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ABSTRACT

Transformer-based trackers have established a dominant role in the field of visual
object tracking. While these trackers exhibit promising performance, their deploy-
ment on resource-constrained devices remains challenging due to inefficiencies. To
improve the inference efficiency and reduce the computation cost, prior approaches
have aimed to either design lightweight trackers or distill knowledge from larger
teacher models into more compact student trackers. However, these solutions
often sacrifice accuracy for speed. Thus, we propose a general model compression
framework for efficient transformer object tracking, named CompressTracker, to
reduce the size of a pre-trained tracking model into a lightweight tracker with
minimal performance degradation. Our approach features a novel stage division
strategy that segments the transformer layers of the teacher model into distinct
stages, enabling the student model to emulate each corresponding teacher stage
more effectively. Additionally, we also design a unique replacement training tech-
nique that involves randomly substituting specific stages in the student model
with those from the teacher model, as opposed to training the student model in
isolation. Replacement training enhances the student model’s ability to replicate
the teacher model’s behavior. To further forcing student model to emulate teacher
model, we incorporate prediction guidance and stage-wise feature mimicking to
provide additional supervision during the teacher model’s compression process.
Our framework CompressTracker is structurally agnostic, making it compatible
with any transformer architecture. We conduct a series of experiment to verify the
effectiveness and generalizability of CompressTracker. Our CompressTracker-4
with 4 transformer layers, which is compressed from OSTrack, retains about 96%
performance on LaSOT (66.1% AUC) while achieves 2.17× speed up.

1 INTRODUCTION

Visual object tracking is tasked with continuously localizing a target object across video frames based
on the initial bounding box in the first frame. Transformer-based trackers have achieved promising
performance on well-established benchmarks, their deployment on resource-restricted device remains
a significant challenge. Developing a strong tracker with high efficiency is of great significance.

To reduce the inference cost of models, previous works attempt to design lightweight trackers or
transfer the knowledge from teacher models to student trackers. Despite achieving increased speed,
these existing methods still exhibit notable limitations. (1) Inferior Accuracy. Certain works propose
lightweight tracking models (Borsuk et al., 2022; Chen et al., 2022b; Blatter et al., 2023; Gopal
& Amer, 2024; Kang et al., 2023) or employ neural architecture search (NAS) to search better
architecture (Yan et al., 2021b). Due to the limited number of parameters, these models often suffer
from underfitting and inferior performance. (2) Complex Training. Some works (Cui et al., 2024)
aim to enhance the accuracy of fast trackers through transferring the knowledge from a teacher
tracker to a student model. Despite the improved performance, (Cui et al., 2024) introduces a
complex multi-stage training strategy, which is time-consuming. Any suboptimal performance in
these individual stages can cumulatively result in suboptimal performance in the final model. (3)
Structure Limitation. Additionally, the model reduction paradigm in (Cui et al., 2024) severely
restricts the structure of student models to be consistent only with the teacher’s model.
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(a) We compress OSTrack and achieve promising performance. (b) Performance and speed comparison (c) FLOPs and params comparison
FLOPs ParamsFPS AUC

Figure 1: We apply our framework to OSTrack under several different layer configurations. (a) We
implement each enhancement into our CompressTracker step by step. The training time is calculated
by using 8 NVIDIA RTX 3090 GPUs. Notably, our CompressTracker-4 accelerates OSTrack by
2.17× while preserving approximately 96% of its original accuracy, thereby demonstrating the
effectiveness of our framework. (b) Performance and speed comparison of CompressTracker variants
with different numbers of layers. CT-x refers to a version of CompressTracker with ’x’ layers. (c)
FLOPs and parameters comparison of CompressTracker variants with different numbers of layers.

Thus, we introduce CompressTracker, a novel and general model compression framework to enhance
the efficiency of transformer tracking models. The current dominant trackers are one-stream mod-
els (Ye et al., 2022; Cui et al., 2024; Blatter et al., 2023; Chen et al., 2022b) characterized by a series
of sequential transformer encoder layers, each designed to refine the temporal matching features
across frames. The output of each layer is a critical temporal matching result that is refined as the
layers get deeper. Given this layer-wise refinement, it becomes a natural progression to consider the
model not as a single entity but as a series of interconnected stages and encourage student tracker to
align teacher model at each stage. We propose the stage division strategy, which involves partitioning
the teacher model, a complex pretrained transformer-based tracking model, into distinct stages that
correspond to the layers of a simpler student model. This is achieved by dividing the teacher model
into a number of stages equivalent to the student model’s layers. Each stage in the student model
is then tasked with learning and replicating the functional behavior of its corresponding stage in
the teacher model. This division is not merely a structural alteration but a strategic educational
approach. By focusing each stage of the student model on mimicking a specific stage of the teacher,
we enable a targeted and efficient transfer of knowledge. The student model learns not just the ’what’
of tracking—i.e., the raw matching of features—but also the ’how’—i.e., the strategies developed by
the teacher model at each layer of processing.

Contrary to conventional practices that isolate the training of student models, we employ a replacement
training methodology that strategically intertwines the teacher and student models. The core of this
methodology is the dynamic substitution of stages during training. we randomly select stages from
the student model and replace them with the corresponding stages from the teacher model. By doing
so, we situate the teacher model and the student model within a collaborative environment. This
arrangement permits the unaltered stages of the teacher model to collaboratively inform and enhance
the learning of the substituted stages in the student model rather than supervising the entire student
model as a single entity. The student model is not merely learning in parallel but is directly engaging
with the teacher’s learned behaviors. After training, we can just combine each stage of student model
for inference. The replacement training leads to a more authentic replication of the teacher’s tracking
strategies and helps to prevent the student model from overfitting to specific stages of the teacher
model, promoting a more stable training.

To augment the learning process, we introduce prediction guidance, which serves as a supervisory
signal for the student model by leveraging the teacher model’s predictions. By using the predictions
of the teacher model as a reference, the student model can converge more quickly. Furthermore,
to enhance the similarity of the temporal matching features across corresponding stages, we have
developed a stage-wise feature mimicking strategy. This approach systematically aligns the feature
representations learned at each stage of the student model with those of the teacher model, thereby
promoting a more accurate and consistent learning. In Figure 1 (a), we show the procedure and the
results we are able to achieve with each step toward an efficient transformer tracker.
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Compared to previous works, our CompressTracker holds many merits. (1) Enhanced Mimicking
and Performance. CompressTracker enables the student model to better mimic the teacher model,
resulting in better performance. As shown in Figure 1, our CompressTracker-4 achieves 2.17× speed
up while maintaining about 96% accuracy. (2) Simplified Training Process. Our CompressTracker
streamlines training into a single but efficient step. This simplification not only reduces the time
and resources required for training but also minimizes the potential for sub-optimal performance
associated with complex procedures. The training process for CompressTracker-4 requires merely 20
hours on 8 NVIDIA RTX 3090 GPUs. (3) Heterogeneous Model Compression. Our stage division
strategy gives a high degree of flexibility in the design of the student model. Our framework supports
any transformer architecture for student model, which is not restricted to the same structure of teacher
tracker. The number of layers and their structure are not predetermined but can be tailored to fit the
specific computational constraints and requirements of the deployment environment.

Our contribution can be summarized as follows: (1) We introduce a novel and general model
compression framework, CompressTracker, to facilitate the efficient transformer-based object tracking.
(2) We propose a stage division strategy that enables a fine-grained imitation of the teacher model at
the stage level, enhancing the precision and efficiency of knowledge transfer. (3) We propose the
replacement training to improve the student model’s capacity to replicate the teacher model’s behavior.
(4) We further incorporate the prediction guidance and feature mimicking to accelerate and refine the
learning process of the student model. (5) Our CompressTracker breaks structural limitations, adapting
to various transformer architectures for student model. Our CompressTracker outperforms existing
models, notably accelerating OSTrack (Ye et al., 2022) by 2.17× while preserving approximately
96% accuracy (66.1% AUC on LaSOT).

2 RELATED WORK

Visual Object Tracking. Visual object tracking aims to localize the target object of each frame
based on its initial appearance. Previous tracking methods (Bertinetto et al., 2016; Li et al., 2018;
Zhang et al., 2020; Danelljan et al., 2019; Li et al., 2019; Bolme et al., 2010; Henriques et al., 2014;
Chen et al., 2021b; Yan et al., 2021a) utilize a two-stream pipeline to decouple the feature extraction
and relation modeling. Recently, the one-stream pipeline hold the dominant role. (Ye et al., 2022;
Cui et al., 2022; 2024; Bai et al., 2023; Wei et al., 2023; Chen et al., 2022a; 2023; Gao et al., 2023)
combine feature extraction and relation modeling into a unified process. These models are built
upon vision transformer, which consists of a series of transformer encoder layers. Thanks to a more
adequate relationship modeling between template and search frame, one-stream models achieve
impressive performance. However, these models suffer from low inference efficiency, which is the
main obstacle to practical deployment.

Efficient Tracking. Some works have attempted to speed up tracking models. (Yan et al., 2021b)
utilizes neural architecture search (NAS) to search a light Siamese network, and the searching process
is complex. (Borsuk et al., 2022; Chen et al., 2022b; Blatter et al., 2023; Kang et al., 2023) design
a lightweight tracking model, but the small number of parameters restricts the accuracy to a large
degree. MixFormerV2 (Cui et al., 2024) propose a complex multi-stage model reduction strategy.
Although MixFormerV2-S achieves real-time speed on CPU, the multi-stage training strategy is time
consuming, which requires about 120 hours (5 days) on 8 Nvidia RTX8000 GPUs, even several
times the original training time of MixFormer (Cui et al., 2022). Any suboptimal performance
during these stages impact the final model’s performance negatively. Besides, the reduction paradigm
imposes constraints on the design of student models. To address these shortcuts, we propose the
general model compression framework, CompressTracker, to explore the roadmap toward an end-
to-end and traininig-efficient model compression for lightweight transformer-based tracker. Our
CompressTracker break the structure restriction and achieves balance between speed and accuracy.

Transformer Compression. Model compression aims to reduce the size and computational cost of a
large model while retaining as much performance as possible, and recently many attempts have been
made to speed up a large pretrained transformer model. (Frankle & Carbin, 2018) reduced the number
of parameters through pruning technique, and (Shen et al., 2020) accomplished the quantization
of BERT to 2-bits utilizing Hessian information. (Sanh et al., 2019; Sun et al., 2019; Jiao et al.,
2019; Xu et al., 2020a) leverage the knowledge distillation to transfer the knowledge from teacher to
student model and exploit pretrained model. Beyond language models, considerable focus has also
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Figure 2: CompressTracker Framework. (a) In the training phase, we divide both the teacher model
and student model into an identical number of stages. We implement a series of training strategies
including replacement training, prediction guidance, and stage-wise feature mimicking, to enhance
the student model’s ability to emulate the teacher model. The dotted lines represent the randomly
selected paths for replacement training, with black dotted lines indicating the chosen path, while gray
dotted lines denote paths not selected in a specific training iteration. (b) During inference process, we
simply combine each stage of the student model for testing purposes.
been placed on compressing vision transformer models. (Rao et al., 2021; Xu et al., 2022; Chen
et al., 2021a; Gong & Wang, 2022; Chavan et al., 2022; Yang et al., 2022; Zhang et al., 2022) utilize
multiple model compression techniques to compress vision transformer models. MixFormerV2 (Cui
et al., 2024) proposed a two-stage model reduction paradigm to distill a lightweight tracker, relying on
the complex multi-stage distillation training. However, our CompressTracker propose an end-to-end
and efficient compression training to achieve any transformer structure compression, which speed up
OSTrack 2.17× while maintaining about 96% accuracy.

3 COMPRESSTRACKER

In this section, we will introduce our proposed general model compression framework, Com-
pressTracker. The workflow of our CompressTracker in illustrated in Figure 2.

3.1 STAGE DIVISION

Recently, transformer-based one-stream tracking models (Chen et al., 2022a; Cui et al., 2022; Ye et al.,
2022; Cui et al., 2024) have become the dominant manner in the field of visual object tracking, which
consist of several transformer encoder layers, each generating and progressively refining temporal
matching features. Building upon this layer-wise refinement, we introduce the stage division strategy,
which segments the model into a series of sequential stages. This approach encourages the student
model to emulate the teacher model’s behavior at each individual stage. Specifically, we denote the
pretrained tracker and the compressed model as teacher and student model, with Nt and N layers,
respectively. Both teacher and student models are then divided into N stages, where each stage in the
student model encompasses a single layer, and each corresponding stage in the teacher model may
aggregate multiple layers, which can be formulated as :

teacher = {staget1, staget2, ..., stagetN}, (1)
student = {stages1, stages2, ..., stagesN}, (2)

where stageti and stageti denote the corresponding stage i in teacher and student model, respectively.
For a specific stage i, we establish a correspondence between the stages of the teacher and student
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models. The objective of stage division is to enforce each stage of the student model to replicate its
counterpart in the teacher model. This stage division strategy breaks the traditional approach that
treats the model as an indivisible whole (Borsuk et al., 2022; Chen et al., 2022b; Blatter et al., 2023;
Cui et al., 2024). Instead, it enables a fine-grained learning process where the student model transfers
knowledge from the teacher in a more detailed, stage-specific manner.

Unlike the reduction paradigm adopted in (Cui et al., 2024), which confines itself to pruning within
identical structures, our CompressTracker framework facilitates support for arbitrary transformer
structures of the student tracker, thanks to our innovative stage-wise division design. To align the
size and channel dimensions of the student model’s temporal matching features with those of the
teacher model, we implement input and output projection layers before and after the student layers,
respectively. These projection layers serve as an adjustment mechanism to ensure compatibility
between the teacher and student models and allow for a broader range of architectural possibilities for
the student model. During the inference process, these input and output injection layers are omitted.

3.2 REPLACEMENT TRAINING

During the training process, we adopt the replacement training to integrates teacher model and student
models, diverging from the conventional practice of training the student model in isolation. In a
specific training iteration, we implement a stochastic process to determine which stages of the student
model are to be replaced by the corresponding stages of the teacher model. For the specific stage i,
the forward process in conventional isolated propagation can be described as:

hi = stagesi (hi−1), (3)
where hi−1 is the input of the i student stage. However, in our replacement training, we decide
whether to replace or not by random Bernoulli sampling bi with probability p, where bi ∈ {0, 1}. If
bi equals 1, the output from the preceding stage i− 1 is directed to the i student stage, otherwise, we
channel the output into the i frozen teacher stage, which can be formulated as:

hi =

{
stageti(hi−1), ri = 0,
stagesi (hi−1), ri = 1,

ri ∼ Bernoulli(p) (4)

This replacement training creates a collaborative learning environment where the teacher model
dynamically supervises the student model. The unreplaced stages of teacher provide valuable
contextual supervision for a specific stage in the student model. Consequently, the student model
is not operating in parallel but is actively engaged with and learning from the teacher’s established
behaviors. For the optimization of student model, we only require the groundtruth box and denote the
loss as Ltrack. Upon completion of the training process, the student model’s stages are harmoniously
combined for inference. We show the pseudocode code in Appendix A.1.

3.3 PREDICTION GUIDANCE & STAGE-WISE FEATURE MIMICKING

Replacement training enables the student model to learn the behavior of each individual stage,
resulting in enhanced performance. However, merely forcing student model to emulate teacher model
may be overly challenging for a smaller-sized student. Thus, we employ the teacher’s predictions to
further guide the learning of compressed tracker. We apply the same loss as Ltrack for prediction
guidance, which is denoted as Lpred. With the aid of prediction guidance, student benefits from a
quicker and stable learning process, assimilating knowledge from teacher model more effectively.

While prediction guidance accelerates the convergence, the student tracker might not entirely match
the complex behavior of the teacher model. We introduce the stage-wise feature mimicking to further
synchronize the temporal matching features between corresponding stages of the teacher and student
models. This alignment is quantified by calculating the L2 distance between the outputs of these
stages, which is referred as Lfeat. It is worth noting that any metric assessing the discrepancy
in feature distributions can serve as the loss function. However, we choose a simple L2 distance
rather than a complex loss to highlight the effectiveness of our stage division and replacement
training strategies. The stage-wise feature mimicking both promotes a closer similarity in feature
representations of corresponding stages and enhances overall coherence between teacher and student.
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Table 1: Compress OSTrack. We compress OSTrack multiple configurations with different layer
settings. CompressTracker-x denotes the compressed student model with ’x’ layers. We report the
performance on 5 benchmarks and calculate the performance gap in comparison to the original
OSTrack. Our CompressTracker effectively achieves the balance between performance and speed.

Method LaSOT LaSOText TNL2K TrackingNet UAV123 FPSAUC PNorm P AUC P AUC P AUC PNorm P AUC P

OSTrack-256 (Ye et al., 2022) 69.1 78.7 75.2 47.4 53.3 54.3 - 83.1 87.8 82.0 68.3 - 105
CompressTracker-2 60.4 87% 68.5 61.5 40.4 85% 43.8 48.5 89% 45.0 78.2 94% 83.3 74.8 62.5 92% 82.5 346 3.30×
CompressTracker-3 64.9 94% 74.0 68.4 44.6 94% 49.6 52.6 97% 50.9 81.6 98% 86.7 79.4 65.4 96% 88.3 267 2.54×
CompressTracker-4 66.1 96% 75.2 70.6 45.7 96% 50.8 53.6 99% 52.5 82.1 99% 87.6 80.1 67.4 99% 88.0 228 2.17×
CompressTracker-6 67.5 98% 77.5 72.4 46.7 99% 52.5 54.7 101% 54.3 82.9 99% 87.8 81.5 67.9 99% 88.7 162 1.54×
CompressTracker-8 68.4 99% 78.0 73.1 47.2 99% 53.1 55.2 102% 54.8 83.3 101% 88.0 81.9 68.2 99% 89.0 127 1.21×

Table 2: Compress MixFormerV2. We compress MixFormerV2 into CompressTracker-M-S with
4 layers, which is the same as MixFormerV2-S including the dimension of MLP layer. We report
the performance on 5 benchmarks and calculate the performance gap in comparison to the origin
MixFormerV2-B. Our CompressTracker-M-S outperforms MixFormerV2-S under the same setting.

Method LaSOT LaSOText TNL2K TrackingNet UAV123 FPSAUC PNorm P AUC P AUC P AUC PNorm P AUC P

MixFormerV2-B (Cui et al., 2024) 70.6 80.8 76.2 50.6 56.9 57.4 58.4 83.4 88.1 81.6 69.9 92.1 165
MixFormerV2-S (Cui et al., 2024) 60.6 69.9 60.4 43.6 46.2 48.3 43.0 75.8 81.1 70.4 65.8 86.8 325
CompressTracker-M-S 62.0 88% 70.9 63.2 44.5 88% 47.1 50.2 87% 47.8 77.7 93% 82.5 73.0 66.9 96% 87.1 325 1.97×

3.4 PROGRESSIVE REPLACEMENT

In Section 3.2, we describe the replacement training strategy. Although setting the Bernoulli sampling
probability p as a constant value can realize the compression, these stages have not been trained
together at the same time and there may be some dissonance. A further finetuning step is necessary
to achieve better harmony among the stages. Thus, we introduce a progressive replacement strategy
to bridges the gap between the two initially separate training phases, fostering an end-to-end easy-to-
hard learning process. By adjusting the value of p, we can control the number of stages to be replaced.
The value of p gradually increases from pinit to 1.0, allowing for a more incremental and coherent
training progression:

p =


pinit, 0 <= t < α1m,
pinit + pinit

t−α1m
(1−α1−α2)m

, α1m <= t <= (1− α2)m,

1.0, (1− α2)m < t <= m,
(5)

where m represents the total number of training epochs, and t is a specific training epoch, α1 and
α2 are hyper parameters to modulate the training process. Specifically, α1 controls the duration of
warmup process, whereas α2 determines the length of final finetuning process. The mathematical
expectation of p for each layer is:

E(p) =

∫ m

0

pdt = [
1 + pinit

2
+

1− pinit
2

(α2 − α1)]m. (6)

It is worth noting that each layer is optimized fewer times than the total iteration count, according to
the mathematical expectation. Through dynamically adjusting the replacement rate p, we eliminate
the requirement of finetuning and accomplish an end-to-end model compression.

3.5 TRAINING AND INFERENCE

Our CompressTracker is a general framework applicable to a wide array of student model architectures.
For the optimization of student model, our CompressTracker solely requires an end-to-end and easy-
to-hand training process instead of multi-stage training methodologies. Furthermore, our approach
simplifies the loss function design, eliminating the need for complex formulations. During training,
teacher model is frozen and we only optimize student tracker. The total loss for CompressTracker is:

L = λtrackLtrack + λpredLpred + λfeatLfeat. (7)

After training, the various stages of the student model are combined to create a unified model for
the inference phase. Consistent with previous methods (Ye et al., 2022; Cui et al., 2022), a Hanning
window penalty is adopted.
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Table 3: Compress OSTrack for SMAT. We compress OSTrack into CompressTracker-SAMT
with 4 SMAT layers, which is the same as SMAT. We report the performance on 5 benchmarks and
calculate the performance gap in comparison to the original OSTrack. Our CompressTracker-SAMT
outperforms SMAT under the same setting.

Method LaSOT LaSOText TNL2K TrackingNet UAV123 FPSAUC PNorm P AUC P AUC P AUC PNorm P AUC P

OSTrack-256 (Ye et al., 2022) 69.1 78.7 75.2 47.4 53.3 54.3 - 83.1 87.8 82.0 68.3 - 105
SMAT (Gopal & Amer, 2024) 61.7 71.1 64.6 - - - - 78.6 84.2 75.6 64.3 83.9 158
CompressTracker-SMAT 62.8 91% 72.2 64.0 43.4 92% 46.0 49.6 91% 46.9 79.7 96% 85.0 75.4 65.9 96% 86.4 138 1.31×

Table 4: State-of-the-art comparison. We compare our CompressTracker which is compressed from
OSTrack with previous light-weight tracking models. Our CompressTracker demonstrates superior
performance over previous models.

Method LaSOT LaSOText TNL2K TrackingNet UAV123 FPSAUC PNorm P AUC P AUC P AUC PNorm P AUC P

CompressTracker-2 60.4 68.5 61.5 40.4 43.8 48.5 45.0 78.2 83.3 74.8 62.5 82.5 346
CompressTracker-3 64.9 74.0 68.4 44.6 49.6 52.6 50.9 81.6 86.7 79.4 65.4 88.3 267
CompressTracker-4 66.1 75.2 70.6 45.7 50.8 53.6 52.5 82.1 87.6 80.1 67.4 88.0 228
CompressTracker-6 67.5 77.5 72.4 46.7 52.5 54.7 54.3 82.9 87.8 81.5 67.9 88.7 162
CompressTracker-8 68.4 78.0 73.1 47.2 53.1 55.2 54.8 83.3 88.0 81.9 68.2 89.0 127

HiT-Base (Kang et al., 2023) 64.6 73.3 68.1 44.1 - - - 80.0 84.4 77.3 65.6 - 175
HiT-Samll (Kang et al., 2023) 60.5 68.3 61.5 40.4 - - - 77.7 81.9 73.1 63.3 - 192
HiT-Tiny (Kang et al., 2023) 54.8 60.5 52.9 35.8 - - - 74.6 78.1 68.8 53.2 - 204
SMAT (Gopal & Amer, 2024) 61.7 71.1 64.6 - - - - 78.6 84.2 75.6 64.3 83.9 158
MixFormerV2-S (Cui et al., 2024) 60.6 69.9 60.4 43.6 46.2 48.3 43.0 75.8 81.1 70.4 65.8 86.8 325
FEAR-L (Borsuk et al., 2022) 57.9 68.6 60.9 - - - - - - - - - -
FEAR-XS (Borsuk et al., 2022) 53.5 64.1 54.5 - - - - - - - - - 80
HCAT (Chen et al., 2022b) 59.0 68.3 60.5 - - - - 76.6 82.6 72.9 63.6 - 195
E.T.Track (Blatter et al., 2023) 59.1 - - - - - - 74.5 80.3 70.6 62.3 - 150
LightTrack-LargeA (Yan et al., 2021b) 55.5 - 56.1 - - - - 73.6 78.8 70.0 - - -
LightTrack-Mobile (Yan et al., 2021b) 53.8 - 53.7 - - - - 72.5 77.9 69.5 - - 120
STARK-Lightning (Yan et al., 2021a) 58.6 69.0 57.9 - - - - - - - - - 200
DiMP (Bhat et al., 2019) 56.9 65.0 56.7 - - - - 74.0 80.1 68.7 65.4 - 77
SiamFC++ (Xu et al., 2020b) 54.4 62.3 54.7 - - - - 75.4 80.0 70.5 - - 90

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

Our framework CompressTracker is general and not dependent on a specific transformer structure,
hence we select OSTrack (Ye et al., 2022) as baseline, which is a simple and effective transformer-
based tracker. The training datasets consist of LaSOT (Fan et al., 2019), TrackingNet (Muller et al.,
2018), GOT-10K (Huang et al., 2019), and COCO (Lin et al., 2014), following OSTrack (Ye et al.,
2022) and MixFormerV2 (Cui et al., 2024). We set λtrack as 1, λpred as 1, and λfeat as 0.2. The
pinit is set as 0.5. We train the CompressTracker with AdamW optimizer (Loshchilov & Hutter,
2017), with the weight decay as 10−4 and the initial learning rate of 4× 10−5. The batch size is 128.
The total training epochs is 500 with 60K image pairs per epoch and the learning rate is reduced by a
factor of 10 after 400 epochs. α1 and α2 are set as 0.1. The search and template images are resized
to resolutions of 288× 288 and 128× 128. We initialize the CompressTracker with the pretrained
parameters of OSTrack. We report the inference speed on a NVIDIA RTX 2080Ti GPU.

4.2 COMPRESS OBJECT TRACKER

Compressing OSTrack. In this section, we compress the pretrained OSTrack into different layer
configurations. We report the performance of our CompressTracker across these configurations in
Table 1. CompressTracker-4 compress OSTrack from 12 layers into 4 layers, and maintain 96%
and 99% performance on LaSOT and TrackingNet while achieving 2.17× speed up. Furthermore,
as shown in Figure 1, the training process of CompressTracker-4 is notably efficient, requiring
only approximately 20 hours using 8 NVIDIA RTX 3090 GPUs. For CompressTracker-6 and
CompressTracker-8, as we increase the number of layers, the performance gap between our com-
presstracker and OSTrack diminishes. It is worth noting that our CompressTracker even outperforms
the origin OSTrack on some benchmarks. Specifically, CompressTracker-6 reaches 54.7% AUC on
TNL2K, and CompressTracker-8 achieves 55.2% AUC on TNL2K and 83.3% AUC on TrackingNet,
while the origin OSTrack only achieves 54.3% AUC on TNL2K and 83.1% AUC on TrackingNet.
Our framework CompressTracker demonstrates near lossless compression with the added benefit of
increased processing speed.
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Table 5: Ablation studies on LaSOT. The default choice for our model is colored in gray .
Table 6: Backbone Initialization. ’MAE-
first4’ denotes initializing the student model
using the first 4 layers of MAE-B. ’OSTrack-
skip4’ represents utilizing every fourth layer
of OSTrack for the student model.

# Init. method AUC
1 MAE-first4 59.9%
2 OSTrack-first4 62.0%
3 OSTrack-skip4 62.3%

Table 7: Decoder Initialization and Optimization.
’Random’ denotes randomly initialized decoder, and
’Teacher’ means the decoder is initialized with teacher
parameters. ’Frozen’ represents that the decoder is
frozen, and ’Trainable’ denotes decoder is trainable.

# Init. & Opt. AUC
1 Random & Trainable 62.3%
2 Teacher & Frozen 62.6%
3 Teacher & Trainable 62.8%

Table 8: Stage Division. ’Even’ denotes evenly
dividing stage, and ’Uneven’ means that the layer
number of each stage in teacher model is 2,2,6,2.

# Layer Split AUC
1 Even 62.8%
2 Uneven 62.7%

Table 9: Replacement training. ’Random’ de-
notes our replacement training, and ’Decouple-300’
represents decoupling the training of each stage.

# Replacement AUC Training Time
1 Random 65.2% 12 h
2 Decouple-300 64.6% 16 h

Table 10: Progressive Re-
placement.

# Replacement AUC
1 w/ Progressive 65.2%
2 w/o Progressive 64.8%

Table 11: Training Epochs. ’300’
and ’500’ denote total epochs.

# Epochs AUC
1 300 65.2%
2 500 66.1%

Table 12: Training Time compari-
son with other methods.

# Model Training Time
1 CompressTracker-4 20 h
2 OSTrack 17 h
3 MixFormerV2-S 120 h

Compressing MixFormerV2. Moreover, to affirm the generalization ability of our approach,
we conduct experiments on MixFormerV2 (Cui et al., 2024) and SMAT (Gopal & Amer, 2024).
MixFormerV2-S is a fully transformer tracking model consisting of 4 transformer layers, trained
via a complex multi-stages model reduction paradigm. Following MixFormerV2-S, we adopt
MixFormerV2-B as teacher and compress it to a student model with 4 layers. The results are
shown in Table 2. Our CompressTracker-M-S share the same structure and channel dimension of
MLP layers with MixFormerV2-S and outperforms MixFormerV2-S by about 1.4% AUC on LaSOT.

It’s worth noting that although CompressTracker-2 and CompressTracker-M-S have similar infer-
ence speeds, MixFormerV2-S and CompressTracker-M-S each contain four transformer layers,
whereas CompressTracker-2 only has two. The lower number of transformer layers contributes to
the slightly lower performance for CompressTracker-2. Additionally, both CompressTracker-4 and
CompressTracker-M-S have four transformer layers, but CompressTracker-M-S has a lower hidden
feature dim of MLP layer than CompressTracker-4. As highlighted in MixFormerV2-S (Cui et al.,
2024), a reduced feature dimension can lead to decreased accuracy. Consequently, CompressTracker-
M-S exhibits slightly lower performance than CompressTracker-4. Moreover, our CompressTracker-4
requires only about 20 hours for training, in contrast to the 120 hours needed for MixFormerV2-S,
which also relies on a complex multi-stage training strategy (Table 12). Besides, the reduction
paradigm in MixFormerV2 limits the student model’s structure, while our framework supports a
diverse range of transformer architectures thanks to our stage division.

Generalization Verification. SMAT replace the vanilla attention in transformer layer with sepa-
rated attention. We compress OSTrack into a student model CompressTracker-SMAT, aligning the
number and structure of transformer layer with SAMT. We maintain the decoder of OSTrack for
CompressTracker-SMAT. CompressTracker-SMAT surpasses SMAT by 1.1% AUC on LaSOT, which
demonstrates that our framework is flexible and not limited by the structure of transformer layer.
Results in Table 1, 2, 3 verify generalization and effectiveness of our framework.

4.3 COMPARISON WITH STATE-OF-THE-ARTS

To demonstrate the effectiveness of our CompressTracker, we compare our CompressTracker with
state-of-the-art efficient trackers in 5 benchmarks. As shown in Table 4, our CompressTracker
outperforms previous efficient trackers. Both HiT (Kang et al., 2023) and SMAT (Gopal & Amer,
2024) are solely trained on the groundtruth and reduce computation through specialized network
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Table 13: Ablation study on LaSOT about
supervision of student model. The default
choice for our model is colored in gray .

# Prediction
Guidance

Feature
Mimicking

Replacement
Traininig AUC

1 62.8
2 ✓ 63.5
3 ✓ 63.3
4 ✓ 63.7
5 ✓ ✓ 64.1
6 ✓ ✓ 64.5
7 ✓ ✓ 64.3
8 ✓ ✓ ✓ 65.2

CompressTracker-2 CompressTracker-3 CompressTracker-4 CompressTracker-6 CompressTracker-856

58

60

62

64

66

68

AU
C

 %

56.6

60.7
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58.6

62.4
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65.7

66.7

60.1

64.3

65.2

66.5

67.5

Naive Training
Distill Training
CompressTracker

Figure 3: Ablation study on training strategy.

architectures. MixFormerV2-S (Cui et al., 2024) achieves model compression via a model reduction
paradigm. Our CompressTracker-4 achieves 66.1% AUC on LaSOT while maintaining 228 FPS.
CompressTracker-4 outperforms HiT-Base by 1.5% AUC on LaSOT without any specialized model
structure design. CompressTracker-4 achieves the balance between speed and accuracy. Meanwhile,
our CompressTracker-2, with just two transformer layers, maintains the highest speed at 346 FPS
and also obtains competitive performance. CompressTracker-2 surpasses HiT-Tiny by 5.6% AUC
on LaSOT, and achieves about the same performance as MixFormerV2-S with only two transformer
layers. As we add more transformer layers with CompressTracker-6 and CompressTracker-8, we
see further improvements in performance. These outcomes demonstrate the effectiveness of our
CompressTracker framework.

4.4 ABLATION STUDY

In this section, we conduct a series of ablation studies on LaSOT to explore the factors contributing to
the effectiveness of our CompressTracker. Unless otherwise specified, the teacher model is OSTrack,
and the student model has 4 encoder layers. The student model is trained for 300 epochs and pinit is
set as 0.5. Please see Appendix A.5 for more analysis.

Backbone Initialization. We initialize the backbone of student model with different parameters and
only train the student model with groundtruth supervision. The results are shown in Table 6. It can
be observed that utilizing the knowledge from teacher model is crucial. Moreover, initializing with
skipped layers (#3) yields slightly better performance than continuous layers. This suggests that
initialization with skipped layers leads to improved representation similarity.

Decoder Initialization and Optimization. We investigate the influence of decoder’s initialization and
optimization on the accuracy of student tracker in Table 7. Initializing the decoder with parameters
from the teacher model (#2) results in an improvement of approximately 0.3% compared to a decoder
initialized randomly (#1), which underscores the benefits of transferring knowledge from the teacher
model to enhance the accuracy of the student model’s decoder. Furthermore, making the decoder
trainable leads to an additional improvement of 0.2%.

Stage Division. Our stage division strategy divides the teacher model into the several stages, and we
explore the stage division strategy in Table 8. We design two kinds of division strategy: even and
uneven, For the even division, we evenly split the teacher model’s 12 layers into 4 stages, with each
stage comprising 3 layers. For uneven division, we follow the design manner in (He et al., 2016; Liu
et al., 2022) and divide the 12 layers at a ratio of 1:1:3:1. Consequently, the number of layers in each
stage of the teacher model is 2, 2, 6, and 2, respectively. The performance of the two approaches is
comparable, leading us to select the equal division strategy for simplicity.

Analysis on Supervision. We conduct a series of experiments to comprehensively analyze the
supervision effects on the student model and to verify the effectiveness of our proposed training
strategy. Results are presented in Table 13. Our proposed replacement training approach (#4)
improves by 0.9 % AUC compared to singly training student model on groundtruth (#1), which
demonstrates that the replacement training enhances the similarity between teacher and student
models. Besides, prediction guidance (#5) and feature mimicking (#8) further boost the performance,
indicating the effectiveness of the two strategies. Compared to only training on groundtruth (#1), our
proposed replacement training, prediction guidance and feature mimicking collectively assist student
model in more closely mimicking the teacher model, resulting in a total increase of 2.4% AUC.
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To further explore the generalization ability of our proposed training strategy, we compare the
performance of models with different layer numbers and training settings, as illustrated in Figure 3.
’Naive Training’ denotes that the student model is trained without teacher supervision and replacement
training. ’Distill Training’ represents that the student model is trained only with teacher supervision.
’CompressTracker’ refers to the same training setting in Table 13 #8. It can be observed that as the
number of layers increases, there is a corresponding improvement in accuracy. Our CompressTracker
shows a noticeable performance boost due to our proposed training strategy, which verifies the
effectiveness and generalization ability of our framework.

Replacement Training. To evaluate the efficiency and effectiveness of our replacement training
strategy, we conduct experiments presented in Table 9. ’Random’ denotes our replacement training,
and ’Decouple-300’ represents stage-by-stage decoupling. Result of # 1 aligns with our replacement
training with 300 training epochs, while in # 2, we apply decoupled training, sequentially training
and freezing each stage for 75 epochs, followed by 30 epochs of fine-tuning. The ’Decouple-300’
(# 2) approach achieves 64.6% AUC on LaSOT with the same training epochs, marginally lower
by 0.6% AUC than our replacement training strategy (# 1). The ’Decouple-300’ approach (# 2)
requires a complex, multi-stage training along with supplementary fine-tuning, which may suffer
from suboptimal outcomes at a specific training process. However, our CompressTracker operates on
an end-to-end, single-step basis, and can avoid the suboptimal performance issue through its unified
training manner, which validates the superiority of our replacement training strategy.

Progressive Replacement. In Table 10, we illustrate the impact of progressive replacement strategy.
The first row (# 1) corresponds to the same setting of CompressTracker, while in the second row (# 2)
we fix the sampling probability as 0.5 and the student model is trained with 300 epochs followed by
30 finetuning epochs. The absence of progressive replacement leads to a performance degradation of
0.4% AUC, thereby highlighting the efficacy of our progressive replacement approach.

Training Epochs. Based on the analysis in Section 3.4, the optimization steps for each layer are
lower than total training steps. Thus, to ensure adequate training of each stage, we increase the
training epochs from 300 to 500, and show the result in Table 11. Extending the training epochs
ensures that student models receive comprehensive training, leading to improved accuracy.

Training Time. We compare the training time of our CompressTracker-4 with 500 training epochs,
OSTrack, and MixFormerV2-S in Table 12. The training time is recorded on 8 NVIDIA RTX 3090
GPUs. Although our CompressTracker requires a longer training time compared to the OSTrack, the
increased computational overhead remains within acceptable limits. Moreover, MixFormerV2-S is
trained on 8 Nvidia RTX8000 GPUs, and we estimate this will take roughly 80 hours on 8 NVIDIA
RTX 3090 GPUs based on the relative computational capabilities of these GPUs. The training time
of our CompressTracker-4 is significantly less than that of MixFormerV2-S, which validate the
efficiency and effectiveness of our framework.

5 LIMITATION & BROADER IMPACTS

While our CompressTracker demonstrates promising performance and generalization, a performance
gap still exists between teacher and student, suggesting room for improvement in lossless compression.
Our CompressTracker framework efficiently compresses object tracking models for edge device
deployment but poses potential misuse risks, such as unauthorized surveillance. We recommend users
to carefully consider the real-world implications and adopt risk mitigation strategies.

6 CONCLUSION

In this paper, we propose a general compression framework, CompressTracker, for visual object
tracking. We propose a novel stage division strategy to separate the structural dependencies between
the student and teacher models. We propose the replacement training to enhance student’s ability
to emulate the teacher model. We further introduce the prediction guidance and stage-wise feature
mimicking to improve performance. Extensive experiments verify the effectiveness and generalization
ability of our CompressTracker. Our CompressTracker is capable of accelerating tracking models
while preserving performance to the greatest extent possible.
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A APPENDIX

This appendix is structured as follows:

• In Appendix A.1, we show the pseudo code of our CompressTracker.
• In Appendix A.2, we summarize the generalization ability of our CompressTracker.
• In Appendix A.3, we compare the inference speed on CPU.
• In Appendix A.4, we compare the performance of CompressTracker with other compression

techniques.
• In Appendix A.5, we provide more ablation study results.

Algorithm 1 Pseudocode of OSTrack in a PyTorch-like style

# z/x: RGB image of template/search region
# patch_embed: patch embedding layer,
# pos_embed_z/pos_embed_z: position embedding for template/search

region
# blocks: transformer block layers
# decoder: decoder network

def forward(x, z):
# patch embedding layer
x, z = patch_embed(x), patch_embed(z)

# add position embedding
x, z = x + pos_embed_x, z + pos_embed_z

# concat
x = torch.cat([z, x], dim=1)

# transformer layers
for i, blk in enumerate(blocks):

x = blk(x)

# decode the matching result
x = decoder(x)
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Algorithm 2 Pseudocode of CompressTracker for Training in a PyTorch-like style

# z/x: RGB image of template/search region
# patch_embed: patch embedding layer,
# pos_embed_z/pos_embed_z: position embedding for template/search

region
# bernoulli_sample: bernoulli sampling function with probability

of p
# n_s/n_t: layer number of student/teacher model
# teacher_blocks: transformer block layers of a pretrained teacher
# student_blocks: transformer block layers of student model
# decoder: decoder network

def forward(x, z):
# patch embedding layer
x, z = patch_embed(x), patch_embed(z)

# add position embedding
x, z = x + pos_embed_x, z + pos_embed_z

# concat
x = torch.cat([z, x], dim=1)

# replacement sampling
inference_blocks = []
for i in range(n):

if bernoulli_sample() == 1:
inference_blocks.append(student_blocks[i])

else:
for j in range(n_t//n_s):

inference_blocks.append(teacher_blocks[i*(n_t//n_s) +
j])

# randomly replaced transformer layers
for i, blk in enumerate(inference_blocks):

x = blk(x)

# decode the matching result
x = decoder(x)
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Algorithm 3 Pseudocode of CompressTracker for Testing in a PyTorch-like style

# z/x: RGB image of template/search region
# patch_embed: patch embedding layer,
# pos_embed_z/pos_embed_z: position embedding for template/search

region
# student_blocks: transformer block layers of student model
# decoder: decoder network

def forward(x, z):
# patch embedding layer
x, z = patch_embed(x), patch_embed(z)

# add position embedding
x, z = x + pos_embed_x, z + pos_embed_z

# concat
x = torch.cat([z, x], dim=1)

# transformer layers
for i, blk in enumerate(student_blocks):

x = blk(x)

# decode the matching result
x = decoder(x)

Table 14: Generalization of CompressTracker. We compress 4 teacher models into 11 different
student models to verify the generalization of our CompressTracker, and report the AUC on each
benchmark.

# Method LaSOT LaSOText TNL2K TrackingNet UAV123 FPS
Model Generalization

1 CompressTracker-4 66.1 96% 45.7 96% 53.6 99% 82.1 99% 67.4 99% 228 2.17×
2 CompressTracker-4-ODTrack 70.5 96% 50.9 97% 60.4 99% 82.8 97% 69.2 98% 87 1.74×
3 CompressTracker-4-SeqTrack 68.1 95% 47.9 96% 54.5 99% 83.1 98% 68.4 98% 62 1.36×

Stage Scalability

4 CompressTracker-2 60.4 87% 40.4 85% 48.5 89% 78.2 94% 62.5 92% 346 3.30×
5 CompressTracker-3 64.9 94% 44.6 94% 52.6 97% 81.6 98% 65.4 96% 267 2.54×
6 CompressTracker-4 66.1 96% 45.7 96% 53.6 99% 82.1 99% 67.4 99% 228 2.17×
7 CompressTracker-6 67.5 98% 46.7 99% 54.7 101% 82.9 99% 67.9 99% 162 1.54×
8 CompressTracker-8 68.4 99% 47.2 99% 55.2 102% 83.3 101% 68.2 99% 127 1.21×

Larger Transformer Scalability

9 CompressTracker-4-L 67.5 96% 45.9 98% 58.3 98% 83.2 99% 67.4 99% 228 2.84×

Higher Resolution Scalability

10 CompressTracker-4-384 67.7 96% 48.1 96% 54.3 99% 82.7 99% 68.2 98% 228 3.90×

Heterogeneous Structure Robustness

11 CompressTracker-M-S 62.0 88% 44.5 88% 50.2 87% 77.7 93% 66.9 96% 325 1.97×
12 CompressTracker-SMAT 62.8 91% 43.4 92% 49.6 91% 79.7 96% 65.9 96% 138 1.31×

A.1 REPLACEMENT TRAINING

We present the pseudocode for the training and testing phases of CompressTracker in Algorithm 2 and
Algorithm 3, respectively. Additionally, the pseudocode of OSTrack Ye et al. (2022) is also shown in
Algorithm 1. During training process, we employ Bernoulli sampling to implement a replacement
training strategy, while in the test phase, we integrate the student layers and discard the teacher layer.
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A.2 GENERALIZATION OF COMPRESSTRACKER

To validate the generalization capability of our framework, we conducted experiments across 6
teacher models (OSTrack (Ye et al., 2022), OSTrack-384 (Ye et al., 2022), OSTrack-L (Ye et al.,
2022), ODTrack (Zheng et al., 2024), MixFormerV2 (Cui et al., 2024), SeqTrack (Chen et al., 2023))
and 11 student models, as shown in the Table 14. Additionally, we add four more experimental setups
(# 2, 3, 9, 10) to further assess the scalability and effectiveness of our framework. In # 2 and 3,
we compress ODTrack and SeqTrack into a student model with four transformer layers. In # 9, we
reduce OSTrack-L to a student model with four transformer layers, using a ViT-L backbone trained by
ourselves. In # 10, we compress OSTrack-384 into a student model with four transformer layers, with
the input resolution set to 256×256. We emphasize that our CompressTracker is a scalable framework
designed to adapt to various image resolutions (e.g., #4-8, 10), teacher model sizes (#4-8, 9), and
student model configurations (# 4-8). Our framework demonstrates strong generalization across
different teacher models (# 1-3, 11) and exhibits structural robustness when applied to various student
model architectures (# 11, 12). Extensive experiments have shown the scalability, generalization, and
robustness of our CompressTracker, confirming its capability to support any transformer structure,
student model size, input resolution, and teacher model, achieving effective model compression.

A.3 INFERENCE SPEED ON CPU Table 15: Inference Speed on CPU. We compare
inference speed of CompressTrack with other mod-
els on CPU. ’AUC’ represents the AUC on LaSOT.

Method AUC FPS
CompressTracker-2 60.4 29
CompressTracker-3 64.9 22
CompressTracker-4 66.1 18
CompressTracker-6 67.5 13
E.T.Track 59.1 42
FEAR-XS 53.5 26
CompressTracker-M-S 62.0 30
MixFormerV2-S 60.6 30
CompressTracker-SMAT 62.8 31
SMAT 61.7 33

We evaluate the inference speed of our Com-
pressTracker on an Intel(R) Xeon(R) Platinum
8268 CPU @ 2.90GHz and compare with other
models. Results are shown in Table 15, which
experiments demonstrate that our framework
maintains high efficiency even on resource-
constrained devices. It is worth noting that our
CompressTracker supports any student model
architecture, allowing other users to select the
appropriate structure based on their device capa-
bilities and requirements.

A.4 OTHER MODEL COMPRESSION
TECHNIQUES

Table 16: Comparison with Other Comparison
Techniques. We compare our CompressTracker
with other model compression techniques. ’AUC’
represents the AUC on LaSOT.

Method AUC FPS

CompressTracker-4 66.1 228
Distillation 63.8 228
Pruning (MixFormerV2-S) 60.6 325

We compare our CompressTracker with other
model compression techniques and show results
in Table 16. CompressTracker surpasses other
compression techniques and achieves optimal
balance between speed and accuracy.

A.5 MORE ABLATION STUDY

We represent more ablation studies on LaSOT to
explore the factors contributing to effectiveness
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of our CompressTracker. Unless otherwise specified, teacher model is OSTrack,and student model
has 4 encoder layers. The student model is trained for 300 epochs, and the pinit is set as 0.5.

Replacement Probability. We investigate the impact of replacement probability on the accuracy of
student model in Figure 4. We maintain a constant replacement probability instead of implementing
the progressive replacement strategy and train the student model with 300 epochs and 30 extra
finetuning epochs. It can be observed from Figure 4 that performance is adversely affected when
the replacement probability is set either too high or too low. Optimal results are achieved when the
replacement probability is within the range of 0.5 to 0.7. Specifically, a too low probability leads to
inadequate training, whereas a too high probability may result in the insufficient interaction between
teacher model and student tracker. Thus, we set the pinit as 0.5 based on the experiment result.

Training Time. We compare the training time of CompressTracker with 500 training epochs across
different layers in Figure 5. ’Naive Training’ denotes solely training on groundtruth data with 300
epochs, and ’CompressTracker’ represents our proposed training strategy with 500 epochs. The
training time is recorded on 8 NVIDIA RTX 3090 GPUs. Although our CompressTracker requires a
longer training time compared to the ’Naive Training’, the increased computational overhead remains
within acceptable limits.

18


	Introduction
	Related Work
	CompressTracker
	Stage Division
	Replacement Training
	Prediction Guidance & Stage-wise Feature Mimicking
	Progressive Replacement
	Training and Inference

	Experiments
	Implement Details
	Compress Object Tracker
	Comparison with State-of-the-arts
	Ablation Study

	Limitation & Broader Impacts
	Conclusion
	Appendix
	Replacement Training
	Generalization of CompressTracker
	Inference Speed on CPU
	Other Model Compression Techniques
	More Ablation Study


