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Assessment of programmed death ligand 1 (PD-L1) expression by immunohistochemistry (IHC) has emerged as an important
predictive biomarker across multiple tumor types. However, manual quantitation of PD-L1 positivity can be difficult and leads to
substantial inter-observer variability. Although the development of artificial intelligence (AI) algorithms may mitigate some of the
challenges associated with manual assessment and improve the accuracy of PD-L1 expression scoring, use of AI-based approaches
to oncology biomarker scoring and drug development has been sparse, primarily due to the lack of large-scale clinical validation
studies across multiple cohorts and tumor types. We developed AI-powered algorithms to evaluate PD-L1 expression on tumor cells
by IHC and compared it with manual IHC scoring in urothelial carcinoma, non-small cell lung cancer, melanoma, and squamous cell
carcinoma of the head and neck (prospectively determined during the phase II and III CheckMate clinical trials). 1,746 slides were
retrospectively analyzed, the largest investigation of digital pathology algorithms on clinical trial datasets performed to date. AI-
powered quantification of PD-L1 expression on tumor cells identified more PD-L1–positive samples compared with manual scoring
at cutoffs of ≥1% and ≥5% in most tumor types. Additionally, similar improvements in response and survival were observed in
patients identified as PD-L1–positive compared with PD-L1–negative using both AI-powered and manual methods, while improved
associations with survival were observed in patients with certain tumor types identified as PD-L1–positive using AI-powered scoring
only. Our study demonstrates the potential for implementation of digital pathology-based methods in future clinical practice to
identify more patients who would benefit from treatment with immuno-oncology therapy compared with current guidelines using
manual assessment.
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INTRODUCTION
Immuno-oncology therapies, including immune checkpoint inhi-
bitors targeting programmed death-1/death ligand 1 (PD-[L]1) and
cytotoxic T lymphocyte antigen-4, have improved clinical out-
comes across many tumor types1–3. Evidence that PD-L1 expres-
sion is a biomarker of response to anti–PD-1/PD-L1 inhibitors has
fueled the development and approval of PD-L1 immunohisto-
chemistry (IHC) assays as companion or complementary diagnos-
tics4–9. However, manual quantitation of PD-L1 expression can be
a laborious and time-consuming process, and while studies
indicate moderate to high agreement can be achieved between
pathologists10–13, there are a number of factors that can lead to
reduced inter- and intra-observer reproducibility, particularly at
lower cutoff values10,11,13–15.
Digital pathology and artificial intelligence (AI)–powered

approaches can aid pathologists in overcoming the challenges

associated with manual scoring16–18. While AI-based methods
have demonstrated moderate to high correlation with pathologist
scoring in urothelial carcinoma (UC), melanoma (MEL), and breast
cancer19–21, studies directly comparing their performance in large
randomized controlled trials using traditional response and
survival endpoints are limited22.
In this study, we developed unique AI-powered algorithms to

retrospectively evaluate PD-L1 expression on tumor cells (TCs)
across multiple tumor types, including samples from patients
with non-small cell lung cancer (NSCLC), squamous cell
carcinoma of the head and neck (SCCHN), MEL, and UC. The
performance of AI-powered analysis was then compared with
manual scoring of PD-L1 expression that was prospectively
generated as part of phase II and III clinical trials across two
different PD-L1 expression cutoffs in patients treated with
nivolumab ± ipilimumab (NIVO ± IPI).
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METHODS
Study designs and patients
Clinical validation of AI-powered scoring algorithm. Assessment of PD-L1
expression was performed in samples from patients with UC, NSCLC, MEL, and
SCCHN treated with NIVO alone from the registrational phase II (CheckMate
275 [NCT02387996]) and phase III (CheckMate 026 [NCT02041533], 057
[NCT01673867], 238 [NCT02388906], 141 [NCT02105636]) clinical trials or
NIVO ± IPI from the phase III CheckMate 067 (NCT01844505) trial. The patient
demographics and study designs for these trials have been published
previously23–28.

Study procedures
Clinical assessments. Patient responses were assessed according to
Response Evaluation Criteria in Solid Tumors v1.1 as previously
described23–28. Responses were categorized as complete response, partial
response, stable disease, progressive disease, or response not evaluable.
Objective response rate (ORR) was calculated using the percentage of
patients who achieved a complete or partial response compared with
those who achieved stable or progressive disease or were not evaluable.
Survival was assessed using overall survival (OS) for CheckMate 057, 275,
067, and 141, recurrence-free survival for CheckMate 238, or progression-
free survival for CheckMate 026. For more information regarding survival
endpoints in each clinical trial, refer to the Supplementary Methods,
“Clinical assessments” section.

Sample preparation and biomarker assessment. Formalin-fixed, paraffin-
embedded tissue slides were stained using the Dako PD-L1 IHC 28-8
pharmDx assay (Agilent, Santa Clara, CA, USA) per the manufacturer’s
instructions as part of the respective clinical trial23–28. PD-L1 TC expression
was derived from the percentage of TCs with complete circumferential or
partial PD-L1 expression at any level of intensity divided by all TCs.
For more information regarding PD-L1 testing in each clinical trial,
refer to the Supplementary Methods, “PD-L1 assessment in each clinical
trial” section.

Outcomes
Development of PD-L1 AI-powered scoring algorithms. To develop a deep-
learning model that can generate an AI-powered PD-L1 expression score,
whole slide images (WSIs) of PD-L1–stained slides were generated using
the Aperio AT2 image-scanning platform (Leica Biosystems, Vista, CA, USA)
at 0.5 microns/pixel resolution (20× objective). These WSIs were used to
develop tumor-specific algorithms.
Board-certified pathologists from the PathAI network provided

more than 250,000 cell-level annotations on a training set of digital
WSIs from a mix of commercial and clinical trial biopsy samples
from each tumor type stained for PD-L1 expression by IHC. These
included 217 samples from patients with NSCLC, 600 from MEL, 400 from
SCCHN, and 293 from patients with UC. Annotations defined PD-L1
expression on individual TCs and immune cells (ICs), including
macrophages and lymphocytes. For SCCHN and MEL, deep-learning
models were trained to recognize and quantify PD-L1–expressing TCs
using these annotations while automatically excluding regions that
would interfere with PD-L1 scoring, such as areas of background
staining, anthracotic pigment, necrosis, areas of poor image quality, and,
in the case of MEL samples, areas of melanin filled macrophages
(melanophages). With NSCLC and UC samples, the algorithms
were trained to recognize areas of background staining, anthracotic
pigment, necrosis, etc., as negative for PD-L1 expression. Annotations for
normal tissue, tumor parenchyma, and tumor stromal regions were also
provided.
Outputs consisting of quantitative features summarizing slide-level

PD-L1 expression on TCs were generated for each sample (AI-powered
score). Tumor samples were then classified as PD-L1–positive or PD-
L1–negative (as described in the previous section), using cutoffs of 1%
and 5%. Quality control was performed by board-certified pathologists
on tissue samples evaluated for PD-L1 expression. A sample was deemed
evaluable if there were ≥100 viable TCs that were in focus and not
obscured by artifact or background staining.
To ensure that the overall cell- and tissue-level AI classifications were

appropriate, pathologists were asked to review PathAI heatmap overlays
of regions of interest and to evaluate whether the algorithm accurately
determined TC and IC PD-L1 expression. Each region of interest included
tumor, intratumoral stroma, and peritumoral stroma, while areas
containing crushed tissue or artifacts were excluded. Pathologists were

given thresholds of PD-L1 TC expression to choose from (0–5%, 5–25%,
25–50%, 50%). The AI-powered score was marked as correct if it was
within the same threshold as the manual score or as incorrect if it was
not. An overview of AI-powered and manual assessment of PD-L1
expression on TCs is provided in Fig. 1.

Application of AI-powered algorithm to test set. Model performance for
each tumor type was assessed using an independent set of commercial
and clinical trial–procured samples (distinct from the training set) that
were stained for PD-L1 expression and digitized using the Aperio AT2
image-scanning platform. High-quality 150 × 150-pixel frames of sub-
regions were defined from WSIs. Exhaustive annotations from five
different pathologists from LabCorp (Burlington, NC, USA) were used to
classify cell types and identify the absolute number of PD-L1–positive
TCs in each frame. Additional details on samples used for training of the
AI algorithm can be found in Supplementary Table 1. The median
number of PD-L1–positive TCs was used to generate a consensus score.
Agreement between the pathologist consensus score and the model-
generated PD-L1 score was calculated using Pearson’s correlation
coefficients. An overview of this frame-based validation method is
provided in Fig. 2.

Prevalence of patients with PD-L1–positive tumor samples. Prevalence of
PD-L1–positive patients was assessed using both manual and AI-powered
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scoring at cutoffs of ≥1% and ≥5%. For CheckMate 026, only patients with
a PD-L1 expression level of ≥1% underwent randomization and were
stratified according to a PD-L1 expression level of < or ≥5%25.

Assessment of AI-powered scoring algorithm across multiple
scanners
The AI-powered algorithm, trained and validated as described in the
previous “Development of PD-L1 AI-powered scoring algorithms” and
“Application of AI-powered scoring algorithm to test set” sections, was
used to assess PD-L1 expression on TCs using 20 WSIs from six distinct IHC
stained slides. Slides were scanned by two separate Aperio AT2 scanners
across 5 days, two times per day (morning [AM] and afternoon [PM]). Five
slides represented tumors with a PD-L1 expression ranging from ≥1% to
90% and one slide with a PD-L1 expression level of <1% as a negative
control. Tumor samples were obtained from patients with UC as part of the
CheckMate 275 clinical trial.

Statistical analysis
Inter-scanner and inter- and intra-day precision. Average and standard
deviation (SD) statistics were computed for PD-L1 expression within each
group of images pertaining to the same slide scanned at distinct times with
different scanners. Analysis of variance tests were performed to determine
the significance between the difference in % TC across days, times, and
scanners. Coefficients of variation for % TC across all slides were estimated as
the SD divided by the mean, multiplied by 100 ([SD/mean]*100).

Clinical outcomes. Association of PD-L1 expression on TCs with clinical
efficacy was assessed using cutoffs of ≥1% and ≥5%, as evaluated by AI-
powered and manual scoring. Kendall’s tau coefficient was used to
evaluate the correlation between AI-powered and manual scores within
each trial. Odds ratios (ORs) were calculated using logistic regression to
examine associations with objective response. Objective response predic-
tions by AI-powered and manual scoring across all trials were assessed by
plotting summary receiver operating characteristic curves and calculating
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the area under the curve (AUC) using metaROC from the R-package with a
fully non-parametric estimation with random effect29. Hazard ratios
were estimated using Cox proportional hazards models to examine
associations with progression-free survival, recurrence-free survival, or OS.
Kaplan–Meier curves were used to illustrate comparisons of survival in
samples identified as positive using both AI-powered and manual scoring,
additional samples only identified as positive by AI-powered scoring,
additional samples only identified as positive by manual scoring, and
samples identified as negative using both AI-powered and manual scoring.

RESULTS
Validation of AI-powered scoring algorithm
Validation of the AI-powered scoring algorithm was conducted
using a frame-based comparison of AI-powered scoring and
pathologist-derived scoring of PD-L1 expression on TCs on WSIs.
Using a combination of commercial and clinical tumor samples
from patients with NSCLC, SCCHN, MEL, and UC (Supplementary
Table 1), AI-based assessment was highly correlated with the
median score from manual assessment of PD-L1–expressing TCs
by 5 pathologists (r ranging from 0.73 to 0.85) and variability fell
within the range of pathologists’ scores (Supplementary Fig. 1).
We then compared the performance of the AI-based algorithm
with manual scoring to evaluate prevalence of PD-L1–positive
patients from multiple clinical trials.

Prevalence of PD-L1 expression by AI-powered and manual
scoring
The algorithm tended to identify a higher prevalence of PD-
L1–positive patients as compared with manual scoring. This
trend was observed across the majority of tumor types (Table 1)
and was consistent across both the 1% and 5% cutoffs. In
patients with NSCLC (CheckMate 057), UC (CheckMate 275), and
MEL (CheckMate 067 and 238), the prevalence of PD-L1–positive
patients increased in the range of 5% to 39% and from 6% to
25% with AI-powered scoring compared with manual scoring at
PD-L1 expression cutoffs of ≥1% and ≥5%, respectively. In
patients with SCCHN (CheckMate 141), a lower prevalence of PD-
L1–positive patients was seen with AI-powered scoring (42.5%

and 28.8%) compared with manual scoring (54.9% and 34.0%) at
cutoffs of ≥1% and ≥5%, respectively, though the difference was
not significant (Table 1). This could be due to a number of
factors, such as presence of crush artifact or low PD-L1
membrane staining with cytoplasmic positivity (blush) (see Fig. 3
and Discussion).
Given the observed trend for higher prevalence with the AI-

powered scoring algorithm, we assessed whether this affected
prediction of treatment response.

Comparison of AI-powered and manual scoring as predictors
of response
The combined sensitivity and specificity of AI-powered and manual
scoring for predicting ORR was assessed for all trials and both PD-L1
expression cutoffs used in this study. AUC values derived from
summary receiver operating characteristic curves were similar for
AI-powered (AUC= 0.602) (Fig. 4A) and manual scoring (AUC=
0.596) (Fig. 4B), suggesting that the performance of each scoring
method was similar in predicting ORR.

Association of PD-L1 expression with ORR
To assess the potential impact, including increased prevalence, of
AI-powered scoring on ORR, we reanalyzed PD-L1 expression in
each study at the predefined cutoffs of ≥1% and ≥5% using AI-
powered assessment and directly compared the value with that
obtained using manual scoring as part of the original trial. In
general, the majority of OR point estimates suggested a slight
increase in the association between ORR and patients identified as
PD-L1–positive using AI-powered scoring compared with manual
scoring in four out of five studies (NSCLC [CheckMate 057], UC
[CheckMate 275], MEL [CheckMate 067 NIVO+ IPI arm], and
SCCHN [CheckMate 141]) at the 1% cutoff and in four out of six
studies (NSCLC [CheckMate 026], UC [CheckMate 275], MEL
[CheckMate 067 NIVO arm], and SCCHN [CheckMate 141]) at the
5% cutoff. However, there was no significant statistical impact on
any of the OR confidence bounds (Fig. 5).
In all but three studies, ORRs in patients identified as PD-

L1–positive were similar, regardless of the AI-powered or manual

Table 1. Prevalence of PD-L1 expression by artificial intelligence-powered and manual scoring.

Evaluable samples for AI-powered
assessment—no.

Prevalence—no. (%) P value

AI-powereda Manuala

1% cutoff

<1% ≥1% <1% ≥1%

CheckMate 057 (NSCLC) 194 19 (9.8) 175 (90.2) 95 (49.0) 99 (51.0) <0.01

CheckMate 275 (UC) 241 75 (30.1) 166 (68.9) 128 (53.1) 113 (46.8) <0.01

CheckMate 067 (MEL; NIVO) 265 91 (34.3) 174 (65.7) 104 (39.3) 161 (60.8) 0.28

CheckMate 067 (MEL; NIVO
+ IPI)

262 101 (38.6) 161 (61.5) 117 (44.7) 145 (55.3) 0.18

CheckMate 238 (MEL) 377 70 (18.6) 307 (81.4) 118 (31.3) 259 (68.7) <0.01

CheckMate 141 (SCCHN) 153 88 (57.5) 65 (42.5) 69 (45.1) 84 (54.9) 0.04

5% cutoff

<5% ≥5% <5% ≥5%

CheckMate 026 (NSCLC) 254 21 (8.3) 233 (91.7) 58 (22.8) 196 (77.2) <0.01

CheckMate 057 (NSCLC) 194 84 (43.3) 110 (56.7) 117 (60.3) 77 (39.7) <0.01

CheckMate 275 (UC) 241 151 (62.7) 90 (37.3) 167 (69.3) 74 (30.7) 0.15

CheckMate 067 (MEL; NIVO) 265 162 (61.1) 103 (38.9) 189 (71.3) 76 (28.7) 0.02

CheckMate 067 (MEL; NIVO
+ IPI)

262 170 (64.9) 92 (35.1) 197 (75.2) 65 (24.8) 0.01

CheckMate 238 (MEL) 377 143 (37.9) 234 (62.1) 238 (63.1) 139 (36.9) <0.01

CheckMate 141 (SCCHN) 153 109 (71.2) 44 (28.8) 101 (66.0) 52 (34.0) 0.39
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method used, suggesting that AI-powered assessment can correctly
identify PD-L1–positive patients who would respond to and thereby
benefit from immuno-oncology therapy. The exceptions included
CheckMate 057 (NSCLC), where patients identified as PD-
L1–positive at cutoffs of ≥1% and ≥5% using AI-powered scoring
were associated with a lower ORR (21.1% and 25.5%) compared
with manual scoring (28.3% and 32.5%) (Fig. 5). Likewise, in the
NIVO+ IPI arm of CheckMate 067 (MEL), ORR increased when
assessed by manual scoring (73.8%) compared with AI-powered
scoring (60.9%) at a cutoff of ≥5%. Conversely, in CheckMate 141
(SCCHN), there was a slight increase in ORR in patients identified as
PD-L1–positive using AI-powered scoring (20.0% and 25.0%)
compared with manual scoring (16.7% and 21.2%) at cutoffs of
≥1% and ≥5% (Fig. 5). We then determined the impact of AI-
powered scoring on survival outcomes as determined in each
clinical trial.

Association of PD-L1 expression with survival
PD-L1 expression on TCs at cutoffs of ≥1% and ≥5% assessed
using AI-powered or manual scoring was significantly associated
with recurrence-free survival in NIVO-treated patients with MEL
(CheckMate 238) (Fig. 6A). In patients with NSCLC (CheckMate 026)
identified as PD-L1–positive by either AI-powered or manual
scoring, progression-free survival was prolonged at a cutoff of
≥5% in patients treated with NIVO (Fig. 6B). Additionally, PD-L1
expression assessed by either method was significantly associated
with OS in patients with NSCLC (CheckMate 057) and UC
(CheckMate 275) at both cutoffs (Fig. 6C). In patients with MEL
(CheckMate 067) treated with NIVO, both methods were
significantly associated with OS at a cutoff of ≥1%, but not at
the ≥5% cutoff. In the same trial, no association with OS was seen
at either cutoff using both AI and manual PD-L1 methods in
patients treated with NIVO+ IPI (Fig. 6C). In patients with SCCHN,

OS benefit was similar for PD-L1–positive patients identified by AI-
powered and manual scoring (Fig. 6C).
Across all tumor types and cutoffs, patients identified as PD-

L1–positive by both manual and AI-powered scoring demon-
strated improved associations with survival compared with
patients identified as PD-L1–negative by both manual and AI-
powered assessment. Additionally, patients identified as PD-
L1–positive by AI-powered scoring alone demonstrated improved
associations with survival compared with those identified as PD-
L1–negative by both methods in some tumor types and clinical
trials across different cutoffs (Supplementary Fig. 2).

Analytical precision of AI-powered scoring algorithm
Inter- and intra-reproducibility of the AI-powered scoring algorithm.
To assess whether our algorithm can produce consistent results
when WSIs are obtained from multiple slides scanned using
different scanners, we evaluated the inter-scanner precision. No
significant variation in % TC values obtained from each slide
scanned with either scanner 1 or scanner 2 was observed (Fig. 7).
Additionally, mean % TC values did not significantly differ
between different days in which slides were scanned (p > 0.05)
or at different times on the same day (p > 0.05).

DISCUSSION
Recent approvals of immune checkpoint inhibitors with compa-
nion PD-L1 IHC assays in various tumor types demonstrate the
increasing utility and widespread clinical use of PD-L1 testing to
determine patients who may benefit from these therapies.
However, classification and stratification of patients based on
manual IHC methods may not always be reproducible, as a
number of factors can create challenges for pathologists when
scoring PD-L1 on TCs, such as heterogenous PD-L1 expression

Fig. 3 Examples of PD-L1 staining in tissue samples from patients with SCCHN. A Illustrates low PD-L1 membrane staining in basaloid
SCCHN (oval outline) with preparation artifact as outlined by the square (decreased sharpness of nuclei borders and reduced clarity of inner
chromatin structure; 3,3′-Diaminobenzidine reactivity [purple staining] is blurred and indistinct from artifacts), shown at 19× magnification.
B Illustrates cytoplasmic positivity (blush) (oval outline in left-hand image) at 14× magnification coincident with weak (1+) membrane PD-
L1–positive staining (oval outline in right-hand image) at 30× magnification. PD-L1 programmed death ligand 1.
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within the tumor microenvironment and variable staining patterns
in different cellular compartments (e.g. membrane vs. cytoplasmic
staining), potentially leading to substantial inter-observer
variability6,15,17,30,31. As demonstrated by our frame-based valida-
tion method, the results of AI-powered scoring were shown to be
comparable to manual assessment of PD-L1 expression on TCs
and fell within the variability limits of human error observed
across pathologists. However, the reproducibility of AI-powered
scoring can reduce inter-observer variability and subjectivity while
potentially increasing sensitivity and specificity when scoring and
interpreting stains16. In studies using manual scoring as the
reference standard, an AI-powered approach has been shown to
increase inter-observer reproducibility and accuracy of biomarker
scoring in breast cancer, NSCLC, and MEL samples, leading
to better identification of patients who may benefit from ICI
therapy16,17,21,32–34.
AI-powered scoring can also be applied to algorithms that

include ICs, such as combined positive score35. In these algorithms,
PD-L1 IC expression can be difficult to reliably assess visually, and
thus pathologist concordance tends to be lower13,14,36,37. AI-
powered scoring methods may thereby offer more precise and
consistent results when defining PD-L1 expression on both TCs and
ICs across multiple tumor types and cutoffs. However, despite these
advantages, there is a reluctance to utilize digital pathology
approaches in biomarker scoring and drug development, due to a
lack of large-scale clinical validation studies in the oncology setting.
Of relevance to this current study, associations of manually

scored TC PD-L1 expression with clinical benefit of NIVO ± IPI have
been studied across multiple tumor types and PD-L1 expression
cutoffs with varying results23–27,38. Given the development of AI-
based IHC quantitation methods and their potential for scalability
and use in routine clinical practice, we sought to evaluate the
performance of an AI-based algorithm to quantify PD-L1 expres-
sion using samples from several pivotal trials evaluating NIVO ± IPI

across multiple tumor types. In one of the largest sample sizes to
date (n= 1746), we assessed both AI-based and manual
quantification of PD-L1 expression on TCs and compared their
associations with response and survival.
We found that more patients with PD-L1 expression at cutoffs of

≥1% and ≥5% were identified by AI-powered scoring compared
with manual scoring in patients with NSCLC, UC, and MEL. This
increase in measured prevalence of positive patients using AI-
based method is likely a result of multiple factors. The algorithm
exhaustively analyzes and classifies every cell on the tissue image,
thereby providing a highly precise measure of the true PD-L1
positivity on TCs. Although the algorithm is extensively evaluated
for accuracy in cell classification, some level of misclassification is
expected. In general, the observed discordances between manual
and AI-powered scoring were associated with multiple factors. In
certain scenarios, the model correctly identifies TCs but does not
classify them as PD-L1–positive. These misclassifications could be
due to factors such as the presence of clustered, membranous PD-
L1–positive TCs overlapping with PD-L1–negative TCs or mis-
classification of PD-L1–positive ICs as PD-L1–positive TCs. In our
frames-based validation analysis shown in Supplementary Fig. 1,
we have observed certain discordant frames with examples of
both the model and the pathologists overestimating the number
of PD-L1–positive TCs. Based on this analysis, such errors were
relatively low, and any sample with a large number of
misclassifications was flagged during the quality control process.
Conversely, a higher prevalence of PD-L1–positive samples was
identified by manual scoring compared with AI-powered scoring
at both cutoffs in patients with SCCHN. Interpreting PD-L1
expression requires reproducibility across the spectrum of SCCHN
differentiation. Manual assessment of PD-L1 expression in basaloid
or poorly differentiated SCCHN tumors can be challenging, due to
issues such as crush artifacts from tissue handling; such cases may
be accurately identified as PD-L1–positive by manual scoring but
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misclassified as PD-L1–negative by the algorithm. Additionally,
non-specific cytoplasmic blush staining coincident with weak
membrane PD-L1–positive staining may lead to under-detection
of membrane staining by the stringent AI model developed for
SCCHN (examples of these can be found in Fig. 2). Another
challenge pertaining to assessment of PD-L1 expression in
moderate to well-differentiated SCCHN is the presence of
keratinized degenerate and anucleate cells, which may be
identified as PD-L1–positive by manual scoring but as PD-
L1–negative by the algorithm. The model was intentionally
trained to reduce false positive detection due to these factors,
with a consequent decrease in the detection of low membrane
staining of PD-L1, especially in basaloid variant tumors. However,
the algorithm sufficiently identified the majority of the responders
in CheckMate 141, consistent with manual scoring, as demon-
strated by the similar ORR in patients identified as PD-L1–positive
using AI-powered scoring as compared with manual scoring. This
demonstrates the need for the development of algorithms
optimized to account for morphological features unique to each
tumor type.
We then assessed clinical endpoints to determine if the increase

in prevalence of patients identified as PD-L1–positive using AI-
powered scoring was associated with clinical benefit. In evaluated
patients with NSCLC, UC, and MEL, treatment response and
survival were similar in patients identified as PD-L1–positive using
either AI-powered or manual scoring, suggesting that the
additional PD-L1–positive patients identified using AI-powered
scoring had a similar treatment response and survival to those
identified as PD-L1–positive by both methods. AI-powered scoring
of PD-L1 expression may therefore detect patients with PD-
L1–positive tumors that express low levels of PD-L1, which may go
undetected by manual scoring methods.
Finally, we conducted a separate analysis using our previously

trained and validated algorithm to assess the reproducibility of AI-
powered scoring of PD-L1 expression across different scanners,
days, and times of day. No significant variations in identification of
PD-L1–positive TCs based on day, time of day, or scanner
were identified. These results demonstrate the ability of the AI

algorithm to overcome analytical factors that may occur during a
typical workflow to produce consistent and accurate results.
To our knowledge, this is the first study utilizing a large sample

size across various tumor types to develop and compare the
ability of AI-based scoring and manual assessment to identify PD-
L1 expression on TCs and its association with clinical efficacy in a
large cohort of patients from multiple trials. Previous studies on
single tumor types with a small number of patients have also
sought to compare digital and manual assessment of PD-L1
expression. Koelzer et al. sought to create a standardized digital
protocol for the assessment of PD-L1 staining in MEL (n= 69) and
to compare the output data and reproducibility to conventional
assessment by expert pathologists. Consistent with our results,
high correlation was observed between digital and manual
assessment in MEL samples. Additionally, the image analysis
protocol had high inter-reader reproducibility and reduced
variability compared with manual assessment of PD-L1 expres-
sion33. Another study compared the results of PD-L1 expression
using combined positive score in samples from a small phase II
trial in patients with gastric cancer (n= 39), as measured by digital
image analysis and pathologist interpretation, and its ability to
predict response to pembrolizumab. Similar to our findings, both
methods were predictive for response to pembrolizumab in
patients with gastric cancer. However, there are some important
differences in this study compared with our study, including use of
a small set of samples from one clinical trial and the inability of the
image analysis tool to distinguish between PD-L1–positive TCs
and ICs, that limit the ability to determine the respective role of
each cell type in predicting response39.

This investigation has limitations due to the retrospective
nature of our treatment response and survival analyses. Addition-
ally, since we sought to compare AI-powered scoring with manual
scoring carried out as part of the original trials, the majority of
which did not assess PD-L1 positivity in immune compartments,
we limited our analysis to evaluating PD-L1 expression on TCs
only. Therefore, our results cannot be extrapolated to other
scoring methods or assays. However, our scoring algorithm has
the potential to be used to determine staining in additional cell
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types19,40 and warrants further study to include additional scoring
methods that incorporate assessment of ICs, such as combined
positive score, and application in additional tumor types.
Our study demonstrates that AI-powered quantification of PD-

L1 expression on TCs identified more PD-L1–positive samples
compared with manual scoring across several tumor types
explored in this study, while demonstrating consistent associa-
tions with response and survival across multiple clinical trial
datasets. Compared with manual scoring, our AI algorithm
has the potential to identify more patients who may
benefit from immuno-oncology therapy. The findings of our
study could serve as a framework for incorporation of AI-
powered scoring as a precise, reproducible, scalable, and
exhaustive approach to quantifying PD-L1 expression on TCs
in routine practice, leading the way for application in future
prospective large-scale clinical trials.
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