TOWARDS FEDERATED DOMAIN UNLEARNING: VERI-FICATION METHODOLOGIES AND CHALLENGES

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

016

017

018

019

021

023

025

026

027

028

029

031

032

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Federated Learning (FL) has emerged as a powerful training paradigm that coordinates multiple clients to collaboratively train a shared model while preserving data privacy. The Right to Be Forgotten (RTBF), a key provision in many data protection regulations, calls for effective approaches to remove, or unlearn specific training data from the learned FL model. Thus, different federated unlearning techniques are proposed to effectively remove the influence of specific data and preserve the global model's performance. However, existing federated unlearning approaches primarily develop and test in single-domain scenarios, and their effectiveness in multi-domain environments remains unverified. In such heterogeneous scenarios, domain differences pose significant challenges not only to the unlearning process itself but also to the methods used for verifying whether unlearning has been successful. This raises a critical question: can traditional unlearning validation methods, originally designed for single-domain tasks, still provide reliable assessments in multi-domain scenarios? Given the prevalence of multi-domain data in real-world applications, addressing these challenges is crucial for the practical deployment of federated unlearning. In this paper, we address these critical gaps by presenting the first comprehensive empirical study on Federated Domain Unlearning. We systematically analyze the characteristics, limitations, and effectiveness of current unlearning and validation techniques under multi-domain conditions. Additionally, we propose novel validation methodologies explicitly tailored for Federated Domain Unlearning, facilitating precise assessment and verification of domain-specific data removal without compromising the overall integrity and performance of the global model.

1 Introduction

Federated Learning (FL) has emerged as an innovative approach to machine learning, enabling collaborative model training across multiple decentralized entities while preserving data privacy Konečný et al. (2016); Kairouz et al. (2019); Li et al. (2020b). This methodology is particularly valuable in sectors such as healthcare, finance, and telecommunications, where data privacy and security are critical concerns Li et al. (2020a); Tam et al. (2023b;a). While FL preserves data privacy during model training, the Right to Be Forgotten (RTBF) Kalis (2014) presents new challenges for FL systems as many data protection regulations incorporate this provision. RTBF requires organizations and data controllers to remove user data upon request, necessitating techniques that preserve model accuracy while complying with privacy regulations such as the General Data Protection Regulation (GDPR) European Parliament and Council of the European Union (2016) and the California Consumer Privacy Act (CCPA) California Department of Justice (2020).

To address RTBF requirements, researchers have developed an advanced federated scheme termed "federated unlearning" Liu et al. (2023); Jeong et al. (2024); Liu et al. (2021). Federated unlearning aims to create methods that effectively remove the influence of specific data and preserve the model performance in FL Halimi et al. (2022); Wang et al. (2022); Wu et al. (2022b); Gao et al. (2024). The federated unlearning process typically involves two key steps: information removal and performance recovery. Information removal seeks to erase the effects of targeted data from the trained model, ensuring it behaves as if it had never seen this data. Common techniques include selecting historical information Liu et al. (2021), approximating loss functions Halimi et al. (2022), and manipulating gradients Che et al. (2023). After removing data

055

057 058

060

061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

081

082

083

084

085

087

880

089

090

091

092

094

096

098

100

101

102

103

104

105

106

107

influences, it's crucial to restore the global model's performance, as this removal often leads to performance decline. To recover performance, federated unlearning methods usually employ additional training rounds, knowledge distillation, and fine-tuning with gradient manipulation.

While existing federated unlearning techniques show promise in theory, applying them in practical scenarios presents significant challenges. One of the primary obstacles is data heterogeneity, a common characteristic of real-world federated learning environments Huang et al. (2023b); Li et al. (2020b). A limited number of existing federated unlearning methods consider label skew, where distributed data are from the same domain but have different label distributions. These methods typically simulate data heterogeneity via imbalanced sampling, for example, using the Dirichlet strategy Li et al. (2020b) to generate varying label distributions within the same domain across clients. Nonetheless, another notable form of data heterogeneity in federated learning is domain skew, where client data samples come from

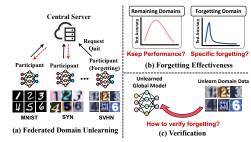


Figure 1: Problem illustration of federated domain unlearning. (b) Can existing federated unlearning methods precisely identify and remove domain-specific influences without affecting the remaining domains? (c) How can we completely and effectively evaluate the forgetting performance on the specific unlearned domain?

various domains while maintaining the same label distribution Huang et al. (2023b); Li et al. (2021). Under domain skew, local data are sampled from multiple domains, resulting in significant disparities in distributed data. While existing methods have developed advanced federated learning training techniques to improve the global model's generalizability by assimilating general knowledge across diverse domains, domain skew remains an underexplored challenge for federated unlearning. In light of this, we argue that there are two primary concerns with existing federated unlearning methods, as illustrated in Figure 1: I) Forgetting Effectiveness: Can existing federated unlearning methods precisely identify and remove domain-specific influences without affecting the data or contributions of other domains, thus maintaining the integrity of their information within the model? Due to domain skew, different domain data can have varying impacts on the model parameters LeCun et al. (1989); Yang et al. (2023); Shoham et al. (2019). Some parameters of the neural network are more important to specific domains Chen et al. (2024); Huang et al. (2023a), meaning that changes in these parameters may have a larger impact on performance for those domains. This variability in parameter importance across domains complicates the task of selective forgetting. II) Verification on Un**learned Domain:** How can we comprehensively and effectively evaluate the forgetting performance on the specific unlearned domain? In federated domain unlearning, this verification process faces unique challenges. The potential for domain overlap or correlation among different clients further complicates the verification process, as remnants of the unlearned domain may persist indirectly through shared features. Current verification methods, such as examining changes in accuracy on the unlearned domain or backdoor testing, may not fully capture the extent of forgetting, especially when dealing with complex domain interactions in federated settings.

To address these concerns, we present the first empirical analysis of federated domain unlearning and propose a new validation method specifically designed for this cross-silo scenario. To address concern **I**, we analyze existing unlearning techniques in multi-domain scenarios. Our analysis reveals that these techniques, primarily developed for single-domain scenarios, inadequately address the challenges of multi-domain federated learning. These methods often reduce model accuracy on unrelated domains or cause unnecessary forgetting across all domains when targeting a specific domain for removal, indicating poor domain specificity. Furthermore, by comparing feature representations before and after unlearning, we find that the model's shallower layers retain much of their original structure, while deeper layers exhibit significant changes. This pattern enables the recovery of information from the supposedly forgotten domain through the less-affected shallower layers, posing significant privacy risks. These insights highlight the limitations of current approaches and underscore the need for more effective and secure federated domain unlearning methods.

For concern II, we argue that solely using testing accuracy or backdoor/MIA as validation methods for unlearned domain data may cause efficiency and privacy safety issues in federated domain unlearning. To precisely and comprehensively valid the forgetting, we propose novel validation techniques specifically tailored for federated domain unlearning. Our method employs a proxy valida-

tion model to align with and represent the feature space of the domain to be unlearned, as originally learned by the global model. We select representative samples from the target domain and train a proxy validation model to map their feature space into the anchor validation class. By analyzing the unlearned global model's performance on samples transformed by the proxy validation model, we can effectively detect whether the domain's features have been successfully unlearned, providing a sensitive and privacy-preserving mechanism for assessing unlearning effectiveness. Specifically, we make the following key contributions:

- We present, to the best of our knowledge, the *first* systematic empirical study of Federated Domain Unlearning within cross-silo FL, analyzing the complexities and failure modes that current unlearning techniques face across heterogeneous domain contexts, and distilling guidance for more robust practice.
- We identify and characterize the critical shortcomings of prevailing unlearning methods—most notably their neglect of domain-specific distributional structure—which leads to residual domain imprinting and collateral damage on non-target domains. Our findings motivate the need for finer-grained, representation-aware procedures.
- We introduce a threat-model-aligned verification protocol tailored to FDU that assesses whether domain-specific signals have been effectively excised while preserving overall utility on retained domains. The protocol is method-agnostic and low-overhead, enabling reliable auditing without harming overall effectiveness.

2 BACKGROUND: FEDERATED DOMAIN HETEROGENEITY AND DOMAIN UNLEARNING

Federated learning and heterogeneity. Federated learning (FL) collaboratively trains models without centralizing raw data McMahan et al. (2017). Beyond label-distribution skew Kairouz et al. (2019); Li et al. (2020a;b; 2022); Luo et al. (2021); Zhao et al. (2018), real-world deployments frequently exhibit *domain heterogeneity*, where clients (or groups of clients) follow distinct datagenerating processes. Recent FL research has addressed domain heterogeneity via two lines: *Prototype Learning* that abstracts domain-specific features into transferable prototypes Huang et al. (2023b; 2022b); Chen et al. (2024), and *Domain Adaptation* that aligns feature spaces across domains Huang et al. (2022a); Zhang et al. (2023). These works primarily focus on learning *with* multi-domain data; they do not investigate how to *unlearn* domain-specific signals once training has finished.

Notation and standard FL objective. Following Huang et al. (2023b); Li et al. (2020b); McMahan et al. (2017); Liu et al. (2021), let there be M clients indexed by i, each holding a private dataset D_i of size N_i . A sample is (x,y) with input x and label y. The global model parameters are w, and the standard cross-silo FL objective minimizes the weighted empirical risk:

$$\min_{w} \sum_{i=1}^{M} \frac{N_i}{\sum_{i=1}^{M} N_i} F_i(w, D_i), \tag{1}$$

where $F_i(w, D_i)$ is the local empirical loss.

Cross-silo view of domains. We adopt a cross-silo perspective: a small number of organizations ("silos") participate with relatively stable connectivity and capacity. Each silo can internally aggregate multiple clients but shares a common *domain* characterized by a distribution $P_s(x,y)$ with $s \in \mathcal{S}$. In such settings, strong within-silo correlation and persistent domain statistics are common. Formally, domain heterogeneity arises when, even under similar label marginals, the conditional distributions differ across silos/clients:

$$P_i(x \mid y) \neq P_j(x \mid y)$$
 (even if $P_i(y) = P_j(y)$). (2)

This highlights that domain-specific patterns often materialize at intermediate/deep representations rather than only at raw inputs.

A concise taxonomy of federated unlearning (revised). Most existing FL unlearning works are designed for *single-domain* settings and operate at three typical granularities: (i) Data-/class-level removal via retraining or faster approximations Liu et al. (2021; 2022); (ii) Client-level removal via loss/gradient manipulations or reverse-updating schemes Halimi et al. (2022); Wu et al. (2022b);

Che et al. (2023); (iii) Parameter-space strategies, e.g., distillation/transfer, reweighting, pruning/masking Wu et al. (2022a); Wang et al. (2022). These lines mostly assume targets are *enumerated objects* (samples, classes, clients), not a *distributional factor* shared across many silos.

Problem: Federated Domain Unlearning (FDU). Let \mathcal{S} denote the set of domains and $P_s(x,y)$ the distribution of domain $s \in \mathcal{S}$. We write w^{full} for the global model trained on all domains \mathcal{S} , and w^{unl} for the model after unlearning a target domain $s^* \in \mathcal{S}$. Let $\bar{\mathcal{S}} = \mathcal{S} \setminus \{s^*\}$ be the non-target domains. (When needed, s(i) denotes the domain assignment of client i; multiple clients may share one domain and one domain may span multiple silos.) For analysis consistent with our empirical study, we refer to deep-layer representations $h_{\ell}(\cdot)$ (e.g., used by CKA).

Goals. FDU entails two complementary objectives that we will evaluate in Sec. 3: (F) Domain removal — remove information specific to s^* such that, for $x \sim P_{s^*}$, deep representations $h_\ell(x; w^{\mathrm{unl}})$ no longer align with those of w^{full} (i.e., the target-domain footprint is erased); (P) Model preservation — maintain utility and stable representations on $\bar{\mathcal{S}}$ so that unlearning does not cause collateral degradation for non-target domains.

Why FDU differs from existing granularities. Client-level removal is not equivalent to domain erasure: if other silos still encode P_{s^*} , the domain footprint persists. Likewise, data-/class-level removal targets enumerated subsets, not a latent distributional factor that may cut across classes and clients. Therefore FDU must explicitly reason about *domain-level representations* and their cross-domain generalization.

Bridge to our empirical study. Next, we examine what fails when standard unlearning baselines are naively applied to multi-domain FL, focusing on: (i) deep-layer alignment/drift across domains (e.g., via CKA), (ii) privacy exposure via feature inversion on P_{s^*} , and (iii) the sensitivity and cost of common validators (membership inference and backdoor checks). These observations motivate our evaluation criteria and a security-oriented threat model later.

3 Empirical Study

In this section, we conduct experiments on multidomain unlearning using existing federated unlearning methods. We evaluate on three multi-domain benchmarks—Domain-Digits Hull (1994); LeCun et al. (1998); Netzer et al. (2011); Roy et al. (2018); Ganin & Lempitsky (2015), Office-Caltech Gong et al. (2012), and DomainNet Peng et al. (2019)—assigning one domain per client following Huang et al. (2023a;b); use a lightweight CNN for Domain-Digits Li et al. (2021) and VGG16 for Office-Caltech and DomainNet Simonyan & Zisserman (2014); and compare five representative unlearning methods: Retrain, Rapid Retraining (RR) Liu et al. (2022), Fed-Eraser (FE) Liu et al. (2021), Increase Loss (IL) Halimi et al. (2022), and Class-Discriminative Pruning (CP) Wang et al. (2022); details are shown in Appendix A. We then analyze the results to answer the following key questions:

Table 1: Evaluation of federated domain unlearning across various methods on DomainNet dataset. The abbreviation for the method's name is introduced in setup. We report the test accuracy for all domains as the difference from the Retrain method's accuracy. Remarks: ↓ denotes testing accuracy decreased in the non-target domain; * denotes poor unlearning effect in the target forgetting domain. More results on other datasets are shown in the supplementary material.

Unlearn	Method	Accuracy For									
Domain	Mediod	Unlearn Domain	C	I	P	Q	R	S			
	Full learn	98.15	86.69	49.01	78.35	76.60	79.62	84.48			
	Retrain	36.04	86.50	37.14	79.32	76.91	80.44	86.11			
	RR	28.01	-17.68↓	-8.68	-21.32 ↓	-13.77↓	-17.5 ↓	-24.38 ↓			
I	FE	33.48 *	-2.47↓	-2.13	-2.58 ↓	-1.09 ↓	-1.39 ↓	-3.62↓			
	IL.	70.00 *	1.33	6.39 *	0.97	4.75	2.97	-0.37 ↓			
	CP	37.38 *	2.66	2.28 *	1.78	1.3	2.55	1.98			
	Retrain	65.57	85.17	45.21	69.79	75.93	80.77	81.23			
	RR	49.07	-14.07↓	-11.57 ↓	-22.29	-9.51 ↓	-16.84 ↓	-22.88 ↓			
P	FE	65.00	-0.38↓	-1.53 ↓	0.32 *	-3.02 ↓	-3.78 ↓	-1.27 ↓			
	IL.	85.69 *	1.9	1.21	4.68 *	5.42	0.99	4.33			
	CP	70.42 *	2.47	1.37	1.94 *	-0.02 ↓	-0.16 ↓	4.15			
	Retrain	63.15	81.56	43.99	75.28	70.55	78.82	66.43			
	RR	39.37	-15.97↓	-13.55 ↓	-22.45 ↓	-7.08 ↓	-18.84 ↓	-25.82			
s	FE	58.16	-3.99↓	-1.37 ↓	-3.07 ↓	-2.45 ↓	-5.28 ↓	-1.99			
	IL.	89.92 *	5.13	5.48	5.84	7.46	1.54	14.98 *			
	CP	73.89 *	3.04	3.96	2.91	2.86	1.21	11.73 *			

• How does the performance of existing federated

unlearning methods vary in multi-domain scenarios compared to single-domain settings?

• If the performance degrades in multi-domain scenarios, why do current federated unlearning techniques struggle in multi-domain environments?

3.1 EFFECTIVENESS OF EXISTING METHODS IN FEDERATED DOMAIN UNLEARNING

We evaluate the effectiveness of current unlearning methods in multiple domain settings. Table 1 show the accuracy of forgetting and remaining domains for the DomainNet dataset. Additional results from other datasets are in the supplementary materials. The Retrain method serves as a bench-

mark by excluding the target forgetting domain from the start of training. Unlike traditional class data unlearning Liu et al. (2021; 2022); Halimi et al. (2022), where Retrain typically shows lower accuracy on forgotten class/client, we observe that in domain unlearning, Retrain still has high accuracy on the forgetting domain. The high performance is attributed to existing federated domain learning methods' capability to learn general and universal features across multiple domains during training Huang et al. (2023a), allowing the model to generalize well even to unseen domains.

Compared with ideal retraining, Rapid Retraining achieves similar results for forgotten domains but negatively impacts the remaining domains. It reduces the remaining domains' test accuracy by up to 30% in DomainNet because it cannot distinguish between domain-specific and general knowledge. FedEraser effectively removes forgetting domain knowledge but causes unintended forgetting in retained domains. It leads to accuracy drops of up to 12% due to excessive erasure of shared features. The Increase Loss method fails to forget targeted domains. It increases the accuracy of forgetting domain by up to 35% in DomainNet, showing its inability to perform targeted unlearning. Class-Discriminative Pruning also struggles with domain forgetting. It results in up to 10% higher accuracy for forgotten domains in DomainNet. This may be due to inaccurate identification of domainspecific features through CNN channel pruning.

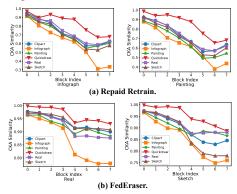


Figure 2: Comparative CKA Analysis of Layer Representations in Unlearned and Remaining Domains in DomainNet. We report the results of the methods Repaid-Retrain and FedEraser, which unlearn the target domain but also impact the remaining domain's integrity.

Summarized Takeaway: Our empirical evaluation reveals two critical challenges in current federated unlearning methods under multi-domain settings. First, some approaches fail to effectively forget the targeted domains, sometimes even improving their accuracy compared to the benchmark. Second, methods that do achieve forgetting often lack domain specificity, causing significant performance drops in domains meant to be retained.

3.2 ANATOMY OF EXISTING METHODS IN FEDERATED DOMAIN UNLEARNING: HIDDEN REPRESENTATIONS

Our empirical evaluation reveals significant performance degradation after applying existing unlearning techniques in federated domain settings. Existing unlearning approaches can not adequately address the challenges posed by multiple diverse domains in feature learning, especially in representation forgetting. To understand the root cause of this performance degradation, we examine changes in hidden layer representations before and after applying various unlearning techniques.

To evaluate the effectiveness of various unlearning methods, we employ linear Centered Kernel Alignment (CKA) Kornblith et al. (2019) to analyze the

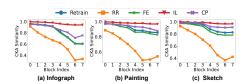


Figure 3: CKA analysis of layer representations before and after unlearning the target domain in DomainNet. We select three domains to display: (a) Infograp, (b) Painting, and (c) Sketch. The analysis uses VGG-16's 8-block modules: blocks 0-4 for feature extraction and 5-7 for classifiers. More results are shown in supplementary materials.

similarity of output features before and after unlearning. Our analysis focuses on multiple target domains from the DomainNet dataset. Figure 3 illustrates the CKA results for different unlearning methods compared to the comprehensive learning model. Our findings reveal that methods such as Rapid Retraining and FedEraser demonstrate significant decreases in representation similarity, particularly in higher layers, indicating successful erasure of domain-specific knowledge. In contrast, methods like Increase Loss and Class-Discriminative Pruning show minimal CKA score variation across layers, with their representations remaining closely aligned with the full learning model, suggesting ineffective removal of domain-specific information. While Rapid Retraining and FedEraser effectively erase target domain knowledge, they also affect the learning of remaining domains. Figure 2 shows the CKA results for both Rapid Retraining and FedEraser, comparing the forgetting domain and remaining domains before and after unlearning. It demonstrates a notable decrease in

similarity for the target domain in deeper layers, indicative of successful unlearning. However, these methods inadvertently influence the representations of non-target domains. For instance, FedEraser's unlearning of the "Real" domain concurrently affects the "Infograph" domain.

The CKA analysis not only reveals the effectiveness of certain unlearning methods but also highlights potential risks associated with ineffective unlearning. After unlearning on the target domain, high CKA scores for some unlearning methods suggest ineffective removal of domain-specific information, which can lead to privacy leaks for forgetting clients. To investigate this risk, we experiment with a popular model attack method Ulyanov et al. (2018) to check whether raw images from unlearning clients can be reconstructed by inverting their feature embeddings. As shown in Figure 4, we focus on higher layers that extract high-level image features because lower layer indices, e.g., 0-3, can be inverted due to model generalization Huang et al. (2023a); Ulyanov et al. (2018). The results indicate that methods with high CKA scores (e.g. IL & CP) can reconstruct images from deeper layer features, suggesting potential privacy leaks. This finding underscores the importance of effective domain unlearning in preserving client privacy. Additional results from other datasets are provided in the supplementary materials.

Table 2: Evaluation results of backdoor attacks, membership inference attacks and our verification method on original model performance in DomainNet dataset. Orig represents the original training model's training accuracy on the training dataset before unlearning.

			0				
Doamin	Method		Verify A	Accuracy	For Bas	eLines	
Doannin	Method	Orig	Retrain	RR	FE	IL	CP
	MIA	95.92	65.51	67.46	65.81	66.42	64.60
C	Backdoor	99.77	1.84	5.06	3.68	45.14	3.91
	Ours	99.69	0.39	1.16	18.06	95.19	75.38
	MIA	94.27	60.30	61.21	59.48	63.31	62.38
I	Backdoor	99.36	7.71	9.42	11.35	51.57	10.06
	Ours	98.65	0.14	0.69	27.38	97.19	18.27
	MIA	95.06	61.26	61.69	61.62	63.52	62.68
P	Backdoor	98.88	3.79	10.49	5.13	36.74	6.92
	Ours	98.82	0.26	0.47	58.76	93.06	13.44
	MIA	91.57	49.73	50.51	48.84	49.26	49.80
Q	Backdoor	67.32	8.33	6.36	10.31	24.41	7.68
	Ours	99.90	0.10	0	92.50	99.50	10.20
	MIA	92.30	49.50	51.74	50.76	52.16	49.37
R	Backdoor	98.87	1.35	0.90	0.90	37.18	3.60
	Ours	99.85	0	0.68	5.44	95.82	13.82
	MIA	95.39	63.33	66.73	62.72	66.38	63.40
S	Backdoor	67.11	2.68	4.25	2.91	28.45	2.24
	Ours	99.85	0.35	0.48	0	96.56	70.26

Summarized Takeaway: CKA analysis reveals that unlearning effectiveness in federated domains varies across methods and network layers. Effective unlearning techniques like Rapid Retraining successfully erase target domain features but may inadvertently affect non-target domains. Ineffective methods maintain high feature similarity, risking privacy leaks. The balance between thorough domain-specific feature removal and preserving general feature learning is crucial for effective unlearning.

4 New Validation methods for Federated domain unlearning

4.1 CURRENT VERIFICATION METHODS AND THEIR LIMITATIONS.

Traditional verification methods for unlearning, such as Membership Inference Attacks (MIA) Shokri et al. (2017) and Backdoor Attacks Gu et al. (2017); Liu et al. (2018), face significant limitations in federated domain unlearning scenarios due to the inherent challenges posed by multi-domain heterogeneity.

Membership Inference Attacks (MIA). MIA verifies unlearning effectiveness by assessing whether specific samples were previously used during the training process based on the model's outputs. Table 2 demonstrates the performance of MIAs when verifying forgotten domains on DomainNet. The results show that MIAs yield similar accuracy across dif-

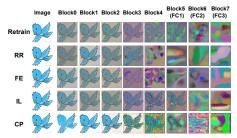


Figure 4: Image reconstruction using features from an unlearned model. We present the reconstruction results by utilizing output features from different layers with various unlearning methods.

ferent unlearning targets, highlighting their limited sensitivity to domain-specific unlearning. This occurs because MIA fundamentally evaluates membership status at the sample level, lacking specificity to domain-level features. In multi-domain scenarios, this lack of specificity is exacerbated due to significant domain heterogeneity, making it difficult for MIA to accurately distinguish between domain-specific unlearning and the generalization capability of the global model.

Backdoor Attacks. Backdoor-based verification approaches insert artificially designed triggers or patterns into training samples to evaluate whether these injected signals remain learned by the model.

Though effective in traditional unlearning tasks, backdoor methods encounter substantial difficulties within federated domain unlearning settings. Table 2 illustrates that the introduction of backdoors can degrade model training performance on the Quickdraw domain in DomainNet by up to 33%. This performance degradation stems from the explicit introduction of artificial patterns into training data, which interferes with normal feature learning processes, especially in heterogeneous federated environments. Additionally, backdoor injection requires extensive retraining, significantly increasing computational overhead and complexity. Due to the inherent diversity and domain-specific characteristics of data in federated learning, successfully injecting universal backdoor patterns across heterogeneous domains becomes increasingly challenging.

4.2 METHODOLOGY OVERVIEW

The workflow of our verification framework is shown in Figure 5. It consists of three stages: domain representative sample selection, proxy validation model training, and verification. The main idea of our method is to use the proxy validation model to align and represent the feature space of the domain to be unlearned, as originally learned by the global model. First, we select representative samples from the domain targeted for unlearning. Then, we train a proxy validation model to align the feature space of these representative samples into the anchor validation class. In the verification stage, we evaluate the

Figure 5: The workflow of our proposed validation methods for federated domain unlearning.

unlearned global model on the samples that are modified by the proxy validation model. By analyzing the response on the anchor validation class, we can effectively detect whether the domain's features have been successfully unlearned from the global model.

Domain Representative Sample Selection. In federated domain unlearning, we cannot simply use all samples from the domain to be forgotten for verification purposes. This is because the model's generalization capabilities allow it to correctly predict some samples from a forgotten domain, even without specific training on that domain. Therefore, to accurately verify the unlearning process, we must focus on selecting samples that are truly representative of the domain's distinctive features Goodfellow et al. (2013); Toneva et al. (2018). To achieve this, we introduce a metric R_i for each sample x_i , which counts the number of Forgetting events during training. A Forgetting event occurs when a sample is correctly classified at one point but misclassified in the next iteration. We track the model's predictions $\hat{y}_i^{(t)}$ for each sample x_i over training iterations t. If the prediction accuracy decreases between consecutive iterations $(acc_i^{(t)} > acc_i^{(t+1)})$, we count it as a Forgetting event. Samples with more Forgetting events are considered more representative of the domain's unique characteristics. Importantly, the metric R_i incurs no additional computational cost, as it leverages accuracy records typically maintained during local training. Thus, our method doesn't interfere with or slow down the original training process. To select representative samples, we sort all samples from the forgotten domain by their R_i values in descending order. We then select the top λ fraction of samples as representative: x_i is representative if $R_i \ge R_\lambda$, where R_λ is the R_i value at the λ percentile of the sorted list. This approach ensures we capture the samples that are most characteristic of the domain to be forgotten, facilitating more accurate verification of the unlearning process.

Proxy Validation Model Training. The proxy validation model is designed to align with the feature space of the representative samples from the domain targeted for forgetting. This alignment is achieved through an innovative process that generates adversarial perturbations in the input space of these samples. The validation model M_{PV} is a generator model. It takes the representative samples from the forgetting domain as input z and generates perturbations that blend seamlessly with these samples. This process creates modified marker samples that are nearly indistinguishable from their originals, defined by the transformation:

$$T_{\delta}(z) = z + \epsilon M_{PV}^{\delta}(z) \tag{3}$$

where M_{PV}^{δ} is the perturbation generated by the proxy validation model with weight δ and ϵ controls the perturbation magnitude. To map the feature space into an anchor class as a marker, we aim to mislead the validation model into making incorrect classifications for a target validation class y_T .

This is accomplished by leveraging the global model as a surrogate to update the validation model. The objective function for this update is given by:

$$\delta \leftarrow \delta - \eta_{\delta} \sum_{l} L_{PV}^{\delta}(f_{w}(T_{\delta}(z)), y_{T}), \quad z \in D_{R}^{UL}$$
(4)

where f_w denotes the global model, and D_R^{UL} is the set of representative samples from the forgetting domain.

4.2.1 VERIFICATION.

We evaluate the effectiveness of the unlearning methods by measuring the performance of the unlearned global model f_w^* on a test set where samples are transformed by the proxy validation model. This setup tests whether the feature space of the forgetting domain, as represented by the proxy validation model, has been adequately unlearned. High accuracy on these transformed samples indicates that the model retains knowledge of the forgetting domain, suggesting incomplete unlearning. Conversely, reduced accuracy implies successful unlearning, as the model no longer associates the transformed samples with the target class y_T . The accuracy is calculated as:

Accuracy =
$$\frac{1}{|D_R^{UL}|} \sum_{z \in D_R^{UL}} \mathbb{I}[f_w^*(T_\delta(z)) = y_T]$$
 (5)

where $T_{\delta}(z)$ is the transformation applied by the proxy validation model, and \mathbb{I} is the indicator function.

Table 3: Evaluation results of backdoor attacks, membership inference attacks and our verification method on original model performance in Domain-Digital dataset. Orig represents the original training model's training accuracy on the training dataset before unlearning.

Doamin	Method		Verify A	Accuracy	For Bas	eLines	
Doannin	Wichiod	Orig	Retrain	RR	FE	IL	CP
	MIA	99.17	49.78	50.13	49.40	49.51	51.42
MNIST	Backdoor	91.10	0.12	0.57	0	8.62	0.27
	Ours	98.32	1.85	1.33	0	91.89	37.13
	MIA	99.23	50.00	49.19	50.28	50	49.47
SVHN	Backdoor	77.37	2.35	2.44	0.83	69.14	1.55
	Ours	99.46	0.41	0.47	89.33	95.84	87.03
	MIA	99.73	81.40	78.83	80.18	81.82	79.74
USPS	Backdoor	91.27	1.03	0.53	0.47	0.59	1.33
	Ours	98.66	0.92	0.73	58.03	91.90	36.27
	MIA	99.32	52.01	49.21	48.76	49.85	49.19
SynthDigits	Backdoor	97.33	0.62	0.71	0.83	71.36	51.48
	Ours	96.84	0.44	0.16	64.46	92.61	55.24
	MIA	99.94	48.10	51.05	51.12	50.92	47.35
MNIST-M	Backdoor	92.59	1.77	1.53	3.09	55.37	1.77
	Ours	97.79	1.10	0.31	49.83	93.33	47.85

4.3 VALIDATION RESULTS

Experiment Settings. We follow the setup of the experiment in the empirical study to verify the domain unlearning methods. We utilize the U-Net architecture Ronneberger et al. (2015) as the proxy validation model. The proxy validation model is trained for a total of 20 rounds. For comparison, we also implement the original backdoor attack, which introduces a 'pixel pattern' trigger of size 3x3 using the Adversarial Robustness Toolbox Croce et al. (2020).

Effectiveness Evaluation. We evaluate the effectiveness of our verification method by comparing it against Membership Inference Attacks (MIA) and Backdoor attacks across various datasets (Table 2: Domain-Digits DomainNet, Table 12: Domain-Digits, Table 13: Office-Caltech). First, we analyze the impact of these methods on the original model's learning. Tables 2, 12, and 13 show that the Backdoor method reduces training accuracy for specific domains across different datasets by an average of 23.5%, reaching up to 32.6%. In contrast, our method and MIA achieve above 98% training accuracy consistently, indicating minimal impact on the original model's training convergence. The reduced accuracy caused by the Backdoor method highlights that explicit pixel intrusions adversely affect feature learning in heterogeneous domain scenarios. As illustrated in Figure 13, our marker-based approach

Table 4: Evaluation results of backdoor attacks, membership inference attacks and our verification method on original model performance in Office-Caltech10 dataset. Orig represents the original training model's training accuracy on the training dataset before unlearning.

Doamin	Method		Verify Accuracy For BaseLines								
Doannii	Wichiod	Orig	Retrain	RR	FE	IL	CP				
	MIA	98.45	83.35	82.90	83.44	82.88	82.77				
Amazon	Backdoor	92.61	1.16	0.29	0.87	1.16	2.32				
	Ours	98.12	0.62	0.73	45.62	90.62	75.62				
	MIA	97.60	85.07	83.65	83.86	85.26	84.64				
Caltech	Backdoor	91.23	6.67	4.94	0.25	15.62	10.62				
	Ours	97.06	0.65	1.18	95.88	95.29	36.47				
	MIA	99.13	86.51	87.40	81.72	85.07	84.68				
Dslr	Backdoor	85.85	15.09	16.98	13.21	24.53	7.55				
	Ours	95.00	0.00	0.00	15.71	90.84	87.54				
	MIA	98.67	84.72	84.21	84.17	86.09	85.48				
Webcam	Backdoor	80.93	1.45	1.78	0.93	3.74	0.93				
	Ours	97.54	0	0	62.54	81.74	87.12				

modifies images minimally, producing marker samples nearly indistinguishable from their originals, whereas the Backdoor method induces noticeable pixel-level and color distribution changes that

disrupt the feature space learning and consequently hinder convergence. Secondly, we evaluate the sensitivity of the unlearning domain. Table 2 combined with the unlearning effects reported in Table 1 reveals that our method demonstrates higher sensitivity to domain unlearning, aligning closely with the accuracy trends. Specifically, methods such as IL exhibit poor unlearning performance. Traditional test accuracy cannot sufficiently reflect the underlying generalization ability and precise unlearning effectiveness. By anchoring marker samples directly in the feature space, our method quantitatively assesses feature-level unlearning effectiveness more accurately. In contrast, Backdoor and similar methods lack this anchoring mechanism, thus failing to establish clear relationships between domains and learned features.

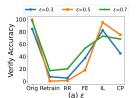
Runtime Efficiency. Table 5 compares the efficiency of our method against the backdoor approach across three datasets with varying sample ratios. Our method consistently achieves the target verification accuracy significantly faster, with improvements of up to 1103 times compared to the backdoor method. This substantial efficiency improvement stems primarily from the design of our verification framework, which directly targets the feature space alignment through representative marker samples rather than artificially injecting distinctive patterns like the backdoor method. The explicit injection approach adopted by the backdoor method necessitates additional learning processes, significantly increasing training overhead. In contrast, our method employs representative samples identified through forgetting events to precisely anchor the feature space of the domain to be unlearned, thus reducing unnecessary computational overhead. Moreover, our verification method leverages the existing federated learning infrastructure by tracking prediction accuracy during local training without introducing additional computational or communication overhead. This streamlined approach ensures our method integrates seamlessly into existing federated learning systems, maintaining high efficiency and scalability.

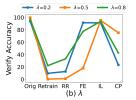
Ablation Study. We examine the impact of hyperparameters ϵ and λ on our verification method. As shown in Figure 6b, increasing ϵ results in more visible perturbation and generally higher test accuracy, except for IL. This suggests that more conspicuous perturbations simplify the learning process for the generative model. For λ , excessively high values includes unrepresentative samples, leading to improved performance for Retrain methods, indicating that an appropriate sample selection ratio is crucial for unlearning verification effectiveness. More detailed and analysis experiments are shown in the Supplementary Material.

Table 5: GPU Times cost of federated domain unlearning verification methods for ours and backdoor. We record the time taken for each method to reach a specified validation accuracy (95% for ours, 90% for backdoor). Unit of measurement: second.

Proportion	Method	Digi	tal	Office-C	altech10	Dom	ainNet
Froportion	Wichiou	MNIST-M	SVHN	Amazon	Caltech	Clipart	Infograph
	Ours	34.0	10.9	18.2	20.8	63.2	102.0
0.2	Backdoor	7156.3	5367.2	5018.6	6843.5	29236.5	20637.5
	Dackdool	(211×)	(494×)	(275×)	(328×)	(463×)	(202×)
	Ours	51.0	6.8	28.8	22.4	95.9	143.8
0.5	Backdoor	4920.0	4472.7	5474.8	7756.0	36115.6	17197.9
	Dackdool	(96×)	(658×)	(190×)	(346×)	(377×)	(120×)
	Ours	46.4	7.1	35.1	20.1	78.0	155.9
0.8	Backdoor	8050.8	7603.6	11405.9	11405.9	85989.6	60192.7
	Dackuooi	(174×)	(1066×)	(325×)	(569×)	(1103×)	(386×)

(a) The modified image between our verification method and backdoor attack. The left images are from the Domain-Digital dataset, and the right images are from the DomainNet dataset.





(b) Ablation study for our verification method with different hyperparameters.

5 CONCLUSION

This paper investigates federated unlearning in multi-domain settings, highlighting major challenges in domain-specific unlearning, particularly in preserving domain sensitivities and ensuring domain independence. We documented these complexities and identified persistent challenges and areas for improvement. To address these issues, we introduced new verification methods, enhancing the robustness and effectiveness of unlearning in federated domains. This work advances federated unlearning and supports more secure, efficient federated learning systems.

ETHICS STATEMENT

REPRODUCIBILITY STATEMENT

Our experiments use only public image benchmarks (Domain-Digits Hull (1994); LeCun et al. (1998); Netzer et al. (2011); Roy et al. (2018); Ganin & Lempitsky (2015), Office-Caltech-10 Gong et al. (2012), ImageNet Peng et al. (2019)). The method is intended to assist in meeting compliance goals such as those in Article 17 of the EU GDPR (the "right to be forgotten") European Parliament and Council of the European Union (2016) and California Consumer Privacy Act (CCPA) California Department of Justice (2020), but it does not constitute legal advice; actual production deployment must be carried out under the supervision of the data controller and legal counsel.

The content in this paper can support the reproduction of the experiments.

REFERENCES

- California Department of Justice. California consumer privacy act (ccpa), 2020. URL https://oag.ca.gov/privacy/ccpa.
- Tianshi Che, Yang Zhou, Zijie Zhang, Lingjuan Lyu, Ji Liu, Da Yan, Dejing Dou, and Jun Huan. Fast federated machine unlearning with nonlinear functional theory. In *International conference on machine learning*, pp. 4241–4268. PMLR, 2023.
- Yuhang Chen, Wenke Huang, and Mang Ye. Fair federated learning under domain skew with local consistency and domain diversity. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12077–12086, 2024.
- Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness benchmark. *arXiv* preprint arXiv:2010.09670, 2020.
- European Parliament and Council of the European Union. Regulation (eu) 2016/679 (general data protection regulation), 2016. URL https://eur-lex.europa.eu/eli/reg/2016/679/oj. Art. 17 Right to erasure ('right to be forgotten').
- Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In *International conference on machine learning*, pp. 1180–1189. PMLR, 2015.
- Xiangshan Gao, Xingjun Ma, Jingyi Wang, Youcheng Sun, Bo Li, Shouling Ji, Peng Cheng, and Jiming Chen. Verifi: Towards verifiable federated unlearning. *IEEE Transactions on Dependable and Secure Computing*, 2024.
- Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation. In 2012 IEEE conference on computer vision and pattern recognition, pp. 2066–2073. IEEE, 2012.
- Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation of catastrophic forgetting in gradient-based neural networks. *arXiv preprint arXiv:1312.6211*, 2013.
- Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. *arXiv preprint arXiv:1708.06733*, 2017.
- Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and Nathalie Baracaldo. Federated unlearning: How to efficiently erase a client in fl? *arXiv preprint arXiv:2207.05521*, 2022.
- Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in heterogeneous federated learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10143–10153, 2022a.
 - Wenke Huang, Mang Ye, Bo Du, and Xiang Gao. Few-shot model agnostic federated learning. In *Proceedings of the 30th ACM International Conference on Multimedia*, pp. 7309–7316, 2022b.

- Wenke Huang, Mang Ye, Zekun Shi, and Bo Du. Generalizable heterogeneous federated cross-correlation and instance similarity learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023a.
 - Wenke Huang, Mang Ye, Zekun Shi, He Li, and Bo Du. Rethinking federated learning with domain shift: A prototype view. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16312–16322. IEEE, 2023b.
 - Jonathan J. Hull. A database for handwritten text recognition research. *IEEE Transactions on pattern analysis and machine intelligence*, 16(5):550–554, 1994.
 - Hyejun Jeong, Shiqing Ma, and Amir Houmansadr. Sok: Challenges and opportunities in federated unlearning. *arXiv preprint arXiv:2403.02437*, 2024.
 - Peter Kairouz et al. Advances and Open Problems in Federated Learning. arXiv, dec 2019.
 - Sarah M Kalis. Google spain sl, google inc. v. agencia espanola de proteccion de datos, mario costeja gonzalez: An entitlement to erasure and its endlenss effects. *Tul. J. Int'l & Comp. L.*, 23: 589, 2014.
 - Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated Optimization: Distributed Machine Learning for On-Device Intelligence. *arXiv*, oct 2016.
 - Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network representations revisited. In *International conference on machine learning*, pp. 3519–3529. PMLR, 2019.
 - Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in neural information processing systems*, 2, 1989.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 - Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An experimental study. In 2022 IEEE 38th international conference on data engineering (ICDE), pp. 965–978. IEEE, 2022.
 - Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated Learning: Challenges, Methods, and Future Directions. *IEEE Signal Processing Magazine*, 37(3):50–60, may 2020a.
 - Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*, 2:429–450, 2020b.
 - Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning on non-iid features via local batch normalization. *arXiv preprint arXiv:2102.07623*, 2021.
 - Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. Federaser: Enabling efficient client-level data removal from federated learning models. In 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), pp. 1–10. IEEE, 2021.
 - Yi Liu, Lei Xu, Xingliang Yuan, Cong Wang, and Bo Li. The right to be forgotten in federated learning: An efficient realization with rapid retraining. In *IEEE INFOCOM 2022-IEEE Conference on Computer Communications*, pp. 1749–1758. IEEE, 2022.
 - Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural networks. In 25th Annual Network And Distributed System Security Symposium (NDSS 2018). Internet Soc, 2018.
 - Ziyao Liu, Yu Jiang, Jiyuan Shen, Minyi Peng, Kwok-Yan Lam, and Xingliang Yuan. A survey on federated unlearning: Challenges, methods, and future directions. *arXiv* preprint *arXiv*:2310.20448, 2023.

- Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity: Classifier calibration for federated learning with non-iid data. *Advances in Neural Information Processing Systems*, 34:5972–5984, 2021.
- Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
- Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep learning and unsupervised feature learning*, volume 2011, pp. 7. Granada, Spain, 2011.
- Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 1406–1415, 2019.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *Medical image computing and computer-assisted intervention–MICCAI* 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241. Springer, 2015.
- Prasun Roy, Subhankar Ghosh, Saumik Bhattacharya, and Umapada Pal. Effects of degradations on deep neural network architectures. *arXiv preprint arXiv:1807.10108*, 2018.
- Neta Shoham, Tomer Avidor, Aviv Keren, Nadav Israel, Daniel Benditkis, Liron Mor-Yosef, and Itai Zeitak. Overcoming forgetting in federated learning on non-iid data. *arXiv preprint arXiv:1910.07796*, 2019.
- Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pp. 3–18. IEEE, 2017.
- Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
- Kahou Tam, Li Li, Bo Han, Chengzhong Xu, and Huazhu Fu. Federated noisy client learning. *IEEE Transactions on Neural Networks and Learning Systems*, 2023a.
- Kahou Tam, Li Li, Yan Zhao, and Chengzhong Xu. Fedcoop: Cooperative federated learning for noisy labels. In *ECAI 2023*, pp. 2298–2306. IOS Press, 2023b.
- Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning. *arXiv preprint arXiv:1812.05159*, 2018.
- Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 9446–9454, 2018.
- Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. Federated unlearning via class-discriminative pruning. In *Proceedings of the ACM Web Conference* 2022, pp. 622–632, 2022.
- Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated unlearning with knowledge distillation. *arXiv* preprint arXiv:2201.09441, 2022a.
- Leijie Wu, Song Guo, Junxiao Wang, Zicong Hong, Jie Zhang, and Yaohong Ding. Federated unlearning: Guarantee the right of clients to forget. *IEEE Network*, 36(5):129–135, 2022b.
- Xiyuan Yang, Wenke Huang, and Mang Ye. Dynamic personalized federated learning with adaptive differential privacy. *Advances in Neural Information Processing Systems*, 36:72181–72192, 2023.
- Ruipeng Zhang, Qinwei Xu, Jiangchao Yao, Ya Zhang, Qi Tian, and Yanfeng Wang. Federated domain generalization with generalization adjustment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3954–3963, 2023.
- Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated learning with non-iid data. *arXiv preprint arXiv:1806.00582*, 2018.

A IMPLEMENTATION DETAILS

- 1) Datasets: We conduct experiments using three multi-domain datasets to simulate realistic federated learning scenarios with domain heterogeneity, including Domain-Digits Hull (1994); LeCun et al. (1998); Netzer et al. (2011); Roy et al. (2018); Ganin & Lempitsky (2015) and Office-Caltech Gong et al. (2012), and DomainNet Peng et al. (2019). Each federated client is assigned data from one domain, following Huang et al. (2023a;b). These datasets exhibit domain heterogeneity while maintaining consistent label distributions across domains.
- 2) Neural Network Architectures: For different datasets, we employ distinct networks to perform the classification tasks. For Domain-Digits, we use the model consisting of 3 convolution layers, 2 maxpool layers and 3 fully connected layers as previous works Li et al. (2021). As for Office-Caltech and DomainNet, we use VGG16 Simonyan & Zisserman (2014).
- 3) FL Settings: During the FL process, for each dataset, we assign an entire domain of data to each client. The local update epoch is set to 10, and the global train rounds are 50 for all datasets. We use the cross-entropy loss function and an SGD optimizer with a learning rate of 0.01 for local updates. Before the unlearning, we utilize the state-of-the-art cluster-based Federated Prototypes Learning (FPL) Huang et al. (2023b) to train the global model among clients with diverse domain data. All the hyper-parameters are followed by the original work Huang et al. (2023b).
- 4) Federated unlearning Method: We evaluate five advanced federated unlearning methods in multidomain settings, categorized into three major types. The first category, retrain learning, includes three approaches: (1) Retrain, which involves retraining the model from scratch while excluding the data of the participant to be forgotten; (2) Rapid Retraining (RR) Liu et al. (2022), an approach designed to entirely erase data samples from a well-trained global model by leveraging approximate the loss function; and (3) FedEraser (FE) Liu et al. (2021), which efficiently removes the impact of a client's data on the global FL model through leveraging the historical parameter updates. The second category is represented by (4) Increase Loss (IL) Halimi et al. (2022), which performs reverse training at the forgetting client by inverting the learning process, specifically training the model to maximize the local empirical loss. The third category includes (5) Class-Discriminative Pruning (CP) Wang et al. (2022), which employs CNN channel pruning to guide the federated unlearning process, selectively removing channels based on TF-IDF scores to minimize information loss.

Meanwhile, we conduct all our experiments using PyTorch. For Federated Prototypes Learning (FPL) Huang et al. (2023b), Rapid Retraining Liu et al. (2022), FedEraser Liu et al. (2021), and Increase Loss Halimi et al. (2022), we utilize the authors' open-source code. We have re-implemented and adapted Class-Discriminative Pruning Wang et al. (2022) to enable complete forgetting of an entire client. All experiments employ the cross-entropy loss function and use the SGD optimizer with a learning rate of 0.01 and a momentum of 0.9 across all datasets.

In our federated learning setup, we assign an entire domain of data to each client for each dataset. The experiments are conducted over 10 local update epochs and 50 global training rounds. The local batch size for all experiments is set to 64. We adhere to the hyper-parameters specified in the original work for FPL.

For the various methods employed in federated unlearning:

- FedEraser is configured with a calibration ratio r = 0.5 and a retaining interval $\Delta t = 1$.
- Increase Loss sets an early stopping threshold τ at 5, 20, and 20 for all experiments.
- The threshold R for Class-Discriminative Pruning is set to 0.7, aiming to ensure a high degree of specificity in pruning while maintaining overall network integrity.

B COMPARISON WITH FEDERATED UNLEARNING WITHIN SINGLE-DOMAINS.

The concept of unlearning in FL has been previously explored in various contexts, such as data unlearning Che et al. (2023); Halimi et al. (2022) and class unlearning Wang et al. (2022) within the same domain. However, federated domain unlearning introduces a distinct perspective by focusing

on the removal of domain-specific information while preserving the model's generalization ability across the remaining domains.

Objective Function Comparison: The objective function in federated domain unlearning involves minimizing the distance between the updated model f' and a model f_{-k} trained without the data from the target domain. This differs from typical federated unlearning objectives, which may focus solely on minimizing the impact of removed data points Che et al. (2023); Liu et al. (2023).

Generalization Ability: A key aspect of federated domain unlearning is its focus on preserving the model's generalization ability across the remaining domains Huang et al. (2023b). This is crucial in federated settings where data heterogeneity is common. By ensuring that the unlearned model maintains its performance on other clients' data, federated domain unlearning addresses the challenge of domain shift Halimi et al. (2022); Li et al. (2021), which is often overlooked in traditional unlearning methods.

C EXPERIMENT DETAILS

C.1 EFFECTIVENESS OF EXISTING METHODS IN FEDERATED DOMAIN UNLEARNING

Table 6: Evaluation of federated domain unlearning across various methods on Domain-Digital dataset.

Doma	in-Digits		Train Accu	racy For Unlea	arn Domain			Test Ac	curacy For All	Domain	
Unlearn Domain	BaseLine	MNIST	SVHN	USPS	SynthDigits	MNIST-M	MNIST	SVHN	USPS	SynthDigits	MNIST-M
/	Full learn	99.99±0.01	94.15±0.07	98.62±0.03	98.67±0.06	98.82±0.08	98.91±0.06	83.36±0.11	97.42±0.10	93.57±0.11	90.40±0.12
	Retrain	97.82±0.08	97.82±0.11	99.09±0.03	99.74±0.07	98.66±0.17	97.83±0.21	85.20±0.21	97.42±0.02	94.78±0.08	89.35±0.14
	BL1 Repaid Retrain	96.83±0.02	92.82±0.13	99.50±0.04	99.69±0.06	95.91±0.12	96.80±0.01	80.30±0.08	97.90±0.05	92.64±0.11	82.14±0.19
MNIST	BL2 FedEraser	95.21±0.12	81.04±0.23	95.40±0.09	90.97±0.15	83.52±0.23	95.08±0.23	76.96±0.40	95.22±0.27	88.38±0.11	80.57±0.12
	BL3 Increase Loss	96.84±0.09	97.06±0.17	99.41±0.04	99.93±0.03	99.61±0.11	95.96±0.11	84.32±0.05	97.8±0.02	94.46±0.04	90.19±0.10
	BL4 Class Pruning	98.66±0.01	97.15±0.50	99.45±0.01	99.96±0.00	99.81±0.12	98.14±0.02	84.48±0.08	97.8±0.05	94.66±0.01	90.46±0.35
	Retrain	100.0±0.00	67.84±0.30	98.83±0.10	98.60±0.48	99.26±0.20	99.09±0.05	67.48±0.58	97.63±0.11	91.49±0.56	92.28±0.28
	BL1 Repaid Retrain	100.0±0.00	62.38±0.26	98.92±0.03	97.69±0.51	95.94±0.56	98.79±0.00	62.55±0.74	97.42±0.00	89.07±0.22	85.76±0.17
SVHN	BL2 FedEraser	99.95±0.20	63.57±0.54	98.57±0.27	95.86±0.63	97.45±0.41	98.94±0.33	63.41±0.60	97.26±0.21	89.42±0.43	90.54±0.45
	BL3 Increase Loss	99.97±0.02	73.42±0.48	99.37±0.02	99.72±0.11	99.78±0.03	98.99±0.03	70.12±0.58	98.01±0.05	93.59±0.09	92.36±0.14
	BL4 Class Pruning	99.99±0.00	73.45±0.39	99.26±0.05	99.09±0.10	99.92±0.01	98.99±0.00	70.82±0.97	97.85±0.02	92.54±0.37	92.65±0.19
	Retrain	99.89±0.01	93.92±0.24	89.33±0.01	99.54±0.25	99.60±0.12	98.49±0.07	83.35±0.01	89.30±0.03	94.05±0.17	91.21±0.15
	BL1 Repaid Retrain	99.91±0.00	87.24±0.28	88.94±0.02	99.10±0.09	98.82±0.16	98.49±0.12	78.73±0.04	88.87±0.15	91.68±0.02	86.89±0.04
USPS	BL2 FedEraser	98.37±0.10	79.35±0.19	87.95±0.25	89.93±0.27	89.10±0.18	97.64±0.15	75.94±021	86.88±0.11	87.62±0.21	85.56±0.15
	BL3 Increase Loss	99.88±0.00	95.68±0.03	82.83±0.04	99.78±0.01	99.65±0.01	98.51±0.21	83.93±0.11	82.80±0.05	94.24±0.03	90.79±0.06
	BL4 Class Pruning	99.93±0.00	95.7±0.02	91.87±0.02	99.93±0.06	99.87±0.02	98.74±0.05	84.40±0.02	91.83±0.06	94.55±0.11	91.58±0.08
	Retrain	99.96±0.00	87.21±0.34	99.31±0.27	82.31±0.61	99.33±0.02	98.90±0.02	76.51±0.59	97.31±0.17	82.50±0.65	91.54±0.18
	BL1 Repaid Retrain	99.97±0.00	80.22±0.79	98.39±0.10	77.78±0.27	97.88±0.32	98.64±0.09	71.22±0.82	96.88±0.17	77.98±0.12	87.14±0.27
SynthDigits	BL2 FedEraser	99.26±0.02	77.36±0.71	95.66±0.23	77.75±0.27	93.22±0.30	98.14±0.01	71.72±0.81	94.57±0.42	78.15±0.32	87.49±0.13
	BL3 Increase Loss	100.0±0.00	91.41±0.68	99.22±0.03	85.49±0.11	99.76±0.02	98.82±0.05	79.04±0.27	97.69±0.06	84.3±0.17	91.77±0.05
	BL4 Class Pruning	100.0±0.00	93.12±0.12	99.58±0.04	87.81±0.05	99.89±0.03	98.96±0.00	80.59±0.10	98.06±0.05	86.88±0.16	91.59±0.19
	Retrain	99.87±0.00	94.94±0.85	99.57±0.01	99.78±0.07	69.9±0.09	98.39±0.02	84.21±0.62	98.49±0.05	94.73±0.09	70.35±0.10
	BL1 Repaid Retrain	99.72±0.01	89.14±0.39	99.39±0.01	99.37±0.02	65.84±0.11	97.90±0.02	80.40±0.11	97.58±0.00	93.13±0.02	65.49±0.07
MNIST-M	BL2 FedEraser	99.50±0.22	92.22±1.30	99.26±0.21	99.13±0.64	68.73±0.25	97.75±0.09	82.79±0.71	98.12±0.58	94.16±0.21	68.76±0.39
	BL3 Increase Loss	99.30±0.03	96.88±0.04	99.56±0.09	99.91±0.00	72.60±0.04	97.48±0.04	84.30±0.02	98.28±0.05	95.12±0.02	70.31±0.03
	BL4 Class Pruning	99.92±0.00	96.57±0.03	99.84±0.00	99.95±0.00	77.60±0.01	98.55±0.02	84.84±0.10	98.23±0.07	95.33±0.17	75.22±0.21

We perform an empirical evaluation to determine the effectiveness of contemporary unlearning methods in various domains. The accuracy results for the unlearned domain and the remaining test accuracies for Domain-Digital and Office-Caltech10 are shown in Tables 6 and 7. These experimental outcomes mirror those found in DomainNet. In summary, the present methods for federated unlearning introduce substantial challenges within the sphere of federated domain unlearning. These methods either compromise the learning of original domains while attempting to unlearn targeted domains or fail to completely remove the data of targeted domains. This dichotomy exposes a core limitation in existing methods, where the trade-off between effectively unlearning specific domain data and maintaining the integrity and performance of non-targeted domains is yet unresolved. The inability to selectively forget without residual effects calls for the development of more advanced techniques that can handle domain-specific unlearning without undermining the overall system's effectiveness and robustness.

C.2 FEDERATED DOMAIN UNLEARNING AND HIDDEN LAYER REPRESENTATIONS

We employ the Centered Kernel Alignment (CKA) metric Kornblith et al. (2019), a tool for assessing the similarity between neural network representations. CKA quantifies the similarity between two neural networks by computing the inner product between their centered kernel matrices. This

Table 7: Evaluation of federated domain unlearning across various methods on Office-Caltech10 dataset.

Office-	Caltech10	T	rain Accuracy	For All Doma	in	7	est Accuracy	For All Domai	n
Unlearn Domain	BaseLine	Amazon	Caltech	Dslr	Webcam	Amazon	Caltech	Dslr	Webcam
/	Full learn	82.04±0.52	99.02±0.11	88.16±0.60	91.86±062	78.12±0.27	76±0.23	90.62±0.56	89.83±0.15
	Retrain	61.98±0.95	94.10±1.50	87.52±1.19	92.46±1.42	64.38±1.63	70.67±1.61	86.25±2.08	88.81±2.32
	BL1 Repaid Retrain	43.19±1.18	63.10±1.47	87.68±2.06	99.41±0.43	46.25±2.90	52.27±1.55	82.50±2.75	94.92±0.86
Amazon	BL2 FedEraser	51.96±2.38	76.87±2.00	82.20±2.17	85.81±2.63	53.26±2.72	59.22±1.61	83.59±2.12	83.05±1.20
	BL3 Increase Loss	71.04±1.15	98.95±0.53	89.12±1.65	95.42±0.82	73.23±0.42	74.49±0.72	88.75±1.50	89.83±1.07
	BL4 Class Pruning	67.23±1.20	95.46±0.74	92.00±2.15	92.20±1.91	67.40±1.50	68.80±1.10	90.00±2.15	87.12±1.54
	Retrain	40.23±0.69	33.32±1.40	75.68±1.18	96.69±0.98	35.42±1.19	34.13±1.41	75.00±0.78	91.86±1.29
	BL1 Repid Retrain	38.02±1.65	30.94±0.57	71.68±1.89	98.47±0.91	35.62±1.53	32.09±1.17	70.62±2.74	92.20±1.73
Caltehc	BL2 FedEraser	69.45±2.68	37.31±1.34	59.60±0.40	83.26±2.75	57.03±2.59	37.56±1.33	65.62±2.12	84.75±1.68
	BL3 Increase Loss	87.96±0.32	91.85±0.34	81.76±1.06	91.02±0.42	80.73±0.66	69.87±0.33	76.88±1.53	86.78±0.68
	BL4 Class Pruning	59.45±2.32	43.16±1.15	81.28±2.25	98.56±0.95	49.27±2.26	47.02±3.10	78.12±2.59	94.92±1.40
	Retrain	87.36±1.86	98.73±1.43	77.28±1.18	92.29±0.63	81.04±1.11	74.31±1.29	76.88±2.55	89.49±0.71
	BL1 Repid Retrain	80.55±2.16	82.36±1.85	70.88±2.93	90.68±2.84	74.58±1.45	62.04±1.88	72.50±1.65	85.08±1.92
Dslr	BL2 FedEraser	80.22±2.92	94.13±2.22	68.20±1.57	81.57±2.88	74.35±1.97	70.44±2.36	66.41±2.08	75.42±1.62
	BL3 Increase Loss	89.19±2.01	98.82±1.09	80.64±1.20	90.00±1.11	82.40±1.52	74.22±1.01	80.62±1.67	82.03±0.96
	BL4 Class Pruning	90.37±2.08	99.53±0.45	79.36±1.85	93.14±3.00	82.60±1.88	75.56±1.12	80.00±1.75	88.14±2.01
	Retrain	79.58±0.68	96.21±1.02	75.36±0.78	63.31±1.05	78.65±1.10	74.78±1.38	79.69±1.18	69.92±0.89
	BL1 Repid Retrain	72.43±1.63	80.20±1.35	76.48±1.98	61.44±1.72	70.73±1.43	62.40±1.24	77.50±1.64	71.19±2.22
Webcam	BL2 FedEraser	80.25±2.17	87.28±2.38	66.60±1.68	56.78±2.53	76.04±1.01	69.33±1.89	69.53±2.56	55.51±1.51
	BL3 Increase Loss	87.91±1.40	98.80±0.57	75.20±1.69	65.25±0.97	82.92±1.37	74.13±1.67	81.88±1.25	69.83±2.25
	BL4 Class Pruning	82.56±2.24	98.51±0.32	77.76±1.31	63.14±1.33	79.27±1.01	74.93±1.39	81.88±1.34	73.22±2.92

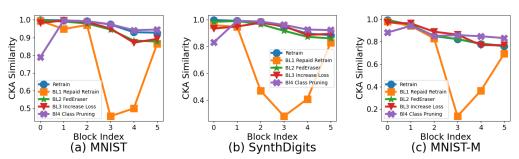


Figure 7: CKA analysis of layer representations before and after unlearning the target domain in Domain-Digital. We visualize three domains: (a) MNIST, (b) SynthDigits, and (c) MNIST-M.

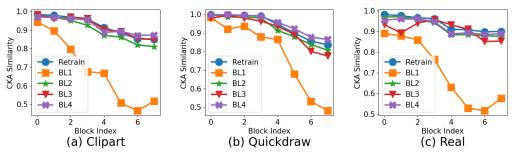


Figure 8: CKA analysis of layer representations before and after unlearning the target domain in DomainNet. We visualize the rest three domains: (a) Clipart, (b) Quickdraw, and (c) Real.

approach provides a measure of how much common information is retained between the networks, thereby shedding light on the extent of information preservation or loss during unlearning. In our experimental setup, we utilize linear CKA to analyze the similarity of the output features produced by two models before and after the unlearning process. Given a dataset D_{cka} , we extract feature matrices Z_1 and Z_2 from the two models, respectively. The linear CKA similarity between two representations X and Y is calculated using the following equation:

$$CKA(X,Y) = \frac{||X^TY||_F^2}{||X^TX||_F^2 \cdot ||Y^TY||_F^2},$$

Table 8: CKA for three convolution layer and three fully connected layer of federated domain unlearning across various methods on Domain-Digital dataset.

Domaom	Method	CKA For Layers							
/	/	Conv1	Conv2	Conv3	Fc1	Fc2	Fc3		
	Retrain	0.9997	0.9976	0.9923	0.9741	0.9303	0.9279		
	BL1 Repaid Retrain	0.9950	0.9485	0.9712	0.4546	0.4992	0.8646		
MNIST	BL2 FedEraser	0.9979	0.9909	0.9798	0.9455	0.8830	0.8776		
	BL3 Increase Loss	0.9825	0.9968	0.9876	0.9517	0.8713	0.8925		
	BL4 Class Pruning	0.7892	0.9965	0.9925	0.9756	0.9419	0.9452		
	Retrain	0.9884	0.9112	0.9114	0.8955	0.8681	0.8519		
	BL1 Repaid Retrain	0.9535	0.8856	0.4199	0.2137	0.2757	0.7626		
SVHN	BL2 FedEraser	0.9801	0.8743	0.8237	0.8026	0.8257	0.8196		
	BL3 Increase Loss	0.9805	0.8788	0.8714	0.9229	0.8856	0.8835		
	BL4 Class Pruning	0.9029	0.9336	0.9509	0.9399	0.9071	0.8936		
	Retrain	0.9990	0.9983	0.9927	0.9816	0.9553	0.9279		
	BL1 Repaid Retrain	0.9818	0.9935	0.9419	0.5448	0.5537	0.8877		
USPS	BL2 FedEraser	0.9966	0.9979	0.9908	0.9775	0.9490	0.9229		
	BL3 Increase Loss	0.9441	0.9944	0.9846	0.9511	0.8816	0.8500		
	BL4 Class Pruning	0.8974	0.9940	0.9912	0.9808	0.9620	0.9363		
	Retrain	0.9975	0.9911	0.9835	0.9466	0.8961	0.8848		
	BL1 Repaid Retrain	0.9585	0.9467	0.4720	0.2815	0.4093	0.8287		
SynthDigits	BL2 FedEraser	0.9841	0.9894	0.9659	0.9171	0.8721	0.8604		
	BL3 Increase Loss	0.9338	0.9490	0.9766	0.9524	0.8856	0.8952		
	BL4 Class Pruning	0.8314	0.9911	0.9861	0.9612	0.9262	0.9224		
	Retrain	0.9938	0.9513	0.8495	0.8236	0.7807	0.7609		
	BL1 Repaid Retrain	0.9787	0.9416	0.8295	0.1376	0.3650	0.6942		
MNIST-M	BL2 FedEraser	0.9938	0.9499	0.8525	0.8236	0.7846	0.7628		
	BL3 Increase Loss	0.9719	0.9633	0.8892	0.8639	0.7703	0.7695		
	BL4 Class Pruning	0.8813	0.9420	0.8514	0.8592	0.8490	0.8325		

Table 9: CKA for five blocks and three fully connected layer of federated domain unlearning across various methods on DomainNet dataset.

Domaom	Method	CKA For Layers							
/	/	Block1	Block2	Block3	Block4	Block5	Fc1	Fc2	Fc3
	Retrain	0.9842	0.9789	0.9696	0.9595	0.9140	0.8841	0.8529	0.8494
	BL1 Repaid Retrain	0.9428	0.8966	0.7977	0.6755	0.6672	0.5079	0.4654	0.5167
Clipart	BL2 FedEraser	0.9790	0.9697	0.9520	0.9256	0.8717	0.8617	0.8197	0.8110
	BL3 Increase Loss	0.9831	0.9632	0.9700	0.9624	0.9019	0.8924	0.8562	0.8493
	BL4 Class Pruning	0.9710	0.9676	0.9626	0.9547	0.8879	0.8931	0.8721	0.8734
	Retrain	0.9616	0.9503	0.9395	0.9171	0.8165	0.7217	0.6087	0.6061
	BL1 Repaid Retrain	0.9149	0.8066	0.7275	0.6678	0.6202	0.5056	0.3117	0.3348
Infograph	BL2 FedEraser	0.9678	0.9457	0.9290	0.9123	0.8013	0.7131	0.6041	0.5999
	BL3 Increase Loss	0.9967	0.9933	0.9871	0.9792	0.9596	0.9463	0.9389	0.9413
	BL4 Class Pruning	0.9518	0.9437	0.9305	0.9068	0.8508	0.8074	0.7101	0.7538
	Retrain	0.9769	0.9646	0.9585	0.9428	0.8858	0.8822	0.8603	0.8549
	BL1 Repaid Retrain	0.8852	0.8436	0.7791	0.7052	0.6135	0.4911	0.5006	0.5420
Painting	BL2 FedEraser	0.9753	0.9638	0.9361	0.9180	0.8586	0.8618	0.8404	0.8246
	BL3 Increase Loss	0.9969	0.9911	0.9836	0.9800	0.9764	0.9761	0.9685	0.9673
	BL4 Class Pruning	0.9675	0.9680	0.9583	0.9477	0.9320	0.9258	0.9080	0.8772
	Retrain	0.9990	0.9962	0.9938	0.9915	0.9461	0.8984	0.8558	0.8359
	BL1 Repaid Retrain	0.9824	0.9214	0.9352	0.8780	0.8645	0.6796	0.5316	0.4811
Quickdraw	BL2 FedEraser	0.9982	0.9856	0.9849	0.9805	0.9133	0.8791	0.8372	0.8070
	BL3 Increase Loss	0.9787	0.9937	0.9796	0.9631	0.9350	0.8927	0.8007	0.7756
	BL4 Class Pruning	0.9967	0.9980	0.9940	0.9892	0.9564	0.9218	0.8770	0.8647
	Retrain	0.9813	0.9752	0.9655	0.9606	0.9103	0.9073	0.8977	0.8996
	BL1 Repaid Retrain	0.8896	0.8782	0.8587	0.7635	0.6296	0.5296	0.5163	0.5763
Real	BL2 FedEraser	0.9694	0.9701	0.9559	0.9416	0.8824	0.8841	0.8781	0.8762
	BL3 Increase Loss	0.9321	0.8918	0.9396	0.9559	0.9318	0.9100	0.8506	0.8529
	BL4 Class Pruning	0.9540	0.9596	0.9595	0.9459	0.8866	0.8931	0.8840	0.8882
	Retrain	0.9900	0.9807	0.9655	0.9555	0.8764	0.8351	0.8199	0.8250
	BL1 Repaid Retrain	0.9267	0.8606	0.7982	0.7044	0.6064	0.4493	0.3677	0.4231
Sketch	BL2 FedEraser	0.9716	0.9666	0.9471	0.9258	0.8351	0.7896	0.7795	0.7799
	BL3 Increase Loss	0.9982	0.9928	0.9872	0.9884	0.9770	0.9667	0.9629	0.9642
	BL4 Class Pruning	0.9729	0.9839	0.9818	0.9723	0.9196	0.9082	0.9029	0.9083

where $||\cdot||_F$ denotes the Frobenius norm. This formula yields a similarity score ranging from 0 (indicating no similarity) to 1 (indicating identical representations), thereby enabling a quantitative assessment of how similar the output features of the same layer are across two models.

All the results of Centered Kernel Alignment (CKA) across multiple target domains from Domain-Digital and DomainNet dataset, comparing various unlearning methods with the comprehensive learning model, were displayed in Tables 8 and Tables 9. Furthermore, we visualized the remaining three domains of DomainNet in Figure 7 and parts of the Domain-Digital in Figure 8. The results on Domain-Digital are found to be similar to those on DomainNet. However, a notable difference is that Class-Discriminative Pruning has a significant impact on the first convolutional kernel of the network used for training Domain-Digital, which has three convolutional layers. We also analyzed the CKA scores of all convolutional layers of VGG16 and found similar results of Class-Discriminative Pruning.

C.3 FEATURE REUSE

To further investigate how the representations of lower and higher layers evolve during unlearning, we conduct the subspace similarity analysis on the unlearned models with different unlearning methods. Let $A \in \mathbb{R}^{n \times m}$ represent the centered layer activation matrix with n examples and m neurons. We determine the PCA decomposition of A, which involves computing the eigenvectors $(e_1, e_2, ...)$ and the corresponding eigenvalues $(\delta_1, \delta_2, ...)$ of the matrix A^TA . Let E_k denote the matrix composed of the first k principal components, with $e_1, ..., e_k$ as its columns, and let G_k be the analogous

Table 10: Subspace similarity for three convs of federated domain unlearning across various methods on Domain-Digital dataset.

Domaom	Method	Subspac	e Similarity	For Layers
/	/	Conv1	Conv2	Conv3
	Retrain	0.9405	0.4643	0.4721
	BL1 Repaid Retrain	0.8567	0.2033	0.3834
MNIST	BL2 FedEraser	0.8978	0.5045	0.4895
	BL3 Increase Loss	0.6421	0.7798	0.7387
	BL4 Class Pruning	0.0252	0.4901	0.4629
	Retrain	0.7170	0.3751	0.3967
	BL1 Repaid Retrain	0.5605	0.2628	0.0245
SVHN	BL2 FedEraser	0.6917	0.3379	0.3783
	BL3 Increase Loss	0.5703	0.6731	0.6503
	BL4 Class Pruning	0.0117	0.4940	0.3704
	Retrain	0.9054	0.4820	0.4371
	BL1 Repaid Retrain	0.7042	0.3971	0.2987
USPS	BL2 FedEraser	0.8731	0.4976	0.4666
	BL3 Increase Loss	0.2641	0.7718	0.6912
	BL4 Class Pruning	0.0178	0.5805	0.4695
	Retrain	0.8688	0.4748	0.5183
	BL1 Repaid Retrain	0.5500	0.3058	0.0011
SynthDigits	BL2 FedEraser	0.8175	0.4952	0.5193
	BL3 Increase Loss	0.3175	0.7013	0.7874
	BL4 Class Pruning	0.0058	0.5588	0.4355
	Retrain	0.7041	0.5205	0.4664
	BL1 Repaid Retrain	0.7563	0.4249	0.3608
MNIST-M	BL2 FedEraser	0.7030	0.5121	0.4739
	BL3 Increase Loss	0.5553	0.8213	0.6629
	BL4 Class Pruning	0.0148	0.5250	0.4045

matrix derived from another activation matrix B. We then compute the subspace similarity for the top k components as:

$$SubspaceSim_k(A, B) = ||G_k^T \cdot E_k||_F^2$$
(6)

This metric quantifies the congruence of the subspaces spanned by $(e_1,...,e_k)$ and $(g_1,...,g_k)$. For instance, if A and B are the layer activation matrices corresponding to different tasks, then SubspaceSim $_k$ evaluates the similarity in how the network encodes the top k features for those tasks.

All the results of the subspace similarity of feature extractors before and after the application of various unlearning methods in the Domain-Digital and DomainNet were displayed in Tables 10 and

Table 11: Subspace similarity for five blocks of federated domain unlearning across various methods on DomainNet dataset

Domaom	Method	,	Subspace S	Similarity	For Layers	8
/	/	Block1	Block2	Block3	Block4	Block5
	Retrain	0.4368	0.3365	0.2873	0.2611	0.2219
	BL1 Repaid Retrain	0.3077	0.3595	0.2440	0.1829	0.0828
Clipart	BL2 FedEraser	0.3487	0.3793	0.3008	0.2793	0.2478
	BL3 Increase Loss	0.6765	0.3507	0.4163	0.5783	0.5189
	BL4 Class Pruning	0.1645	0.2276	0.2678	0.2516	0.1001
	Retrain	0.4121	0.3048	0.2017	0.1377	0.1460
	BL1 Repaid Retrain	0.2657	0.2634	0.1841	0.1053	0.0919
Infograph	BL2 FedEraser	0.3873	0.2077	0.2001	0.1500	0.1458
	BL3 Increase Loss	0.9867	0.9669	0.9337	0.9071	0.8728
	BL4 Class Pruning	0.2464	0.2497	0.2563	0.1744	0.0582
	Retrain	0.4869	0.3445	0.2108	0.1940	0.1570
	BL1 Repaid Retrain	0.2584	0.2474	0.1410	0.0932	0.0714
Painting	BL2 FedEraser	0.4059	0.3096	0.1981	0.1821	0.1965
	BL3 Increase Loss	0.9759	0.9420	0.7803	0.8632	0.9225
	BL4 Class Pruning	0.1607	0.2228	0.2196	0.2008	0.0854
	Retrain	0.6189	0.4184	0.2596	0.1829	0.1274
	BL1 Repaid Retrain	0.4428	0.3551	0.2701	0.1617	0.0571
Quickdraw	BL2 FedEraser	0.5350	0.4446	0.2932	0.2063	0.1347
	BL3 Increase Loss	0.6195	0.4756	0.2230	0.3650	0.4007
	BL4 Class Pruning	0.3796	0.4469	0.3286	0.2962	0.1708
	Retrain	0.3708	0.2344	0.1648	0.1785	0.1754
	BL1 Repaid Retrain	0.2309	0.1907	0.1091	0.0746	0.0577
Real	BL2 FedEraser	0.3668	0.2767	0.1935	0.1903	0.1727
	BL3 Increase Loss	0.2993	0.1553	0.3644	0.6277	0.5379
	BL4 Class Pruning	0.1963	0.1835	0.2130	0.1962	0.1090
	Retrain	0.3961	0.3905	0.2437	0.1951	0.1923
	BL1 Repaid Retrain	0.2610	0.3528	0.2243	0.1444	0.0866
Sketch	BL2 FedEraser	0.3416	0.3858	0.2560	0.2203	0.2136
	BL3 Increase Loss	0.9672	0.9549	0.8586	0.8229	0.9066
	BL4 Class Pruning	0.3364	0.3515	0.2581	0.2840	0.1334

Tables 11. Furthermore, we visualized the remaining three domains of DomainNet in Figure 9 and all domains of the Domain-Digital in Figure 10.

C.4 MEMBERSHIP INFERENCE ATTACK

We perform Membership Inference Attack Shokri et al. (2017) (MIA) experiments, employing the strategy of shadow model training to extract data for the purpose of constructing an attack classifier. Utilizing fully trained models that encompass all domains as shadow models, we conduct attacks on models from which certain domains have been unlearned through various unlearning methods. We measure both the attack accuracy and attack recall which demonstrate the amount of information about the data in a domain that remains in the unlearned model. The ideal unlearning method would

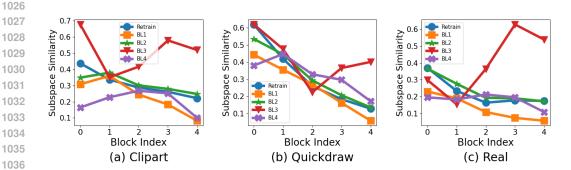


Figure 9: Comparative analysis of subspace similarity in feature extractors before and after unlearning in the target domain of DomainNet. We visualize the rest three domains: (a) Clipart, (b) Quickdraw, and (c) Real.

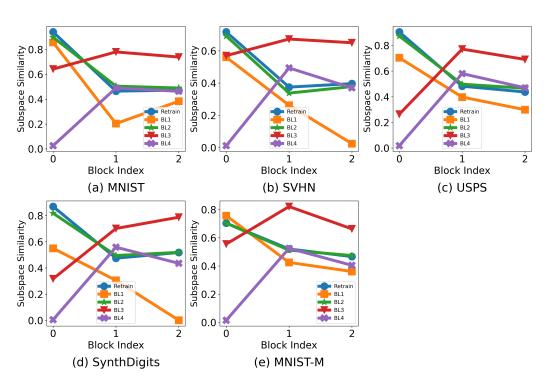


Figure 10: Comparative analysis of subspace similarity in feature extractors before and after unlearning in the target domain of Domain-Digital.

minimize both accuracy and recall, indicating the attack model's difficulty in distinguishing whether the unlearned domain had participated in federated learning. From Figures 11 and Figures 12, it can be observed that there are significant differences in sensitivity and specificity across different domains. USPS exhibits high accuracy and recall in attacks, whereas SVHN and SynthDigitls show lower values, especially in attack recall, with SynthDigitls being notably low. Additionally, across most domains, various unlearning methods slightly higher than retrain, both in attack precision and recall.

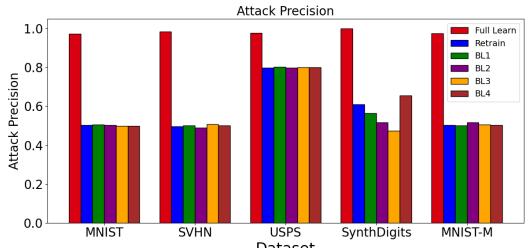
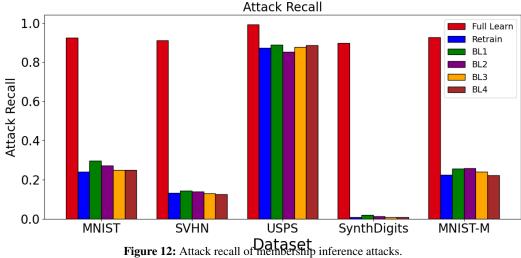


Figure 11: Attack precision of membership inference attacks.



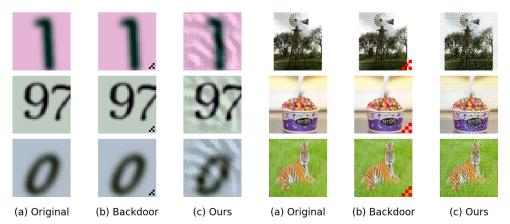


Figure 13: The differences between our verification method and backdoor attack. On the left are images from the Domain-Digital dataset, and on the right are images from the DomainNet dataset.

Table 12: Evaluation results of backdoor attacks, membership inference attacks and our verification method on original model performance in Domain-Digital dataset. Orig represents the original training model's training accuracy on the training dataset before unlearning.

0				<i>></i> .			
Doamin	Method		Verify A	Accuracy	For Base	eLines	
Doannii		Orig	Retrain	RR	FE	IL	CP
	MIA	99.17	49.78	50.13	49.40	49.51	51.42
MNIST	Backdoor	91.10	0.12	0.57	0	8.62	0.27
	Ours	98.32	1.85	1.33	0	91.89	37.13
	MIA	99.23	50.00	49.19	50.28	50	49.47
SVHN	Backdoor	77.37	2.35	2.44	0.83	69.14	1.55
	Ours	99.46	0.41	0.47	89.33	95.84	87.03
	MIA	99.73	81.40	78.83	80.18	81.82	79.74
USPS	Backdoor	91.27	1.03	0.53	0.47	0.59	1.33
	Ours	98.66	0.92	0.73	58.03	91.90	36.27
	MIA	99.32	52.01	49.21	48.76	49.85	49.19
SynthDigits	Backdoor	97.33	0.62	0.71	0.83	71.36	51.48
	Ours	96.84	0.44	0.16	64.46	92.61	55.24
	MIA	99.94	48.10	51.05	51.12	50.92	47.35
MNIST-M	Backdoor	92.59	1.77	1.53	3.09	55.37	1.77
	Ours	97.79	1.10	0.31	49.83	93.33	47.85

C.5 OUR VALIDATION RESULTS

We conduct experimental comparisons between traditional backdoor methods, which involve adding pixels or patterns, and our proposed verification method. We can see the images in Figures 13. The detials of the efficacy of our verification method in terms of domain sensitivity and specificity were shown in Tables 12 for Domain-Digital dataset and Tables 13 for Office-Caltech dataset. It is evident that compared to backdoor attacks, our verification method demonstrated a smaller performance loss.

C.6 LARGE LANGUAGE MODELS USAGE

We used a large language model only to polish language (grammar/wording); all scientific content was authored and verified by the human authors.

Table 13: Evaluation results of backdoor attacks, membership inference attacks and our verification method on original model performance in Office-Caltech10 dataset. Orig represents the original training model's training accuracy on the training dataset before unlearning.

Doamin	Method	Verify Accuracy For BaseLines					
		Orig	Retrain	RR	FE	IL	CP
Amazon	MIA	98.45	83.35	82.90	83.44	82.88	82.77
	Backdoor	92.61	1.16	0.29	0.87	1.16	2.32
	Ours	98.12	0.62	0.73	45.62	90.62	75.62
Caltech	MIA	97.60	85.07	83.65	83.86	85.26	84.64
	Backdoor	91.23	6.67	4.94	0.25	15.62	10.62
	Ours	97.06	0.65	1.18	95.88	95.29	36.47
Dslr	MIA	99.13	86.51	87.40	81.72	85.07	84.68
	Backdoor	85.85	15.09	16.98	13.21	24.53	7.55
	Ours	95.00	0.00	0.00	15.71	90.84	87.54
Webcam	MIA	98.67	84.72	84.21	84.17	86.09	85.48
	Backdoor	80.93	1.45	1.78	0.93	3.74	0.93
	Ours	97.54	0	0	62.54	81.74	87.12