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Abstract

Event extraction is a significant task in natu-001
ral language processing. However, it is labor-002
intensive to get annotation when generalizing003
to new event types and ontologies. In this pa-004
per, we propose the HTR (Hybrid Type Rep-005
resentation) framework for zero-shot event ex-006
traction. We make a distinction of the abstrac-007
tion level between events and roles, analyze008
role semantics, and propose a new representa-009
tion approach, LRDB (label-related description-010
based), which is effective for both argument011
classification and collaboration with trigger ex-012
traction. We conduct extensive evaluation on013
ACE2005 dataset and achieve state-of-the-art.014

1 Introduction015

Event Extraction (EE) is a challenging task of infor-016

mation extraction, with the task of extracting event017

types and their elements (trigger words and the cor-018

responding arguments) from a sentence. An exam-019

ple from the standard EE dataset ACE2005 shown020

in Figure 1 with two events, where “arrived” is021

the trigger for event Movement:Transport, “Kelly”022

(Artifact) “Seoul” (Destination), “Beijing” (Ori-023

gin) and “Friday” (Time) are the corresponding024

arguments, while “brief” is the trigger for event025

Contact:Meet, “Kelly” (Entity) and Yoon (Entity)026

are the corresponding arguments. There are four027

subtasks: identify event triggers and classify them028

into predefined event types (trigger extraction), and029

identify their corresponding arguments and classify030

them into the corresponding predefined role types031

(argument extraction).032

Most of the works solve the problem with super-033

vised methods (Li et al., 2013; Chen et al., 2015;034

Yang and Mitchell, 2016; Nguyen et al., 2016; Liu035

et al., 2018; Yang et al., 2019; Huang et al., 2021;036

Ahmad et al., 2021), which is unable to do with037

unseen event types without labor-intensive annota-038

tions, thus is inflexible and limited. To achieve039

transfer from seen types to unseen types with-040

out any additional annotations, zero-shot learning 041

methods have been explored on computer vision 042

domain (Zhang and Saligrama, 2015; Ba et al., 043

2015; Changpinyo et al., 2016; Chen et al., 2018), 044

and natural language processing (Ma et al., 2016; 045

Bapna et al., 2017; Obeidat et al., 2019; Zhang 046

et al., 2020). For event extraction, some recent 047

works (Huang et al., 2018; Zhang et al., 2021; Lyu 048

et al., 2021; Liu et al., 2020; Lai et al., 2021) ex- 049

plored on zero-shot methods. Huang et al. (2018) 050

and Lai et al. (2021) followed the common zero- 051

shot learning setting while Liu et al. (2020), Zhang 052

et al. (2021) and Lyu et al. (2021) explored the set- 053

ting without any training, which is followed in this 054

paper. However, the performance of the system is 055

still far from satisfaction. 056

We take a look in the ACE guideline, where 057

describes the trigger as the word that most clearly 058

indicates event’s occurrence (mostly verbs) and 059

arguments are the event participants or attributes 060

(entities or values). 1 See the example in Figure 1, 061

triggers “arrived” and “brief” are verbs, while the 062

arguments “Kelly”, “Yoon”, “Seoul” and “Beijing” 063

are entities, “Friday” is a value. Inspired by Zhang 064

et al. (2021) meanwhile, we argue that the event 065

type semantics can be expressed by the trigger word 066

(e.g. “arrived” shows there is a transporting), while 067

the entity role type semantics is dependent on the 068

pattern in the sentence rather than any specific word 069

(e.g. roles of “Kelly” and “Yoon” can be exchanged 070

by swapping their location).2 We express it as 071

the different abstraction level of event mentions, 072

i.e. event semantics is a low-level abstraction of 073

trigger words while role semantics is a high-level 074

abstraction of arguments with patterns. Inspired by 075

this difference, we argue that semantics of event 076

types and role types should be represented with 077

1https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/
files/english-events-guidelines-v5.4.3.pdf

2we focus on entities in this paper, the following roles
mentioned are both entities in default.
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Figure 1: An example from ACE2005, different events have different colors (“Kelly” participates in both two
events), trigger are bold italic and arguments are underlined, and arrows point to their class types.

different methods based on their abstraction level.078

With the low-level abstraction, the semantics of079

triggers is specific and informative in linking to080

event semantics. Trigger words representation is081

also an effective representation for event types, as082

shown in Zhang et al. (2021), and we name it as an-083

chor word-based representation method. However,084

with the high-level abstraction, role semantics is085

more based on the pattern, for which anchor words086

are much useless. We analyze that a role seman-087

tics, i.e. the pattern, is based on the interaction088

with other roles (e.g. “Kelly” brief “Yoon”) and089

its behaviour or function in the event (e.g. “Seoul”090

serves as the place). Basically, the pattern can be091

summarized as under what circumstances who does092

what action or has what function. We decompose093

the pattern into three information components: 1)094

scene, i.e. the circumstance, which is related to095

the event; 2) entity type, i.e. who or what, which096

can be shared among roles; 3) character, i.e. what097

action or what function, which is unique for each098

role. We focus on character information of role099

semantics for its uniqueness. Inspired by zero-shot100

works with label-based methods (Ma et al., 2016),101

which utilizes semantics of the type name, and102

description-based methods (Obeidat et al., 2019),103

which encodes semantics of type description text,104

we design to combine the type name with the de-105

scription text on emphasis of character information106

to form an informative role type description text.107

We further observe that while some labels are good108

indicators of character (e.g. “Destination“), some109

are too general (e.g. “Person”, “Entity”) to con-110

tain appropriate character information. For these111

types, we design to replace their label with a more112

appropriate one (when it exists). With our label-113

related description text, we can encode role types114

representation to express the pattern in a degree.115

Of role semantics, the character information is116

dependent on scene information (e.g. character of117

‘Destination‘ is dependent on transporting), and118

implicitly reflects some event semantics. We uti-119

lize it to improve the semantic similarity measure120

between triggers and event types.121

In this paper, we consider the different122

abstraction-level of event and role types, and pro- 123

pose the HTR (Hybrid Type Representation) frame- 124

work for zero-shot event extraction. We analyze 125

role semantics, decompose it into three information 126

components and argue the importance of character 127

information for its uniqueness. Based on the analy- 128

sis, we propose a new type representation approach 129

LRDB (label-related description-based method) for 130

role types representation, which can contribute to 131

both argument classification and trigger extraction. 132

In our framework, we adopt different representation 133

methods for triggers and arguments, event and role 134

types based on their different abstraction level. We 135

identify triggers and arguments based on pretrained 136

srl model, and map them to the most similar event 137

types or role types respectively based on the seman- 138

tic similarity among them. We show that with our 139

framework, we can easily adapt to new types with 140

some trigger anchor words and appropriate descrip- 141

tion text, without any additional annotations. 142

Our contributions are: 143

• We propose the HTR (Hybrid Type Represen- 144

tation) framework, which differentiates trig- 145

gers and arguments, event types and role types 146

representation based on their different abstrac- 147

tion level. 148

• We propose to focus on character information 149

of role semantics, and utilize the information 150

dependence to improve trigger-event similar- 151

ity measure. 152

• We propose a new representation approach 153

LRDB (label-related description-based) for 154

role types, which is effective. 155

2 Related Work 156

Most of event extraction works are based on super- 157

vised methods, i.e. training and testing on the same 158

event ontology set (Li et al., 2013; Chen et al., 159

2015; Yang and Mitchell, 2016; Nguyen et al., 160

2016; Liu et al., 2018; Yang et al., 2019; Huang 161

et al., 2021; Ahmad et al., 2021). However, they 162

can’t adapt to the new types without additional an- 163

notations. Huang et al. (2018) firstly proposed a 164

2



zero-shot framework for event extraction, but the165

method learns function on some seen types, and re-166

lies on the structural similarity between seen types167

and unseen when testing. Lai et al. (2021) also168

explored zero-shot event extraction with some seen169

types training data, but their setting of unseen role170

types is unrealistic. There are some zero-shot meth-171

ods for event extraction without any training data,172

which is also the setting in this paper. Zhang et al.173

(2021) proposed to acquire event types and role174

types representation with the anchor word-based175

method, which is improper for role types. Liu et al.176

(2020) proposed a QA-based method using type177

names in query template, but it suffered from the178

meaning lack of the general type names, which con-179

tributes the most errors. The new representation180

approach LRDB proposed in this paper can handle181

this problem. Lyu et al. (2021) followed QA-based182

argument extraction but found their model is intrin-183

sically weak on “no-answer” situations, which are184

common in reality.185

3 Task Definition186

Following Zhang et al. (2021), we denote E and R187

as the overall sets of predefined event trigger types188

and argument role types, respectively. Each prede-189

fined event type (e.g., “Movement:Transport") E ∈190

E is associated with several role types R ∈ RE .191

Given a sentence s = w1w2 . . . w|s|, the task of192

zero-shot event trigger identification (TI) is to iden-193

tity trigger words t1, . . . , tn in the sentence while194

for the task of argument identification (AI), it is195

to identity argument words a1, . . . , am correspond-196

ing to the selected trigger word t in the sentence.197

The task of trigger classification (TC) is to clas-198

sify the selected trigger word t from s to the event199

type E ∈ E while for the corresponding task of200

argument classification (AC), it is to classify the201

selected argument word a from s to the role type202

R ∈ RE .203

4 Approach Overview204

The whole framework can be divided into three205

stages: type representation preparation, identifica-206

tion and classification. The latter two modules are207

pipeline of event extraction, shown in Figure 2.208

We first prepare event types representation and209

role types representation. With the data and method210

provided by Zhang et al. (2021), selected trigger an-211

chor words and retrieved anchor sentences are used212

to encode event types representation with BERT.213

For role semantics, we analyze and decompose it 214

into three information components: scene, entity 215

type and character, and emphasize the character 216

information with a label-related description-based 217

method. We analyze and refine the inappropriate 218

role type names when possible, and embed them 219

into the description text that lays emphasis on the 220

character information. We acquire role types repre- 221

sentation by encoding the label-related description 222

text with a sentence-level encoder defsent (Tsuk- 223

agoshi et al., 2021).3 See Section 5 for details. 224

For triggers and arguments representation, we en- 225

code them following (Zhang et al., 2021). With pre- 226

pared event and role types representation, we can 227

measure the similarity of each trigger and argument 228

to predefined event types or role types, respectively. 229

The role types representation encoded based on 230

character information also introduces some scene 231

information implicitly for their dependence. We 232

utilize the implicit scene information of role types 233

representation to improve the semantic similarity 234

measure between triggers and event types. 235

In the identification module, given a sentence, 236

we first identify candidate triggers and the cor- 237

responding candidate arguments with a BERT- 238

based Verb+Nominal SRL (Semantic Role Label- 239

ing) model, then filter the triggers and arguments 240

of concerns.4 Then, triggers are filtered based 241

on semantic similarity comparing with predefined 242

event types, which is measured based on the co- 243

sine scores between triggers and event types rep- 244

resentation, and between triggers and role types 245

representation under the same event type. We filter 246

arguments based on a selected subset of srl roles. 247

The detail shown in Section 6. 248

In the classification module, we classify all trig- 249

gers and the corresponding arguments output by 250

the last stage. We map a trigger word to the most 251

similar event type based on the same semantic sim- 252

ilarity measured at the identification stage. For 253

argument classification, we divide all of roles into 254

specific and common groups, and use the predicted 255

result by SRL for roles in common group. For roles 256

in specific group, we map an argument to the most 257

similar role type based on semantic similarity com- 258

paring with predefined role types corresponding 259

to the classified event type at the trigger classifica- 260

tion stage. The similarity between arguments and 261

3defsent encodes the sentence into the same semantic space
shared with BERT, which allows for calculation between
words and sentences.

4https://github.com/CogComp/SRL-English
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Figure 2: Event extraction pipeline in our framework with an example from ACE2005, we only show the event
classification with one event type for simplicity.

role types is measured by cosine scores of their262

representation. The detail shown in Section 7.263

5 Type Representation264

We use different representation methods for event265

types and role types based on their different abstrac-266

tion level. Specifically, we use anchor word-based267

method for event types representation, and label-268

related description-based method for role types rep-269

resentation.270

5.1 Event type representation271

With the low-level abstraction, the semantics of272

triggers is specific and informative in linking to273

event semantics. Following Zhang et al. (2021), we274

use the anchor word-based method, which selects275

some anchor trigger words for each event type,276

encode the contextualized representation of them277

in the retrieved anchor sentences, and cluster for278

event types representation.279

5.2 Role type representation280

With the high-level abstraction, we decompose the281

role semantics into three information components:282

scene, entity type and character, and focus on char-283

acter information. To better utilize the semantics284

in label (type name) and description text, we de-285

sign to acquire label-related description text for286

role types, and encode the text with defsent as role287

types representation.288

Label-related description With a role type289

name, an initial role type description text and an290

event type description text, our task is to embed an291

appropriate type label (when there exists) into the292

role type description text, and simply modify the 293

description text to emphasize the detailed character 294

information. Some roles may have different char- 295

acter (according to the initial role type description 296

or event type description), we detach the multi- 297

character into multi description text for them, and 298

encode each text a representation for the role type. 299

See an example in Table 1. 300

The role types representation encoded based on 301

character information also introduces some scene 302

information implicitly for their dependence, which 303

is utilized to improve the semantic similarity mea- 304

sure between triggers and event types in Section 305

6. 306

6 Identification 307

Following Zhang et al. (2021) and Lyu et al. (2021), 308

we first identify candidate triggers and the corre- 309

sponding candidate arguments based on a BERT- 310

based Verb+Nominal SRL model, then further fil- 311

ter all predicates and arguments provided by SRL 312

model for triggers and arguments of concerned. 313

Trigger filtering We first match each candidate 314

triggers with concerned event types. The semantic 315

similarity score stE between a trigger word t and 316

an event type E is defined as the linear combination 317

of comparing with event type representation and 318

role types representation of the event type. Then, 319

we filter the triggers above a similarity threshold. 320

sE = cosine(embt, embE) (1) 321

sR =
1

nRE

∑
r∈RE

cosine(embt, embr) (2) 322
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Event type description A MEET Event occurs whenever two or more Entities come
together at a single location and interact with one another
face-to-face, include talks, summits, conferences, visits, ...

Role type name Entity
Initial role type description The agents who are meeting.
Label-included description The entities or the agents who are meeting.
Label-refined description The participants who are meeting.

Character-emphasis description The meeting participants who talk or visits, interacting face-
to-face.

Final text (detach multi-character)
The meeting participants who talk, interacting face-to-face.
The meeting participants who visit, interacting face-to-face.

Table 1: An example shows acquisition of label-related description for the role “Entity” in event “Contact:Meet”.
Both the event type description and initial role type description are from ACE guideline.

stE = sE + wr ∗ sR (3)323

Argument filtering Similar to Huang et al.324

(2018), we manually select a subset of SRL roles325

of concerned. We build their mapping into event-326

related roles, as shown in Table 2. We filter the327

arguments whose SRL predicted roles are in this328

set.329

Group Role types SRL roles

Common
Time ARGM-TMP
Place ARGM-LOC

Specific Artifact, Desti-
nation, ...

ARG(0-8),
ARGM-DIR

Table 2: Event-related SRL roles and their mapping.

7 Classification330

Given the identified triggers and the corresponding331

arguments, we classify triggers to the event types332

and the corresponding arguments to the role types.333

Trigger Classification We use the same score334

ste acquired at the trigger filtering stage as the se-335

mantic similarity measure between the trigger and336

the event type. We classify a trigger to the event337

type with the highest similarity score.338

E = argmax
e

ste (4)339

Argment Classification We divide all of roles340

into specific and common groups, and the roles in341

common group have specific tags in SRL, shown in342

Table 2. We use the common tags predicted by SRL343

model as the classification result, and only remain344

roles in specific group. The semantic similarity345

score saR between an argument and a role type is346

defined as cosine between argument representation 347

and role type representation. And we classify a 348

argument to the role type with the highest similarity 349

score. 350

saR = cosine(emba, embR) (5) 351

R = argmax
r

sar (6) 352

8 Experiment 353

Dataset, Setting and Evaluation We evaluate 354

our methods on ACE2005 dataset, which has 33 355

event subtypes and 28 role types, including both 356

entity and value roles. We use the same data split 357

as in Zhang et al. (2021) and Lyu et al. (2021). 358

Our method do not need any training, but need 359

validating to make several design choices and select 360

the hyper-parameters. Huang et al. (2018) trained 361

in top-N most popular event types and tested on 362

the least-23 frequent types, and Lyu et al. (2021) 363

tested on test data of all 33 event types. To compare 364

with them, we only use train and development set 365

of top-10 event types for validating, remaining test 366

set of top-10 event types and all data of least-23 367

event types to test.5 We provide three evaluation 368

setting: (A) Evaluation on the all data of least- 369

23 event types (23all); (B) Evaluation on the test 370

data of all 33 event types (33test); (C) Evaluation 371

on the test data of top-10 event types and all data 372

of least-23 types (merge). We evaluate argument 373

spans on the head level following compared works 374

(Huang et al., 2018; Zhang et al., 2021; Lyu et al., 375

2021). We report Hit@1, Hit@3 and Hit@5 for 376

event classification task, and precision, recall and 377

5we don’t compare with Liu et al. (2020) and Du and
Cardie (2020) since our framework can’t do argument identifi-
cation alone.
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f1 for event extraction pipeline the same as the378

compared works.379

Implementation Details We adopt BERT-Large380

to encode triggers and arguments representation.381

For event types representation, we random choose382

1000 sentences for each anchor word, use k-mean383

to cluster with k=2, repeating 10 times and select384

the maximum cluster with the lowest wce, then we385

merge all selected clusters of anchor words from386

an event type to form a complete cluster, using387

its centroid as the type representation. For role388

types representation, we use the annotation from389

ACE guideline as event types description and initial390

role types description, and use defsent-bert-large-391

uncased-mean to encode label-related description392

for types representation. We obtain the head of ar-393

guments with a simple heuristics-based head iden-394

tifier based on the AllenNLP Dependency Parser395

following Lyu et al. (2021). 6 We weight 0.7 for396

the score sR in the equation 3, and set the threshold397

as 0.87 for trigger filtering, tuning on the validat-398

ing set. For argument extraction, we ignore all the399

reference and conference of roles detected by SRL.400

8.1 Standard Evaluation401

We consider two settings with the previous works:402

event classification and the overall event extraction403

pipeline.404

8.1.1 Event Classification405

This setting treats trigger classification and argu-406

ment classification as two separate ranking prob-407

lems with gold TI and AI. In Table3, we compare408

with the following methods:409

• WSDE (Huang et al., 2018): WSD-410

Embedding method, The simplest baseline411

that uses pretrained word sense embeddings412

to encode type names as event types and role413

types representation, matching directly.414

• TL-D (Huang et al., 2018): Structural415

similarity-based method, which uses the same416

event types and role types representation as417

WSD-Embedding, and learns structural simi-418

larity measure with data of top-10 event types419

to match.420

• AW (Zhang et al., 2021): Anchor word-based421

representation method, which treats event422

types and role types in the same way, selects423

6https://demo.allennlp.org/dependency-parsing

some anchor words for each type and encodes 424

their contextualized representation in anchor 425

sentences as type representation. 426

• LRDB (Zhang et al., 2021): Label-related 427

description-based representation method, 428

which encodes both event types and role types 429

representation with label-related description. 430

From the results, in all setting, 1) label-related 431

description-based method shows its advantage in 432

encoding role semantics effective for argument clas- 433

sification, outperforming the anchor word-based 434

method by considerable margins (8.3%-13.6%) in 435

Hit@1; 2) Anchor word-based method shows its 436

advantage in encoding event semantics effective 437

for trigger classification with considerable mar- 438

gins (8.4%-15.4%) over LRDB method, which 439

supports the different abstraction-level between 440

trigger-event and argument-role as the analysis 441

above-mentioned; 3) Our hybrid representation 442

method shows its advantage by combining these 443

two methods effectively and utilizing scene infor- 444

mation of role types representation in collaboration 445

with trigger-event semantic similarity measure, im- 446

proving trigger classification with 1.1%-2.2%. 447

8.1.2 Event Extraction Pipeline 448

This setting evaluates the overall event extraction 449

pipeline. In Table 4, we compare with the following 450

systems: 451

• TL-D (Huang et al., 2018): AMR-based iden- 452

tification system. 453

• TE/QA (Lyu et al., 2021): SRL & Textual 454

Entailment-based trigger extraction and QA- 455

based argument extraction system. 456

From the results, we observe that 1) when f1 457

of both TI, TC and AC is large lower than TL-D 458

Huang et al. (2018), our framework outperforms 459

them at the last stage AC; 2) When our framework 460

with lower performance in AI compared to Lyu 461

et al. (2021), we also outperform them at the last 462

stage AC. These observations show the effective- 463

ness of our solution for argument classification. We 464

also report our result evaluated in the merge (C) 465

setting. 466

8.2 Ablation 467

We show the effect of each component of our 468

method in this section. 469
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Setting Method
Trigger Classification(%) Argument Classification(%)
Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

23all (A)

WSDE 1.7 13.0 22.8 2.4 2.8 2.8
TL-D 33.5 51.4 68.3 14.7 26.5 27.7
AW 82.1 89.1 93.0 52.6 88.9 98.5

LRDB 73.7 93.1 95.6 60.9 91.7 98.9
Hybrid 83.3 90.1 96.0

33test (B)
AW 82.9 93.8 96.2 44.4 86.0 96.4

LRDB 67.5 82.0 86.5 58.0 89.0 98.0
Hybrid 85.1 95.5 98.3

merge (C)
AW 82.1 89.9 93.7 49.9 87.7 97.9

LRDB 71.6 89.9 93.0 59.9 90.9 98.7
Hybrid 83.2 91.1 96.4

Table 3: The Comparison of different methods of event classification in different setting on ACE2005

Setting Method
TI(%) TC(%) AI(%) AC(%)

P R F1 P R F1 P R F1 P R F1

23all (A)
TL-D 85.7 41.2 55.6 75.5 36.3 49.1 28.2 27.3 27.8 16.1 15.6 15.8
HTR 32.9 59.5 42.3 29.2 52.9 37.6 18.6 32.7 23.8 14.9 26.1 18.9

33test (B)
TE/QA 34.7 66.3 45.5 31.7 60.6 41.7 20.2 40.4 27.0 12.6 25.2 16.8
HTR 51.8 45.3 48.3 48.2 42.2 45.0 29.3 23.1 25.8 20.5 16.1 18.1

merge (C) HTR 35.5 55.6 43.4 31.7 49.7 38.7 20.0 29.7 23.9 15.6 23.1 18.6

Table 4: The Comparison of different methods of event extraction pipeline in different setting on ACE2005.

8.2.1 Role type description470

We show the effect of every step designed for role471

types description in Table 5 evaluating on argument472

classification.473

Hit@1 Hit@3 Hit@5
Initial 57.8 89.0 97.4

Label-included 57.3 91.1 98.0
Label-refined 59.4 90.3 98.2

Character 59.3 89.4 97.9
Detach 59.9 90.9 98.7

Table 5: Each step of role type description on argument
classification in merge (C) setting

From the results, 1) simple annotation “Initial” is474

already better than the anchor word-based method475

(49.9%, in Table 3), which shows the advantage476

of description on the expression of role semantics;477

2) The performance for “Initial”, “Label-included”478

and “Label-refined” shows that simply embedding479

all type names indiscriminately into description480

text may hurt the role semantics while embedding481

with refined labels can contribute to it, indicating482

the importance of correct label; 3) The performance483

for the last three steps shows the importance of484

detaching multi-character into groups. 485

We further show the effect of correct labels 486

and character-information description for role se- 487

mantics in Table 6. We use random classifica- 488

tion strategy as the baseline. From the results, 1) 489

Compared with baseline, we can see from “Label- 490

only“ and “W/O-Label-Description” that both type 491

names and description can contribute the role se- 492

mantics;7 2) The comparison of “Label-only” and 493

“Refined-Label” shows the importance of appropri- 494

ate role type names; 3) The performance of “LR- 495

Description” outperforms both refined label-only 496

and description-only with large margins (12.1% 497

and 14.1% respectively), showing the effectiveness 498

of combining refined labels and description text. 499

8.2.2 Trigger-Event Sementic Similarity 500

We show the effect of role types representation on 501

trigger-event semantic similarity measure in Table 502

7. We use the random trigger filtering and classi- 503

fication strategy as baseline. We can observe that 504

role types representation does encode some event- 505

related information useful for trigger extraction. 506

7W/O-Label-Description is acquired by replacing all labels
in the text with the general label “entity”
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Hit@1 Hit@3 Hit@5
Baseline 23.6 53.9 70.2

Label-only 43.9 81.5 97.0
Refined-Label 45.8 83.1 97.4

W/O-Label-Description 47.8 83.9 96.9
LR-Description 59.9 90.9 98.7

Table 6: Effect of label and description for role seman-
tics on argument classification in merge (C) setting.

TI(%) TI+TC(%)
P R F1 P R F1

Baseline 2.6 42.2 4.8 0.1 1.7 0.2
R-only 15.5 31.5 20.8 10.0 20.4 13.4
E-only 30.5 56.6 39.7 27.5 51.0 35.8
E+R 35.5 55.6 43.3 31.7 49.6 38.7

Table 7: Effect of role types representation on trigger-
event semantic similarity measure, evaluating on trigger
extraction in merge (C) setting.

8.2.3 Argument classification with SRL507

We show the effect of SRL in argument classifica-508

tion of event extraction pipeline. To make it more509

clear, we only report the result of the final argument510

classification stage in Table 8.511

P R F1
all matching 13.7 20.4 16.4

SRL for common groups 15.6 23.1 18.6

Table 8: Effect of SRL in argument classification, evalu-
ating in event extraction pipeline in merge (C) setting
with AC reported.
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