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ABSTRACT

Federated Learning (FL) has emerged as a powerful training paradigm that coor-
dinates multiple clients to collaboratively train a shared model while preserving
data privacy. The Right to Be Forgotten (RTBF), a key provision in many data
protection regulations, calls for effective approaches to remove, or unlearn spe-
cific training data from the learned FL model. Thus, different federated unlearning
techniques are proposed to effectively remove the influence of specific data and
preserve the global model’s performance. However, existing federated unlearning
approaches primarily develop and test in single-domain scenarios, and their effec-
tiveness in multi-domain environments remains unverified. In such heterogeneous
scenarios, domain differences pose significant challenges not only to the unlearn-
ing process itself but also to the methods used for verifying whether unlearning has
been successful. This raises a critical question: can traditional unlearning valida-
tion methods, originally designed for single-domain tasks, still provide reliable as-
sessments in multi-domain scenarios? Given the prevalence of multi-domain data
in real-world applications, addressing these challenges is crucial for the practical
deployment of federated unlearning. In this paper, we address these critical gaps
by presenting the first comprehensive empirical study on Federated Domain Un-
learning. We systematically analyze the characteristics, limitations, and effective-
ness of current unlearning and validation techniques under multi-domain condi-
tions. Additionally, we propose novel validation methodologies explicitly tailored
for Federated Domain Unlearning, facilitating precise assessment and verification
of domain-specific data removal without compromising the overall integrity and
performance of the global model.

1 INTRODUCTION

Federated Learning (FL) has emerged as an innovative approach to machine learning, enabling
collaborative model training across multiple decentralized entities while preserving data privacy
Konecny et al.| (2016); [Kairouz et al.| (2019); [Li et al.| (2020b). This methodology is particularly
valuable in sectors such as healthcare, finance, and telecommunications, where data privacy and se-
curity are critical concerns |Li et al.|(2020a); Tam et al.| (2023bga). While FL preserves data privacy
during model training, the Right to Be Forgotten (RTBF) [Kalis| (2014)) presents new challenges for
FL systems as many data protection regulations incorporate this provision. RTBF requires organiza-
tions and data controllers to remove user data upon request, necessitating techniques that preserve
model accuracy while complying with privacy regulations such as the General Data Protection Reg-
ulation (GDPR) |[European Parliament and Council of the European Union| (2016)) and the California
Consumer Privacy Act (CCPA) California Department of Justice|(2020).

To address RTBF requirements, researchers have developed an advanced federated scheme termed
“federated unlearning” [Liu et al| (2023); Jeong et al.| (2024); [Liu et al.| (2021). Federated un-
learning aims to create methods that effectively remove the influence of specific data and pre-
serve the model performance in FL Halimi et al.| (2022); [Wang et al.| (2022); Wu et al.| (2022b);
Gao et al.| (2024). The federated unlearning process typically involves two key steps: informa-
tion removal and performance recovery. Information removal seeks to erase the effects of tar-
geted data from the trained model, ensuring it behaves as if it had never seen this data. Com-
mon techniques include selecting historical information [Liu et al.|(2021)), approximating loss func-
tions Halimi et al.| (2022), and manipulating gradients Che et al.| (2023). After removing data
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influences, it’s crucial to restore the global model’s performance, as this removal often leads
to performance decline. To recover performance, federated unlearning methods usually employ
additional training rounds, knowledge distillation, and fine-tuning with gradient manipulation.

(Remaining Domains ] [ Forgetting Domain
While existing federated unlearning techniques e 5 £
show promise in theory, applying them in practical E Request A\
scenarios presents significant challenges. One of the Ve 1 ‘:: Keep Performance? Specific forgetting?
primary obstacles is data heterogeneity, a common  Perigeant Particpant Forgeting) (b) Forgetting Effectivencss
characteristic of real-world federated learning envi- @ Glowa: Mo Unlearn Dorin Data
ronments [Huang et al (2023b); [Li et al.| (2020Db). 147 e XK
A limited number of existing federated unlearning 2 S!N'O -NB \/-mﬂ
methods consider label skew, where distributed data ) rederated Domain Unlearning ”"W(‘c‘; vorty orgeting?

are from the same domain but have different label
distributions. These methods typically simulate data

heterogeneity via imbalanced sampling, for exam- leaming methods precisely identify and remove

ple, using the. Dirichlet ?tfa,tegy_ Li et .al..(2020b) to domain-specific influences without affecting the
generate varying label distributions within the same  remaining domains? (c) How can we completely

domain across clients. Nonetheless, another notable and effectively evaluate the forgetting perfor-
form of data heterogeneity in federated learning iS mance on the specific unlearned domain?
domain skew, where client data samples come from

various domains while maintaining the same label distribution Huang et al.|(2023b)); Li et al.|(2021).
Under domain skew, local data are sampled from multiple domains, resulting in significant dispari-
ties in distributed data. While existing methods have developed advanced federated learning training
techniques to improve the global model’s generalizability by assimilating general knowledge across
diverse domains, domain skew remains an underexplored challenge for federated unlearning. In light
of this, we argue that there are two primary concerns with existing federated unlearning methods, as
illustrated in Figure[I} I) Forgetting Effectiveness: Can existing federated unlearning methods pre-
cisely identify and remove domain-specific influences without affecting the data or contributions of
other domains, thus maintaining the integrity of their information within the model? Due to domain
skew, different domain data can have varying impacts on the model parameters | LeCun et al.|(1989);
Yang et al.|(2023); Shoham et al.|(2019). Some parameters of the neural network are more important
to specific domains (Chen et al.| (2024); [Huang et al.|(2023a), meaning that changes in these param-
eters may have a larger impact on performance for those domains. This variability in parameter
importance across domains complicates the task of selective forgetting. II) Verification on Un-
learned Domain: How can we comprehensively and effectively evaluate the forgetting performance
on the specific unlearned domain? In federated domain unlearning, this verification process faces
unique challenges. The potential for domain overlap or correlation among different clients further
complicates the verification process, as remnants of the unlearned domain may persist indirectly
through shared features. Current verification methods, such as examining changes in accuracy on
the unlearned domain or backdoor testing, may not fully capture the extent of forgetting, especially
when dealing with complex domain interactions in federated settings.

Figure 1: Problem illustration of federated do-
main unlearning. (b) Can existing federated un-

To address these concerns, we present the first empirical analysis of federated domain unlearning
and propose a new validation method specifically designed for this cross-silo scenario. To address
concern I, we analyze existing unlearning techniques in multi-domain scenarios. Our analysis re-
veals that these techniques, primarily developed for single-domain scenarios, inadequately address
the challenges of multi-domain federated learning. These methods often reduce model accuracy
on unrelated domains or cause unnecessary forgetting across all domains when targeting a specific
domain for removal, indicating poor domain specificity. Furthermore, by comparing feature repre-
sentations before and after unlearning, we find that the model’s shallower layers retain much of their
original structure, while deeper layers exhibit significant changes. This pattern enables the recovery
of information from the supposedly forgotten domain through the less-affected shallower layers,
posing significant privacy risks. These insights highlight the limitations of current approaches and
underscore the need for more effective and secure federated domain unlearning methods.

For concern II, we argue that solely using testing accuracy or backdoor/MIA as validation meth-
ods for unlearned domain data may cause efficiency and privacy safety issues in federated domain
unlearning. To precisely and comprehensively valid the forgetting, we propose novel validation tech-
niques specifically tailored for federated domain unlearning. Our method employs a proxy valida-
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tion model to align with and represent the feature space of the domain to be unlearned, as originally
learned by the global model. We select representative samples from the target domain and train a
proxy validation model to map their feature space into the anchor validation class. By analyzing the
unlearned global model’s performance on samples transformed by the proxy validation model, we
can effectively detect whether the domain’s features have been successfully unlearned, providing a
sensitive and privacy-preserving mechanism for assessing unlearning effectiveness. Specifically, we
make the following key contributions:

e We present, to the best of our knowledge, the first systematic empirical study of Federated Domain
Unlearning within cross-silo FL, analyzing the complexities and failure modes that current unlearn-
ing techniques face across heterogeneous domain contexts, and distilling guidance for more robust
practice.

e We identify and characterize the critical shortcomings of prevailing unlearning methods—most
notably their neglect of domain-specific distributional structure—which leads to residual domain
imprinting and collateral damage on non-target domains. Our findings motivate the need for finer-
grained, representation-aware procedures.

e We introduce a threat-model-aligned verification protocol tailored to FDU that assesses whether
domain-specific signals have been effectively excised while preserving overall utility on retained
domains. The protocol is method-agnostic and low-overhead, enabling reliable auditing without
harming overall effectiveness.

2 BACKGROUND: FEDERATED DOMAIN HETEROGENEITY AND DOMAIN
UNLEARNING

Federated learning and heterogeneity. Federated learning (FL) collaboratively trains models with-
out centralizing raw data [McMahan et al.| (2017). Beyond label-distribution skew |[Kairouz et al.
(2019); [Li et al.| (2020azbj |2022); [Luo et al.| (2021); |[Zhao et al.| (2018]), real-world deployments
frequently exhibit domain heterogeneity, where clients (or groups of clients) follow distinct data-
generating processes. Recent FL research has addressed domain heterogeneity via two lines: Pro-
totype Learning that abstracts domain-specific features into transferable prototypes Huang et al.
(2023b}; 2022b); [Chen et al.| (2024), and Domain Adaptation that aligns feature spaces across do-
mains Huang et al| (2022a)); Zhang et al.| (2023). These works primarily focus on learning with
multi-domain data; they do not investigate how to unlearn domain-specific signals once training has
finished.

Notation and standard FL objective. Following|[Huang et al.|(2023b); Li et al.|(2020b); McMahan
et al.|(2017); Liu et al.|(2021]), let there be M clients indexed by ¢, each holding a private dataset D;
of size N;. A sample is (x,y) with input x and label y. The global model parameters are w, and the
standard cross-silo FL objective minimizes the weighted empirical risk:

: N;
min Y | —yr—— Fi(w, Dy), (M

where F;(w, D;) is the local empirical loss.

Cross-silo view of domains. We adopt a cross-silo perspective: a small number of organizations
(“silos™) participate with relatively stable connectivity and capacity. Each silo can internally ag-
gregate multiple clients but shares a common domain characterized by a distribution Ps(x,y) with
s € S. In such settings, strong within-silo correlation and persistent domain statistics are common.
Formally, domain heterogeneity arises when, even under similar label marginals, the conditional
distributions differ across silos/clients:

Pi(x |y) # Pj(z | y) (evenif P;(y) = P;(y)). 2)

This highlights that domain-specific patterns often materialize at intermediate/deep representations
rather than only at raw inputs.

A concise taxonomy of federated unlearning (revised). Most existing FL unlearning works are
designed for single-domain settings and operate at three typical granularities: (i) Data-/class-level
removal via retraining or faster approximations |Liu et al.| (2021} 2022); (ii) Client-level removal via
loss/gradient manipulations or reverse-updating schemes |[Halimi et al.| (2022); |Wu et al.| (2022b));
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Che et al.|(2023); (iii) Parameter-space strategies, e.g., distillation/transfer, reweighting, pruning/-
masking Wu et al.| (2022a); Wang et al.| (2022). These lines mostly assume targets are enumerated
objects (samples, classes, clients), not a distributional factor shared across many silos.

Problem: Federated Domain Unlearning (FDU). Let S denote the set of domains and Ps(z,y)
the distribution of domain s € S. We write w™! for the global model trained on all domains S, and
w" for the model after unlearning a target domain s* € S. Let S = S\ {s*} be the non-target
domains. (When needed, s(i) denotes the domain assignment of client ¢; multiple clients may share
one domain and one domain may span multiple silos.) For analysis consistent with our empirical
study, we refer to deep-layer representations hy(-) (e.g., used by CKA).

Goals. FDU entails two complementary objectives that we will evaluate in Sec. [3f (F) Domain re-
moval — remove information specific to s* such that, for x ~ P;«, deep representations h(z; w"")
no longer align with those of w™! (i.e., the target-domain footprint is erased); (P) Model preserva-
tion — maintain utility and stable representations on S so that unlearning does not cause collateral
degradation for non-target domains.

Why FDU differs from existing granularities. Client-level removal is not equivalent to domain
erasure: if other silos still encode Ps-, the domain footprint persists. Likewise, data-/class-level
removal targets enumerated subsets, not a latent distributional factor that may cut across classes and
clients. Therefore FDU must explicitly reason about domain-level representations and their cross-
domain generalization.

Bridge to our empirical study. Next, we examine what fails when standard unlearning baselines
are naively applied to multi-domain FL, focusing on: (i) deep-layer alignment/drift across domains
(e.g., via CKA), (ii) privacy exposure via feature inversion on Ps-, and (iii) the sensitivity and cost
of common validators (membership inference and backdoor checks). These observations motivate
our evaluation criteria and a security-oriented threat model later.

3 EMPIRICAL STUDY

In this section, we conduct experiments on multi-
domain unlearning using existing federated unlearn-
ing methods. We e\./alua.te. on three multi-domain dataset. The abbreviation for the method’s name
benchmarks—Domain-Digits |Hull| (1994); [LeCun is introduced in setup. We report the test accuracy
et al. (1998); Netzer et al.| (2011); Roy et al.| (2018);  for a1l domains as the difference from the Retrain
Ganin & Lempitsky| (2015), Office-Caltech (Gong| method’s accuracy. Remarks: | denotes testing
etal.(2012), and DomainNetPeng et al.|(2019)—as-  accuracy decreased in the non-target domain; *
signing one domain per client following |[Huang denotes poor unlearning effect in the target for-
et al.| (2023alb)); use a lightweight CNN for Domain- getting domain. More results on other datasets are
Digits|Li et al.|(2021)) and VGG 16 for Office-Caltech  shown in the supplementary material.

Unlearn Accuracy For Test Accuracy For All Domain

Table 1: Evaluation of federated domain un-
learning across various methods on DomainNet

and DomainNet|Simonyan & Zisserman|(2014); and  _voman | " | nicam boman [ &7 P o R s
compare five representative unlearning methods: Re- o T i
train, Rapid Retraining (RR) |Liu et al.| (2022), Fed- Lo mo Tl as ol s7rlonsy wsy
Eraser (FE) Liu et al.[(2021)), Increase Loss (IL)|Hal- e O R O S A
imi et al.[(2022), and Class-Discriminative Pruning R I I A
(CP) Wang et al] (2022); details are shown in Ap- ~ * | ™ | @0 |ox o0 ews aep o o
pendix |Al We then analyze the results to answer the R T B e T ¥
following key questions: s | | e e G et e ami
L 89.92 % 5.13 5.48 5.84 7.46 1.54 14.98 *
CP 73.89 * 3.04 3.96 2.91 2.86 1.21 11.73 *

e How does the performance of existing federated
unlearning methods vary in multi-domain scenarios compared to single-domain settings?

o [f the performance degrades in multi-domain scenarios, why do current federated unlearning tech-
niques struggle in multi-domain environments?

3.1 EFFECTIVENESS OF EXISTING METHODS IN FEDERATED DOMAIN UNLEARNING

We evaluate the effectiveness of current unlearning methods in multiple domain settings. Table [T]
show the accuracy of forgetting and remaining domains for the DomainNet dataset. Additional re-
sults from other datasets are in the supplementary materials. The Retrain method serves as a bench-
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mark by excluding the target forgetting domain from the start of training. Unlike traditional class
data unlearning |Liu et al.[ (2021} 2022); Halimi et al.[| (2022)), where Retrain typically shows lower
accuracy on forgotten class/client, we observe that in domain unlearning, Retrain still has high ac-
curacy on the forgetting domain. The high performance is attributed to existing federated domain
learning methods’ capability to learn general and universal features across multiple domains dur-
ing training |Huang et al.| (2023a)), allowing the model to generalize well even to unseen domains.
Compared with ideal retraining, Rapid Retraining
achieves similar results for forgotten domains but
negatively impacts the remaining domains. It re-
duces the remaining domains’ test accuracy by up
to 30% in DomainNet because it cannot distin- o
guish between domain-specific and general knowl-
edge. FedEraser effectively removes forgetting do-
main knowledge but causes unintended forgetting
in retained domains. It leads to accuracy drops of
up to 12% due to excessive erasure of shared fea-
tures. The Increase Loss method fails to forget tar-
geted domains. It increases the accuracy of forget-
ting domain by up to 35% in DomainNet, show-
ing its inability to perform targeted unlearning.
Class-Discriminative Pruning also struggles with do-
main forgetting. It results in up to 10% higher ac-
curacy for forgotten domains in DomainNet. This
may be due to inaccurate identification of domain-
specific features through CNN channel pruning.
Summarized Takeaway: Our empirical evaluation reveals two critical challenges in current fed-
erated unlearning methods under multi-domain settings. First, some approaches fail to effectively
forget the targeted domains, sometimes even improving their accuracy compared to the benchmark.
Second, methods that do achieve forgetting often lack domain specificity, causing significant perfor-
mance drops in domains meant to be retained.
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Figure 2: Comparative CKA Analysis of Layer
Representations in Unlearned and Remaining Do-
mains in DomainNet. We report the results of
the methods Repaid-Retrain and FedEraser, which
unlearn the target domain but also impact the re-
maining domain’s integrity.

3.2 ANATOMY OF EXISTING METHODS IN FEDERATED DOMAIN UNLEARNING: HIDDEN
REPRESENTATIONS

Our empirical evaluation reveals significant perfor-
mance degradation after applying existing unlearn-
ing techniques in federated domain settings. Existing
unlearning approaches can not adequately address
the challenges posed by multiple diverse domains LRI
in feature learning, especially in representation for-
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getting. To understand the root cause of this perfor-
mance degradation, we examine changes in hidden
layer representations before and after applying vari-

Figure 3: CKA analysis of layer representations
before and after unlearning the target domain in
DomainNet. We select three domains to display:
(a) Infograp, (b) Painting, and (c) Sketch. The

ous unlearning techniques. analysis uses VGG-16’s 8-block modules: blocks

0-4 for feature extraction and 5-7 for classifiers.
More results are shown in supplementary materi-
als.

To evaluate the effectiveness of various unlearning
methods, we employ linear Centered Kernel Align-
ment (CKA) Kornblith et al.| (2019) to analyze the
similarity of output features before and after unlearning. Our analysis focuses on multiple target
domains from the DomainNet dataset. Figure [3|illustrates the CKA results for different unlearning
methods compared to the comprehensive learning model. Our findings reveal that methods such as
Rapid Retraining and FedEraser demonstrate significant decreases in representation similarity, par-
ticularly in higher layers, indicating successful erasure of domain-specific knowledge. In contrast,
methods like Increase Loss and Class-Discriminative Pruning show minimal CKA score variation
across layers, with their representations remaining closely aligned with the full learning model, sug-
gesting ineffective removal of domain-specific information. While Rapid Retraining and FedEraser
effectively erase target domain knowledge, they also affect the learning of remaining domains. Fig-
ure [2] shows the CKA results for both Rapid Retraining and FedEraser, comparing the forgetting
domain and remaining domains before and after unlearning. It demonstrates a notable decrease in
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similarity for the target domain in deeper layers, indicative of successful unlearning. However, these
methods inadvertently influence the representations of non-target domains. For instance, FedEraser’s
unlearning of the “Real” domain concurrently affects the “Infograph” domain.

The CKA analysis not only reveals the effectiveness
of certain unlearning methods but also highlights po-
tential risks associated with ineffective unlearning. .. hod ioinal model perf :
After unlearning on the target domain, high CKA tion metod on oniging mode_ periormance in
) - g » Mgl DomainNet dataset. Orig represents the original
scores for some unlearning methods suggest ineffec-  (raining model’s training accuracy on the training
tive removal of domain-specific information, which  dataset before unlearning.
can lead to privacy leaks for forgetting clients. To

Table 2: Evaluation results of backdoor attacks,
membership inference attacks and our verifica-

Doamin | Method Verify Accuracy For BaseLines

investigate this risk, we experiment with a popular Orig Rerain RR _FE__IL__ CP
model attack method [Ulyanov et al.| (2018) to check MIA - ]9592 6551 6746 6581 6642 64.60

hether raw images from unlearning clients can be © | Buckdoor] BT7 188306 368 4514 391
w W 1 g . u . g 1 . Ours 99.69  0.39 116 18.06 9519 7538
reconstructed by inverting their feature embeddings. MIA | 9427 6030 6121 5948 6331 6238
As shown in Figure El we focus on higher layers I | Backdoor [ 9936 771 942 1135 5157 10.06
that extract high-level image features because lower Ours | 98.65 014 069 2738 97.19 1827

. . . MIA 95.06 61.26 61.69 61.62 6352 62.68
layer indices, e.g., 0-3, can be inverted due to model P | Backdoor | 9888 379 1049 513 3604 692

generalization [Huang et al (2023a)); [Ulyanov et al. Ours | 9882 026 047 5876 93.06 1344

(2018). The results indicate that methods with high MIA | 9157 4973 5051 4884 4926 49.80
CKA scores (e.g. IL & CP) can reconstruct images Q | Backdoor | 6732 833 636 1031 2441 7.68
from deeper layer fegtures, suggesting pqtential pri- f;l'z Zzzg 409'?5(:) 51‘;4 23§2 szg igzg
vacy leaks. This finding underscores the importance R | Backdoor | 9887 135 090 090 3718 3.0
of effective domain unlearning in preserving client Ours | 9985 0 068 544 9582 1382
privacy. Additional results from other datasets are MIA | 9539 6333 6673 6272 66.38 6340

S Backdoor | 67.11 2.68 425 291 2845 224

provided in the supplementary materials. oue | 9985 035 045 o o6se 7026

Summarized Takeaway: CKA analysis reveals that unlearning effectiveness in federated domains
varies across methods and network layers. Effective unlearning techniques like Rapid Retraining
successfully erase target domain features but may inadvertently affect non-target domains. Ineffec-
tive methods maintain high feature similarity, risking privacy leaks. The balance between thorough
domain-specific feature removal and preserving general feature learning is crucial for effective un-
learning.

4 NEW VALIDATION METHODS FOR FEDERATED DOMAIN UNLEARNING

4.1 CURRENT VERIFICATION METHODS AND THEIR LIMITATIONS.

Traditional verification methods for unlearning, such s Bocks Bockt Bockz Bocks Bocks S00S Bocks Block?
as Membership Inference Attacks (MIA) [Shokri e
et al] (2017) and Backdoor Attacks|Gu et al.| (2017); Re""’i"% ””%. ..-
Liu et a!. (2018), face significant limitations in feder-
ated domain unlearning scenarios due to the inherent
challenges posed by multi-domain heterogeneity.

Membership Inference Attacks (MIA). MIA ver-
ifies unlearning effectiveness by assessing whether o % 'Y
specific samples were previously used during the Y ol
training process based on the model’s outputs. Table Figure 4: Image reconstruction using features
[2ldemonstrates the performance of MIAs when veri-  from an unlearned model. We present the recon-
fying forgotten domains on DomainNet. The results ~ struction results by utilizing output features from
show that MIAs yield similar accuracy across dif- different layers with various unlearning methods.
ferent unlearning targets, highlighting their limited sensitivity to domain-specific unlearning. This
occurs because MIA fundamentally evaluates membership status at the sample level, lacking speci-
ficity to domain-level features. In multi-domain scenarios, this lack of specificity is exacerbated due
to significant domain heterogeneity, making it difficult for MIA to accurately distinguish between
domain-specific unlearning and the generalization capability of the global model.

Backdoor Attacks. Backdoor-based verification approaches insert artificially designed triggers or
patterns into training samples to evaluate whether these injected signals remain learned by the model.
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Though effective in traditional unlearning tasks, backdoor methods encounter substantial difficulties
within federated domain unlearning settings. Table 2| illustrates that the introduction of backdoors
can degrade model training performance on the Quickdraw domain in DomainNet by up to 33%.
This performance degradation stems from the explicit introduction of artificial patterns into training
data, which interferes with normal feature learning processes, especially in heterogeneous federated
environments. Additionally, backdoor injection requires extensive retraining, significantly increas-
ing computational overhead and complexity. Due to the inherent diversity and domain-specific char-
acteristics of data in federated learning, successfully injecting universal backdoor patterns across
heterogeneous domains becomes increasingly challenging.

4.2 METHODOLOGY OVERVIEW

The workflow of our verification framework is g
shown in Figure [5] It consists of three stages: do- [ i { | Wy Global Model
main representative sample selection, proxy valida- Pty & W

¢
®

. .. . . .. DRt versarial  Drarier i
tion model training, and verification. The main idea K N A @) i
of our method is to use the proxy validation model to o f Oupdate Lt i
align and represent the feature space of the domain =~ *---------z- SR oo ooooonnneonnee

C o @] l_'Mf'V \ Workflows of our method
to be unlearned, as originally learned by the global

@ Request to unlearn
/ @ Sample selection

model. First, we select representative samples from : @ Samplesoction, - on

the domain targeted for unlearning. Then, we train a "a"‘“pizzqiig:'i.'ii”.;m) Partipant | & tpdate vidation mocel
proxy validation .model to align the feature space of Figure 5: The workflow of oﬁrvegryopose 4 valida-
these representative s.ampk:s into the anchor valida- ;00 1 oihods for federated domain unlearning.
tion class. In the verification stage, we evaluate the

unlearned global model on the samples that are modified by the proxy validation model. By ana-
lyzing the response on the anchor validation class, we can effectively detect whether the domain’s
features have been successfully unlearned from the global model.

Domain Representative Sample Selection. In federated domain unlearning, we cannot simply use
all samples from the domain to be forgotten for verification purposes. This is because the model’s
generalization capabilities allow it to correctly predict some samples from a forgotten domain, even
without specific training on that domain. Therefore, to accurately verify the unlearning process, we
must focus on selecting samples that are truly representative of the domain’s distinctive features
Goodfellow et al.| (2013)); Toneva et al.| (2018). To achieve this, we introduce a metric R; for each
sample z;, which counts the number of Forgetting events during training. A Forgetting event occurs
when a sample is correctly classified at one point but misclassified in the next iteration. We track

the model’s predictions y( ) for each sample z; over training iterations ¢. If the prediction accuracy

o . t t+1 . .
decreases between consecutive iterations (accl(» ) > accg + )), we count it as a Forgetting event.

Samples with more Forgetting events are considered more representative of the domain’s unique
characteristics. Importantly, the metric R; incurs no additional computational cost, as it leverages
accuracy records typically maintained during local training. Thus, our method doesn’t interfere with
or slow down the original training process. To select representative samples, we sort all samples
from the forgotten domain by their R; values in descending order. We then select the top A fraction
of samples as representative: x; is representative if R; > R, where R) is the R; value at the A per-
centile of the sorted list. This approach ensures we capture the samples that are most characteristic
of the domain to be forgotten, facilitating more accurate verification of the unlearning process.

Proxy Validation Model Training. The proxy validation model is designed to align with the fea-
ture space of the representative samples from the domain targeted for forgetting. This alignment is
achieved through an innovative process that generates adversarial perturbations in the input space of
these samples. The validation model M py is a generator model. It takes the representative samples
from the forgetting domain as input z and generates perturbations that blend seamlessly with these
samples. This process creates modified marker samples that are nearly indistinguishable from their
originals, defined by the transformation:

T3() = 2 + My (2) 3)

where M I‘ZV is the perturbation generated by the proxy validation model with weight § and e controls
the perturbation magnitude. To map the feature space into an anchor class as a marker, we aim to
mislead the validation model into making incorrect classifications for a target validation class yr.
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This is accomplished by leveraging the global model as a surrogate to update the validation model.
The objective function for this update is given by:

5<—5_7762L(1$3V(f’w(T5(2))7yT)a S D%L (4)

where f,, denotes the global model, and D%L is the set of representative samples from the forgetting
domain.

4.2.1 VERIFICATION.

We evaluate the effectiveness of the unlearning
methods by measuring the performance of the un-
learned global model f;, on a tes.t set. where samplqs tion method on original model performance in
are transformed by the proxy validation model. This .. gital dataset. Orig represents the origi-
setup tests whether the feature space of the forget- ] training model’s training accuracy on the train-
ting domain, as represented by the proxy validation ing dataset before unlearning.

model, has been adequately unlearned. High accu-

Table 3: Evaluation results of backdoor attacks,
membership inference attacks and our verifica-

Verify Accuracy For BaseLines

Doamin Method

racy on these transformed samples indicates that the Orig Rewain RR _FE 1L CP
- - - MIA 99.17 49.78 50.13 4940 4951 5142

model r'etalr.1s knowledge of the; forgetting domain, MNIST | Backdoor | 9110 012 057 0 8er o
suggesting incomplete unlearning. Conversely, re- ous |9832 185 133 0 9189 37.13
duced accuracy implies successful unlearning, as the MIA [ 9923 5000 49.19 5028 50  49.47
model no longer associates the transformed samples SVHN | Backdoor | 7737 235 244 083 6914 135
. . Ours 99.46 0.41 0.47 8933 95.84 87.03
with the target class y7. The accuracy is calculated vin 9973 8140 7883 S8 8Ls2 7974
as: USPS Backdoor | 91.27  1.03 053 047 059 133
1 Ours 98.66 0.92 0.73 58.03 9190 36.27

_ * _ MIA 99.32 52.01 4921 4876 49.85 49.19

Accuracy - |DUL| Z H[fw (T5 (Z)) - yT] (5) SynthDigits | Backdoor | 97.33  0.62  0.71 0.83 7136 51.48
R 1 .ep oL Ours | 9684 044 016 6446 9261 5524

MIA 99.94  48.10 51.05 51.12 5092 4735

Where T(S(Z) IS the traIleOI‘matiOIl applled by the MNIST-M | Backdoor | 92.59 1.77 153 3.09 5537 1.77
. . . . . Ours 97.79 1.10 031 49.83 93.33 47.85

proxy validation model, and T is the indicator func- —

tion.

4.3  VALIDATION RESULTS

Experiment Settings. We follow the setup of the experiment in the empirical study to verify the
domain unlearning methods. We utilize the U-Net architecture Ronneberger et al.|(2015) as the proxy
validation model. The proxy validation model is trained for a total of 20 rounds. For comparison, we
also implement the original backdoor attack, which introduces a ‘pixel pattern’ trigger of size 3x3
using the Adversarial Robustness Toolbox |Croce et al.| (2020).

Effectiveness Evaluation. We evaluate the effec-
tiveness of our verification method by comparing
it against Membership Inferen.ce Attacks (MIA) method on original model performance in Office-
and Back.door. aFtacks across various datasets (Tal?le Caltech10 dataset. Orig represents the original
Domain-Digits DomainNet, Table Domain-  y4ining model’s training accuracy on the training
Digits, Table [[3} Office-Caltech). First, we ana- dataset before unlearning.

lyze the impact of these methods on the original — Verify Accuracy For BaseLines
model’s learning. Tables [2] [T2] and [I3]show that the Pomn | MY o Rewin R FE L cP
Backdoor method reduces training accuracy for spe- MIA | 9845 8335 8290 8344 $2.88 8277

. . . Amazon | Backdoor | 92.61 1.16 029 087 L16 232
cific domains across different datasets by an aver- oue | 9812 062 073 4562 9062 7562

Table 4: Evaluation results of backdoor attacks,
membership inference attacks and our verification

age of 23.5%, reaching up to 32.6%. In contrast, our MIA | 9760 8507 8365 8386 8526 84.64
method and MIA achieve above 98% training accu- Caltech | Backdoor | 91.23  6.67 494 025 1562 10.62
racy consistently, indicating minimal impact on the 3‘:: Z;‘]’: :6'6:' 817":1 :sz :if; zzz;
original model’s training convergence. The reduced Dstr | Backdoor | 8585 1500 1698 1321 2453 755
accuracy caused by the Backdoor method highlights Ours [9500 000 000 1571 9084 87.54
that explicit pixel intrusions adversely affect feature MIA | 98.67 8472 8421 8417 8609 8548
learning in heterogeneous domain scenarios. As il- ~ ebeam | Backdoor | 8095 145 178 093 374 093

Ours 97.54 0 0 62.54 81.74 87.12

lustrated in Figure [I3] our marker-based approach
modifies images minimally, producing marker samples nearly indistinguishable from their originals,
whereas the Backdoor method induces noticeable pixel-level and color distribution changes that
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disrupt the feature space learning and consequently hinder convergence. Secondly, we evaluate the
sensitivity of the unlearning domain. Table[2]combined with the unlearning effects reported in Table
1 reveals that our method demonstrates higher sensitivity to domain unlearning, aligning closely
with the accuracy trends. Specifically, methods such as IL exhibit poor unlearning performance.
Traditional test accuracy cannot sufficiently reflect the underlying generalization ability and precise
unlearning effectiveness. By anchoring marker samples directly in the feature space, our method
quantitatively assesses feature-level unlearning effectiveness more accurately. In contrast, Backdoor
and similar methods lack this anchoring mechanism, thus failing to establish clear relationships
between domains and learned features.

Runtime Efficiency. Table [5|compares the efficiency of our method against the backdoor approach
across three datasets with varying sample ratios. Our method consistently achieves the target ver-
ification accuracy significantly faster, with improvements of up to 1103 times compared to the
backdoor method. This substantial efficiency improvement stems primarily from the design of our
verification framework, which directly targets the feature space alignment through representative
marker samples rather than artificially injecting distinctive patterns like the backdoor method. The
explicit injection approach adopted by the backdoor method necessitates additional learning pro-
cesses, significantly increasing training overhead. In contrast, our method employs representative
samples identified through forgetting events to precisely anchor the feature space of the domain to
be unlearned, thus reducing unnecessary computational overhead. Moreover, our verification method
leverages the existing federated learning infrastructure by tracking prediction accuracy during local
training without introducing additional computational or communication overhead. This streamlined
approach ensures our method integrates seamlessly into existing federated learning systems, main-
taining high efficiency and scalability.

Ablation Study. We examine the impact of hyper-
parameters ¢ and A on our verification method. As

ShO\{)vln mn Flgt;l e IG—BI’ 1(Illcreasmlgl ehr.eilults I MOTE 456, We record the time taken for each method
visible perturbation and generally higher test accu- , reach o specified validation accuracy (95% for

racy, except for IL. This suggests that more con-  ,yr5 909% for backdoor). Unit of measurement:
spicuous perturbations simplify the learning process gecond.

Table 5: GPU Times cost of federated domain un-
learning verification methods for ours and back-

for the generative model. For A, excessively high ; Mehod [ Dl e Caechl0 | Dot
. . . ST-] S mazon Caltec] Clipart nfograpl
values includes unrepresentative samples, leading to Gw | W0 109 | B2 28 | @2 1020
. . . . 0.2 7156.3 5367.2 5018.6  6843.5 | 29236.5  20637.5
improved performance for Retrain methods, indicat- Backdoor | 11x) o | @r5x) (2800 | dedx) @020
ing that an appropriate sample selection ratio is cru- 05 | oo | a0 wmr | sus 7rse0 | sense mors
cial for unlearning verification effectiveness. More 1 00 @0 L0309 6860 | 6T (20
detailed and analysis experiments are shown in the 08 | Buckdoor | 80308 76036 | 114059 114059 | 839896 601927
A (174x)  (1066x) | (325x)  (569%) | (1103x)  (386x)

Supplementary Material.
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method and backdoor attack. The left images are from ae
the Domain-Digital dataset, and the right images are (b) Ablation study for our verification method with
from the DomainNet dataset. different hyperparameters.

5 CONCLUSION

This paper investigates federated unlearning in multi-domain settings, highlighting major challenges
in domain-specific unlearning, particularly in preserving domain sensitivities and ensuring domain
independence. We documented these complexities and identified persistent challenges and areas
for improvement. To address these issues, we introduced new verification methods, enhancing the
robustness and effectiveness of unlearning in federated domains. This work advances federated un-
learning and supports more secure, efficient federated learning systems.
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ETHICS STATEMENT

Our experiments use only public image benchmarks (Domain-Digits Hull (1994); LeCun et al.
(1998); |[Netzer et al.| (2011); Roy et al|(2018)); Ganin & Lempitsky| (2015)), Office-Caltech-10|Gong
et al.|(2012)), ImageNet |Peng et al.|(2019)). The method is intended to assist in meeting compliance
goals such as those in Article 17 of the EU GDPR (the “right to be forgotten”) European Parliament
and Council of the European Union|(2016) and California Consumer Privacy Act (CCPA)|California
Department of Justice| (2020), but it does not constitute legal advice; actual production deployment
must be carried out under the supervision of the data controller and legal counsel.

REPRODUCIBILITY STATEMENT

The content in this paper can support the reproduction of the experiments.
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A IMPLEMENTATION DETAILS

1) Datasets: We conduct experiments using three multi-domain datasets to simulate realistic fed-
erated learning scenarios with domain heterogeneity, including Domain-Digits [Hull| (1994)); LeCun
et al. (1998)); Netzer et al. (201 1); Roy et al.|(2018));\Ganin & Lempitsky| (2015) and Office-Caltech
Gong et al.| (2012), and DomainNet Peng et al.| (2019). Each federated client is assigned data from
one domain, following Huang et al.| (2023agb)). These datasets exhibit domain heterogeneity while
maintaining consistent label distributions across domains.

2) Neural Network Architectures: For different datasets, we employ distinct networks to perform the
classification tasks. For Domain-Digits, we use the model consisting of 3 convolution layers, 2 max-
pool layers and 3 fully connected layers as previous works [Li et al.[ (2021). As for Office-Caltech
and DomainNet, we use VGG16|Simonyan & Zisserman| (2014).

3) FL Settings: During the FL process, for each dataset, we assign an entire domain of data to each
client. The local update epoch is set to 10, and the global train rounds are 50 for all datasets. We use
the cross-entropy loss function and an SGD optimizer with a learning rate of 0.01 for local updates.
Before the unlearning, we utilize the state-of-the-art cluster-based Federated Prototypes Learning
(FPL) Huang et al.| (2023b) to train the global model among clients with diverse domain data. All
the hyper-parameters are followed by the original work Huang et al.| (2023b).

4) Federated unlearning Method: We evaluate five advanced federated unlearning methods in multi-
domain settings, categorized into three major types. The first category, retrain learning, includes
three approaches: (1) Retrain, which involves retraining the model from scratch while excluding the
data of the participant to be forgotten; (2) Rapid Retraining (RR) [Liu et al.[ (2022), an approach
designed to entirely erase data samples from a well-trained global model by leveraging approximate
the loss function; and (3) FedEraser (FE) Liu et al.| (2021), which efficiently removes the impact
of a client’s data on the global FL model through leveraging the historical parameter updates. The
second category is represented by (4) Increase Loss (IL)Halimi et al.|(2022)), which performs reverse
training at the forgetting client by inverting the learning process, specifically training the model to
maximize the local empirical loss. The third category includes (5) Class-Discriminative Pruning
(CP) [Wang et al|(2022), which employs CNN channel pruning to guide the federated unlearning
process, selectively removing channels based on TF-IDF scores to minimize information loss.

Meanwhile, we conduct all our experiments using PyTorch. For Federated Prototypes Learning
(FPL)|Huang et al.|(2023b)), Rapid Retraining Liu et al.| (2022}, FedEraser |Liu et al.|(2021), and In-
crease Loss/Halimi et al.| (2022), we utilize the authors’ open-source code. We have re-implemented
and adapted Class-Discriminative Pruning |Wang et al.| (2022) to enable complete forgetting of an
entire client. All experiments employ the cross-entropy loss function and use the SGD optimizer
with a learning rate of 0.01 and a momentum of 0.9 across all datasets.

In our federated learning setup, we assign an entire domain of data to each client for each dataset.
The experiments are conducted over 10 local update epochs and 50 global training rounds. The local
batch size for all experiments is set to 64. We adhere to the hyper-parameters specified in the original
work for FPL.

For the various methods employed in federated unlearning:

* FedEraser is configured with a calibration ratio = 0.5 and a retaining interval At = 1.
* Increase Loss sets an early stopping threshold 7 at 5, 20, and 20 for all experiments.

* The threshold R for Class-Discriminative Pruning is set to 0.7, aiming to ensure a high
degree of specificity in pruning while maintaining overall network integrity.

B COMPARISON WITH FEDERATED UNLEARNING WITHIN
SINGLE-DOMAINS.

The concept of unlearning in FL has been previously explored in various contexts, such as data
unlearning (Che et al.| (2023)); Halimi et al.|(2022) and class unlearning Wang et al.|(2022) within the
same domain. However, federated domain unlearning introduces a distinct perspective by focusing

13
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on the removal of domain-specific information while preserving the model’s generalization ability
across the remaining domains.

Objective Function Comparison: The objective function in federated domain unlearning involves
minimizing the distance between the updated model f’ and a model f_j, trained without the data
from the target domain. This differs from typical federated unlearning objectives, which may focus
solely on minimizing the impact of removed data points (Che et al.|(2023); [Liu et al.| (2023).

Generalization Ability: A key aspect of federated domain unlearning is its focus on preserving the
model’s generalization ability across the remaining domains |Huang et al.| (2023b). This is crucial
in federated settings where data heterogeneity is common. By ensuring that the unlearned model
maintains its performance on other clients’ data, federated domain unlearning addresses the chal-
lenge of domain shift|Halimi et al.|(2022); [Li et al.| (2021)), which is often overlooked in traditional
unlearning methods.

C EXPERIMENT DETAILS

C.1 EFFECTIVENESS OF EXISTING METHODS IN FEDERATED DOMAIN UNLEARNING

Table 6: Evaluation of federated domain unlearning across various methods on Domain-Digital dataset.

Domain-Digits Train Accuracy For Unlearn Domain Test Accuracy For All Domain
Unlearn Domain ~ BaseLine MNIST SVHN USPS SynthDigits ~ MNIST-M MNIST SVHN USPS SynthDigits ~MNIST-M
/ Full learn 99.99+0.01  94.15+0.07 98.62+0.03  98.67+0.06 98.82+0.08 98.91x0.06 83.36+0.11 97.42+0.10 93.57+0.11 90.40+0.12
Retrain 97.82+0.08 97.820.11  99.09+0.03  99.74£0.07 98.66+0.17 97.83+0.21 85.20£0.21 97.42+0.02 94.78+0.08  89.35+0.14
BL1 Repaid Retrain ~ 96.83£0.02  92.8240.13  99.50£0.04  99.69+0.06  95.91+0.12 96.80+0.01 ~ 80.30£0.08 97.90£0.05  92.64+0.11  82.14+0.19
MNIST BL2 FedEraser 95.21#0.12  81.04+0.23  95.40+0.09 90.97+0.15 83.52+0.23 95.08+0.23 76.96+0.40 95.22+0.27 88.38+0.11  80.57+0.12

BL3 Increase Loss ~ 96.84+0.09  97.06+0.17  99.41£0.04  99.93£0.03  99.61£0.11 95.960.11 84.32+0.05 97.8+0.02  94.46+0.04  90.19+0.10
BL4 Class Pruning ~ 98.66+0.01  97.15+0.50  99.45£0.01  99.96+0.00 99.81+0.12 98.1440.02 84.48+0.08 97.8+0.05  94.66x0.01  90.46+0.35

Retrain 100.0£0.00 67.84+0.30 98.83+0.10  98.60+0.48  99.2620.20 99.09+0.05 67.48+0.58 97.63x0.11  91.49£0.56 92.28+0.28
BL1 Repaid Retrain ~ 100.0£0.00  62.38+0.26  98.92+0.03  97.69+0.51  95.94+0.56 98.79+0.00 62.55+0.74 97.42+0.00 89.07+0.22  85.76+0.17
SVHN BL2 FedEraser 99.95+0.20  63.57+0.54 98.57+0.27 95.86+0.63 97.45+0.41 98.9440.33 63.4120.60 97.26+0.21 89.42+0.43  90.54+0.45

BL3 Increase Loss ~ 99.97+0.02  73.4240.48  99.37+0.02  99.72+0.11  99.78+0.03  98.99+0.03 70.12+0.58 98.01£0.05 93.59+0.09  92.36+0.14
BL4 Class Pruning ~ 99.99+0.00  73.45+0.39  99.26+0.05  99.09£0.10  99.92+0.01 98.99+0.00 70.82+0.97 97.85+0.02 92.54+0.37  92.65+0.19

Retrain 99.89+0.01  93.92+0.24 89.33+0.01  99.54£0.25 99.60+0.12 98.49+0.07 83.35+0.01 89.3020.03 94.05+0.17 91.21x0.15
BLI Repaid Retrain  99.91x0.00 87.24+0.28 88.94x£0.02  99.10£0.09 98.82+0.16 98.49+0.12 78.73x0.04 88.87+0.15 91.68+0.02 86.89+0.04
USPS BL2 FedEraser 98.37+0.10  79.35%0.19 87.95+£0.25 89.93£0.27 89.10£0.18 97.64£0.15 75.94+021 86.88+0.11 87.62+0.21 85.56+0.15

BL3 Increase Loss ~ 99.88+0.00 95.68+0.03  82.83+0.04 99.78+0.01  99.65+0.01 98.51+0.21 83.93+0.11 82.80+0.05 94.24+0.03  90.79+0.06
BL4 Class Pruning ~ 99.93+0.00  95.740.02  91.87+0.02  99.93+0.06 99.87+0.02 98.74+0.05 84.40+0.02 91.83+0.06 94.55+0.11  91.58+0.08

Retrain 99.96+0.00 87.21+0.34 99.31+0.27 82.31+0.61 99.33+0.02 98.90+0.02 76.51+0.59 97.31+0.17 82.50+0.65 91.54+0.18
BLI Repaid Retrain  99.97+0.00  80.22+0.79  98.39+0.10  77.78+0.27 97.88+0.32 98.64+0.09 71.22+0.82 96.88+0.17 77.98+0.12 87.14+0.27
SynthDigits BL2 FedEraser 99.26+0.02  77.36+0.71  95.66+0.23  77.75£0.27 = 93.22+0.30  98.14+£0.01 71.72+0.81 94.57+0.42  78.15+0.32  87.49+0.13

BL3 Increase Loss 100.0£0.00  91.41£0.68 99.22+0.03  85.49+0.11 99.76x0.02 98.82+0.05 79.04+0.27 97.69+0.06  84.3x0.17  91.77+0.05
BL4 Class Pruning ~ 100.0£0.00  93.12+£0.12  99.58+0.04  87.81+0.05  99.89+0.03  98.96+0.00  80.59+0.10 98.06+0.05  86.88+0.16 91.59+0.19

Retrain 99.8740.00 94.94+0.85 99.57+0.01  99.78+0.07  69.9£0.09  98.39+0.02 84.21+0.62 98.49+0.05 94.73+£0.09  70.35+0.10
BLI Repaid Retrain =~ 99.72+0.01 ~ 89.14+0.39  99.39+0.01 = 99.37+0.02  65.84+0.11 97.90£0.02 80.40+0.11 97.58+0.00 93.13+0.02  65.49+0.07
MNIST-M BL2 FedEraser 99.50+0.22  92.22+1.30 99.26£0.21  99.13£0.64  68.73+0.25 97.75+0.09 82.79+0.71 98.12+0.58 94.16+0.21  68.76+0.39

BL3 Increase Loss ~ 99.30£0.03  96.88+0.04  99.56+0.09  99.91+0.00 72.60+0.04 97.48+0.04 84.30£0.02 98.28+0.05 95.12+0.02  70.310.03
BL4 Class Pruning ~ 99.92+0.00  96.57+0.03  99.84£0.00  99.95+0.00  77.60£0.01 98.55+0.02 84.840.10 98.23+0.07 95.33%0.17  75.22+0.21

We perform an empirical evaluation to determine the effectiveness of contemporary unlearning
methods in various domains. The accuracy results for the unlearned domain and the remaining test
accuracies for Domain-Digital and Office-Caltech10 are shown in Tables [6] and [7} These experi-
mental outcomes mirror those found in DomainNet. In summary, the present methods for federated
unlearning introduce substantial challenges within the sphere of federated domain unlearning. These
methods either compromise the learning of original domains while attempting to unlearn targeted
domains or fail to completely remove the data of targeted domains. This dichotomy exposes a core
limitation in existing methods, where the trade-off between effectively unlearning specific domain
data and maintaining the integrity and performance of non-targeted domains is yet unresolved. The
inability to selectively forget without residual effects calls for the development of more advanced
techniques that can handle domain-specific unlearning without undermining the overall system’s
effectiveness and robustness.

C.2 FEDERATED DOMAIN UNLEARNING AND HIDDEN LAYER REPRESENTATIONS
We employ the Centered Kernel Alignment (CKA) metric Kornblith et al.| (2019), a tool for assess-

ing the similarity between neural network representations. CKA quantifies the similarity between
two neural networks by computing the inner product between their centered kernel matrices. This
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Table 7: Evaluation of federated domain unlearning across various methods on Office-Caltech10 dataset.

Office-Caltech10 Train Accuracy For All Domain Test Accuracy For All Domain
Unlearn Domain  BaseLine Amazon Caltech Dslr ‘Webcam Amazon Caltech Dslr ‘Webcam
/ Full learn 82.04+0.52  99.02+0.11 88.16+0.60 91.86+062  78.12+0.27 76+0.23 90.62+0.56  89.83+0.15
Retrain 61.98+0.95 94.10+1.50 87.52+1.19 92.46+1.42 64.38+1.63 70.67+1.61 86.25+2.08 88.81+2.32
BL1 Repaid Retrain ~ 43.19+1.18 63.10£1.47 87.68+2.06 99.41+0.43 46.25+2.90 52.27+1.55 82.50+2.75 94.92+0.86
Amazon BL2 FedEraser 51.96+2.38 76.87+2.00 82.20+2.17 85.81+2.63 53.26+2.72 59.22+1.61 83.59+2.12 83.05+1.20

BL3 Increase Loss ~ 71.04£1.15  98.95+0.53  89.12£1.65 95.42+0.82 73.23x0.42 74.49+0.72 88.75x1.50 89.83+1.07
BL4 Class Pruning ~ 67.2321.20 95.46+0.74 92.00£2.15 92.20+1.91 67.40£1.50 68.80x1.10 90.00+2.15 87.12+1.54

Retrain 40.23£0.69  33.32+1.40 75.68+1.18 96.69+0.98 35.42+1.19 34.13x1.41 75.00+0.78 91.86+1.29
BL1 Repid Retrain =~ 38.02+1.65  30.94+0.57 71.68+1.89 98.47+0.91 35.62+1.53 32.09+1.17 70.62+2.74 92.20+1.73
Caltehc BL2 FedEraser 69.45+2.68 37.31£1.34 59.60+0.40 83.26+2.75 57.03%2.59 37.56£1.33 65.62+2.12 84.75+1.68

BL3 Increase Loss ~ 87.96+0.32  91.85+0.34 81.76+1.06 91.02+0.42 80.73+0.66 69.87+0.33 76.88+1.53 86.78+0.68
BL4 Class Pruning ~ 59.45+2.32  43.16+1.15 81.28+2.25 98.56+0.95 49.27+2.26 47.02+3.10 78.12+2.59 94.92+1.40

Retrain 87.36+1.86 98.73x1.43 77.28+1.18 92.29+0.63 81.04x1.11 74.31x1.29 76.88+2.55 89.49+0.71
BL1 Repid Retrain ~ 80.55+2.16  82.36+1.85 70.88+2.93 90.68+2.84 74.58+1.45 62.04+1.88 72.50£1.65 85.08+1.92
Dslr BL2 FedEraser 80.22+2.92  94.13£2.22  68.20+1.57 81.574#2.88 74.35+1.97 70.44£2.36 66.41+2.08 75.42+1.62

BL3 Increase Loss ~ 89.19+2.01 98.82+1.09 80.64+1.20 90.00+1.11 82.40+1.52 74.22+1.01 80.62+1.67 82.03+0.96
BL4 Class Pruning ~ 90.37#2.08  99.53+0.45 79.36+1.85 93.14+3.00 82.60£1.88 75.56x1.12 80.00x1.75 88.14+2.01

Retrain 79.58+0.68 96.21£1.02 75.36+0.78 63.31£1.05 78.65+1.10 74.78£1.38 79.69+1.18  69.92+0.89
BL1 Repid Retrain ~ 72.43+1.63  80.20+1.35 76.48+1.98 61.44+1.72 70.73£1.43 62.40+1.24 77.50£1.64 71.19+2.22
Webcam BL2 FedEraser 80.25+2.17 87.28+2.38 66.60+1.68 56.78+2.53 76.04£1.01 69.33£1.89 69.53+2.56 55.51x1.51

BL3 Increase Loss ~ 87.91£1.40 98.80+0.57 75.20£1.69 65.25+0.97 82.92+1.37 74.13x1.67 81.88+1.25 69.83+2.25
BL4 Class Pruning ~ 82.56+2.24 98.51+0.32 77.76+1.31 63.14+1.33 79.27+1.01 74.93+x1.39 81.88+1.34 73.22+2.92
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Figure 7: CKA analysis of layer representations before and after unlearning the target domain in Domain-
Digital. We visualize three domains: (a) MNIST, (b) SynthDigits, and (c) MNIST-M.

1.0 101 1.0
0.9 091 0.9
frd 2 2
5 0.8 5 081 Sos
E =@~ Retrain E =@~ Retrain E =@~ Retrain
ln0'7’-.-B|_1 V071 g BL1 N 0.7{ - BL1
%0_6, —h— BL2 %067 —h— BL2 % —h— BL2
=¥~ BL3 7] == BL3 0.6 = BL3
0.5{ == BL4 0.5 =9 BL4 =%~ BL4
0 2 4 6 0 2 a 6 0 0 2 a 6
Block Index Block Index Block Index
(a) Clipart (b) Quickdraw (c) Real

Figure 8: CKA analysis of layer representations before and after unlearning the target domain in DomainNet.
We visualize the rest three domains: (a) Clipart, (b) Quickdraw, and (c) Real.

approach provides a measure of how much common information is retained between the networks,
thereby shedding light on the extent of information preservation or loss during unlearning. In our
experimental setup, we utilize linear CKA to analyze the similarity of the output features produced
by two models before and after the unlearning process. Given a dataset D.x,, We extract feature
matrices Z; and Z» from the two models, respectively. The linear CKA similarity between two
representations X and Y is calculated using the following equation:

I XTY %
IXTX|E - IVTY %

CKA(X,Y)=
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Table 8: CKA for three convolution layer and three fully connected layer of federated domain unlearning across
various methods on Domain-Digital dataset.

Domaom Method CKA For Layers
/ / Convl Conv2 Conv3 Fcl Fc2 Fc3
Retrain 0.9997 0.9976 0.9923 0.9741 0.9303 0.9279
BL1 Repaid Retrain  0.9950 0.9485 0.9712 0.4546 0.4992 0.8646
MNIST BL2 FedEraser 0.9979 0.9909 0.9798 0.9455 0.8830 0.8776

BL3 Increase Loss 0.9825 0.9968 09876 0.9517 0.8713 0.8925
BL4 Class Pruning  0.7892  0.9965 0.9925 0.9756 0.9419 0.9452

Retrain 0.9884 09112 09114 0.8955 0.8681 0.8519
BL1 Repaid Retrain  0.9535 0.8856 0.4199 0.2137 0.2757 0.7626
SVHN BL2 FedEraser 0.9801 0.8743 0.8237 0.8026 0.8257 0.8196

BL3 Increase Loss ~ 0.9805 0.8788 0.8714 0.9229 0.8856 0.8835
BL4 Class Pruning  0.9029 0.9336 0.9509 0.9399 0.9071 0.8936

Retrain 0.9990 0.9983 0.9927 0.9816 0.9553 0.9279
BL1 Repaid Retrain 09818 0.9935 0.9419 0.5448 0.5537 0.8877
USPS BL2 FedEraser 0.9966 0.9979 0.9908 0.9775 0.9490 0.9229

BL3 Increase Loss ~ 0.9441 0.9944 0.9846 0.9511 0.8816 0.8500
BL4 Class Pruning  0.8974 0.9940 0.9912 0.9808 0.9620 0.9363

Retrain 0.9975 09911 0.9835 0.9466 0.8961 0.8848
BL1 Repaid Retrain  0.9585 0.9467 0.4720 0.2815 0.4093 0.8287
SynthDigits BL2 FedEraser 09841 0.9894 0.9659 09171 0.8721 0.8604

BL3 Increase Loss ~ 0.9338 0.9490 0.9766 0.9524 0.8856 0.8952
BL4 Class Pruning  0.8314 0.9911 0.9861 0.9612 0.9262 0.9224

Retrain 0.9938 09513 0.8495 0.8236 0.7807 0.7609
BL1 Repaid Retrain  0.9787 0.9416 0.8295 0.1376 0.3650 0.6942
MNIST-M  BL2 FedEraser 0.9938 0.9499 0.8525 0.8236 0.7846 0.7628

BL3 Increase Loss ~ 0.9719 0.9633 0.8892 0.8639 0.7703 0.7695
BL4 Class Pruning  0.8813 0.9420 0.8514 0.8592 0.8490 0.8325
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Table 9: CKA for five blocks and three fully connected layer of federated domain unlearning across various
methods on DomainNet dataset.

Domaom Method CKA For Layers
/ / Blockl Block2 Block3 Block4 Block5 Fel Fc2 Fe3
Retrain 09842 09789 0.9696 0.9595 09140 0.8841 0.8529 0.8494
BL1 Repaid Retrain  0.9428  0.8966 0.7977 0.6755 0.6672 0.5079 0.4654 0.5167
Clipart BL2 FedEraser 0.9790 09697 0.9520 0.9256 0.8717 0.8617 0.8197 0.8110

BL3 Increase Loss 0.9831 0.9632 09700 0.9624 0.9019 0.8924 0.8562 0.8493
BLA4 Class Pruning ~ 0.9710 0.9676 0.9626  0.9547 0.8879 0.8931 0.8721 0.8734

Retrain 09616 0.9503 0.9395 09171 0.8165 0.7217 0.6087 0.6061
BL1 Repaid Retrain  0.9149  0.8066 0.7275 0.6678 0.6202 0.5056 0.3117 0.3348
Infograph ~ BL2 FedEraser 09678 0.9457 09290 0.9123 0.8013 0.7131 0.6041 0.5999

BL3 Increase Loss 0.9967 09933 09871 0.9792 0.9596 0.9463 0.9389 0.9413
BLA4 Class Pruning ~ 0.9518 0.9437 0.9305 0.9068 0.8508 0.8074 0.7101 0.7538

Retrain 09769 0.9646 0.9585 0.9428 0.8858 0.8822 0.8603 0.8549
BL1 Repaid Retrain  0.8852  0.8436 0.7791 0.7052 0.6135 0.4911 0.5006 0.5420
Painting ~ BL2 FedEraser 09753 0.9638 09361 0.9180 0.8586 0.8618 0.8404 0.8246

BL3 Increase Loss 0.9969 0.9911 0.9836 0.9800 0.9764 0.9761 0.9685 0.9673
BLA4 Class Pruning ~ 0.9675 09680 0.9583 0.9477 0.9320 0.9258 0.9080 0.8772

Retrain 0.9990 0.9962 0.9938 0.9915 0.9461 0.8984 0.8558 0.8359
BL1 Repaid Retrain  0.9824  0.9214 0.9352 0.8780 0.8645 0.6796 0.5316 0.4811
Quickdraw  BL2 FedEraser 0.9982 0.9856 0.9849 0.9805 0.9133 0.8791 0.8372 0.8070

BL3 Increase Loss 0.9787 0.9937 0.9796 0.9631 0.9350 0.8927 0.8007 0.7756
BLA4 Class Pruning ~ 0.9967 0.9980 0.9940 0.9892 0.9564 0.9218 0.8770 0.8647

Retrain 09813 09752 0.9655 0.9606 09103 0.9073 0.8977 0.8996
BL1 Repaid Retrain  0.8896  0.8782  0.8587 0.7635 0.6296 0.5296 0.5163 0.5763
Real BL2 FedEraser 09694 09701 0.9559 0.9416 0.8824 0.8841 0.8781 0.8762

BL3 Increase Loss 0.9321 0.8918 0.9396 0.9559 0.9318 0.9100 0.8506 0.8529
BLA4 Class Pruning ~ 0.9540 0.9596 0.9595 0.9459 0.8866 0.8931 0.8840 0.8882

Retrain 0.9900 0.9807 0.9655 0.9555 0.8764 0.8351 0.8199 0.8250
BLI1 Repaid Retrain  0.9267 0.8606  0.7982 0.7044 0.6064 0.4493 0.3677 0.4231
Sketch BL2 FedEraser 09716 0.9666 0.9471 0.9258 0.8351 0.7896 0.7795 0.7799

BL3 Increase Loss 0.9982 09928 09872 0.9884 0.9770 0.9667 0.9629 0.9642
BLA4 Class Pruning ~ 0.9729 09839 0.9818 0.9723 09196 0.9082 0.9029 0.9083

where || - || denotes the Frobenius norm. This formula yields a similarity score ranging from 0
(indicating no similarity) to 1 (indicating identical representations), thereby enabling a quantitative
assessment of how similar the output features of the same layer are across two models.

All the results of Centered Kernel Alignment (CKA) across multiple target domains from Domain-
Digital and DomainNet dataset, comparing various unlearning methods with the comprehensive
learning model, were displayed in Tables[§]and Tables 0] Furthermore, we visualized the remaining
three domains of DomainNet in Figure[7]and parts of the Domain-Digital in Figure[8] The results on
Domain-Digital are found to be similar to those on DomainNet. However, a notable difference is that
Class-Discriminative Pruning has a significant impact on the first convolutional kernel of the net-
work used for training Domain-Digital, which has three convolutional layers. We also analyzed the
CKA scores of all convolutional layers of VGG16 and found similar results of Class-Discriminative
Pruning.

C.3 FEATURE REUSE

To further investigate how the representations of lower and higher layers evolve during unlearning,
we conduct the subspace similarity analysis on the unlearned models with different unlearning meth-
ods. Let A € R™*™ represent the centered layer activation matrix with n examples and m neurons.
We determine the PCA decomposition of A, which involves computing the eigenvectors (eq, ea, ...)
and the corresponding eigenvalues (81, d2, ...) of the matrix AT A. Let E}, denote the matrix com-
posed of the first k principal components, with e, ..., e as its columns, and let G, be the analogous
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Table 10: Subspace similarity for three convs of federated domain unlearning across various methods on
Domain-Digital dataset.

Domaom Method Subspace Similarity For Layers
/ / Convl Conv2 Conv3
Retrain 0.9405 0.4643 0.4721
BL1 Repaid Retrain  0.8567 0.2033 0.3834
MNIST BL2 FedFEraser 0.8978  0.5045 0.4895

BL3 Increase LLoss 0.6421 0.7798 0.7387
BL4 Class Pruning  0.0252 0.4901 0.4629

Retrain 0.7170 0.3751 0.3967
BL1 Repaid Retrain  0.5605 0.2628 0.0245
SVHN BL2 FedEraser 0.6917 0.3379 0.3783

BL3 Increase Loss 0.5703 0.6731 0.6503
BL4 Class Pruning  0.0117  0.4940 0.3704

Retrain 0.9054 0.4820 0.4371
BL1 Repaid Retrain  0.7042  0.3971 0.2987
USPS BL2 FedEraser 0.8731 0.4976 0.4666

BL3 Increase Loss 0.2641 0.7718 0.6912
BL4 Class Pruning  0.0178  0.5805 0.4695

Retrain 0.8688 0.4748 0.5183
BL1 Repaid Retrain  0.5500 0.3058 0.0011
SynthDigits BL2 FedEraser 0.8175 0.4952 0.5193

BL3 Increase Loss 0.3175 0.7013 0.7874
BL4 Class Pruning 0.0058 0.5588 0.4355

Retrain 0.7041 0.5205 0.4664
BL1 Repaid Retrain  0.7563  0.4249 0.3608
MNIST-M  BL2 FedEraser 0.7030 0.5121 0.4739

BL3 Increase Loss 0.5553 0.8213 0.6629
BL4 Class Pruning 0.0148 0.5250 0.4045

matrix derived from another activation matrix B. We then compute the subspace similarity for the
top k components as:
SubspaceSim,, (A, B) = ||GT - Ex||% (6)

This metric quantifies the congruence of the subspaces spanned by (eq,...,ex) and (g1, ..., gr)-
For instance, if A and B are the layer activation matrices corresponding to different tasks, then
SubspaceSim,, evaluates the similarity in how the network encodes the top k features for those
tasks.

All the results of the subspace similarity of feature extractors before and after the application of
various unlearning methods in the Domain-Digital and DomainNet were displayed in Tables|10[and
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Table 11: Subspace similarity for five blocks of federated domain unlearning across various methods on Do-
mainNet dataset.

Domaom Method Subspace Similarity For Layers
/ / Blockl Block2 Block3 Block4 Block5
Retrain 0.4368 0.3365 0.2873 0.2611 0.2219
BL1 Repaid Retrain  0.3077 0.3595 0.2440 0.1829 0.0828
Clipart BL2 FedEraser 0.3487 0.3793 0.3008 0.2793  0.2478

BL3 Increase Loss 0.6765 0.3507 0.4163 0.5783 0.5189
BL4 Class Pruning 0.1645 0.2276 0.2678 0.2516 0.1001

Retrain 0.4121 0.3048 0.2017 0.1377 0.1460
BL1 Repaid Retrain  0.2657 0.2634 0.1841 0.1053 0.0919
Infograph ~ BL2 FedEraser 0.3873 0.2077 0.2001 0.1500 0.1458

BL3 Increase Loss ~ 0.9867 0.9669 0.9337 0.9071 0.8728
BL4 Class Pruning  0.2464 0.2497 0.2563 0.1744  0.0582

Retrain 0.4869 0.3445 0.2108 0.1940 0.1570
BL1 Repaid Retrain  0.2584  0.2474 0.1410 0.0932 0.0714
Painting ~ BL2 FedEraser 0.4059 03096 0.1981 0.1821 0.1965

BL3 Increase Loss 0.9759 09420 0.7803 0.8632 0.9225
BL4 Class Pruning  0.1607 0.2228 0.2196 0.2008  0.0854

Retrain 0.6189 0.4184 0.2596 0.1829 0.1274
BL1 Repaid Retrain  0.4428 0.3551 0.2701 0.1617 0.0571
Quickdraw  BL2 FedEraser 0.5350 0.4446 0.2932 0.2063 0.1347

BL3 Increase Loss 0.6195 04756 0.2230 0.3650 0.4007
BL4 Class Pruning  0.3796 0.4469 0.3286 0.2962 0.1708

Retrain 0.3708 0.2344 0.1648 0.1785 0.1754
BL1 Repaid Retrain  0.2309 0.1907 0.1091 0.0746  0.0577
Real BL2 FedEraser 0.3668 0.2767 0.1935 0.1903 0.1727

BL3 Increase Loss 0.2993 0.1553 0.3644 0.6277 0.5379
BL4 Class Pruning  0.1963  0.1835 0.2130 0.1962  0.1090

Retrain 0.3961 03905 0.2437 0.1951 0.1923
BL1 Repaid Retrain  0.2610  0.3528 0.2243  0.1444  0.0866
Sketch BL2 FedEraser 0.3416  0.3858 0.2560 0.2203 0.2136

BL3 Increase Loss 0.9672 0.9549 0.8586 0.8229 0.9066
BL4 Class Pruning  0.3364 0.3515 0.2581 0.2840 0.1334

Tables |11} Furthermore, we visualized the remaining three domains of DomainNet in Figure 9] and
all domains of the Domain-Digital in Figure

C.4 MEMBERSHIP INFERENCE ATTACK

We perform Membership Inference Attack [Shokri et al.| (2017) (MIA) experiments, employing the
strategy of shadow model training to extract data for the purpose of constructing an attack classifier.
Utilizing fully trained models that encompass all domains as shadow models, we conduct attacks on
models from which certain domains have been unlearned through various unlearning methods. We
measure both the attack accuracy and attack recall which demonstrate the amount of information
about the data in a domain that remains in the unlearned model. The ideal unlearning method would
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Figure 9: Comparative analysis of subspace similarity in feature extractors before and after unlearning in the
target domain of DomainNet. We visualize the rest three domains: (a) Clipart, (b) Quickdraw, and (c) Real.
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Figure 10: Comparative analysis of subspace similarity in feature extractors before and after unlearning in the
target domain of Domain-Digital.

minimize both accuracy and recall, indicating the attack model’s difficulty in distinguishing whether
the unlearned domain had participated in federated learning. From Figures [T1] and Figures it
can be observed that there are significant differences in sensitivity and specificity across different
domains. USPS exhibits high accuracy and recall in attacks, whereas SVHN and SynthDigitls show
lower values, especially in attack recall, with SynthDigitls being notably low. Additionally, across
most domains, various unlearning methods slightly higher than retrain, both in attack precision and
recall.
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Figure 13: The differences between our verification method and backdoor attack. On the left are images from
the Domain-Digital dataset, and on the right are images from the DomainNet dataset.
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Table 12: Evaluation results of backdoor attacks,
membership inference attacks and our verifica-
tion method on original model performance in
Domain-Digital dataset. Orig represents the origi-
nal training model’s training accuracy on the train-
ing dataset before unlearning.
Verify Accuracy For BaseLines

Orig  Retrain ~ RR FE IL CP
MIA 99.17  49.78 50.13 4940 49.51 5142
MNIST Backdoor | 91.10 0.12 0.57 0 8.62 0.27
Ours 98.32 1.85 1.33 0 91.89 37.13
MIA 99.23  50.00 49.19 50.28 50 49.47
SVHN Backdoor | 77.37 2.35 2.44 0.83 69.14 1.55
Ours 99.46 0.41 047 89.33 9584 87.03
MIA 99.73 81.40 78.83 80.18 81.82 79.74
USPS Backdoor | 91.27 1.03 0.53 0.47 0.59 1.33
Ours 98.66 0.92 0.73 58.03 9190 36.27
MIA 99.32  52.01 49.21 48.76 49.85 49.19
SynthDigits | Backdoor | 97.33 0.62 0.71 0.83 7136 5148
Ours 96.84 0.44 0.16 64.46 92.61 55.24
MIA 99.94 48.10 51.05 S51.12 5092 47.35
MNIST-M | Backdoor | 92.59 1.77 1.53 3.09 5537 1.77
Ours 97.79 1.10 031 49.83 9333 47.85

C.5 OUR VALIDATION RESULTS

Doamin Method

We conduct experimental comparisons between tra-
ditional backdoor methods, which involve adding
pixels or patterns, and our proposed verification
method. We can see the images in Figures The
detials of the efficacy of our verification method
in terms of domain sensitivity and specificity were
shown in Tables [12f for Domain-Digital dataset and
Tables for Office-Caltech dataset. It is evident
that compared to backdoor attacks, our verification
method demonstrated a smaller performance loss.

C.6 LARGE LANGUAGE MODELS USAGE
We used a large language model only to polish lan-

guage (grammar/wording); all scientific content was
authored and verified by the human authors.
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Table 13: Evaluation results of backdoor attacks,
membership inference attacks and our verification
method on original model performance in Office-
Caltech10 dataset. Orig represents the original
training model’s training accuracy on the training
dataset before unlearning.
Verify Accuracy For BaseLines

Orig  Retrain ~ RR FE IL Ccp

MIA | 9845 8335 8290 8344 8288 8277

Amazon | Backdoor | 92.61 1.16 029 0.87 .16 232

Ours | 9812 062 073 4562 90.62 75.62

MIA 97.60 85.07 83.65 83.86 8526 84.64

Caltech | Backdoor | 91.23 6.67 494 025 1562 10.62

Ours 97.06 0.65 1.18 9588 9529 3647

MIA 99.13  86.51 87.40 81.72 85.07 84.68

Dslr Backdoor | 85.85 15.09 1698 1321 2453 755

Ours 95.00 0.00 0.00 1571 90.84 87.54

MIA 98.67 8472 8421 84.17 86.09 8548

Webcam | Backdoor | 80.93 1.45 1.78 0.93 374 093

Ours | 9754 0 0 6254 8174 87.12

Doamin | Method
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