/65.2+0.4

44.6144.0/57 4424

Table 6: Performance comparison of person names
from different cultures. EM scores on the origi-
nal and perturbed test sets of the PER entity type on
SearchQA/TriviaQA.

(sources listed in Appendix §D) from more coun-
tries (India, China) and languages (French, Arabic)
to study the cultural bias in MRC models. We use
the romanized form of names. Table 6 shows the
performance comparison of models when evalu-
ated with the person names from different cultures
on SearchQA and TriviaQA. Names form the U.S.
and French-speaking countries generally achieve
the highest EM scores. Names from China get the
lowest performance for the most of time, with sig-
nificant EM drop (8.4% on SearchQA and 9.8% on
TriviaQA for BERT) from U.S. names. The per-
formance gap between different cultures becomes
smaller with more robust models.

Other Factors. We also consider other factors
of a name that could be related to biased model
performance. We limit our scope to the U.S. first
names and sample 1500 names from the database.
We consider two features for each name. Gender
polarity is defined as max(%’j, ]{—fﬂ), where fr,, fr
are the male frequency and female frequency of a
name provided by the database. It measures the
gender ambiguity of the name. Popularity is de-
fined as f,,, + fr. We calculate the EM score for
a name by evaluating on a test set where all an-
swer first names get replaced with this name. For
what we have tried, we didn’t find evidence to sup-
port a correlation between each factor and the EM
score. For example, with SpanBERT on TriviaQA,
names with top 20% gender polarity gets 72.7%
EM; while the bottom 10% names gets 72.8% EM.
The numbers are 73.0% vs 72.7% for popularity.
We leave exploring factors that correlate with the
difficulty of a name as future work.

4.3 Improving Robustness with Continual
Pretraining

SpanBERT’s advantage over BERT suggests that
some variants of MLM could be helpful for model

robustness. To further robustify SpanBERT, we
adopt a training paradigm with an inserted con-
tinual pretraining stage and compare MLM with
different masking strategies as the objectives.

Training Paradigm Existing works mainly seek
to robustify the model during finetuning with strate-
gies like data augmentation (Ribeiro et al., 2019;
Min et al., 2020), but they usually increase finetun-
ing time and requires additional data. Some recent
works (Gururangan et al., 2020; Ye et al., 2021)
have explored improving a pretrained language
model with “continual pretraining” — continuing
to train a pretrained model for more steps with the
some objective. This can generate a checkpoint
that can be used as for finetuning on any dataset in
the standard way with no additional cost.

Experimental Setup The masking policy in
MLM plays an important role in instructing model
learning, which can be potentially used to robus-
tify the model. Inspired by previous works, we
experiment with four heuristic masking policies as
baselines to implement the MLM objective: MLM
(vanilla), MLM (whole word), MLM (span), and
MLM (entity). They perform masking at token,
whole-word, span, and entity level repestively.
Starting from SpanBERT (-BASE), we run contin-
ual pretraining with the above objectives for 8,000
steps. More details are described in Appendix §C.

Results The results for models finetuned from
SpanBERT and different continually pretrained
models are shown in Table 7. On SQuAD, all mask-
ing policies slightly downgrade the performance.
With no much room for robustness improvement,
running continual pretraining is probably at the cost
of slightly sacrificing the performance due to the
inconsistent objective and discontinuous learning
rate that are applied when starting the continual
pretraining. On SearchQA and TriviaQA, out of
the four masking policies, the entity-based masking
policy shows clear improvement over SpanBERT.
As analyzed in §4.1, name-related domain shift is
a major challenge for the model to handle. By pre-
dicting the masked entity, the model is exposed to
the diverse entities in the pertraining corpus in a
more explicit way, and gain a better sense of the en-
tity boundaries. All these are helpful for the model
to robustly handle novel entities.



\ SQuAD SearchQA \ TriviaQA

Model / Perturbation (MIX) ‘ Original DBName RandStr ‘ Original DBName RandStr ‘ Original DBName RandStr
SpanBERT | 86.8:105 84.9:104 83.0101 | 732:07 579110 415:32 | 79.1w01  63.1ios 519123
SpanBERT w/ continual pretraining

+ MLM (vanilla) 85.6i0>5 83.9i0>2 81.8i0_2 72~3i0.8 57'0i0.3 34.8i2_9 78.9i0_3 64.1i0_2 48.1i2>9
+ MLM (Wh()le word) 86.0i0.7 84.5i0.3 82.7i0,4 72~9i0,4 58.0i042 41.6i3_3 79~1i0.5 64.2i0_4 50-1i0.9
+ MLM (span) 85‘7i0.2 84‘1i0.1 82‘6i0.1 73~3i045 57~9i0,8 39~5i2,4 79.4i0,g 64.3i0,4 54‘1i1,5
+ MLM (entity) 86.0404 843403 82.7401 | 734404 593111 481446 | 79.6106 659411 555427

Table 7: EM scores on the original and perturbed test sets of TriviaQA for different continually pretrained models.

5 Related Work

Robustness of MRC Models. The robustness of
MRC models are usually evaluated against test-
time perturbations and out-of-domain data. Re-
search on test-time perturbation proposes perturba-
tion methods at different levels as attacks (Si et al.,
2021), such as word replacement with neighbors in
the vector space (Rychalska et al., 2018; Jia et al.,
2019), question paraphrasing (Gan and Ng, 2019;
Ribeiro et al., 2018), sentence distractor injection
(Jia and Liang, 2017; Zhou et al., 2020). Another
line of research (Fisch et al., 2019; Sen and Saffari,
2020) tests a model on data with out-of-domain
passage or question distributions, usually from dif-
ferent datasets. Our work mainly falls into the
category of test-time perturbation. We distinguish
from previous work by focusing on the effect of
entity replacement, with the motivation that entities
can have flexible and diverse names in the real life.

Model Robustness to Entity Substitution. It is
non-trivial for NLP models to be able to properly
handle the large space of named entities. With dif-
ferent types of candidate names, previous works
audit NLP models’ sensitivity to entity substitu-
tion with different implications. Agarwal et al.
(2020) replace original entities in the NER datasets
with entities of different national origin to study
NER model’s robustness and fairness. Lin et al.
(2021) study NER model’s reliance on name and
context with entity substitution under the same fine-
grained class. For other tasks, Balasubramanian
et al. (2020) investigate the robustness of models
trained on several NLP benchmarks with person
name replacement. However, they only experiment
on SQuAD for MRC and conclude it to be quite
robust, failing to unveil the actual challenge. The
contemporaneous work of Longpre et al. (2021)
mainly analyzes the memorization behavior of gen-
erative open-domain QA models using knowledge
conflicts. The use entity substitution to create test

passages that contain facts contradicting to what the
model has learned during training time. In contrast,
we analyze extractive MRC model’s robustness
when encountering new entities, by evaluating on
modified test sets without intentionally introduced
knowledge conflicts. The extractive task formu-
lation also makes the model unable to output its
memorized knowledge as generative models, lead-
ing to different analysis questions and methods.

6 Conclusion

In this paper, we systematically study the robust-
ness of MRC models to entity name substitution.
Specifically, we propose a substitution framework
along with candidate names of different implica-
tions. We experiment with three pretrained lan-
guage models on five MRC datasets. We find that
models trained on distantly-supervised datasets are
susceptible to entity name substitution, while mod-
els trained on human-annotated datasets are rela-
tively robust, with GPE renaming harder than PER
and ORG renaming. The lack of robustness can
be further attributed to model’s overreliance on en-
tity knowledge and name clues. We also find that
SpanBERT, which is pretrained using span-level
objectives, shows better robustness than BERT and
RoBERTa. Leveraging these insights, we study de-
fense approaches based on continual pretraining
and demonstrate that entity-based masking policies
are beneficial to model’s robustness.
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A Statistics of Evaluation Datasets

As the official test sets of the MRQA datasets are
hidden, we use the development set as the in-house
test set, and hold out 10% of the training data as
the in-house development set. Their statistics are
shown in Table 8.

Dataset ‘ #Train #Dev #Test DS?
SQuAD 77,929 8,659 10,507 X
NQ 84,577 9,367 12,836 X
HotpotQA | 65,636 7,292 5,901 X
SearchQA | 105,646 11,738 16,980 v
TriviaQA 42,569 4,696 7,785 /

Table 8: Evaluation datasets. “DS?” indicates whether
distant supervision is used for data collection.

We show the sizes of the perturbable subsets for
different entity types and their union® (MIX) in
Table 9.

Dataset | #PER #ORG #GPE | #MIX
SQUAD | 1,170 1,095 602 | 2613
NQ 3257 1207 1414 | 5150
HotpotQA | 1351 824 788 | 2,614
SearchQA | 5707 2450 2248 | 8688
TriviaQA | 2,747 1276 1270 | 4351

Table 9: Statistics of the perturbable subsets for differ-
ent entity types and their union (“MIX”).

B MRC Model Training

The pretrained language models are finetuned on
the MRC dataset to predict the start and end tokens
of the answer span based on the concatenated ques-
tion and passage. We train using mixed precision,
with batch size of 16 sequences for 4 epochs. The
maximum sequence length is set to 256 tokens. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with an initial learning rate of 2e-5 that is
linearly decayed to O during finetuning.

C Details for Continual Pretraining

MLM (vanilla) refers to the masking strategy
used by BERT (Devlin et al., 2019), where the
masked tokens are randomly sampled. MLM
(whole word) always masks all tokens correspond-
ing to a word at once. MLM (span) uses the mask-
ing strategy proposed by Joshi et al. (2020), which

®Some answer spans contain multiple entities of different

types. Some entities are recognized as different types for their
different mentions in the passage.

11

masks random spans rather than individual whole
words or tokens. MLM (entity) masks a random
entity for 50% of the time, and uses MLM (span)
for the other 50% of the time. The idea is inspired
by salient span masking proposed in Guu et al.
(2020).

To eliminate domain shift during continual pre-
training as a possible explanation for any improve-
ments, we keep the corpus for continual pretraining
consistent with the pretraining corpus used by Span-
BERT, which is the concatenation of BookCorpus
and English Wikipedia. We train using mixed pre-
cision, with effective batch size of 2,048 sequences
for 8,000 steps, with 256 tokens per sequence. We
use the AdamW optimizer with a constant learning
rate of le-4.

D Sources for Person Names from More
Cultures

Spanish
https://data.world/axtscz/
spanish-first-name/workspace/file?
filename=ESGivenMale. json
https://data.world/axtscz/
spanish-first-name/workspace/file?
filename=ESGivenFemale. json
https://www.kaggle.com/migalpha/
spanish-names?select=male_names.csv

India

https://gist.github.com/mbejda/

7£86ca901fedlbcldatb3
https://gist.github.com/mbe’jda/

9p93c7545¢c9dd93060bd
https://github.com/merishnaSuwal/

indian_surnames_data/blob/master/indian_

caste_data.csv

Arabic

https://github.com/zakahmad/

ArabicNameGenderFinder
https://parenting.firstcry.com/

baby-names/unisex/religion/muslim/
https://en.wikipedia.org/wiki/Category:

Arabic-language_surnames

French

https://www.kaggle.com/haezer/

french-baby-names
https://en.wikipedia.org/wiki/Category:

French-language_surnames

China
http://www.cjki.org/samples/chinl00mil.
htm

https://github.com/psychbruce/
ChineseNames
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