Under review as a conference paper at ICLR 2026

TRAINING TENSOR ATTENTION EFFICIENTLY: FROM
CUBIC TO ALMOST LINEAR TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Tensor Attention, a multi-view attention that is able to capture high-order corre-
lations among multiple modalities, can overcome the representational limitations
of classical matrix attention. However, the O(n?) time complexity of tensor at-
tention poses a significant obstacle to its utilization in transformers, where n is
the input sequence length. In this work, we prove that the backward gradient
of tensor attention training can be computed in almost linear time n'*t°(1), the
same complexity as its forward computation under the bounded entries assump-
tion. We provide a closed-form solution for the gradient and propose a fast com-
putation method utilizing polynomial approximation methods and tensor algebraic
techniques. Furthermore, we prove the necessity and tightness of our assumption
through hardness analysis, showing that slightly weakening it renders the gradient
problem unsolvable in truly subcubic time. Our theoretical results establish the
feasibility of efficient higher-order transformer training and may facilitate practi-
cal applications of tensor attention architectures.

1 INTRODUCTION

The generative large language models (LLMs), such as Mistral 3.1 (Mistral, [2025), Llama 4 (Meta,
2025), Gemma 3 (Team et al., 2025), GPT-40 (OpenAl, [2025), Claude 3.7 (Anthropic, [2025)),
Grok 3 (xAll [2025), Qwen 3 (Qwen, 2025), DeepSeek R1 (Guo et al., 2025), and many more
have been widely involved in people’s living and work in these two years, such as bio-informatics
(Thirunavukarasu et al., [2023)), coding (Hou et al., 2024), education (Kasneci et al., |2023), finance
(L1 et al.} [2023b), law (Sun, 2023), and even writing NeurIPS conference reviews (Liang et al.,
2024). The success of LLMs is based on the transformer architecture introduced by (Vaswani et al.,
2017), which also has been introduced into other modalities (Dosovitskiy et al., [2020), such as
vision-language models, e.g., CLIP (Radford et al.||2021)), Flamingo (Alayrac et al.,|2022)), LLaMA-
Adapter (Zhang et al.| [2023a} |Gao et al., [2023)), LLava (Liu et al., 2024} [2023b)), BLIP (Li et al.,
2022;2023a), MiniGPT-4 (Zhu et al., 2023)), Qwen (Bai et al., 2023ab)), Gemini (Team et al., 2023)),
MM1 (McKinzie et al.,[2024).

The above open-sourced large models use two-view matrix attention, i.e., each attention score/entry
is related to two tokens (one query token and one key token) to capture the data correlation. More
specifically, let Z be hidden representations and Q@ = ZWq, K = ZWgk,V = ZWy be the corre-
sponding query, key, and value matrices after projections using weights Wq, Wx, Wy, respectively.
Then, the classical/matrix attention head can be written as Att(Z) = Softmax(QK ")V.

On the other hand, many studies find that multi-view is crucial for high-order correlation in various
kinds of data, e.g., math (Sanford et al., 2023)), graph (Demirel et al., 2022; |Luo et al., |2023), and
multi-modality (Lahat et al.| |2015). For example, recently, OpenAl released GPT-40 (OpenAl,
20235)), and Google released Project Astra (Google, 2024), two flagship multi-modality models that
aim to reason across three views, i.e., audio, vision, and text in real-time.

However, (Sanford et al.,[2023)) theoretically and empirically shows that classical attention can cap-
ture pairwise correlation but not triple-wise correlation due to the representational limitations of
matrix attention. (Sanford et al.| 2023)) introduces a triple detection task, demonstrating that classi-
cal attention layers have complexity scaling linearly with the input size, while high-order attention
can efficiently perform this computation within a single head.

Under review as a conference paper at ICLR 2026

In other words, one classical matrix attention head “cannot” capture the information relevant to
multi-views simultaneously unless using multiple layers with careful architecture design. This poses
a fundamental technical obstacle for multi-modality models to efficiently fuse multiple represen-
tations/views to capture the high-order correlation among them, e.g., the high-order correlations
among multi-modalities such as audio, text, and images.

Table 1: Comparison to previous works.

Reference For/Backward Matrix/Tensor
"~ (Zandieh et al.[[2023) Forward Matrix
(Alman & Song, 2023) Forward Matrix
(Han et al., [2024) Forward Matrix
(Alman & Song, [2024al) Backward Matrix
~ (Alman & Song, [2024b) Forward Tensor
Ours (Theorem ,ﬂ[) Backward Tensor

To fundamentally solve the above obstacle, (Sanford et al. [2023) and (Alman & Song|, [2024b) in-
troduce Tensor Attention, which is a higher-order generalization of matrix attention that can capture
high-order/multi-view information intrinsically. More specifically, it is defined as Softmax(Q(K; ©
K>)") (Vi © Va) (Definition and illustrated in Figure , where @ is column-wise Kronecker
product, and @, K;/V;, K5/Vs can be from different views/modalities. However, to implement
Tensor Attention practically, we must overcome the complexity bottleneck. Let the input token
length be n, then the forward and backward time complexity of tensor attention will be O(n?) as
QK1 0 KT € Rnxn’ (Ma et al., 2019), while the time complexity of matrix attention is O(n?)
onlyas QK ' € R™*" (Keles et al.,2023). For example, the input length of Llama2 (Touvron et al.,
2023)) is 4096. So, intuitively, if we put tensor attention in Llama2, the input length will reduce to
256 to keep the same complexity in running speed and memory consumption.

YA 1l

XV H/

Tttty

Softmax *
i

Figure 1: The visualization of tensor attention with Softmax activation function (Definition [2.5)).
We give an example of input token length n = 8, feature dimension d = 4.

There are several recent works to overcome the time complexity bottleneck above, e.g., O(n?) for
matrix attention and O(n3) for tensor attention. (Zandieh et al.| [2023)) accelerate matrix attention
forward via kernel density estimation and get truly sub-quadratic time running time. (Alman &
Song} 2023)) uses the polynomial approximation method to map the matrix attention into low-rank
matrices during forward computation, leading to an almost linear time complexity n!*°(1) when
entries are bounded. Similarly, under sparsity assumptions, (Han et al., [2024)) achieves nearly lin-
ear time computation for matrix attention forward by identifying the larger entries in the attention
matrix. On the one hand, with fine-grained analysis, (Alman & Song|, |2024a) proposes a new back-
ward algorithm to compute the gradient of matrix attention in almost linear time complexity n!*+o(1)
as well, under the same bounded entry assumption. On the other hand, (Alman & Song] |2024b)
surprisingly finds that the forward computation of tensor attention can also be achieved in almost
linear time n'T°() rather than almost quadratic time n>t°(1), under similar assumptions as (Alman
& Song| |2023). See a summary in Tablem Thus, it is natural to ask,

Can we achieve almost linear time for gradient computation in Tensor Attention Training?
We provide a positive answer in this work. Under the same bounded entries assumption as (Alman

& Song [2024b), we propose Algorithm|[I]to fast compute the backward gradient of Tensor Attention
Training in almost linear time n'T°(1) as its forward computation. Thus, our results may make the

Under review as a conference paper at ICLR 2026

tensor attention practical, as we can get around the O(n?) complexity barrier both in its forward and
backward computation. Our contributions are summarized as follows:

* Under fine-grained analysis, we give the closed-form solution of the gradient computa-
tion of tensor attention (Lemma [3.1)) and its time complexity without acceleration (Theo-

rem[3.3).

* Based on the closed-form solution, by utilizing polynomial approximation methods and
tensor computation techniques, we propose Algorithm |I| to fast compute the backward
gradient of tensor attention training in almost linear time as its forward computation (The-

orem[4.2).

 Furthermore, we prove that our assumption is necessary and “tight” by hardness analysis,
i.e., if we slightly weaken the assumption, there is no algorithm that can solve the tensor
attention gradient computation in truly sub-cubic complexity (Theorem [5.3)).

Roadmap. In Section@ we introduce the notations, several useful definitions, and our loss function.
In Section |3} we give the closed form of the gradient of our loss function, and also its computational
time complexity. In Section[d] we prove that we can compute the gradient in almost linear time. In
Section 5] we provide the hardness analysis. In Section[6] we give the conclusion of our paper.

2 PRELIMINARY

In this section, we first provide the notations we use. In Section 2.1} we provide general definitions
related to tensor operation. In Section we provide key definitions that we utilize in this paper.

Basic notations. We use [n] to denote
{1,2,...,n}. We use e; to denote a column
vector where only i-th location is 1 and zeros
everywhere else. We denote an all 1 vector us-
ing 1,, € R™ . We use (a, b) to denote the inner d
product of a,b € R? i.e. {(a,b) := Zle a;b;. 1121374
We use ||z||, to denote the £, norm of a vec- ()
vec | n{[5[6 |78 = nd\

S

tor z € R, ie. |zl = (31, 2?)Y2,
and [|2]|oc = max;ep,) |xi]. We use o to
denote the Hadamard product, i.e., the (,7)- A
entry of Ao Bis A, ;B; ;. We use tr[4] :=
i, Ay to denote the trace of a matrix A €
R™*"™ We use exp(A) to denote a matrix
where exp(A); ; = exp(A;;) for a matrix
A € R4 We use ||A]|o to denote the /o,

norm of a matrix A € R je. [[Ao = Figure 2: The visualization of vectorization oper-
max;c(n] je[q |4i ;|- We use ||Al[r to denote 4¢or vec(-), which stacks rows of a matrix A €
the Frobenius norm of a matrix A € R"*4, R"*4 into a column vector a € R"%. In this fig-
ie. ||A|F = \/Zie[n] Eje[d] |A; j|2. We use ure, we give an example of n = 3,d = 4. The

components of A and « are also given for easier
understanding.

===
[BIE[S[e][]o]x]x[w]e]-]

poly(n) to denote polynomial time complexity
w.r.t. n.

Tensor related notations. Let A € R"*<
We use a := vec(A) to denote the length nd vector obtained by stacking rows of A into a
column vector, i.e. vec(4) := [a],ay T

aj,as,...,a)]" where a; is the i-th row of A, or simply
vec(A)ji(i—1ya = Aqj forany i € [n],j € [d], visualized in Fig. 2l Let I; € R%? denote
the identity matrix. Let |; € R%*4*? denote the identity tensor, i.e., the diagonal entries are 1 and
zeros everywhere else. Let X € R¥? Let z € R% denote the vectorization of X € R4,
Let X € R?¥4%d be the tensorization of X € R4’ where X, 0 = X (b-1)d+e for any

a,b,c € [d]. We define the corresponding function mat : Ré*dxd _ Rdxd® a5 X = mat(X)
where Xa,(bfl)dJrc = Xu,b,c for any a, b7 cE [d]

Under review as a conference paper at ICLR 2026

2.1 DEFINITION OF TENSOR OPERATIONS

We define some operations like the Kronecker product, which is a matrix operation applied to two
matrices of any size, producing a block matrix. It is different from regular matrix multiplication and
will be useful for our introduction and analysis of tensor attention.

Definition 2.1 (® Kronecker product). Given K; € R™*% and Ky € R™*% for any i, €
[n1], 72 € [no], j1 € [d1], jo € [da], we define the matrix K = K| @ Ky € Rmn2xdidz g¢

Ki1+(i2—1)"17j1+(j2—1)d1 = (Kl)il-,jl . (KQ)Z"z-,jz'

In this work, we will primarily use the following column-wise and row-wise versions of the Kro-
necker product, which are special kinds of Kronecker products.

Definition 2.2 (© column-wise Kronecker product, also known as Kathri-Rao product). Given ma-

trices K1 € RM*4 Ky € R™X4 we define the matrix K = K; @ Ko € R™™2%% g5 follows
Kyt (ia—1yn1, 7= (K1)iyg - (K2)iyg, Via € [ma], iz € [no],j € [d].

Definition 2.3 (© row-wise Kronecker product, also referred to as the face-splitting product). Given

matrices K1 € R™%4 Ky € R"¥% we define the matrix K = K| © Ky € R"*%9 g follows

Kijit(o—nya, = (K1)igy - (K2)ij,, Vi€ [n],j1 € [di], j2 € [da].
2.2 KEY DEFINITIONS OF TENSOR ATTENTION

Now, we are ready to introduce the tensor attention. First, we introduce the parameters and input.
Definition 2.4 (Input and weight matrix). We define the input sequence as Z € R™*? and the key,
query, and value weight matrix as W, W, , Wq, Wy, , Wy, € RI*4. Then, we define the key,
query, and value matrix as K, := ZWy, € R*xd [y = Wy, € R4 Q = ZWq € Rnxd,
Vi = ZWy, € R4V := ZWy, € R™*4,

Then, based on the Kronecker product, we define tensor attention in the following way.
Definition 2.5 (Tensor attention, Definition 7 in (Sanford et al., 2023)), Definition 1.1 in (Alman &
Song, 2024b)). Given input matrices Q, K1, Ko, V1, Vo € R™¥% compute the matrix

D' A V eR™

=~

nXn nxn2n?2xd
where (1) A := exp(QK T /d) € R™" and K := K, @ K5 € RV %4, (2) D := diag(Al,2) €
R™ ™, and (3) V :=V, © Vo € R™ %4,
Remark 2.6. In Definition[2.3] on the one hand, we separate the Softmax operation into an element-
wise exp operation and a diagonal normalization matrix D for a more transparent formulation. On

. . . 2d
the other hand, we change K,V € R"*% in classical attention to K1 @ K2,Vy @ Vo € R" %4 in
tensor attention, where @ is column-wise Kronecker product defined in Definition[2.2}

Our Definition [2.3] covers the self-attention setting when the query/key/values @, K1, K2, Vi, Vs
follow Definition where they share the same input. It is then a tensor self-attention, which can
capture high-order information of the input Z. When the query/key/values have different inputs, it
is then a tensor cross-attention that can capture high-order relationships among multiple inputs.

Also, note that we have A € R™X7” in Deﬁnition Although QK T is a low-rank matrix with rank
at most d, exp(QK ") may be a full-rank matrix in general. Thus, it is clear to see the exact forward
computation of tensor attention takes O(n?) time. Here, we introduce a forward tensor attention
approximation task, which will help us formulate the tensor attention gradient approximation task
later. Furthermore, (Alman & Song, |2024b) show that they can solve this approximation task in
almost linear time n' (1) (Lemma

Definition 2.7 (Approximate Tensor Attentlon Computation (ATAttC(n,d, B, e 2) Definition 1.2
in (Alman & Song, [2024b)). Given input matrices Q, K1, K2, V1,Vo € R"X and parameters
e, B >0, Where max{||Qllco, [[K1lloos [K2]loo, [Villoos [|[Valloo} < B. Let A, D,V be defined in
Deﬁnmon Then, our target is to output a matrix T € R™*% satisfying

| T —-D' A V ||w<e
S

nxd nXxXn nxn? n2xd

Under review as a conference paper at ICLR 2026

a2

n d n? d d

1 . e L

2

min 0.5
X e R&X4

&

(A; ® A3)T)x | (Aa®4s) | x> v | — n|

F

n

exp

n|<*jm%> = diag

Figure 3: The visualization of loss function defined in Deﬁmtlonn 2.8 Let Ay, Ao, A3, Ay, Asand F
be n x d input matrices. Let Y be a given matrix with size d> x d. The Kronecker product operator

® is defined in Definition u We minimize matrix X € R%*4" in our loss function. We first
compute exp(A; X (A ® A3) T) Then, we compute Dng = diag(exp(A; X (As ® A3)T)1,2).
Afterwards, we compute D(X) ! exp(A1 X (A2 ® A3) ") (A4 ® A5)Y — E. Finally, we optimize
X to compute the minimum of its Frobenius norm with a scahng factor 0.5.

d?
I XdXdz

(Ay® A3)T) x n?{E)

For our focus, tensor attention training, we would like to find weights to ﬁt the tensor attention to a
desired output E. We first simplify the attention expression of Definition [2.5] whose inputs are from
Deﬁn1t10nw1th weight matrices W, WKl, Wi,, Wy, , Wy, € R¥x4, Let X =Wq - Wk, @

Wk, € RX and Y ;= Wy, o Wy, € R%**d_ 1t can be verified that the tensor attention equals
D lexp(ZX(Z® Z)"/d)(Z ® 2)Y,

where Z € R™*? is defined as the input sequence in Definition

The naive gradient computation for the tensor attention training takes €2(n?) time. The gradient for

X is the bottleneck while that for Y is not, since A; X (As ® Ag)—r € R™"” lies in the non-linear
function Softmax. Also, note that with gradients of X and Y, it is easy to get the gradients of the
weight matrices Wo, Wy, , Wk,, Wy, , Wy,. Therefore, we model the tensor attention training as
the following tensor attention optimization problem (where A;, Ao, A3, A4, A5 are introduced to
replace Z to capture more general settings such as cross-attention). See Figure 3] for an illustration.

Definition 2.8 (Tensor attention optimization). Suppose that Ay, As, A3, Ay, As, E € R™*? and
Y1, Ys € R4%4 are given. We formulate the attention optimization problem

min Loss(X)
X gRdxd?

as
0.5|D(X) L exp(A1 X (Ay ® A3) T /d)(As ® A5)Y — E||%,

where (1) Ay ® A3 € R™ %4 s the tensor product between Ay and As, (2) D(X) =
diag(exp(A1 X (Ay ® A3)T /d)1,2) € R™" and (3) Y =Y, @ Yy € R %4,

Our main focus is the following Approximate Tensor Attention Loss Gradient Computation task.

Definition 2.9 (Approximate Tensor Attention Loss Gradient Computation
(ATAttLGC(n,d, B,¢€))). Let ¢,B > 0. Let Ay, Ag, Az, Ay, A5, E € R"™ and let
X1, X5, X3,Y1,Ys € R (see Definition 2.8). Let X = Xy - (X2 © X3)T € R A
sume that max{|| A1 X1|lco» [[A2X2|lcor [|A3X3]l00s [|A4Y1]l0os |A5Y2]lco} < B. Let us assume
that any numbers in the previous matrices are in the log(n) bits moa’elﬁQ We define Loss(X) the

"Each entry in the matrix is represented by at most log(n) bits. This assumption is well-accepted and
widely used in the computational complexity community, e.g., (Feng et al.| |2024; |Liu et al. 2023a; Merrill &
Sabharwal, [2023)).

Under review as a conference paper at ICLR 2026

. . . 2
same as Deﬁmtwn@ Let the gradient of loss function Loss(X) be d"ods—}(x) € R¥4" Then, our
target is to output a matrix g € Rxd* satisfying

15— dLoss(X)
g Tax =

D = diag(K - 1,2)

K =exp (A1X(A2®A3)T)

Figure 4: The computational graph for tensor attention backward. The blue boxes are input matrices,
the gray boxes are intermediate matrices, and the orange box is the final gradient matrix. Here,
Ay, Ag, Az, Ay, As denote the previous inputs, E denotes the target matrix, and X, Y denote the
attention weights. More detailed definitions of each variable can be found in Section @ andﬁ

3 EXACT TENSOR ATTENTION GRADIENT COMPUTATION AND COMPLEXITY

In this section, we provide the closed form of the tensor attention gradient of the loss function
(Definition [2.8) and also its computational time. First, we calculate the closed form of the gradient
in the following lemma, whose proof is in Appendix [E.3]

Lemma 3.1 (Closed form of gradient, informal version of Lemma . Define the function F(x) €

R™"* gs in Definition @ (see Fig. for an illustration). Suppose that A1, Ay, A3 € R™*? are
three given matrices. Suppose that Loss(x) is defined as Definition 2.8 where x = vec(X). Then,
we have

dLoss(z)

= vec(A] F(z)(42 ® 43)) € RY.
x

Note that F(z) is a size n x n? matrix which is the bottleneck obstacle in time complexity.

Definition 3.2. Let Trat(a, b, ¢) denote the time of multiplying a x b matrix and b X ¢ matrix.

Then, with straightforward analysis, we get the following theorem about the time complexity of
naive computation. The complete proof is in Appendix

Theorem 3.3 (Tensor attention gradient computation, informal version of Theorem [E.7). Suppose

that A1, Ay, As, Ay, As, E € R"*? are input fixed matrices. We denote matrix variables as X €
2 2 2

R4 and Y € R *? (gradient computation is w.r.t. X). Let g = dl'(:is—jgx) € R (for definition

of Loss(X), see Definition @) Then, we show that computing the gradient g € RAxd’ requires
Trat (n, d%,n?) time.

Note that Trat(n, d?,n%) > Q(n?). Thus, the naive tensor attention gradient computation is a
complexity obstacle in practice, as discussed in Section [Tl Based on the closed formulation in
Lemma[3.T] we derive our acceleration method, which will be introduced in the following section.

Under review as a conference paper at ICLR 2026

4 FAST TENSOR ATTENTION GRADIENT COMPUTATION

In this section, we show how to compute the tensor attention matrix gradient in almost linear time.
In Section we demonstrate our main results. In Section f.2] we introduce some key tensor
techniques used in our proof.

Algorithm 1 Almost Linear Time Tensor Attention Gradient Computation

1: procedure FASTTENSORATTENTION(A, Ay, A3, Ay, A5, E € R4 X, X5, X3,Y7,Y;

R4 n e N,,d € Ny, e€ (0,0.1)) > Deﬁnition Theore 2-

> n can be viewed as the length of the sentence

> d can be viewed as the feature of dimension, and we assume d = O(logn)

> e is the accuracy output, and we typically pick 1/ poly(n)

Get Uy, Vi, Wy € Rv™ 1o approximate S(z) via Lemma > O(n!+°M) time

Us < U (Vi oW1)"L(y) — E to approximate V(z) via Lemma4.5| > O(n'+°(M) time

Vo, Wa <= A4Y1, As5Ys to approximate W (z) via Lemma > O(nd?) time

Us, V3, Wy < Uy ©Us, V1 © Vo, Wy © Wy to approximate F, () via Lemma >
O(n'*t°M) time

9: Precompute V," V5 and W, W5 to approximate Fy(z) via Lemma|E.7| > O(n'*t°()) time

1)

PRDDN AN

10: for jo € [n] do > Overall R(x) takes O(n'*+°M) time
11: R(2)jy = (U1) jo (Vi V2) o (WY W2))((U2) o) T

12: end for _

13: Uy + diag(R(z))U; > O(n*+°M) time
14 Vi, Wy Vi, Wy > O(n'toM) time
15: /* Approximate F(z), Theorem [F.8]*/

16: Us, Vs, Ws < [Us, —Ud], [Va, Va], [Ws, W4] > O(n'*t°M) time
17: /* Approximate g, Theorem [F.8]*/

18: Precompute A Us, AJ Vs, A3 W separately > O(dn1+°(1)) time
190 G« (A]Us) ©(Ag Vs) © (A3 Ws) > ® in Definition|C.3| O(d*n°(")) time
20: returng > As d = O(logn), the total complex1ty is O(n'*t°M) time

21: end procedure

4.1 MAIN RESULTS FOR FAST GRADIENT COMPUTATION

Polynomial approximation methods involve representing complex functions through simpler poly-
nomial forms to facilitate easier analysis and computation. They are crucial in numerical analysis,
aiding in the efficient solution of differential equations and optimization problems, and are widely
used in simulations and machine learning (Aggarwal & Alman, |[2022; |Alman et al., [2020).

Based on the polynomial approximation methods, (Alman & Song| 2024b) get the following result
about tensor attention acceleration, which will be used to prove our main result.

Lemma 4.1 (Theorem 1.4 in (Alman & Song, [2024b)). There is an algorithm that solves
ATAttC(n,d = O(logn), B = o(/logn), e = 1/ poly(n)) (see Definition in time n' o),

Using similar polynomial approximation methods, and combined with a series of tensor analysis
techniques (Section[4.2)), we get our main acceleration results.

Theorem 4.2 (Main result for fast gradient computation, informal version of Theorem [F.8). Assum-
ing the entries of Ay, Ay, Az, Ay, A5, E € R"* and X, X2, X3,Y1,Ys € R¥? gre represented
using O(logn) bits. Then, there exist an algorithm (Algorlthm that runs in n*1°M) time to solve
ATAttLGC(n,d = O(logn), B = o({/logn),e = 1/ poly(n)) (see Definition[2.9), i.e., our algo-

~ 2’ L
rithm computes a gradient matrix g € R*% satisfying

dLoss(X)

_ < .
l X glleo < 1/ poly(n)

Proof sketch of Theorem The complete proof can be found in Appendix

Under review as a conference paper at ICLR 2026

We use the polynomial approximation method to obtain low-rank approximation results for
D lexp(A; X(A; @ A3)"/d) in Lemma However, this cannot be directly used for the closed
form of the tensor attention gradient solution in Theorem[3.3] Utilizing a series of tensor techniques
(Sectiond.2]and Appendix [C]), we smartly convey these low rank properties throughout the gradient
formulation and computation, where two key steps are fixed in Lemma[F.5|and Lemma [F7] O

Remark 4.3. The assumption in Theorem is practical. In practice, especially in recent long
context tasks, the n is large, e.g., n = 2x10° for Google’s Gemini 1.5 Pro (Gemini, 2024)), while the
model training uses a half-precision floating-point format, e.g., the bit number is 16. Furthermore,
our assumption is “tight”, where if we slightly weaken the assumption, there is no algorithm that
can solve the tensor attention gradient computation in truly sub-cubic complexity (Theorem[5.3).

Our Theorem accurately approximates (¢ = 1/ poly(n)) the tensor attention gradient computa-
tion in almost linear time n'T°(!) under practical assumptions (see the above Remark . Thus,
our methods solve the last puzzle of tensor attention acceleration. Combined with previous work on
tensor attention inference, this may make tensor attention practical, as we overcome the theoretical
cubic time complexity barrier both in inference and training.

We provide Algorithm [I] for our almost linear time tensor attention training method. In the de-
tailed algorithm, first, we construct Uy, V7, Wj in Lemma@ Then, we construct Us, Vo, W5 in
Lemma [F.3]and Us, V3, W35 in Lemma We show how to construct Uy, V3, Wy in Lemma [F.7]
Finally, we construct Us, V5, W5 and compute the gradient g in almost linear time in Theorem [F.8]

4.2 TENSOR OPERATION ANALYSIS TECHNIQUES

Here, we introduce some key techniques for proving Theorem These techniques make it pos-
sible to convey the low-rank property even during the tensor operations, solving the novel technical
challenges in tensor attention gradient computation.

We first introduce a distributed rule, where the proof is in Appendix
Fact4.4. Let U; € R >4 gqnd Uy € R™M*E, Lot Vi € R™2%4 gud Vo € R™2%E Lot W, € R7axd

and Wy € R"*k_ We have
(hely)-(VieVoWioWa) =(Us (Vi @ Wi))o (U (Vo @ W
—_———— — — — ~— M~ =~ ~— M~
ny xXdk no Xdk n3xdk nyXd noXd ngXd ny Xk noxk nyxk

")

Fact[4.4]tells us that the multiple tensor operation can be distributed to a different format. If we have
some low-rank matrix/tensor, we can distribute them into each component so that each component
can be accelerated via the low-rank property. Intuitively, this allows us to borrow some low-rank
benefits from other terms to fix the bottleneck terms.

Then, we provide an important tool whose proof is in Appendix

Lemma 4.5 (Informal version of Lemma |[C.13). Given A; € R™*% Ay, € R™X4 Jet A :=
(A1 @ Ag) € RM™2Xd, Given By € R™*%, By € R™*%, let B := (B, © By) € R4, We
define C € R4 g5 C := AT B and Cy := A] By € R1*% Oy := A] By € R1*42 Then, we
have Cy o Co = C and given Ay, Aa, By, B, we can get C in Tpat(d1, max{ni, na}, ds) fime.

Lemma [.5]is a highly non-trivial method to handle tensor operation, o and matrix multiplication
together. By using the method, we save the computation time from Tp,a¢(d, 72, d) to Trat(d, 0, d),

which gets rid of the bottleneck quadratic term n2.

Lastly, we introduce a tensor trick, which can reduce a tensor operation to a matrix multiplication
operation. The proof is in Appendix

Fact 4.6 (Tensor-trick). Given matrices A; € R™"1%% A, € R"2%% gpd X € R4*2 e have
VeC(A1XA2T) = (Al ® Ag) VeC(X) e R™nz,

5 TENSOR ATTENTION GRADIENT COMPLEXITY LOWER BOUND

In this section, we show that our assumption is necessary. First, we introduce some hardness analysis
background in Section[5.1] Then, we introduce our main hardness result in Section[5.2]

Under review as a conference paper at ICLR 2026

5.1 SETH AND TENSOR ATTENTION FORWARD HARDNESS

We provide the findings that our results are based on. We first introduce a well-known hypothesis in
hardness analysis. The Strong Exponential Time Hypothesis (SETH), a well-established conjecture,
has been instrumental in establishing fine-grained lower bounds for numerous algorithmic problems,
as highlighted in the survey by (Williams,|[2018). More than two decades ago, (Impagliazzo & Paturi,
2001)) introduced SETH as an enhanced version of the well-known P # NP conjecture, positing that
current algorithms solving the SAT problem are nearly optimal in terms of efficiency.

Hypothesis 5.1 (Strong Exponential Time Hypothesis (SETH), (Impagliazzo & Paturil [2001)).
Given € > (0, there exists k > 3 € 7 such that it is impossible to solve k-SAT problem with n
variables in 0(2(1_6)”) time, including using any randomized algorithms.

We will critically utilize the hardness result of the forward tensor attention computation.

Lemma 5.2 (Theorem 1.3 in (Alman & Song] [2024b))). Assuming SETH, for any constant § > 0,
no algorithm can solve ATAttC(n,d = ©(logn),B = O({/(1 +7)logn),e = n"~9W) (Defi-
nition in O(n>°) time, even if the inputs meet the following conditions for any v > 0: (1)
V e {0, 1}"2Xd, (2) There exists B, < O((1 + v)log*n) = O(d({/(1+) logn)?) where all
entries of Q(K, @ K») " are within the range [1, B,] and more than half entries in each row of
Q(K, @ K») T are equal to B,.

This result shows that assuming SETH, if we just slightly weaken the assumption from B =

O(/logn) to B = O({/(1 4+ v)logn) with v = w(1), then the tensor attention forward com-
putation is hard, i.e., no algorithm can solve it in truly sub-cubic time.

5.2 MAIN RESULT FOR HARDNESS

Based on the above observation (Lemmal[5.2)), we prove our main result for tensor attention gradient
computation hardness.

Theorem 5.3 (Main result for hardness, informal version of Theorem [G.3). Ler v : N — N be
any function with y(n) = o(logn) and y(n) = w(1). Assuming SETH, for any constant § > 0,
it is impossible to solve ATAttLGC(n,d = O(logn), B = ©(/v(n) -logn),e = O(1/(logn)*))
(Definition2.9) in time O(n>~°) when E = 0, Y = |4, X = My for some scalar \ € [0, 1].

See the formal proof in Appendix The intuition is that if we can solve ATAttLGC in O(t) time,
then we can solve ATAttC in O(t - log! (n)) time by interpolation and “integral”. We see a similar
sharp complexity transition as forward computation (Lemma [5.2)): assuming SETH, if we slightly
weaken the assumption from B = O(+/logn) to B = ©({/(1 +) logn) with v = w(1), then the

tensor attention gradient computation will be unsolvable in truly sub-cubic time as well.

6 DISCUSSION AND CONCLUSION

In this work, we proved that the backward gradient of tensor attention training can be computed
in almost linear n'+°(1) time, the same complexity as its forward computation, under a bounded
entries assumption. We provided a closed-form solution for the gradient and proposed a fast com-
putation method utilizing polynomial approximation and tensor algebraic techniques. Furthermore,
we proved the necessity and tightness of our assumption through hardness analysis, showing that
slightly weakening it renders the tensor attention gradient problem unsolvable in truly subcubic
time.

Our theoretical results establish the feasibility of efficient higher-order transformer training and may
facilitate practical applications of tensor attention architectures. Due to space limits, we provide our
further discussion and extension in Appendix [A] Future work can perform empirical evaluations of
the method in practical large language models, and explore how these findings can be implemented
in real-world scenarios to enable the development of powerful higher-order models.

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Evrim Acar, Seyit A. Camtepe, and Biilent Yener. Collective sampling and analysis of high order
tensors for chatroom communications. In International Conference on Intelligence and Security
Informatics, pp. 213-224. Springer, 2006.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. arXiv preprint arXiv:2205.06249, 2022.

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Lin-
ear attention is (maybe) all you need (to understand transformer optimization). In The Twelfth
International Conference on Learning Representations, 2024.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716—
23736, 2022.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear
algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 541-552. IEEE, 2020.

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude—3-7-sonnet) 2025. Accessed: 2025-05-12.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023b.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew Gormley. Unlimiformer: Long-range
transformers with unlimited length input. Advances in Neural Information Processing Systems,
36, 2023.

Markus Bléser. Fast matrix multiplication. Theory of Computing, pp. 1-60, 2013.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet

Under review as a conference paper at ICLR 2026

Guillaume Bouchard, Jason Naradowsky, Sebastian Riedel, Tim Rocktischel, and Andreas Vlachos.
Matrix and tensor factorization methods for natural language processing. In ACL (Tutorial Ab-
stracts), pp. 16-18, 2015.

Peter Biirgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory,
volume 315. Springer Science & Business Media, 2013.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1-45, 2024.

Longxi Chen, Yipeng Liu, and Ce Zhu. Iterative block tensor singular value thresholding for extrac-
tion of low rank component of image data. In ICASSP 2017, 2017.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Process-
ing Systems (NeurlPS), 2022.

Mehmet F Demirel, Shengchao Liu, Siddhant Garg, Zhenmei Shi, and Yingyu Liang. Attentive
walk-aggregating graph neural networks. Transactions on Machine Learning Research, 2022.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv
preprint arXiv:2402.13753, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023.

Google Gemini. Gemini 1.5 pro updates, 1.5 flash debut and 2 new
gemma models. https://blog.google/technology/developers/
gemini-gemma-developer—-updates-may-2024/, 2024. Accessed: May 15.

Google. Gemini breaks new ground with a faster model, longer con-
text, ai agents and more. https://blog.google/technology/ai/
google—gemini-update-flash—-ai-assistant—-10-2024/#exploration,
2024. Accessed: May 14.

11

https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/
https://blog.google/technology/developers/gemini-gemma-developer-updates-may-2024/
https://blog.google/technology/ai/google-gemini-update-flash-ai-assistant-io-2024/#exploration
https://blog.google/technology/ai/google-gemini-update-flash-ai-assistant-io-2024/#exploration

Under review as a conference paper at ICLR 2026

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust alter-
nating minimization in nearly linear time. In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh0Od2BJIM.

Weihua He, Yongyun Wu, and Xiaohua Li. Attention mechanism for neural machine translation:
a survey. In 2021 IEEE 5th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), volume 5, pp. 1485-1489. IEEE, 2021.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review, 2024.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367-375, 2001.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning. arXiv
preprint arXiv:2401.01325, 2024.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Multiverse rec-
ommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In
Proceedings of the fourth ACM conference on Recommender systems, pp. 79—86. ACM, 2010.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke Hiillermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156-5165. PMLR, 2020.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597-619. PMLR, 2023.

Tamara Kolda and Brett Bader. The tophits model for higher-order web link analysis. In Workshop
on Link Analysis, Counterterrorism and Security, volume 7, pp. 26-29, 2006.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review, 51
(3):455-500, 2009.

Dana Lahat, Tiilay Adali, and Christian Jutten. Multimodal data fusion: an overview of methods,
challenges, and prospects. Proceedings of the IEEE, 103(9):1449-1477, 2015.

Tao Lei, Yuan Zhang, Alessandro Moschitti, and Regina Barzilay. High-order low-rank tensors for
semantic role labeling. In Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics—Human Language Technologies (NAACL-HLT
2015). Citeseer, 2015.

12

https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM

Under review as a conference paper at ICLR 2026

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neu-
ral networks: Unlocking the potential of large language models in mathematical reasoning and
modular arithmetic. arXiv preprint arXiv:2402.09469, 2024.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888-12900. PMLR, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730-19742. PMLR, 2023a.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A
survey. In Proceedings of the Fourth ACM International Conference on Al in Finance, pp. 374—
382, 2023b.

Weixin Liang, Zachary I1zzo, Yaohui Zhang, Haley Lepp, Hancheng Cao, Xuandong Zhao, Lingjiao
Chen, Haotian Ye, Sheng Liu, Zhi Huang, et al. Monitoring ai-modified content at scale: A case
study on the impact of chatgpt on ai conference peer reviews. arXiv preprint arXiv:2403.07183,
2024.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor robust
principal component analysis: Exact recovery of corrupted low-rank tensors via convex opti-
mization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5249-5257, 2016.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In International Conference
on Machine Learning, pp. 23124-23139. PMLR, 2023.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei Song.
A tensorized transformer for language modeling. Advances in neural information processing
systems, 32, 2019.

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Sudrez, Yoann Dupont, Laurent Romary,

Eric Villemonte de La Clergerie, Djamé Seddah, and Benoit Sagot. Camembert: a tasty french
language model. arXiv preprint arXiv:1911.03894, 2019.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis & insights
from multimodal 1lm pre-training. arXiv preprint arXiv:2403.09611, 2024.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531-545, 2023.

Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. https:
//ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025. Accessed:
2025-05-12.

13

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/

Under review as a conference paper at ICLR 2026

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Mistral. Mistral small 3.1. https://mistral.ai/news/mistral-small—-3-1, 2025.
Accessed: 2025-05-12.

Morten Mgrup. Applications of tensor (multiway array) factorizations and decompositions in data
mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1):24-40,
2011.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAl. Hello gpt-40. https://openai.com/index/hello-gpt—-40/, 2025. Accessed:
2025-05-12.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024.

Anastasia Podosinnikova, Francis Bach, and Simon Lacoste-Julien. Rethinking Ida: moment match-
ing for discrete ica. In Advances in Neural Information Processing Systems(NIPS), pp. 514-522.
https://arxiv.orqg/pdf/1507.01784, 2015.

Qwen. Qwen3: Think deeper, act faster. https://gwenlm.github.io/blog/gqwen3/,
2025. Accessed: 2025-05-12.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Avik Ray, Joe Neeman, Sujay Sanghavi, and Sanjay Shakkottai. The search problem in mixture
models. In arXiv preprint. https://arxiv.org/pdf/1610.00843}2016.

Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization for personalized
tag recommendation. In Proceedings of the third ACM international conference on Web search
and data mining(WSDM), pp. 81-90. ACM, 2010.

Thomas Reps, Emma Turetsky, and Prathmesh Prabhu. Newtonian program analysis via tensor
product. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages(POPL), volume 51:1, pp. 663-677. ACM, 2016.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URLhttps://openreview.net/forum?id=36DxONZ9bA.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning. PMLR, 2021.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-
context learning differently? In RO-FoMo: Robustness of Few-shot and Zero-shot Learning in
Large Foundation Models, 2023.

Zhao Song, Junze Yin, Lichen Zhang, and Ruizhe Zhang. Fast dynamic sampling for determinantal
point processes. In International Conference on Artificial Intelligence and Statistics (AISTATS),
pp. 244-252. PMLR, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

14

https://mistral.ai/news/mistral-small-3-1
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/pdf/1507.01784
https://qwenlm.github.io/blog/qwen3/
https://arxiv.org/pdf/1610.00843
https://openreview.net/forum?id=36DxONZ9bA

Under review as a conference paper at ICLR 2026

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. In ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation
Models, 2024.

Zhongxiang Sun. A short survey of viewing large language models in legal aspect. arXiv preprint
arXiv:2303.09136, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
29(8):1930-1940, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mohd Usama, Belal Ahmad, Enmin Song, M Shamim Hossain, Mubarak Alrashoud, and Ghulam
Muhammad. Attention-based sentiment analysis using convolutional and recurrent neural net-
work. Future Generation Computer Systems, 113:571-578, 2020.

M. Alex O. Vasilescu. A multilinear (tensor) algebraic framework for computer graphics, computer
vision, and machine learning. PhD thesis, Citeseer, 2009.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hongcheng Wang, Qing Wu, Lin Shi, Yizhou Yu, and Narendra Ahuja. Out-of-core tensor approxi-
mation of multi-dimensional matrices of visual data. ACM Transactions on Graphics (TOG), 24
(3):527-535, 2005.

Jing Wang, Aixi Qu, Qing Wang, Qibin Zhao, Ju Liu, and Qiang Wu. Tt-net: Tensorized transformer
network for 3d medical image segmentation. Computerized Medical Imaging and Graphics, 107:
102234, 2023.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pp. 3447—
3487. World Scientific, 2018.

xAl Grok 3 beta — the age of reasoning agents. https://x.ai/news/grok-3} 2025. Ac-
cessed: 2025-05-12.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024.

Zhaoyang Yang, Zhenmei Shi, Xiaoyong Shen, and Yu-Wing Tai. Sf-net: Structured feature network
for continuous sign language recognition. arXiv preprint arXiv:1908.01341, 2019.

Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a mixture of many random linear
equations by tensor decomposition and alternating minimization. In arXiv preprint. https:
//arxiv.orqg/pdf/1608.05749, 2016.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In /CML. arXiv preprint arXiv:2302.02451, 2023.

15

https://x.ai/news/grok-3
https://arxiv.org/pdf/1608.05749
https://arxiv.org/pdf/1608.05749

Under review as a conference paper at ICLR 2026

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the porcu-
pine: Expressive linear attentions with softmax mimicry. In The Twelfth International Conference
on Learning Representations, 2024.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng
Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init atten-
tion. arXiv preprint arXiv:2303.16199, 2023a.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023b.

Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew Chi-
Chih Yao. Tensor product attention is all you need. arXiv preprint arXiv:2501.06425, 2025.

Lin Zheng, Chong Wang, and Lingpeng Kong. Linear complexity randomized self-attention mech-
anism. In International conference on machine learning, pp. 27011-27041. PMLR, 2022.

Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In ICML, 2017.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

16

Under review as a conference paper at ICLR 2026

Appendix

Roadmap. In Section[A] we provide a further discussion and extension of this work. In Section[B]
we provide related works. In Section [C] we provide general definitions and several basic facts. In
Section [D] we show how we calculate the gradient of the loss function. In Section [E| we show the
time complexity of our algorithm. In Section [} we show that our algorithm can be computed in
polynomial time. In Section |G| we show the hardness of our algorithm. In Section ??, we discuss
the limitation of this work. In Section ??, we provide an elaborate discussion about potential societal
1mmpacts.

A FURTHER DISCUSSION AND EXTENSION

Technical novelty over previous works. We generalize beyond the results of (Alman & Song,
2024b), which only provide methods for tensor attention forward. Our paper presents a detailed
analysis for fensor attention backward, providing both upper bound and lower bound. Though we
build on some results from (Alman & Songl [2024b) and (Alman & Song, [2024a)), generalizing to
tensor attention backward posed many technical challenges. These challenges are unique to our
setting and not presented in previous settings like matrix attention (Alman & Song, [2023; 2024 a) or
tensor attention forward (Alman & Song} |2024b)). To be more specific, we prove many key prop-
erties for the tensor operation needed for backward though not needed for forward, including [4.4]
(distribution rule for tensor and matrix product), [C.IT](tensor computation reduction to matrix prod-
uct), (distribution rule for tensor computation), Claim (tensor product to matrix product).
Lem supports the proof of Fact|4.4|and helps bypass the O(n3d?) time complexity bottleneck
in the fast computation of Us. Fact[d.4] crucial in proving Lemma[F.5] shows the distributive nature
of tensor operations. Using Facts and Claim[C.20] we leverage the structure of low-rank
matrices Us, V5, W5 to prove Theorem@

Connection to real applications. There are some empirical studies attempting to implement sim-
ilar tensor attention (three order) in language modeling (Ma et al. [2019) and 3D medical image
segmentation (Wang et al., 2023). However, due to cubic time complexity, their models remain rela-
tively small, e.g, 12M parameters in (Ma et al.|[2019). Although small scale, (Ma et al.|[2019; Wang
et al., 2023) demonstrates the significant potential of tensor attention. Our work proves that an al-
most linear time algorithm for tensor attention mechanisms exists (Algorithm[I)). This advancement
could enable the scaling up of tensor attention and facilitate novel model designs in multi-modality,
3D imaging, and beyond. On the other hand, we abstract the most challenging part (the highest
time complexity operation) in high-order attention into a clear mathematical problem and provide
a solution. Our work introduces a new concept to the community, suggesting that cubic time com-
plexity may not be the bottleneck in implementing three-order attention during training. Practical
implementation poses additional significant challenges, considering numerous other techniques and
operations, such as dropout, layer normalization, residual connections, position encoding, and many
others. We hope our work inspires further algorithmic design.

Feasibility when the large value exists in the matrices. If there exist many large entries in
Q, K1, K2, V1, Vs, our hardness results (Theorem [5.3) indicate that no algorithm can accelerate
the attention computation. However, several exciting works (Sun et al.,|2024; [Han et al., [2024)) have
shown that large entries are very sparse in the attention matrix. This suggests that our Algorithm
could inspire many potential practical implementations. One straightforward approach is to handle
large entries separately, as in (Han et al.l 2024), and apply our algorithm to the remaining parts.
There is undoubtedly a broad algorithm design space, and we hope our work provides valuable
insights.

Extend our technique to compute the module-wise gradient. Let n be the input toke length,
and d be the hidden dimension. At the i-th layer of transformer model, let G; € R™*4 denote the
output of upstream gradient, X; € R™*? be defined in Definition 2.8} and Attn; := D! AV be the
tensor attention model where D, A, V are defined in Definition Let Loss be some loss function.

Then, by the chain rule, we have the module-wise gradient ‘11"25 = Vec(Gi)‘{iL)g”.

17

Under review as a conference paper at ICLR 2026

Extend our technique to the multi-head attention. The gradient computation for each attention
head in the same layer is independent of the others; each head only depends on its upstream gradient
and its current module-wise gradient according to the chain rule. Therefore, our analysis can be
directly applied to multi-head attention.

Generalize to scenarios involving multiple modalities In our three-order attention, one attention
module can handle three modalities simultaneously, i.e., @}, K1, K5. For more modality, e.g., m > 3
modality, there are two potential solutions in our minds. First, we could use m-order attention,
ie., Q, Ky, Ks,...,K;,—1. The inference and training time complexity for this approach are still
unknown, and we leave it as our future work. Second, we could use multiple modules of three-order
attention. Note that one layer of standard attention may introduce one more modality K each time,
while one layer of three-order attention may introduce two more modalities K7, K5 each time. Thus,
if we have m + 1 modality and @) is from one modality, say text, then the standard attention may
need m layers to merge all modalities together, whereas three-order attention may only need log(m)
layers to merge them all together.

B RELATED WORK

Fast attention computation. In recent years, significant advances have been made in the devel-
opment of efficient attention computation. One research direction involves employing low-rank
approximations, polynomial kernel, or random features for the attention matrix (Choromanski et al.,
2020; |[Zheng et al.| 2022 |/Alman & Song, 2023; [Kacham et al., |2023}; |Song et al., 2024} |Gu et al.
2024), which scales the computational complexity sub-quadratically with sequence length. Another
method explores patterns of sparse attention that lessen the computational load (Han et al. [2024).
Additionally, using linear attention as an alternative to softmax attention has emerged as a substan-
tial area of study (Katharopoulos et al.| [2020; |Schlag et al.| [2021; [Zhang et al., 2023b; |Ahn et al.,
2024; Zhang et all 2024). These innovations have enhanced the capability of transformer-based
models to handle longer sequences, thereby broadening their potential applications across various
fields (Chen et al.} 2023; |Su et al.| |2024; [Peng et al.,2024; Ding et al., 2024} Ma et al.,|2024; Bertsch
et al.| 2023 Jin et al., [2024). On the other hand, FlashAttention (Dao et al.| 2022; [Dao), [2024) is
one of the most popular practical methods to accelerate attention computation, while it achieves a
considerable improvement in running time with a constant complexity ratio.

Tensor computation for high-order representation. Tensors excel over matrices in capturing
higher-order relationships within data (Zhang et al., [2025). Calculating low-rank factorizations or
approximations of tensors is essential in a wide range of computer science applications, such as nat-
ural language processing (Lei et al., 2015 Bouchard et al.| |2015)), computer vision (Lu et al., 2016
Chen et al., [2017), computer graphics (Wang et al., [2005} |Vasilescul 2009), security (Acar et al.,
2006; Kolda & Bader, |2006), and data mining (Karatzoglou et al., 2010; Rendle & Schmidt-Thieme}
2010; Mgrup| [2011). Moreover, tensors are crucial in numerous machine learning applications (Po-
dosinnikova et al., 2015; Zhong et al., [2017;|Yang et al.,[2019) and other diverse fields (Reps et al.,
20165 Y1 et al., [2016; |Ray et al.,2016).

Large language models and transformer. The foundation of the success of generative large lan-
guage models (LLMs) lies in the decoder-only transformer architecture, as introduced by (Vaswani
et al., [2017). This architecture has become critical for many leading models in natural language
processing (NLP) (Chang et all 2024). These models have already demonstrated their capabili-
ties in various real-world applications, including language translation (He et al., 2021)), sentiment
analysis (Usama et al.| [2020), and language modeling (Martin et al., 2019), due to their emergent
ability, e.g., compositional ability (Dziri et al.| [2024; Xu et al., [2024; Li et al.l |2024)), in-context
learning (Olsson et al.l [2022; Min et al., 2022} |Shi et al.| 2023). The transformer leverages a self-
attention mechanism, which enables the model to identify long-range dependencies within the input
sequence. Self-attention calculates a weighted sum of input tokens, with weights based on the sim-
ilarity between token pairs. This allows the model to focus on pertinent information from various
parts of the sequence during output generation.

18

Under review as a conference paper at ICLR 2026

C TENSOR OPERATION BACKGROUND

In Section[C.1] we define the notation of computational time and the tensor operation. In Section|[C.2}
we provide some helpful facts of tensor operation. In Section we provide some helpful facts of
vectorization operation. In Section [C.4] we provide some helpful facts about the tensor product. It
is worth noting that proofs for some of the facts discussed in this section are also available in (Kolda
& Bader, [2009).

C.1 GENERAL DEFINITIONS AND TENSOR OPERATION

Fact C.1 ((Biirgisser et all [2013} [Blidser, 2013)). We can show that Tmat(a,b,c)
O(Tmat(a,¢,0)) = O(Tmat (b, a,¢)) = O(Tmat (b, ¢, a)) = O(Tmat (¢, a,b)) = O(Tmat(c, b, a)).

We define the third mode tensor product, which is the core operator of tensor operations.

Definition C.2 (Third mode tensor product (-, -, -)). Let X € R¥*X4d. Given matrices Ay € R"*4,
Ay € R™ and Az € R™*%, Let operator X(Ay, Ay, A3z) € R™"X" satisfying

d d
X(A1, Az, Ag)ija =D D > Xape(A1)ia(A2)j5(As)1e, Vi€ [n],j € [n],1 € [n].

Definition C.3 (® tensor computation). Given matrices A € R"*%, B € R™*?, C' € R"*%, we use
T=A0BoC &R 1o denote an tensor whose entries are given by

d
Tiji =Y AiaBjaCra, Vi€ nljenllen]

a=1

We note that a tensor 7" can be written in the form A ® B ® C like this if and only if its tensor rank
is at most d.

C.2 FACTS FOR TENSOR OPERATION

Fact C.4 (Transpose rule). We show the results below

e Supposethat K = K, @ Ky.Wehave K' = K| o K, .
PP 1 2 1 2

ninaXd nixd mnaxd dxmning dxni dxXng

e Supposethat Q = Q, © Qo.Wehave Q' = Q| © Qg .
— =~ =~ ~

nxdids nxd; nXxds dida Xn dy xXn daXn
_ T _ T T
 Suppose that \%4 = Vi ® Vo .Wehave V =V ® Vy .
v \ , N ; v R , N ,
ning Xdids niXdy noXds didz Xning dixny daXng
Proof. The proof is very straightforward. [

Fact C.5 (Swap rule). Let V; € R™*% Let Vo € R™™k. Let W, € R™*%. Let Wy € R™ k. We
can show swap rule for © and ©,

VieV) oW eWs) =VioWi)e (Va0 Ws)
N——

nxdk mxdk mnxd mnXxk

And we can show swap rule for ® and &,

(VieWV)e(WieWs) = (VieW)o (Voo W)
—— N—— —— N——

nxdk mxdk mnXxdk mnXxdk

Proof. The proof is trivially following from definition of @ and ©.

19

Under review as a conference paper at ICLR 2026

Note that for any iy € [n],is € [m],j1 € [d], j2 € [K]
(VieVa) @ (W1 ©W2))i, 4 (ia—1)nji+(Ga—1)d

= (V1)ir g (V2)iy o (W) s (Wa)iy
=((VioWi)e (Va2 @ W2))i,+(ia—1)nji+(ja—1)d

Thus, we complete the proof. [

Remark C.6. In Fuct[C.3] due to definition Vi and V> need to have the same number of rows. W1
and Wy also need to have the same number of rows. Vi and W1 need to have same number of
columns, and Vo and Wy need to have same number of columns.

Fact C.7 (Swap rule for tensor product and matrix product). Let Wi, W, € R4*% and A, A, €
R4 We have

(A1 ® Ag)- (W1 @ Wa) = (A1 - Wh) @ (Ay - Wa).
—_————— ——— — — ~——
n2xd? d2xd nxd nxd
Proof. For any i1,1i2 € [n],j € [d], we have
(A1 ® Az) - (W1 @ W2))i, 1 (in—1)n,j
= Y (A ®)it (Dt (ka—1)a(W1 © Wa) iy 4 (k= 1)

k1 €[d],k2€[d]
= > (A®A)itla—1nki 4 ha—1)d - (W1)kyj - (Wa)ky s
k1 €[d],k2€[d]
= Y (A (A2igks - Wkej - (Wa)ka g
k1 €[d],k2€[d]
= (D (Aik - Wk g) - (Y (A2)i ks - (W))
kreld) koeld)

= (A1 - W)y, - (As - Wa)iy 5
= ((A1-W1) @ (A2 - W2))i1 4+ (ia—1)n >

where the first step follows matrix multiplication, the second step follows Definition 2.2} the third
step follows Definition 2.1} the fourth step follows simple algebra, the fifth step follows matrix
multiplication and the last step follows Definition 2.2} O

Fact C.8 (Restatement of Fact 4.4). Ler Uy € R™*? and Uy € R™*F*. Let Vi € R™*? and

Vo € R™%F Lot W, € R™X9 gnd Wy € R™*F. We have
(Uol)(VieVa)oWieWo)T = (U (Vi @ Wi)T)o(Uy (Vo @ Wa)T)
—_——— ——— — ——

~— N =~ ~— M~ =~
nixdk ng Xdk nsxXdk niXd naxXd ngxd nixXk naxXk ngxk

Proof of Factf.4] We can show that

(hely)(VieVe) o (Wi 0Wa))" = (U e Us)(Vio Wy)© (Voo Wa)) T
=Ue)(VioW) o (VaoWs)T)
=(U oU) (oW @ (VaoWy)T)
= (U1 (Vio W) ") o (Up(Va 0 Wa)T)

where first step is due to swapping rule for @ and © (see Fact[C.5)), the second step follows from
Fact[C:4] the third step follows from Fact[C.4] and the last step follows from Lemma [C.13] O

Fact C.9. Let U; € R™*¥ qnd Uy € R™**° Let Vi € R™ %4 and Vy € R™2 %% Let W, € R"3%4
and Wy € R™%k We have

(hoU)-(ioV)oWioWa) =(U, (Vi @ W))o(Uy (Vo @ Wa)T)
e N N — N =~ =~ ~ ~— =~
ni1xd2k? no X dk ng xdk nyxXd2 naxd nzxd nixk2 naxk nzxk

20

Under review as a conference paper at ICLR 2026

Proof. We can show that,

(U1 ©Us) (Vi © Vo) ® (W1 © W) T
—_———— —— ———

ni Xd2k2 ng Xdk nzxdk
= (hel) (Vi@Wy) e (VaeWs))"
—_———
ni xd2k?

= (U, 0l) - (ioW) o (Va@Wsy)')

=0 oU)" (VieWw) o (VaeWs)")

=(Uh (Vi @W1))o(Uz (Vo ® Wa)T)
—~ =~ =~ —~ =~ =~
niXd? noxd ngxd n1xXk2 naxk nzxk

where the first step is because of the swap rule for ® and © (see Fact[C.5), the second step follows
from Fact|C.4] the third step follows from Fact[C.4] and the last step follows from Lemma[C.I3] O

Claim C.10. Let A, B,C € R**¢,
Part 1. Ler I; € R4 denote an identity matrix. Then, we have

AI,B" = ABT.

Part 2. Let |5 € R¥9%4 denote an identity tensor. Then we can show that
li(A,B,C)=A0BoC

Proof. Now we prove for each part.
Proof of Partl. Using the property of identity matrix, it’s easy to see this holds.
Proof of Part2.

d d
(A, B,C) = > > (la)abe(A)i.a(B);s(Crc

a=1b=1 c=1
d

=>4 (O
a=1

=AGBOC

where the first step follows from Definition|[C.2] the second step follows from the property of identity
tensor (lq); ; %, which equals 1 only when ¢ = j = k and 0 elsewhere, and the last step follows from
Definition[C.3l O
Fact C.11. Let U, V,W € R™*% we have

UVoW) =mat(UoVeoWw).

nxn2 nxn2

Proof. For any i, j, k € [n], we have
mat(U OV OW); j-1ynire = (U OV OW); ik

Z Ui,aVv]}aWk,a

a€ld]

= Z UM(V (%) W)(j—1)71,+k,a
a€ld]

= 3 Ual(V O W) sy
a€ld]

=UWVo W)T)i,(j—l)n-i-ka
where the first step by definition of mat, the second step follows Definition [C.3] the third step
follows Definition [2.2] the fourth step follows from transpose, and the last step follows from matrix
multiplication. O

21

Under review as a conference paper at ICLR 2026

Fact C.12. Given A, Ay, As € R and Wy, Wo, W3 € R"* we have
(W10 Wa © Wal(A], Ay, A3) = ((A] W) @ (A3 Wa) @ (A3 W3)).

dxdxd dxdxd

Proof. The proof is trivial by Definition [C.3|and Definition[C.2] O
We prove an important tool, which will be used in analyzing the running time of our algorithm.
Lemma C.13 (Formal version of Lemmad.3)). If the following condition holds

* Let @ be defined as Definition[2.2]

s Given A} € RM*% Ay € R™2X4 et A .= (A] © Ay) € Rmm2xdy,

s Given By € R"*% B, ¢ R"2*% [et B := (B; @ By) € RMin2xdz,

o We define C € R x4 g5 C:= A" B

s Wedefine C; = Al By, Oy = A] By

—~— -

(il Xdz dl ng
Then, we have
e Partl. C10Cy =C

* Part 2. Given as input Ay, Az, By, Ba, we can get C in Tmat(d1, max{ni,na}, ds) time.

Proof. For each i € [ny], let a ; denote the i-th row of A; € R™*%,
For each i € [ny], let a, ; denote the i-th row of Ay € R™2*%1,
For each ¢ € [nq], let in denote the i-th row of By € R™1 %2,
For each i € [ng), let b;—)i denote the i-th row of By € R™2X4z2,

Recall that C; € R%*42 and Cy € R4 %2,
Cy:=A] By, Cy:=A) B,
Thus, we see that for all Vky € [dy], ko € [d2]

Cl k‘l,kz E al ’L]{)1 bl i k?z
(C2)ky oy = g a2k, 02,5 ks

Then, we can write C' € R%1%d2 49

c = AT B
—~— L ~—
dy Xdso di Xning ning Xds
ning
= E A’L* z*
i= 1 dy x1 1><d2
ni no
_ T
=3 > Air—tymie (Big(i=1yns)
i=1 j=1
di x1 1xds2
niy mn2
T
=D > (ari0as;)- (brioby) (D
=1 J= d1><1 1><d2

Under review as a conference paper at ICLR 2026

where the first step follows from definition of C' € R%*?, the second step follows from the matrix
can written as the summation of njny rank-1 matrices, the third step follows from changing the
index, the forth step follows from A; (;_1y,, . = a1, © az; by Deﬁnitionm

—_— ~~ =~

di x1 dix1 dix1

From the above, we can calculate that the entry of C in location k1 € [d1], k2 € [d2] is

ny no
-
Chruks = > > (@10 ag;)k, - (b1 0baj),
i=1 j=1
ni no
= § § 13 ks 02,5,k 01,315 02,5,k
i=1 j=1

ni no
= arimbiik) - O azkb2 k)
i=1 =1

= (Cl)khkz ’ (02)’@1,7@

where the first step follows from Eq. (T)), the second step follows from simple algebra, the third step
follows from separating the summation over 7 and the summation over j, and the last step follows
from definition of matrices C and Cs.

Thus, we can conclude

C=C100C,.
The algorithm will first compute C; and Co, which takes Tya4(dy, max{ni, no}, ds) time. Then it
calculates C o C5, which takes O(d;ds) time. O

C.3 FACTS FOR VECTORIZATION OPERATION

Fact C.14. Let A, B € R™*?. Then,
tr[A" B] = vec(A) " vec(B)

Proof. We can show

n d
tI‘[ATB] = Z Z Ai,jBi,j

where the first step is due to the definition of trace, and the second step is because of the definition
of vec operator. O

Fact C.15. Leta € R",b € R<. Then,
vec(ab') =a®b

Proof. We can show

ail bT

-
vec(ab') = vec(azb

b
anb’
=[a1b",asb", ... ab"]"
=a®b
where the first step follows from the definition of the outer product, the second step follows from

the definition of vectorization operator vec(-) which stacks rows of a matrix into a column vector,
and the last step follows from Definition O

23

Under review as a conference paper at ICLR 2026

Fact C.16 (Tensor-trick, Restatement of Fact 4.6). Given matrices A, € R™ x4 A, € R"2xd
and X € R4*% e have vec(A; X AJ) = (A @ Ay) vec(X) € Rz,

Proof of Fact{.6] We can show

d1 d2
VGC A1XAT Z ZXZ 7 VeC Al * z(AQ,*,]))

1=1 j=1
dl d2

= ZZXZJ Al,*,z®A27*7])

1 1
i=1j= n1><1 n2><1

dy

= Z(Al,*,i® Ay) Xix
=1 ~—— N
nyx1 naxXda dox1

= (Al X AQ) VGC(X)

where the first step is due to the matrix being able to be written as a summation of vectors, the second
step follows from Fact[C.I3] the third step follows from that matrix can be written as a summation
of vectors, and the last step follows from the definition of vectorization operator vec(-). O

Fact C.17. Let A € Rm*"2 B ¢ R"2X"s (' ¢ R™3X™4 [¢ R™X"s,
We have
tr[ABCD] = vec(AT) " (B® D) vec(C)

Proof. We can show
tr[ABCD] = vec(A") T vec(BCD)
= vec(A")(B®@ D) vec(C)
where the first step follows from Fact[C.14] and the second step follows from Fact[C.16] O

Fact C.18. Let A, B € R"*"™ be two n X n symmetric matrices. Let X and'Y denote twon x n
matrices. Then we have

vec(A)T (X @ Y) vec(B) = vec(A) T (Y ® X) vec(B)

Proof. We can show that
vec(A)T (X @ Y) vec(B) = tr[A" XBY' "]
= tr[BY TAT X]
=vec(BN)T(YT @ XT)vec(AT)
=vec(B)" (YT @ X T)vec(A)
= (YT @ X T)vec(A)) " vec(B)
= vec(A) (Y @ X)vec(B)

where the first step follows from Fact[C.17 the second step follows from the cyclic property of trace,
the third step follows from Fact[C.17| the fourth step follows from A, B is symmetric, the fifth step
is due to the definition of inner product, and the last step is due to Fact[C.4] O

C.4 FACTS FOR TENSOR PRODUCT

Fact C.19. Let X = mat(ly), where |g € R¥*?¥d gnd A, Ay € R"*9, We have
——
dxd?
AT@A)XT =A 0 A,.
(A1 ® Ay) 10 Ag

n2xd2 d*xd n2xd

24

Under review as a conference paper at ICLR 2026

Proof. For any 41,12 € [n],j € [d], we have

(A ® Az)XT)ilJr(irnn,j = Z (A1 ® A2)iy 1 (ia—1)m,ky +(ka—1)d X ker +(ka—1)d
k1€[d],k2€[d]
= > (ADik - (A2)is ko Xy (ha—1)d
k1 €[d],k2€[d]

= (A1)iy,j * (A2)is,
= (A1 9 A2)i, 4 (is—1)n,j>

where the first step is due to matrix multiplication, the second step follows Definition the third
step follows X 1, (k,—1)¢ = 1 when j = k1 = ka2, and X 1, 4 (,—1)q = 0 otherwise, and the last
step is because of Definition [2.2] O

. . 2
Claim C.20. Given X € R4 Note X € R¥*4Xd donotes its tensor version. Given matrices
Ay, Ay, Az € R™¥4. Following Deﬁnition we can show

(A1 X (A ®A3)T)i,(j—1)n+l = (X(A1,A2,A3))i 40, Vie|n],je[n],lecn]
nxd dxd? d2 xn?2 nxXnxn
and
vec(A1 X (As® A3)T) = vec(X(Ay, Az, A3)).

nxd dxd? d2xn2 nXxXnxn

Proof. We can show that

(A1 X (A2 ® A3))i (G tynst = (A1)i,aXa,(0—1)d+e(A2)j6(A3)1,c

M=
M=
M-

8
Il
_
o
I
-
N
Il
—

Xap,e(A1)ia(A2)56(A3)1e

Il
M&
WM&
\Mm

a=1 1c=1
= X(A1, As, A3)i j1s

where the first step follows the Kronecker product Deﬁnition the second step follows X, p.. =
Xa,(b—1)d+c> and the last step is due to Definition [C.2} O

Now, we introduce a key claim that can reduce the tensor product to matrix multiplication and
Kronecker product to make calculation easy.

Claim C.21. Let | € R gnd A) Ay, A3 € R™ 9. We have mat(lg(Ay, Az, A3)) =
Almat(ld)(Ag X Ag)T = Al(Ag (%) Ag)T € Rnxnz .

Proof. The proof follows from Claim and Fact O

D GRADIENT FORMULATION AND ANALYSIS

In Section[D.T] we define some useful function that will help further calculation. In Section we
define the expression for the loss function. In Section[D.3] we give detailed gradient computation.

D.1 DEFINITIONS FOR USEFUL FUNCTIONS

We will introduce the definition of K, «, S, and L used in loss formulation.

Definition D.1. We define A1, Az, A3 € R"*4 to be three matrices in size n x d. Suppose that
A=A1R0A A3 € R X4 [Aj, € R7*xd? represent an n? x d> sub-block from A. There are

n such sub-blocks, i.e. the (i + (jo — 1) - n?)-th row, j-th column of A is the i-th row, j-th column
OfAjO,fOFi € [nQ]vj € [dS]ij € [TL]

25

Under review as a conference paper at ICLR 2026

For all jo € [n], we denote function K(x);, : R% — R" as below:
K(z);, = exp(Aj,z).
—_——
n2x1
Definition D.2. Let three matrices Ay, Az, Az € R"*4 in size n x d. We define Aj, € R X pe g
n? x d3 size sub-block from A (see as Deﬁnition). (Recall that A = A1 @ A @ Az € R”dde.)

For any index jo € [n], we denote function o(x);, : R% — R as Sfollows:
a(x), == (exp(Aj,x), 1,2).
—_———
n2x1 n2x1

Definition D.3. Suppose that a(x);, € R (see Definition .
Recall K(z);, € R" (see Definition .

For a fixed jy € [n], we define function S(z) , R? — R’ as follows:
S(x)j, == a(a:)j_ol K(z)j, -
——
scalar n?x1
We use S(z) € R™ " 1o denote the matrix where jo-th row is (S(x)j,) . (Note that we can
rewrite S(z) = D' exp(A1 X (Ay ® As)T /d) € R™*" and where D = diag(exp(A; X (Ay
AS)T/d)lnz)‘)
Definition D.4. Let Az = Ay ® Ay € RV X where Ay, As, € R, Let Y;,Ys € RIX4 Lot
Y=Y10Y; € R%*d denote the matrix representation of y € R?. For all i € [d], we define
L()s - RY — R as follows:
L(y)io := As Yii -
n?xd? g2x1

Let L(y) € R™ >4 matrix where iy column is L(y):,- (Note that we can rewrite L(y) = (A4®A45)Y.)

We will define W and F used in gradient analysis.
Definition D.5. Let V(z) € R™"*4 (see Definition @) Let L(y) € R"**4 (see Definition .

We define W(z) € R™*"” 10 be
W(z) = V(z)L(y)"

N -~
nxd dxn?

We denote () ;. as the jo-th row of W(z) € Rnxn,
Definition D.6. For all index jo € [n], let us define F(x);, € R" 10 be
F(x)jo = (diag(s(x)jo) - S(LL')JOS(%);;) W(x)jo :
N—— S~——
n2x1 n2xn2 n2x1

We define F(z) € R"*™" in the sense that F(x),, is the jo-th row of F(x).

D.2 DEFINITIONS FOR LOSS FUNCTION

.. .. 3
We now present some useful definitions pertaining to z € R? .

Definition D.7. For all jo € [n], we denote S(z),;, € R™ as the normalized vector (see Defini-
tion[D.3). For all iy € [d], we denote L(y);, to be the same in Definition|D.4]

Consider every jo € [n], every iy € [d]. Let us consider V() j, i, R% — R as follows:
V(x)jn,io = <S(x)jm L(y)20> - Ejo,im
where Ej, ;, is the (jo,i0)-th coordinate of E € R"*? for jo € [n],io € [d]. This is the same as
V(z) =S(z) Lly) - E_
—_

nxd nxn2n2xd "Xd

Definition D.8. For all jo € [n], for all iy € [d]. We define Loss(x)

Joyto

t0 be := 0.5V (z)3

0:%0"

26

Under review as a conference paper at ICLR 2026

D.3 FURTHER INFORMATION ON GRADIENT COMPUTATION

In this section, we offer detailed analysis to help the computations of gradient and derivative. It is
noted that, for the sake of convenience in deriving a closed-form expression for our gradient, we
omit the 1/d normalization factor in S. As this factor merely scales the result, it does not impact the
overall computation of these matrices.

Remark D.9. Recall that in Definition we consider X € RY*¥? for gradient computation,
which has d® number of parameters. On the other hand, in Definition we have X = X, -
(Xy ©XJ)¢€ RI%4* ywhich has 3d® number of parameters, which indeed guarantee computation
acceleration.

Lemma D.10 (The gradient computation for various functions w.r.t. ;). Let x € Rd3.' Let
jo € [n],io € [d). Foralli € [d3], we define Aj, ; € R™” 10 be the i-th column for Aj, € R xd®,
Recall that K(z);, € R™” is defined in Definitions The scalar function a(x);, € R is defined

in Definitions . Column function S(x);, € R™ is defined in Definitions Scalar func-
tion V(x)j,.i, € R is defined in Definitions Scalar function Loss(x);, i, € R is defined in
Definitions|D.8]
Then, for each i € [d®], we have
* Part 1.
dz
=e;
dCL‘Z‘
e Part 2. For any jy € [n],
dA, x
d-;(; = Ajo.i
e Part 3. For any jj € [n]
dK(x);
dx; &= Ajo,i © K(x)jo
* Part 4. For any jo € [n],
da(z);

o == (Ajo.i, K(2),)

* Part 5. For any jo € [n],

ds(x)jo
dl‘i

= Ajy.i ©S(2)j, — (Ajo.ir S()jo) - S()j,

* Part 6. For any j € [n], for any ig € [d],

d<s(x)Jo) L(y)lo>

dxi = <L(y)i07Aj0,i © S(‘T)j0> - <L<y)lms(m)Jo> . <Ajo,i7s(x)j0>

» Part 7. For any jo € [n], for each iy € [d]

dv(x)j07io

2 = (A0 (@) L)) = (S()ior L) - (RroisS(a)s)

* Part 8. For any jo € [n], for each iy € [d]

dLoss(z) o, i,

du; = (<L(y)io7Ajo,i o S(x)]o> - <S(x)j0’Aj07i> : <L(y)i07 S(:L‘)]o» 'V(x)j07i0

27

Under review as a conference paper at ICLR 2026

Proof. Proof of Part 1. We have
dz dlwy,2a,...,x4]"

:e’i

where the first step follows from z is a vector, and the second step follows from all coordinates are
independent to each other.

Proof of Part 2. We have

dAjz ' dz
- J
n2xds3 Y
d3x1
Ajo €;

where the second step follows from Part 1.
Proof of Part 3.

It’s easy to show that

dK(z);, _ dexp(Aj,)

——
n2x1
dA;, x
= cxplia) o o

= exp(Aj,x) 0 A;
= K(x)jo 0 Ajo.i
———

0%

n2x1l n2x1
where the third step is because of Part 2, the last step follows from definition of K(x);,.
Proof of Part 4.
To further simplify the writing of proofs, we represent () as (-).

It’s easy to see that
da(')jo _ d<K<'>j071n2>
= (K()jo © Ajo.is In2)
= (K()jo» Ajo.i)
where the first step is due to definition of «(-), the second step is because of Part 3, the third step
comes from (a0 b, 1,,2) = (a,b).

Proof of Part 5.

To further simplify the writing of proofs, we represent (x) as (-).

It’s easy to see that

ds();, _ da();, K(jo
dxi d.’)’Jz
_ _1dK(4), do‘(')jiol
- Oé()jo del + d.’EZ

)K(')jo

28

Under review as a conference paper at ICLR 2026

For the first term, we have

_1dK("); _

0‘(')3‘01TfJ = a(')jolK(')jo 0 Ajo.i

=5()jo © Ajo.i

where the first step is due to Part 3, the second step is because of definition of S(-).

For the second term, we have

da(~);o1
dxi

K, = = ()220,

= —a();2 (K()jor Ajoi) - K(-)jo

= - S(')jo : <S(')j0’Ajo,i>
where the first step is from simple calculus, the second step is from Part 4, and the third step is due
to the definition of S(-) ;.

(

By applying all of the above, we have
dS(')jO

dn, S()j0 © Ajoi = S0 = (S()0 Ajo.i)

Proof of Part 6. From Part 5, clearly this holds.
Proof of Part 7.

To further simplify the writing of proofs, we represent (x) as (-).

From definition of V in Definition[D.7] it holds that

V(')joﬂo = <S(')j0’ L(y)m) - Ejmio (2)
Thus it holds that
AV (josio _ dUSC)jor LYio) = Eio i)
dz; dx;
_ d<s(')jo’ L(y)lo>
dxi

= <S(')jo ° Aj07i’ L(y)io> - <S(')joa L(y)i0> ’ <S(')jt1’Aj07i>v

where the first step comes from Eq. (2)), the second step follows from dEdj% = 0, and the last step
is due to Part 6.

Proof of Part 8.
To further simplify the writing of proofs, we represent (x) as (-).
From definition of Loss(-) (see Definition[D.8), it holds that

Loss(-)jo,io = 0-5V()7 o (3)

Thus, we have

dLoss(+)y.i0 _ d(0.5V(-)3, ;)
dv(-)
=V()josio dm
=V(josio - ((SC)jo © Ajosis L)ia) — (S()jor LWio) - (SC)jos Ajosid)s
where the 1st step comes from the Eq. (3)), the second step follows from the chain rule, and the last
step is because of Part 7.

O

29

Under review as a conference paper at ICLR 2026

E TENSOR ATTENTION EXACT GRADIENT COMPUTATION TIME
COMPLEXITY

Section demonstrates how to calculate S (1/d factor is still ignored) and L. Sectionexplains
the straightforward method for calculating V. Section and Section define F and W, and
demonstrate their computations. Section presents a more elegant way to express the gradient.
Finally, Section [E.6| combines all these elements and determine the overall time complexity of our
algorithm.

E.l TIME COMPLEXITY TO GET S AND L
Remark E.1. Note that Tiat(n,d?,n?) > Q(n?).

Now we will show the time complexity for computing S and L.

Lemma E.2 (Computing S and L). [f the following conditions hold
» LetS(x) € R™X"” (see Deﬁnition
o Let L(y) € R %4 (see Deﬁnition
Then, we have
o the time complexity of S(z) is Tmat (1, d%,n?) + Trmat (0, d, d?)
s the time complexity of L(y) is Toat(n?, d?, d)

Proof. Note that
S() = D Lexp(AL X (42 ® Ay))
nxn nxd dxd? g2ym2
and
D = diag(exp(A1 X (Az @ A3) ")1,,2)
We firstly compute exp(A; X (A; ® Az) "), this takes time of

o Ay X takes Tmat(n,d,d?)
nxd dxd?

» Computing A; ®@ Aj takes O(n?d?) time
* Computing A, X - (Ay ® A3) T takes Trat(n, d?, n?) time

The overall time complexity of above three parts is dominated by

Tmat (nv da d2) + O(d2n2) + 7:nat ('fl, d2) n2) = 7;na,t (na d7 d2) + 7:nat (Tl, d2a n2)

Therefore, computing D takes O(n?) time.
Computing D~ exp(A; X (A2 ® A3)T) requires O(n?) time.
Therefore, the overall time complexity is

Tmat (n; d7 d2) + Tmat (nv d2a n2)

It is noted that computing L(y) = Aj takes time of Trat(n?, d2, d).

Y
~— =~
n2xd2? d?xd

Thus, we complete the proof. [

30

Under review as a conference paper at ICLR 2026

E.2 TIME COMPLEXITY TO GET V

We will explain the calculation of V.

Lemma E.3 (Computing V). If the following conditions hold
¢ Let E € R™*4
o Let S(z) € R"°,
o LetL(y) € R x4,

Then one can get \V(z) € R™*% in O(Tmat(n,n2,d)) time.

Proof. Based on the definition of V() € R™"*¢ which is

V =S Lly)— F
(@) = () L)~ E_
nxn2n2xd "Xd

It is easy to see that we can compute S(z)L(y) in time Tpat(n,n2, d), and S(z)L(y) — E in time
O(nd).

Therefore, overall running time is

'Tmat(n,nz, d) + O(nd) = O(Tmat(n, n?, d)).

E.3 TIME COMPLEXITY TO GET W

We will explain how to calculate W.
Lemma E.4. [f the below holds that

s LetV(x) € R*4
o Let L(y) € R *d

Then, computing W (z) takes time of O(Tmat(n, d,n?)).

Proof. Let use recall that W(x) = V(x)L(y) . This need time of Tpat(n, d, n?) to compute. [

E.4 TIME COMPLEXITY TO GET F

‘We can show how to construct F.

Lemma E.5. [f the following conditions hold
e Let S(z) € R
o Let W(z) € R

Then, computing takes time of F(x) in O(n?).

Proof. For every jo € [n], it follows that F(z),, € R™ can be computed in O(n?), given that

diag(S(x);,) is a diagonal matrix and S(z) jOS(x)jTO is a rank-one matrix. Consequently, construct-

ing the matrix F(z) € R"*"" takes a total time of n x O(n2) = O(n?). O

31

Under review as a conference paper at ICLR 2026

E.5 CLOSED FORM OF GRADIENT

We will give the closed form the gradient of the loss function.

Lemma E.6 (Closed form of gradient, formal version of Lemma. Let us define functions S(z @

R V(z) € R"*4, L(y) € R” *xd , W(z) € R " and F(x) € R (see Deﬁnmons
@ and @ respectively). Suppose three matrices Ay, Ay, A3 € R™ % are given. We
define A = Ay ® Ay ® As. Let Loss(z) and Loss(x) , i, be defined as Definition[2.8land[D.8| Then,
we can show that

dLoss(z)

= vec(A] F(z)(42 ® 43)) € RY.
T
Proof. From the Lemma statement and Lemma [D.10] Part 8, we have

sl hits V(i) (o) © Ais L)) = ()i L) (S0 A

“)
We know that for all a, b € R™, we have diag(a) - b = diag(b) - @ = a o b = b o a. Then, we have
(S(®)jo 0 Ajo.is L(y)iy) = (diag(S(x)j,)Ajo, Z)TL(y)io]0 ; diag(S(z) o)L(Y)q,

and
<S(x)jo’ L(y)zo> ’ <S('1:)j07Aj07 > A;Z, S(JC)]()S($);E L(y)to
Therefore, Eq. @) becomes

dLoss()j, .40

ar, =V(2,9)jo,io - (A, diag(S(x) o)L(1)i, — A, :S(2);0S(@) J L(W)iy)

= V(2. 9)jo,io * Ay i(diag(S(2)j,) = S(2)5S () 1)L(B)io o)

where the second step is due to basic algebra.
Note that we defined W(z),, in Deﬁnition

d
o= > V(@)oo L(®)io- (6)

io=1

Also, we defined F(z),, € R™ in Deﬁnition

F(‘r)jo = (dlag(S(x)]O) - S(x)JOS(‘r)IJ)W(x)JO (7
We can show
dLoss(x)
dx

B Zn: Zd: dLoss Yo io

Jo=lio=1

n d

= > V@)oo - Ajy (diag(S(x)j,) — S(x)5,S(x)) L),

T ~~ ——

J0 0 scalar d3xn2 n2xn2 n2x1
= > A (diag(S(x);,) — S(2)oS(x)],)W(x)5,

Jo=1

I

>
5
L

8
s
(=}

32

Under review as a conference paper at ICLR 2026

= AT vec(F(z))
= vec(A] F(z)(4s ® A43)) € RY

where the first step comes from Definition [2.8] the second step is due to Eq. (3), the third step is
because of Eq. (6)), the fourth step is due to Eq. (7), the fifth step utilize the notation of vec(-), and
the last step follows from Fact[C.16

O

E.6 PUTTING ALL TOGETHER

‘We now show the overall running time of computing the gradient.

Theorem E.7 (Tensor attention gradient computation, formal version of Theorem [3.3)). If we have
the following conditions

* Suppose that we have input fixed matrices Ay, Ay, Az, Ay, A5, E € R"*%,

2 2
o We denote X € R andY € R% *? as matrix variables (gradient is computed w.r.t. X

)

. . . . e . 3 3
— For simplicity of calculation, we utilize vector variables x € R® ! and y € R *1,
i.e, vec(X) = x.
— For simplicity of calculation, we use tensor variables X € R¥ %4 gnd Y ¢ RIxdxd

o Letg = dl“:isijgx) € R (see Loss(X) in Deﬁnition

o . . 2, .
Then it’s plain to see that we can compute gradient g € R4 in T .« (n, d?,n?) time.

Proof. Step 1. We compute S(z) and L(y). According to Lemma this takes
O(ﬁnat (Tl, d27 n2) + 7:nat (TL, d, d2)) time.

Step 2. We compute V(z). According to Lemma this takes O(Trmat(n, n?, d)) time.
Step 3. We compute W (). According to Lemmal[E.4] this takes O(7Tpat(n, d,n?)) time.
Step 4. We compute F(z). According to Lemma this takes O(n?) time.

Step 5. From Lemma [E.6| the gradient is give by vec(A] F(z)(Az ® As)). We know that
Al € R*" F(x) € R™"™ and Ay ® A3 € R"™**4” it can be calculated in O(Tmat(d,n, d?) +
Tmat (n,n?, d?)) time.

Thus, the overall running time complexity for computing the gradient is O(Tmat(n, d?,n?) +
Trnat(n, d, d?)). O

F RUNNING ACCELERATION VIA POLYNOMIAL METHOD

Remember that in the preceding section, for simplicity in the computations of the gradient, we didn’t
consider the d factor in S. This factor does not affect the time complexity in our algorithms as it
merely acts as a rescaling factor. We will now retake the 1/d in S factor into consideration to utilize
the tools from previous work (Alman & Song 2023)).

In Section we demonstrate how to create a low-rank representation for S efficiently and explic-
itly. In Section we show how to make a low-rank construction for V(z). In Sections
and [F.5] we present low-rank representations for W(z), F,(z), and Fy (), respectively. Finally, in
Section[F.6] we will consolidate all these elements to prove our final algorithmic result.

F.1 FAST COMPUTATION OF S

Using the polynomial method results in (Alman & Song 2023} [2024b)), we have the following low-
rank representation results.

33

Under review as a conference paper at ICLR 2026

Lemma F.1. For any B = o(/logn), we have k1 = n°W) such that: Let Ay, Ay, A5 € R"*4

X1, X, X5 € R and X = X, - (X] & XJ) € RT . Assume that each number in S(z) can
be written using O(logn) bits. It holds that max{||A1 X1 cc, || A2X2 Hrom A3 X3]|o} < B, then
there are three matrices Uy, Vi, Wy € R™ ¥ such that ||Uy(Vy @ W) T — S(2)||00 < €/ poly(n).

Here S(z) = D™t exp(A1 X (Ay ® A3)"/d) € R™ " and we define D = diag(exp(A1 X (4; ®
A3)T/d)1n2). Moreover, these matrices Uy, V1, W1 can be created explicitly in nitoM fime,

Proof. We have
(X ©X5) (A2@43)" =((A2®43)- (X; ©X5)")T
= (A, ® A3) - (X, @ X3)) "
= ((A2- X2) © (A3 - X3)) T,

where the first step is due to simple algebra, the second step comes from Fact[C.4] and the last step
follows Fact

Thus, we can rewrite S(z) = D lexp(Q(K1 @ K3)7/d) € R™" and we define D =
d1ag(exp(Q(K1 (%) KQ)T/d)]_nZ), Where Q = Ale, K1 = AQXQ,KQ = A3X3.

More explicitly, we have
QKL 0 Ko)T = A1 X1 (A2 X2 @ A3X3)T
=A1X(Xy ©XJ) (Ay® Az) "
= A1 X (A2 ® A3) T,

where the Ist step is due to Q@ = A1 X1, K1 = As X5, Ko = A3X3, the 2nd step is because of the
identity in the beginning of the proof, and the 3rd step follows from X = X; (X, © X3).

Thus, we finish the proof by applying Lemma &1} O

F.2 FAST COMPUTATION OF V

We will explain how to obtain the low rank representation of V(x).

Lemma F.2. We assume conditions the same as Lemma Let d = O(logn) and ki = n°M). We

also assume that we can write each number in E € R"*% and L(y) € R™* %4 ysing O(logn) bits.
LetV(x) € R™*4 (see Definition @) Then, there are three matrices Uy, Vi, Wi € R™*F1 ye have

U (Vi @ W) TL(y) — E — V(2)||oe < ¢/ poly(n), where Vi @ Wy € R XK1, Moreover, we can

construct these matrices Uy, V1, W1 in nito@) time.

Proof. Let Uy, V4, Wi be the matrices in Lemma[FI] We can show that
[U1(Vi @ W1) TL(y) = B = V(2)]lee = |UL(Vi @ W1) "L(y) — E = S(2)L(y) + Ello
= [[(T:(Vi @ W1) " = S(2)L(y)llo
< ¢/ poly(n)
where the 1st step is due to V(z) = S(z)L(y) — E, the 2nd step comes from basic algebra, and 3rd
step is due to Lemma|F.1|and each number in L(y) € R™**4 can be written using O(logn).
O

F.3 FAST COMPUTATION OF W

We will explain how to obtain the low rank representation of W(x).

Lemma F.3. Assume the same condition as Lemma Let ky = n°M), We define V(z) € R**¢
(see Definition @) We define L(y) € R"" %4 (see Definition . Let W(z) := V(z)L(y)" €
R pe defined in Definition ﬁ' There are three matrices Us, Vo, Wy € R™*2 such that

|U2(Va @ Wa)T — W(z)||loo < €/ poly(n). We can construct the matrices Uy, Vo, Wy in n'*o()
time.

34

Under review as a conference paper at ICLR 2026

Proof. For W(z), we define its approximation as W/(z).

According to Lemma we find a good approximation Uy (V; @ W1) TL(y) — E of V(z), where
ki1 = n°® and Uy, Vi, Wy € R"%F1,

Now we turn W () into low-rank representation

W(z) = (U, (Vi W) TL(y) — E)L(y)"

nxd dxn?

= (U1(VioW)"L(y) — E) (A4 ® A5) - (Y1 0 Y2)) "
nxd dxn?

= (U1(VioWy) L(y) — E)((As-Y1) @ (45 - Ya)) T,
ed e T

where the 1st step is because that Uy (V; @ W1) TL(y) — E is a good approximation to V(x), the 2nd
step comes from definition of L(y) (see Definition|D.4), the last step is due to Fact[C.7}

Thus, we let Us = Uy (Vi @ W1) TL(y) — E, Vo = Ay - Yy and Wy = Aj - Ys, which only takes
n'*°() time. (We remark that, if we use naive way to compute U that it takes 2(n?), however
using Lemma can beat O(n2) time.) We can explicitly construct Us, Vo, Wy € R™*k2 where
ko < max{d,k,} +d = n°"). (Here the reason is k; = n°Y) and d = n°(1))

For controlling the error, we can show
IW(z) = W(@) oo = [[U1(Vi @ W) TL(y) = E)L(y) " = V(2)L(y) [l
<d-[IL®)lloo - U1 (Vi @ W1) TL(y) = E = V(2)]|oo
< ¢/ poly(n),

where the first step follows from the definition of V~\/(1:),W(x), the second step follows from
labT |oo < d - ||als - [|b]loo for length d vectors a, b, and the last step follows Lemma |F.2]

Thus, we complete the proof. O

F.4 FAST COMPUTATION OF F,: KEY STEP

Definition F.4. Let S(x) € R"™*" (see Definition . Let W(z) € R"™" (see Definition @
Then, we define

Fo(z) := S(z) o W(x) € R™",

We will explain how to obtain the low-rank representation of F, ().

Lemma FE.5. Let k1 = n°W), ky = no®), ks = n°D . We assume U, Vi, Wi € R™F 1 approxi-
mates the S(x) € R satisfying U1 (Vi @ W1)T — S(z)||oe < €/ poly(n). Let us assume that

Uy, Va, Wy € R k2 approximates the W(z) € R satisfying ||[Us(Va @ Wa)T — W (2)|los <
¢/ poly(n). We assume that each number in S(x) and W(x) can be written using O(logn) bits.

Let Fo(z) = S(z) o W(z) € R™" be defined in Definition H Then there are matrices
Us, Vs, W3 € R™*3 such that ||Us(Vz @ W3)T — Fo(2)|lee < €/poly(n). We can construct
the matrices Us, Va, Ws in n*+°() time.

Proof. If we choose Us = U; © Uy € R™F1k2 and Vs = V; © V, € RMFkz o = W, o W, €
R™*k1k2 this need n'+°(!) time to compute.
For further simplicity of proofs, we call S(z) = Uy (Vi @ W1)T and W(z) = Us(Va @ Wa)T.
According to Lemma|[C.13] we can show
1Us(Vs @ W3) " = Fa(@)lloo = [Us(Vs @ W5) T = S(2) 0 W(2)]

= [[(U1 & U2)((Vi & V2) @ (W1 & Wa)) " = S(2) o W(z)||oo

35

Under review as a conference paper at ICLR 2026

= [T (Vi @ W1)T) o (Ua(Va @ Wa)T) = S() o W(a)]loc

= [1S(x) o W(x) = S(x) o W(x) e

= [1S(x) 0 W(x) = S(x) o W(x) + S(x) o W(z) = S(x) o W(z)l|oo

< [[8(x) 0 W() = S(x) 0 W(a) oo + [15(x) 0 W(x) = S(x) 0 W(a)]|oo

where the first step is due to the definition of F,(x), the second step is because of the definition
of Us, V3, W3, the third step is due to Fact the fourth step follows from the definition of S(x)

and W(z), the fifth step is because of basic algebra, the sixth step comes from triangle inequality,
and the last step is because bounded entries (we can write each number in S(z) and W(z) using

O(log n) bits) and Lemma assumptions that Hg(x)—S(x)Hoo < e/ poly(n) and ||W(w)—W(m) lloo <
e/ poly(n)
O

F.5 FAST COMPUTATION OF F;: KEY STEP

Definition F.6. Let S(z) € R"*"" (see Definition . Let W(z) € R™*" (see Definition @)
Then, we define Fy(x) € R™*"* \whose jo-th column

Fo(2)jo = S(2)5,S(x),W(2) o,
for each jo € [n].

We will explain how to obtain the low rank representation of Fy(x).

Lemma F.7. Let ki = n°®, ke = n°D, ky = n°D. Let us assume that Uy, Vi, W € Rnxhka
approximates the S(z) € R"™ " satisfying |U1 (Vi @ W1)T — S(2)||lsc < €/ poly(n). We assume
Uy, Vo, Wy € R ¥2 gpproximates the W (z) € Rrxn’ satisfying |Uz(Va @ Wa) T — W()]|o0 <
¢/ poly(n). Assume that we can write each number in S(x) and W(z) using O(logn) bits. Let us
assume that Fy(x) € R"™" whose jo-th column Fo(2);, = S(2);,S(x)} W(x)j, for each jo € [n]
(see Definition . Then there are matrices Uy, Vy, Wy € R™*4 sych that ||Uy(Vy @ Wy)T —

Fo(2)||oo < €/ poly(n). We can construct the matrices Uy, Vy, Wy in n'*+°0) time.

Proof. For further simplicity of proofs, we define R(z) € R™ to be a local vector function where
R(x);, is (S(z);,, W(x);,). We denote the approximation of R(z) to be R(z).

Itis noted that a good approximation of S(x);, is (U1 (VioW1) ")
of S(z) tobe S(z) = Uy (Vi @ Wy)T.

It is noted that a good approximation of W(z), is (Uz(Va @ W2)) T
tion of W(z) to be W(z) = Uy (Vo © Wa) .

jo,« We denote the approximation

jo,+ Let denote the approxima-

Suppose that R(x), := (S(2) o, W(x)jo) = (U1 (Vi ©@ W1)T)jo s - (Ua(Va @ Wa)T)] ..

For the side of computation time, we compute V" V5 first and this takes n'*t°() time. Then, we
compute W, W and this also takes n'T°(!) time.

Next, we have
R(@)jo = (U1(Vi @ W) "o - (Ua(Va @ Wa) 1),
= (U1)jor Vi @ W) (Vo @ Wa) (Us) o) "
e — — e N — e e —
1><k1 k:1><n2 TL2><k)2 k}2><1
= (U)o (Vi V2) o (W) W2)) ((Uz2) o) "
—_—— —— ——— —

1xkq k1 X ko k1 Xko kax1

36

Under review as a conference paper at ICLR 2026

where the first step follows from the definition of R(x), the second step follows from (AB);, « =
ej,(AB) = (e;,A)B = A, . B for any matrices A and B, and the third step is due to Lemma

Once we have pre-computed V;' Vo € RF1**2 and W' Wy € R¥1**2 the above step only takes
O(k1 k) time. Since there n coordinates, so the overall time complexity is still O(nkiks) =
nl—‘,—o(l).

We can use S(z) and R(z) to approximate Fy(z). Let Fy(z) = diag(R(z)) S(z). Because
———
nxn nxn?2

diag(R(x)) is a diagonal matrix and S(z) has low-rank representation, then obviously we know
how to construct Uy, Vy, Wy. Basically Uy = diag(R(z))U; and Vy = Vi, Wy = Wy,

Now, we need to control the error, and we have
1Us(Va @ W) " = Fy(2) o
= [[Fo(@) = Fy(2)lloc
= max [5(@),,R(w), = S(@)R ()0l
= max [[S(2);oR(x)jo = S(@)50R(@)s0 + S(@)ioR@)io = S(@)iaR (@)oo

max [[S(2)j,R (), = S(@)5oR(@) ol + 15(2)10R(@)jo = S(@)joR(@);o oo

Jo€[n]

IN

where the first step is due to the definition of Eb(:r), the second step follows from the definition of
Fy(x) and Fy(z), the third step follows from simple algebra, and the last step follows from triangle
inequality.
For the 1st term, we have
max Hs(x)joR(x)jo - S("T)joR(m)jOHOO < max HS(‘r)jOHOO ’ |R(x)j0 - R(m)jo‘
Jo€[n] Jo€ln]
< ¢/ poly(n)

For the 2nd term, we have
jronea['il(] |‘§(£L‘)]OR(1‘)% - S(x)Jo R(x)jolloo < jr()IlEafiL(] |‘§(x)30 - S(x)JOHOO . |R<w)]0|
< ¢/ poly(n)

We complete the proof, by using all three equations we derived above. O

F.6 GRADIENT COMPUTATION IN ALMOST LINEAR TIME BY LOW RANK TENSOR
APPROXIMATION

We now present our main result regarding the time complexity of our algorithm.

Theorem F.8 (Main result for fast gradient computation, formal version of Theorem[#.2). Assuming
the entries of A1, Ay, As, Ay, As, E € R"*% and X1, Xy, X3,Y1,Ys € R¥? are represented using
O(logn) bits. Then, there exist an algorithm that runs in n*+°) time to solve ATAttLGC(n,d =

O(logn), B = o(/logn),e = 1/poly(n)) (see Definition , i.e., our algorithm computes a
gradient matrix § € R satisfying ||(“‘257§§X) — Jllse < 1/ poly(n).

Proof of Theorem Given size n x n? matrices F(x) (see Definition|D.6), F, (z) (see Lemma|F.7)
and Fy,(z) (see Lemma[F.5), obviously we know

F(x) = Fo(x) — Fp(x).

By applying Lemma Lemma [F2] and Lemma [F3] we confirm that the assumptions in
Lemma [E3] and Lemma [F7] hold true. Therefore, we can utilize Lemma [F3] and Lemma [E7] to
conclude that

37

Under review as a conference paper at ICLR 2026

e Let k3 = n°1). We know that F,(z) has approximate low rank representation
Us, V3, W3 € RnXk3, let Fa(a:) denote U3(V3 %) W3)T.

o Letky = n°M). We know that Fp, (z) has approximate low rank representation Uy, Vy, Wy €
R™*ka et Fb(l‘) denote U4(V4 @ W4)T.

s Let Us, V5, W5 € R™*ks denote the approximate low rank representation for F(x), call it
F(z) = Us(Vs @ W5)T. We have ks < k3 + kg = no)

Thus, Lemmas and|F.7|all are taking n't°(1) time to compute.

From the Lemmal[E.6} we know that
dLoss(z
QOB _ vee(ATFa) (42 © 49))

We use vec(A] F(z)(Az ® A3)) to do approximation, then
vee(Al F(z) (A2 ® A3)) = vec(A] F(z) (45 ® A])T)
NN ~N N
dXn nxn? n2xd?2 dxXn nxn? n2xd?
= Vec([U5 OVs0 W5](A1r7 A;—v A;))
—_———
nxXxnxXn

vee(((A] Us) © (A3 Vs) © (A3 Wy))),

where the first step is due to Fact[C.4] the second step is because of Claim [C.20]and Fact|C.11] and
the last step follows Fact[C.12}

The above computation takes n'+°(1)d + d®n°() time. So, overall time complexity is still n*+°(1).
Recall that § € R4*4* and d"‘zisi;X) € Rdxd

We have
dLoss(X)

=g ~ Gllee = | vec(A F(z)(42 ® As) — vec(A] F(z)(A2 @ A3)) ||

)
= | A F(2)(As ® A3) — A] F(2)(A2 ® A3) oo
= [|A] (Fa(x) — Fole)) (42 @ 4s) - A (Fa(z) — ?b(Q)(Az ® A3)]|o
< [|A] (Fa(2) — Fa(2))(A2 ® A3) [0 + HflI(Fb(x) ~ Fu(@))(42 ® 43)ll
< A1]loo 142 ([0 [A5l 0o - n* - (IFa(2) — Fa(@)lloo + IFs(z) — Fo()]lo0)
< ¢/ poly(n)
dLoss(X)

where the 1st step is due to definition of —;3= in the above, the 2nd step follows from the def-
inition of vec(+), the 3rd step follows from simple algebra, the 4th step follows from triangle in-
equality, the 5th step follows from || T(A1, A2, A3)[lco < 7% - | Tlloo - [|41]loo - [[A2]l0 - | 43|00
where T is a tensor, and the last step follows from entries in Ay, Ao, A3 are bounded, and

IFa(2) = Fa(@)lloo < ¢/ poly(n), [Fy(w) = Fy(2)]lo < ¢/ poly(n).
By picking € = 1/ poly(n), we complete the proof. O
G HARDNESS

In this section, we will show the hardness of our algorithm. In Section[G.I] we provide some useful
tools for our results. In Section|G.2|we present our main hardness results.

G.1 TOOLS FOR BACKWARD COMPLEXITY

Next, we demonstrate that the tensor attention optimization problem (see Definition 2.8)) exhibits
favorable behavior when applied to matrices constrained as described in Lemma 5.2}

38

Under review as a conference paper at ICLR 2026

2

Lemma G.1. Suppose that a fixed matrix H € R™*™ with entries in the interval [1, B,] satisfying
. . . 2 . .

that more than half entries of H in each row are equal to B,. Let a matrix V€ R™ *? with entries

in{0,1}. For A\ € R, let us define M := exp(A\H) € R™"”. We denote the function f : R — R
as

fON) = || diag(Mx1,2)"F My V|2,
nxn nxn2n?xd

Then, for every \ € R we get
* [F'(N] < O(Band),
* |f"(N] < O(B3nd).
Proof. Let G denote the n x n? matrix G = diag(Mx1,,) "1 M,. Fori € [n],j € [n?], we calculate
that M); ; = e*i7 and so
Gij = —

—_—.
g €M

For ¢ € [d], let Sy C [n?] represent the set of 1s in column ¢ of V, defined as Sy = {j € [n?] |
V;¢ = 1}. Therefore, for each i € [n],£ € [d], the (i,) entry of the matrix diag(My1,) ' M,V
can be shown that

(diag(Mx1,) " MAV);0 = (GV)i e
= Z Gi,iVie
j=1

= ZGM

JESe

= Zjese Ml
222:1 e Mk .

where the Ist step comes from definition, the 2nd step is due to simple algebra, the 3rd step is
because of definition of Sy, and the last step comes from definition of G.

Thus, we obtain:

2
d P
\ Ly (Ejesz e’\Hw)
O pEcic S
=1 (Zk:l e 1.Ic)
¢ A(H; j, +H;
S ZE:l Zjlgsé ijESg e (Hi jy+Hi jp)

n? 2"2 eMNHi gy +Hiky)

=1 k1=1 Lsky=1
We define
d
g()\,z) = Z Z Z e)‘(HivJ'lJrHi,jz).
{=1j1E€Sp j2 €Sy
We also define

77.2 n2
MO = 3 3 A

ki1=1ko=1

39

Under review as a conference paper at ICLR 2026

By the previous three equations, we have:
FO) =" g\ i) /B 0).
i=1

As at least half of the entries in each row of H are equal to B, and all entries lie within the interval
[1, B,], we can bound:

2\ 2
(na) LB < (i) < (n)* - 2PN ®)

Furthermore, since the derivative of e*(HikitHikz) with respect to X is (Hig, + Hig,) -

e Hiey THiks) we can bound

dh(A,
i) < P o, ©)
We may similarly bound
0<g(\ i) <dn*- PR, (10)
and
dg(A, i
g(\i) < g((M’Z) < 9B, - g(\). (1)

The derivative of f can be bounded by (where the ' notation denotes the derivative w.r.t. \):

iy s 9 (G 8) (A E) — g(N,d) - B (N)
ro=3 ()7

where the first step is due to the calculation of derivative, the second step is due to basic algebra, the
third step is because of cancelling h(, ¢), the fourth step is by Eq. (8) (h(}, ¢) term) and Eq. (TT)) (
g’ (),) term), the fifth step is due to basic algebra, and the last step is due to basic algebra.

In a similar manner, a lower bound for f/()\) can be,

s s 9 A1) R(A D) = g(Ad) - B 6)
A= Z (h(\,)2

> Zg h/ /2\71)

"L (dnt - e?Be) - (2B, - h(\, 1))
>_Z ((n2/2)% - €2Bar) . (h(X,4))

= Z 8B,d
i=1

40

Under review as a conference paper at ICLR 2026

= -8B, - nd.

where the first step is due to the definition, the second step is due to basic algebra, the third step
comes from Eq. 8) (h(A, %) term), Eq. @) (R’ (), ¢)term), and Eq. (g(A, %) term), the fourth step
is due to basic algebra, and the final step comes from basic algebra.

Finally, we let f(A,) := fb((:\\g , and we can have f”()) is equal to the following using the quotient
rule:

"L g (N i) = B (Nd) - (D) —2- B (\0) - ()
; h(X,17) ’

which we can likewise bound in magnitude by O(B2nd). O

We have the following tool from previous work.

Lemma G.2 (Lemma 5.4 in (Alman & Song, 2024a)). Suppose that f : [0,1] — R is a twice-
differentiable function that satisfy | f”(\)| < b for all X € [0,1]. And for any positive integer t, we
define

t

|
—

f'(i/t)

t

-
Il
=)

Then, we have

lse = (f(1) = f(0)] < b/t.
G.2 MAIN RESULT FOR LOWER BOUND

Finally, we are prepared to present our main result:

Theorem G.3 (Main result for hardness, formal of Theorem [5.3). Let v : N — N be any function
with y(n) = o(logn) and ~y(n) = w(l). Assuming SETH, for any constant § > 0, it is impossible
to solve ATAttLGC(n,d = O(logn), B = O({/v(n) -logn),e = O(1/(logn)*)) (Deﬁnition
in time O(n37%) when E = 0,Y = lg, X = M for some scalar \ € [0, 1].

Proof of Theorem[5.3] Let us assume that such an algorithm do exist. Then we can call it
O((logn)) times to refute Lemmausing parameter v = 7(n), i.e., we can get f(1) by solving
ATAttLGC with O((log n)'1) times.

Suppose that |; € R?X4X4 ig an identity tensor. Also suppose that the input matrices to Lemma

are Q,Kl,KQ, Vl,VQ. And we set A1 = Q, A2 = Kl,Ag = KQ, A4 = Vi,A5 = ‘/2, Y = I, and

X = M- mat(ly), with some A € [0,1]. Let f : [0,1] — R be defined in Lemma where H is
——

dxd?
the matrix A;(A; @ A3) T, so that M), is the matrix exp(A; X (A2 ® A3) ") by Fact It follows
from Lemma|G.1|and d = ©(logn) that
(V)] < O(nlog”n - ((n))?),
where B, = O(y(n)log®n) in Lemmaby the second bullet point of Lemma

It is worth noting that f(0) can be computed in O(n) time because of the all-1s matrix M ¢. Our
final target is to calculate f(1).

From Lemma f(\) can be computed on O(log®(n)(y(n))?) = O(log*! n) points up to error
O(1/(logn)*), and give back their average. Because we have already chosen X = I, f'()\)

can be calculated from the gradient % in (see Definition , by our assumed approximated
algorithm. O

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

41

	Introduction
	Preliminary
	Definition of Tensor Operations
	Key Definitions of Tensor Attention

	Exact Tensor Attention Gradient Computation and Complexity
	Fast Tensor Attention Gradient Computation
	Main Results for Fast Gradient Computation
	Tensor Operation Analysis Techniques

	Tensor Attention Gradient Complexity Lower Bound
	 and Tensor Attention Forward Hardness
	Main Result for Hardness

	Discussion and Conclusion
	Further Discussion and Extension
	Related Work
	Tensor Operation Background
	General definitions and tensor operation
	Facts for tensor operation
	Facts for vectorization operation
	Facts for tensor product

	Gradient Formulation and Analysis
	Definitions for useful functions
	Definitions for loss function
	Further information on gradient computation

	Tensor Attention Exact Gradient Computation Time Complexity
	Time complexity to get and
	Time complexity to get
	Time complexity to get
	Time complexity to get
	Closed form of gradient
	Putting all together

	Running Acceleration via Polynomial Method
	Fast computation of
	Fast computation of
	Fast computation of
	Fast computation of
	Fast computation of
	Gradient computation in almost linear time by low rank tensor approximation

	Hardness
	Tools for backward complexity
	Main result for lower bound

