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ABSTRACT

Accurately assessing internal human states is critical for understanding their pref-
erences, providing personalized services, and identifying challenges in various
real-world applications. Originating from psychology, adaptive testing has be-
come the mainstream method for human measurement. It customizes assessments
by selecting the fewest necessary test questions (e.g., math problems) based on
the examinee’s performance (e.g., answer correctness), ensuring precise evalua-
tion. However, current adaptive testing methods still face several challenges. The
mechanized nature of most adaptive algorithms often leads to guessing behavior
and difficulties in addressing open-ended questions. Additionally, subjective as-
sessments suffer from noisy response data and coarse-grained test outputs, further
limiting their effectiveness. To move closer to an ideal adaptive testing process, we
propose TestAgent, a large language model (LLM)-empowered adaptive testing
agent designed to enhance adaptive testing through interactive engagement. This
marks the first application of LLMs in adaptive testing. To ensure effective assess-
ments, TestAgent supports personalized question selection, captures examinees’
response behavior and anomalies, and provides precise testing outcomes through
dynamic, conversational interactions. Extensive experiments on psychological,
educational, and lifestyle assessments demonstrate that our approach achieves
more accurate human assessments with approximately 20% fewer test questions
compared to state-of-the-art baselines. In actual tests, it received testers’ favor in
terms of speed, smoothness, and other two dimensions.

We are now going to test your mathematical abilities. 
For triangle ABC, with side A being 10 and side B 

being 20, if angle A measures 30 degrees, what is the 
measure of angle B?

According to the sine rule, because side B is twice 
side A, the angle opposite side B is also twice the 

angle opposite side A, which is 60 degrees.

OK. In a triangle with side lengths a = 5, b = 6, and c 
= 7, could you tell me the cosine value of angle C?

According to the cosine rule, the cosine of C is (a^2 + 
b^2 - c^2) / (ab), so the answer is one fifth.

Maybe you master the triangle knowledge, but you 
are a little careless, Here is the diagnostic report for 

the testing of your module.

Expert Communication

REPORT
You are not familiar with the formula for the 

Law of Cosines ……

Math Test

Grade:

1. In triangle ABC, angle A is 30 degrees, 
side a=10, and side b=20. Find angle B. (B)
A) 45°B) 60°C) 90°D) 120°

2. In triangle ABC, given side a=5, b=6, c=7, 
find the cosine of angle C (B)
A) 1

5
B) 2

5
C) 2

7
D) 4

9

3. How many triangles can a triangle be 
divided into by drawing diagonals? (C)
A) 4 B) 5 C) 6 D) 7

C

You have regressed 
recently. Put in more effort.

Figure 1: Examples of traditional testing: (a) Traditional paper-based tests where experts provide
answers based on the test questions. (b) Our proposed testing expert system model. It will act as an
expert, gradually assessing student abilities with as few interactions as possible.
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1 INTRODUCTION

Designing effective assessments to evaluate specific human states is essential in various contexts,
such as analyzing personality traits, diagnosing mental health issues, and measuring learning abil-
ities (Kaufman et al., 2022; Laher et al., 2022). Traditional assessments often rely on paper-and-
pencil formats, wherein questionnaires or selected questions are presented to participants. Based on
participants’ answer performance (e.g., answer correctness on math questions), experts can evaluate
their states (e.g., mathematic ability). While these straightforward testing methods are functional,
they are labor-intensive and require expert involvement. Moreover, the uniform testing environment
can hinder personalization, complicating the tailoring of assessments to individual needs. There-
fore, recent efforts focus on another testing form called computer-based Adaptive Testing (Liu et al.,
2024), which aims to customizes assessments for each examinee by dynamically adjusting questions
based on their performance. Adaptive testing allows for accurate and personalized evaluations with
fewer questions, leading to widespread use in standardized testing, such as Graduate Management
Admission Test (GMAT) and Graduate Record Examinations (GRE) (Mills & Steffen, 2000).

However, existing adaptive testing methods still face significant challenges, primarily due to three
factors: (1) Mechanized Testing Process. Most adaptive algorithms are limited to fixed-answer
questions, like multiple-choice formats. This rigidity can lead to guessing on unfamiliar questions
(Brown, 2022), compromising assessment accuracy. Additionally, adaptive methods struggle with
open-ended scenarios that involve varied answer formats, such as mathematical problem-solving.
(2) Noisy Answer Data. In subjective assessments, answers may not reflect true internal states,
introducing noise into the training of adaptive testing algorithms. For example, in personality tests,
respondents may provide socially desirable answers rather than genuine feelings, leading to unre-
liable results (Stein & Swan, 2019). Similarly, in mental health evaluations, social pressures may
cause individuals to conceal or misreport symptoms, skewing outcomes (McDonald, 2008). (3)
Coarse-Grained Test Output. The adaptive question selection method provides a diagnosis value
at the end of the test. It is difficult for the test-taker to make self-adjustments based on the diag-
nosis value. While traditional methods attempt to mitigate noise through expert-driven multi-step
questions, the time and labor involved make large-scale implementation challenging (Josephson &
Shapiro, 2013; Segal et al., 2019).

Recently, large language models (LLMs) have demonstrated impressive capabilities in human-like
tasks, including reasoning, planning, and decision-making (Lee et al., 2024; Wang et al., 2024). This
observation suggests the potential of LLM-driven agents to simulate human social behaviors across
various contexts. Inspired by this potential, we propose the development of an LLM-based adaptive
testing agent to overcome current testing limitations. Imagine that an intelligent agent, similar to
a human expert, that can engage in interactive dialogues with examinees, analyze their responses,
and dynamically generate personalized questions. Such an agent could transcend the mechanical
constraints and noise-related issues inherent in traditional assessments.

Motivated by these considerations, we introduce TestAgent, an LLM-based agent designed to en-
hance adaptive testing through interactive engagement. This represents the first application of LLMs
in adaptive testing. To ensure effective testing, TestAgent is designed to support personalized ques-
tion selection, capture the examinee’s response behavior and anomalies, and deliver precise test-
ing outcomes. Specifically, TestAgent inherits the dynamic question selection capabilities of tradi-
tional adaptive testing, catering to personalized needs while improving testing efficiency. Addition-
ally, an autonomous feedback mechanism and anomaly management module have been introduced
to ensure a smoother and more intelligent testing process. TestAgent also generates detailed diag-
nosis reports to provide test-takers with a deeper understanding of their results, thereby making the
testing experience more personalized and transparent, while significantly reducing resource costs.
We conducted extensive experiments using datasets from three distinct domains, including personal-
ity measurement, educational math exam, and mental health test. The quantitative prediction results
and qualitative analysis indicate that TestAgent’s testing efficiency and methodology surpass tradi-
tional testing methods. Moreover, during actual tests, TestAgent was favored by testers for its speed,
smoothness, and two other dimensions.
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Figure 2: This is the overall framework of TestAgent. Universal The Data Infrastructure module
is used to establish the question bank. The TestAgent Planning module outlines TestAgent’s work-
flow. The Report Generation module is utilized to generate diagnosis reports.After the user answers
question, the large language model summarizes the question and returns the labels to the cognitive
diagnosis model. The cognitive diagnosis model assesses the current ability of the tester and uses a
question selection algorithm to choose the best question from the question bank. Finally, the large
language model communicates with the tester in a conversational manner.

2 TESTAGENT: GENERAL INTELLIGENCE TESTING EXPERT

2.1 PROBLEM DEFINITION

The goal of adaptive testing is to provide the test taker with tailored questions. It aims to do this
in the fewest number of test rounds. It consists of two key components, the Adaptive Question
Selection and Cognitive Diagnosis. After the test taker answers a question, Cognitive Diagnosis
update their ability estimate based on the feedback of the question, and then further questions are
selected based on the Adaptive Question Selection algorithm. The specific definition is as follows:

Definition 1 (Definition of Adaptive Testing). During the t-th step of testing, the test taker’s re-
sponse to question q is y. The previous sequence of test question-answer pairs is denoted as
S = {(q1, y1), . . . , (qt, yt)}. At this point, the cognitive Diagnosis model updates the ability values
based on S using cross-entropy loss. The question selection algorithm π selects the best question
based on the current θt for the test-taker to answer, i.e., qt+1 ∼ π(θt). This process continues
iteratively until it stops after T steps. The cognitive Diagnosis returns θT as the test result.

There are several issues with traditional adaptive processes. First, label y may not align with the true
ability. In many cases, such as in math ability tests, the test-taker might randomly guess the correct
answer which will significantly affect test accuracy. Second, test-takers may withhold information
known about question q due to various reasons, leading to inaccurate test results. Third, the cognitive
diagnosis model outputs θT as the test result. However, this may not be intuitive for the test-taker.
Test-takers tend to prefer receiving a diagnosis report that includes various analyses rather than a
simple estimate of their abilities. These three issues will be addressed in our framework.

2.2 OVERVIEW

Similar to the process of adaptive testing, our framework also follows an iterative approach. The
Figure 2 shows the pipeline of the entire working process of TestAgent. First, the Question Bank
needs to be established. To do this, Domain Verification is required to determine the dimensions
of the test and then followed by Data Integration. Cognitive Diagnosis Training will then complete
the establishment of the Question Bank for use by TestAgent. Unlike traditional adaptive tests, our
TestAgent transforms the entire testing process into a natural language conversation to break the
Mechanized Testing Process at each step. As shown in Figure 1, instead of having the test-taker
directly choose the answer y for the question q, the TestAgent presents the question q in the form
of a natural language query posed by a character C. This is exactly what the Question Generation
module does. Then the test-taker receives the transformed question b = C(q) and responds with
a conversation. Next, the TestAgent obtains y from the conversation after passing through the Au-
tonomous Feedback Mechanism and the Anomaly Management modules to address the issue of
Noisy Answer Data. These two modules are aimed at obtaining more effective and stable labels.

3
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Specifically, Autonomous Feedback Mechanism judges whether the label y obtained by the agent
is consistent with the response of the test-taker. If they are not consistent, the system automatically
generates a similar question bnew for the test-taker to answer, continuing this process until they are
consistent. Anomaly Management is used to handle situations where the answer y to a question
exhibits anomalous behavior, such as when a tester tries to guess the answer or avoids responding to
the question. If an anomaly occurs, it will use natural language guidance to progressively ask ques-
tions, reducing the likelihood of receiving misleading answers. After obtaining the accurate label y,
the Cognitive Diagnosis module updates the test-taker’s ability. Then Adaptive Question Selection
module choose the most suitable question from the Question Bank. This process forms an iterative
cycle.

To address the issue of Coarse-Grained Test Output, TestAgent utilizes Neural Architecture to pro-
vide initial analysis based on θT and the Response Sequence. This analysis is combined with Expert
Analysis to ultimately form the Diagnosis Report. This report includes test results and suggestions
for the test-taker. The implementation of these methods will be detailed in the following sections.

2.3 AUTONOMOUS FEEDBACK MECHANISM

During the conversational test, TestAgent analyzes the label y based on the response from the test-
taker. For some questions testing, TestAgent only needs to analyze whether the test-taker answered
correctly like mathematical ability test. However, in more general tests like personality tests, TestA-
gent needs to analyze personality trait labels from a segment of daily dialogue of the test-takers. In
such cases, it is highly likely that situations arise where the label cannot be analyzed. For example,
if a test-taker responds with “I don’t know what to do”, it clearly deviates from providing an answer
and cannot be analyzed for a label. Therefore, we propose the Autonomous Feedback Mechanism
to address this issue.

When the test-taker provides a response, the Autonomous Feedback Mechanism assesses from three
perspectives: domain relevance, response alignment, and logical coherence to determine the out-
come. From a domain relevance perspective, TestAgent leverage the intelligence of the Autonomous
Feedback Mechanism associates questions with answers. If the response significantly deviates from
the expected answer to the original question q, it is deemed unsuccessful. In terms of response
alignment, responses are categorized into M types representing the degree of alignment with the
question. The value of M is dependent on the specific test. For example, in a mathematical abil-
ity test, responses are either right or wrong. At this point, M = 2. However, for more complex
tests like personality assessments, ranging from “complete disagreement” to “complete agreement”
across seven dimensions, M = 7 making response analysis challenging. When response alignment
is ambiguous, it is considered unsuccessful.

Regarding logical coherence, the Autonomous Feedback Mechanism evaluates whether the test-
taker’s response demonstrates internal logical consistency. Even if the response is related to the
question, if it lacks coherence, contains contradictions, or is illogical, it is deemed unsuccessful.
Logical coherence ensures that responses are not only superficially related to the question but also
logically sound. If all three aspects are successful in their assessments, the label is returned; oth-
erwise, based on the intelligence of the Autonomous Feedback Mechanism, a similar question is
generated based on the properties of the question. This process continues until a label is determined.

2.4 ANOMALY MANAGEMENT

During specific tests, test-takers may guess the correct answer by chance, intentionally provide in-
correct answers, or exhibit overconfidence in their responses, which can distort the assessment. Such
anomalies can result in incorrect label y. These situations commonly occur in practice. The three
most common types of anomalies in psychology are: Guessing Anomaly, Misleading Anomaly, and
Overconfidence Anomaly. We are exploring these three types of anomalies.

Guessing Anomaly Test-takers may answer based on luck or incomplete understanding of the ques-
tion, which does not accurately reflect their true abilities. In the case of Misleading Anomaly, test-
takers deliberately provide incorrect answers, possibly due to lack of interest in the test or psycho-
logical resistance to the question. Detecting this anomaly is challenging. Overconfidence Anomaly
occurs when test-takers demonstrate excessive confidence in their answers, even when uncertain.
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While we cannot eliminate the subjective factors of test-takers entirely, we can strive to avoid these
three types of anomalies to increase the accuracy of the tests. Anomaly Management, in conjunction
with cognitive diagnosis, analyzes these anomalies. To assess the impact of anomalies on test re-
sults, Anomaly Management utilizes the cognitive diagnosis capability θ to assist in judgment. For
a question q where TestAgent receives feedback label y, cognitive diagnosis estimate the probability
P (q, y) of the test-taker answering question q with label y based on the current capability θ. If the
current capability value makes it difficult to answer with label y, Autonomous Feedback Mechanism
is employed for judgment.

Misleading Anomaly Anomaly Management conducts reasoning based on context. By tracking the
context of the test, inconsistencies or contradictions in a test-taker’s responses to multiple questions
on the same topic can be identified. For instance, if a test-taker provides a correct definition of a
concept in one question but contradicts it in subsequent questions, it may be intentionally mislead-
ing. Anomaly Management then dissects the question to engage in more detailed dialogue with the
test-taker to avoid such issues.

Overconfidence Anomaly Anomaly Management not only accepts the test-taker’s response but also
requests reasons or explanations for the answers. If a test-taker displays high confidence in their re-
sponse but lacks sufficient reasoning or logic when explaining their choice, the model can determine
their confidence is unfounded. Anomaly Management and Autonomous Feedback Mechanism com-
plement each other, working in conjunction. Successful anomaly detection often requires a new
round of questions to verify anomalies, increasing the precision of the tests.

2.5 TRAINING

Cognitive Diagnosis Training In the process of selecting intelligent questions, training the cognitive
diagnosis model is one of the first challenges faced. We propose a general method for cognitive
diagnosis training. We leverage the capabilities of GPT-4 to simulate examinees with different
abilities. For instance, in MBTI tests, individuals can role-play different personalities to generate
dialogue responses. Existing research has demonstrated that large models are reliable for simulating
test-takers (Sekulić et al., 2024; Zhu et al., 2024). By facilitating continuous interaction between
the model and all questions, response records are generated. Subsequently, the cognitive diagnosis
model is trained based on the generated response records, specifically training the feature vectors β
for each question.

For different tests, the first step is to determine their test dimension M called Domain Verification.
For all interaction records E, the degree of answering questions is represented as y ∈ [0,M ], where
the graded response model in Item Response Theory (IRT) can be applied. The probability of
scoring less than m points can be calculated as the difference between the probability of scoring less
than m points or more and the probability of scoring less than m + 1 points or more. For instance,
pθ(y = m|q) = pθ(y ≥ m|q)− pθ(y ≥ m+ 1|q). Here: pθ(yi ≥ m|qi) = (1 + exp(θ − β

(m)
i ))−1

These data are integrated to estimate the question features F . For example, question features can
be computed as the proportion of correct answers. Additionally, data-driven techniques like cross-
entropy loss can be employed to estimate these parameters. All question features are obtained by
fitting response data: βi = argminβ

∑
e∈E

∑
i∈F yi log p(y = yi|qi). Through this methodology,

training of the cognitive diagnosis model can be achieved for existing tests.

Diagnosis Report Generation After conducting a certain number of test questions, cognitive diag-
nosis can analyze the abilities of the test-takers based on their responses. However, for personality
tests like the MBTI, test-takers are more interested in receiving diagnosis reports. In this scenario,
the vector θ is not interpretable. Therefore, generating diagnosis reports based on θ is crucial. To
achieve this, we need to generate text labels for test-takers based on θ (for example, generating per-
sonality types in the MBTI test) and further generate diagnosis reports. Firstly, we train a classifier.
This classifier can take θ as input and output the test results of the test-taker (for example, in the
MBTI test, the classifier can determine the personality type based on θ). During the question bank
construction phase, we retained textual response records. By combining the test results, response
records, and test reports provided by experts, we obtain fine-grained data for fine-tuning TestAgent
to generate diagnosis reports. Once this fine-tuning is completed, we have finished the entire testing
process. Test-takers can consider TestAgent as an expert in a certain field, engaging in multi-round
dialogues to effectively assess their own skill levels and receive tailored recommendations.

5
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

We used the proposed data synthesis method to annotate three datasets from different domains.
These include the education dataset MATH, the personality measurement dataset MBTI, and the
mental health test set SCL. The MATH dataset contains student practice logs related to math (A
private data set). The MBTI dataset comprises questions from the 16-personality test. While the
SCL-90 dataset includes questions from a depression tendency test. We fine-tuned the ChatGLM2-
6B (GLM et al., 2024) series using comprehensive expert diagnosis reports and synthetic datasets
as fine-tuning data. Training was conducted using the Lora method with a learning rate of 2e-5, all
executed on Tesla A100:40G GPU.

3.2 ACCURACY TEST

Data Partition and Evaluation Methods To validate the efficiency of the adaptive testing method
in selecting questions, a common practice involves randomly dividing each student’s data into a
query set Du and a support set Dt (Ghosh & Lan, 2021). The support set Dt is used to simulate the
question selection process and estimate the final ability value θt, while the query set Du is used to
assess the accuracy of these estimates.

We performed 5-fold cross-validation on all datasets. For each fold, we allocated 60% of the students
for training, 20% for validation, and 20% for testing. In each fold, we employed an early stopping
strategy using the validation set to train the parameters for each method. To mitigate overfitting, we
randomly shuffled these partitions at the beginning of each training epoch. The performance metrics
for evaluation included Accuracy (Gao et al., 2021) and the Area Under the Receiver Operating
Characteristic Curve (AUC) (Bradley, 1997).

Compared Approaches We employed three baselines for comparison: Random: This method
randomly selects questions and serves as a reference for improvement compared to several baselines.
FSI: (Lord, 2012): It utilizes maximum Fisher information to select questions. KLI: (Chang &
Ying, 1996) It utilize Kullback-Leibler information to select questions. MAAT: (Bi et al., 2020) It
employs an active learning (Krishnakumar, 2007) approach to measure question informativeness to
select questions. The cognitive diagnosis model here adopts IRT (Ackerman et al., 2003) model.

Result Our TestAgent algorithm represents the new generation of adaptive testing, aimed at surpass-
ing the limitations of traditional methods. In Table 1, we conducted a comprehensive comparison
of the TestAgent with other model testing approaches. We not only provided accuracy (ACC) and
area under the curve (AUC) metrics for test lengths of 5, 10, 20, and 50, but also used them as
benchmarks to assess the performance of various models.

Our TestAgent framework demonstrates outstanding overall performance on these three datasets.
Particularly noteworthy is the exceptional performance of the SCL dataset when utilizing the TestA-
gent model, showcasing the remarkable capabilities of TestAgent in handling complex datasets.
Compared to traditional algorithms, our framework shows improvements in the majority of test
steps, with the most significant enhancement seen at test step 5. On average, we achieved a rela-
tive improvement of 1.77% in AUC@5 and a notable increase of 0.91% in ACC@5. These results
clearly demonstrate the highly accurate capability estimation provided by our framework.

3.3 SIMULATION OF ABILITY ESTIMATION

In adaptive testing evaluation, simulating the estimation of abilities is a fundamental evaluation
technique (Vie et al., 2017). The purpose of testing is to accurately estimate the abilities of students.
We conducted a simulation experiment on three datasets to estimate abilities. Specifically, we used
the mean squared error E[∥θt − θ0∥2] between the true ability of a test-taker θ0 and the ability at
step t, θt. Since the true ability θ0 is unknown, we approximated it by feedback from the test-taker
answering all questions in the question bank (Bi et al., 2020; Cheng, 2009).

Figure 3 shows the metrics of different methods based on the IRT model on three datasets for testing
questions ranging from 1 to 20 in total. As the number of selected questions increases, we find that
the TestAgent method consistently achieves a lower estimation error. Compared to other algorithms,
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Table 1: Prediction performance of different methods on ACC and AUC metrics for testee achieve-
ment prediction. The bold text indicates statistically significant superiority (p-value ≤ 0.01) over
the best baseline.

(a) Performances on MBTI
Metric@Step ACC@5 ACC@10 ACC@20 ACC@50 AUC@5 AUC@10 AUC@20 AUC@50

Random 56.83±3.66 57.62±2.69 58.56±1.10 60.72±1.51 60.23± 1.61 60.92±1.53 61.65±1.57 64.04±1.98
FSI 58.70 ± 1.50 59.52±1.35 59.14±1.07 61.25±0.88 60.65±1.23 61.52±1.03 62.56±1.09 64.10±1.09
KLI 57.31±1.80 59.60±1.62 60.12±1.79 60.60±1.79 60.30±1.71 61.39±1.63 63.14±1.71 64.23±1.69
MAAT 59.60±1.95 59.68±1.84 59.89±1.89 60.45±1.99 61.91± 1.54 62.02±1.52 62.81±1.72 65.12±1.48

TestAgent+FSI 59.48±1.91 59.86±1.95 60.49±1.47 59.98± 2.13 61.60± 1.38 62.46±1.46 63.53±0.89 64.42±1.33
TestAgent+KLI 58.71±1.80 58.96±1.83 60.25±2.11 61.32±1.38 61.02±1,98 61.91±0.88 63.49±2.38 65.12±1.88
TestAgent+MAAT 60.21±2.04 59.48±2.34 60.24±2.21 61.31±1.40 62.11±1.49 62.75±1.61 63.21±1.71 64.88±1.82

(b) Performances on MATH
Metric@Step ACC@5 ACC@10 ACC@20 ACC@50 AUC@5 AUC@10 AUC@20 AUC@50

Random 64.02±1.24 65.30±2.11 67.21±1.81 69.71±1.99 63.66±2.20 65.47±1.43 68.64±1.33 72.23±1.47
FSI 64.93±2.57 65.69±1.50 68.54±1.16 70.77±1.19 64.21±2.19 66.97±1.64 70.35±0.73 73.82±0.94
KLI 64.87±2.61 65.82±1.67 68.23±1.40 70.79±1.53 64.24±1.91 66.89±1.30 70.03±1.55 73.70±1.40
MAAT 64.45±2.12 65.71±1.79 67.92±1.70 70.23±1.78 64.09±0.95 66.34±1.01 69.40±1.66 73.23±1.60

TestAgent+FSI 65.32±1.67 66.28±2.25 69.39±1.41 71.02±1.81 64.84±0.14 67.87±1.80 70.91±0.94 74.00±1,23
TestAgent+KLI 65.52±0.92 66.19±1.70 68.97±1.59 71.20±1.91 64.90±2.06 67.38±1.90 70.84±1.98 73.97±1.84
TestAgent+MAAT 64.98±2.24 66.22±2.31 67.98±2.16 70.31±1.95 64.33±0.09 66.91±0.99 70.17±1.59 73.42±1.41

(c) Performances on SCL
Metric@Step ACC@5 ACC@10 ACC@20 ACC@50 AUC@5 AUC@10 AUC@20 AUC@50

Random 54.74±1.31 55.45±1.95 57.97±2.20 62.82±2.16 48.17±2.25 49.59±1.07 54.94±1.82 63.89±1.68
FSI 60.00±0.51 62.12±1.61 64.44±1.24 66.76±1.44 58.04±0.59 62.85±2.41 67.08±1.19 69.16±1.19
KLI 60.50±1.56 63.73±0.98 64.74±1.51 65.95±1.46 60.61±1.03 64.82±0.88 68.02±1.55 69.49±1.40
MAAT 57.79±0.64 60.42±0.85 63.28±1.69 65.88±1.63 59.29±0.87 62.37±1.86 64.45±1.43 67.58±1.76

TestAgent+FSI 60.80±1.01 62.42±2.18 64.94±1.32 67.16±1.58 59.77±1.98 64.37±1.05 67.60±1.06 69.33±1.26
TestAgent+KLI 60.00±2.25 63.73±2.12 65.45±1.73 66.76±1.67 61.41±0.47 64.95±2.23 67.89±1.88 69.57±1.95
TestAgent+MAAT 58.28±2.16 61.13±1.82 63.48±2.15 66.37±1.86 60.02±2.84 62.88±2.24 64.92±1.45 68.30±1.69

TestAgent can achieve the same estimation error with fewer questions. It performs best on dataset
SCL-90, reaching a similar level as others by step 15. On average, TestAgent can achieve the same
estimation accuracy with 20% fewer questions, demonstrating its efficiency in estimating abilities,
that is, reducing the length of the test.
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Figure 3: In dataset SCL, these three figures respectively show the Mean Square error of our method
compared to traditional methods. It can be observed that in these three algorithms, incorporating the
GPT module has led to an improvement of ability estimation errors.

3.4 EFFECTS OF LARGE LANGUAGE MODEL SIZE

To further explore the impact of model size on test accuracy, we conducted experiments using two
different sizes of models, namely ChatGLM-6B and GLM-4-9B (GLM et al., 2024). The tests
recorded the ACC accuracy at the fifth and twentieth steps, as shown in Figure 4. It can be observed
that with the increase in model size, the accuracy continues to improve. This may be due to the
enhanced analytical capabilities of larger models towards the labels, enabling them to approximate
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Figure 4: A comparative analysis of experiments conducted on the MBTI and SCL datasets using
ChatGLM-6B and GLM-4-9B at steps 5 and 20.

real-world values more closely. Moreover, larger models exhibit stronger reasoning abilities and
more pronounced anomalous responses, leading to more precise test results.

3.5 CASE STUDY

To better analyze the effectiveness of the TestAgent, we provide four case studies for examination,
as shown in the Figure 5. The first case is the most standard scenario. The TestAgent asks a
question, and the test-taker responds for assessment. The second case involves a situation where
the label is ambiguous. The test-taker’s response is difficult to interpret, so the process moves
into the Autonomous Feedback Mechanism module. Utilizing the generative capabilities of large
language models, similar questions are generated to resolve the uncertainty in label determination.
The third case illustrates a situation where the test-taker is overly confident, leading to a testing
error. The test-taker’s response is too brief, so the TestAgent asks for further elaboration. This helps
reduce hasty responses, enhances logical consistency, and increases testing stability. The fourth case
demonstrates how guesses are handled. When the Anomaly Management module detects that the
test-taker’s response is likely a guess, similar questions are asked again. This reduces the impact of
random guessing.

LLM Response : Hello! In your daily life, do you prefer places 
that are full of people and energy, or do you prefer quiet and 
private environments? Could you share your preference?

User Response : I prefer quiet environments; crowds and noise 
make me anxious. Being alone gives me more time to think and 
recharge my energy. While socializing is nice occasionally, I still 
find solitude more comfortable.

LLM Response : I see. In your spare time, do you enjoy visiting 
art museums and looking at various works of art? Can you 
share your interest with me?

LLM Response : Hello! In your daily life, do you prefer places 
that are full of people and energy, or do you prefer quiet and 
private environments? Could you share your preference?

User Response :Sometimes I enjoy quiet environments, but 
occasionally I find lively gatherings quite interesting. Being alone 
helps me relax, yet in crowds, I can also discover some intriguing 
things. Each has its own benefits, I suppose..

LLM Response : Do you prefer to spend your leisure time in a 
quiet environment, contemplating alone, or do you enjoy 
participating in lively activities with friends? Which situation 
makes you feel more comfortable and relaxed?

User Response : I would still prefer to participate in lively activities 
with friends. There is always a special energy in crowded places, 
and sharing joy and laughter with friends can make me feel relaxed 
and energized. 

User Response :Quiet

LLM Response : Thank you for mentioning "quiet." Could you 
further elaborate on why you lean towards quiet environments? 
For instance, what positive impacts do you think a quiet setting 
has on your thinking, relaxation, or other aspects?

LLM Response : Hello! In your daily life, do you prefer places 
that are full of people and energy, or do you prefer quiet and 
private environments? Could you share your preference?

General situation

Label blurred

Overconfidence 

Logical mess

LLM Response : Let's consider a simple geometry problem. In a 
right triangle, the lengths of the two legs are 6 and 8. Can you 
tell me how to calculate the length of the hypotenuse?

User Response : First, add the lengths of the two legs: 6 + 8 = 14. 
Then, divide 14 by 2 to get 7. The hypotenuse is the square root of 
7, multiplied by 2, resulting in 10.

LLM Response : I see you trying to answer, let's clarify the 
process a bit. To help you better understand, let's work on 
another similar problem. Given another right triangle with the 
lengths of the two legs as 9 and 12, could you try to calculate the 
length of the hypotenuse?

User Response : I'm sorry, I don't know how to solve this problem.

Figure 5: Examples showcasing case studies of TestAgent in different scenarios. It showcases the
general case and the handling of anomalies in scenarios involving label blurred, overconfidence,
logical mess.
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Thus, the TestAgent processes natural language responses using text semantic analysis, summarizes
these responses for the question selection algorithm, and then presents the next question, ensuring
smooth interaction between the test-taker and the TestAgent. After several rounds of such interac-
tions, the TestAgent generates a diagnosis report based on its engagement with the test-taker. A
detailed example of this diagnosis report can be found in the appendix. Through this process, the
TestAgent breaks the limitations of traditional testing methods.

3.6 QUALITATIVE ANALYSIS

TestAgent has powerful functionality. In order to better compare TestAgent’s capabilities, we list
several benchmarks for qualitative comparison. Computerized Adaptive Testing is a form of test-
ing that adjusts the difficulty of questions based on the real-time performance of test takers, effec-
tively improving test efficiency and accuracy. Multistage Testing is a staged test where each stage
selects questions of different difficulty based on the test taker’s previous performance. Interview
is an interactive test form that evaluates the abilities, knowledge, and adaptability of test takers
through face-to-face communication. Self-Assessment is a test form that allows test takers to as-
sess themselves according to specific standards, emphasizing self-reflection and self-improvement.
Simulation-based Assessment assesses test takers’ performance and abilities in real-life situations
through virtual scenarios or tasks. Table 2 shows the comparison. It can be seen that TestAgent has
achieved in all aspects of evaluation.

Benchmark
Low

Cost?
Interaction

Fluent?
No human

Involvement?
High Time
Efficiency?

Convenient
to expand?

High
Credibility?

High
Engagement?

Paper-Pencil Test ✓ ✗ ✓ ✗ ✓ ✗ ✗

Computerized Adaptive Testing ✓ ✗ ✓ ✓ ✓ ✓ ✗

Mutistage Testing ✓ ✗ ✗ ✓ ✗ ✓ ✗

Interview ✗ ✓ ✗ ✓ ✗ ✓ ✓
Self-Assessment ✓ ✗ ✓ ✗ ✓ ✗ ✗

Simulation-Based Assessment ✗ ✓ ✗ ✓ ✗ ✓ ✓
TestAgent ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Comparison of Testing Methods Across Multiple Dimensions. The benchmark’s testing
methods may encounter in human daily tests. We design evaluation metrics to assess the functional
correctness of test execution.

3.7 MULTIDIMENSIONAL EVALUATION

There are significant differences in design philosophy, execution, and user experience between
traditional psychological tests and tests based on TestAgent. Evaluating which method is supe-
rior often varies due to personal preferences, testing purposes, and specific application scenarios.

TestAgent Tradition
2

3

4

5

Accuracy

TestAgent Tradition
2

3

4

5

Fluency

TestAgent Tradition
2

3

4

5

Speed

TestAgent Tradition
2

3

4

5

Interaction

Figure 6: Displayed below are box plots
comparing TestAgent with traditional
testing across four dimensions.

Therefore, we have adopted a more objective and compre-
hensive approach to assess the advantages of our innova-
tive method. For this purpose, we carefully recruited 50
volunteers from different age groups, professional back-
grounds, and educational levels to participate in this eval-
uation activity. These volunteers experienced the differ-
ences between our new method and the traditional MBTI
testing method. Our goal is to conduct a comprehen-
sive and detailed comparative evaluation of the two meth-
ods based on four core dimensions: ”accuracy,” ”natu-
ral language fluency,” ”interaction experience,” and ”test
speed.” Volunteers were divided into two groups, each un-
dergoing a different test first and then the other. After
completing the tests, volunteers rated each dimension on
a scale of 1 to 5 based on their experience.

Figure 6 displays the results, showing that the experience
in natural language fluency, interaction experience, and
test speed significantly surpassed traditional testing meth-
ods. This is because we conducted the tests entirely in
a conversational format, enhancing user experience, and
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combined with CAT technology to expedite the testing process. Through the real feedback and ob-
jective ratings of 50 volunteers, our new method has demonstrated advantages in ”accuracy,” ”natural
language fluency,” ”interaction experience,” and ”test speed.” This outcome not only validates the
feasibility and effectiveness of our innovative method but also provides new ideas and directions for
the future development of the field of psychological testing.

3.8 FURTHER STUDY

Challenges In comparison to traditional testing, TestAgent is a conversational test based on a large
language model. However, responses from large language models can exhibit fluctuations and even
errors. Therefore, we conducted robustness testing to record instances of fluctuations and errors. We
randomly sampled 50 interaction records in cases of failure, manually annotated and categorized
their failure modes. The results are shown in Table 3: Primarily, there were some hallucination
issues in the responses and summaries of answers (34%). Secondly, we also found instances of false
negatives when using large model-based indicators, i.e., correct predictions that were misjudged
as incorrect, but the proportion was relatively small (12%). In some cases, there were additional
redundant conversational sentences generated in the summaries and responses to questions(26%).
Additionally, at times, the model deviated from the role of the testing expert as specified in the
prompts, assuming other identities for conversation, which is not in line with test guidelines(28%).
These issues will be gradually addressed in future work.

Table 3: The error modes observed in random samples, the failure modes of TestAgent analyzed by
humans, and their corresponding percentages.

Error Type Definition %

Hallucination Produce incorrect and nonexistent options 34%
False Negative Analysis of results with incorrect positive and negative analysis 12%
Redundant answers The question posed contains additional elements or deviates from the original question. 26%
Inappropriate impersonation Not testing according to the given role, saying things that do not match the test identity 28%

4 CONCLUSION

In this paper, we proposed an innovative conversational testing method that combined Large Lan-
guage Models (LLMs) with Adaptive Testing technology, enhancing the flexibility and accuracy of
traditional testing approaches. By introducing an LLM as a testing expert, we are able to dynam-
ically adjust test content through multiple rounds of dialogues, thereby improving user experience
and the precision of test results. Experimental results demonstrate that this method excels in as-
sessments of psychology, abilities, and personality traits, effectively shortening testing time and
enhancing the interpretability of diagnosis reports. In the future, we will introduce multimodal sys-
tems that utilize speech, images, and other modalities to assist large language models in testing
can enhance the dimensions of testing. The TestAgent system, through its generated dialogues and
personalized question selection, not only boosts testing efficiency but also offers fresh insights and
directions for the future of psychological testing.

IMPACT STATEMENT

In large language models combined with adaptive testing, different test takers may be recommended
different questions, raising concerns about fairness. Our paper focuses on proposing a novel testing
method, while fairness is another independent research area (Zhang et al., 2024), and thus is beyond
the scope of our discussion.
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A RELATED WORK

Adaptive Testing typically includes two modules: the cognitive diagnosis model and the question
selection algorithm. Below is an introduction to these two components.

Adaptive Testing (1) Cognitive Diagnosis Models. It is built on the foundation of psychomet-
ric theory, gaining popularity in assessments to provide more personalized feedback on students’
latent abilities. It assumes that a test taker’s ability remains constant throughout the testing pro-
cess (Chang, 2015), allowing estimation of ability based on prior responses to questions using
gradient-based optimization. The most classic form is the Item Response Theory (IRT) model
(Ackerman et al., 2003). The simplest one-parameter logistic (1PL) model is represented as:
p(correct response to question j) = sigmoid(θ − bj), where bj ∈ R represents the characteris-
tics of each question, and θ ∈ R is the student’s ability to be estimated. Other representative models
include Matrix Factorization (MF) (Koren et al., 2009; Toscher & Jahrer, 2010), Deterministic In-
puts, Noisy-And gate (DINA) (De La Torre, 2009; Von Davier, 2014), and recently proposed Neural
Cognitive Diagnosis Models (Cheng et al., 2019; Gao et al., 2022; Wang et al., 2023a; Shen et al.,
2024) that leverage neural networks to model interactions between students and questions. In the
case of specific CDM and response data, Maximum Likelihood Estimation (binary cross-entropy
loss) is typically used to estimate θ for subsequent selection algorithm use.

(2) Selection Algorithms. The selection algorithm is a core component in achieving adaptivity in
adaptive testing, aiming to estimate student abilities accurately with the fewest testing steps re-
quired. Traditional algorithms are based on uncertainty or information metrics such as the well-
known Fisher information (FSI) (Lord, 2012)and other methods (Chang & Ying, 1996; Rudner,
2002; van der Linden, 1998; Veerkamp & Berger, 1997; Kang et al., 2017; Ma et al., 2023). In
recent years, some data-driven methods have been proposed (Nurakhmetov, 2019; Zhuang et al.,
2022; Ghosh & Lan, 2021; Wang et al., 2023b; Li et al., 2023; Yu et al., 2023)while some heuristic
methods have also been proposed (Veldkamp & Verschoor, 2019; Gilavert & Freire, 2022; Feng
et al., 2023; Mujtaba & Mahapatra, 2021; Yu et al., 2024) . However, most of these approaches are
based on traditional paper tests, which lack the advantages of conducting assessments through a test
booklet and may not achieve comprehensive testing.

Large Language Model and AI Agents In recent years, there have been many breakthroughs in
various directions involving large language models. The emergence of agents based on large lan-
guage models has garnered increasing attention from researchers as a burgeoning field. Numerous
applications have been developed in specific domains and tasks, showcasing the powerful and ver-
satile capabilities of these agents (Yao et al., 2022; Wang et al., 2022; Kim et al., 2024; Chan et al.,
2023). Through domain fine-tuning, external knowledge bases, and more, a personal agent capable
of assisting users in daily tasks can be created. With the enhancement of agent capabilities, human
involvement becomes increasingly important to effectively guide and oversee the agents’ actions,
ensuring they align with human needs and objectives. Human-agent interaction agents can serve as
guides for humans and have been applied in education (Kalvakurthi et al., 2023; Swan et al., 2023),
health (Ali et al., 2020; Yang et al., 2024), and other fields (Gao et al., 2023; Schick et al., 2022),
demonstrating the diverse capabilities of large language models. Large language models can also
be used in a manner that establishes an equal partnership with humans, such as being empathetic
communicators (Hasan et al., 2023; Liu-Thompkins et al., 2022) or functioning as human-level par-
ticipants (Bakhtin et al., 2023; , FAIR).The measurement agent proposed in this paper is a universal
measurement agent. By utilizing the corresponding dataset, one can obtain the corresponding agent
using the method proposed in this paper, enhancing the effectiveness of human measurements across
various domains and offering a novel measurement approach based on natural language dialogue in
the testing field.

B IMPLEMENTATION DETAILS

This section serves as supplementary details for the previous experiments.

B.1 ABILITY CLASSIFIER TRAINING

Cognitive diagnostic models provide a vector θ as the diagnostic result; however, this is not in-
terpretable. For the vector θ, the MBTI test includes four dimensions: (I/E), (N/S), (T/F), and
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(J/P). Therefore, we train a classifier where the input is the diagnostic model’s θ, and the output
is a four-dimensional vector corresponding to these four dimensions, thus transforming the ab-
stract diagnostic number into features. In specific terms, for a personality classification data la-
beled as Ylabel, cognitive diagnostics provide a diagnostic result θ based on response to questions.
Let f be a mapping function that can map personality classifications to a 0-1 vector, for example,
f(′ENFJ ′) = [1, 0, 1, 0]. Let g be the classifier we aim to train. The loss function can then be
written as L(θ) = CrossEntropyLoss(g(θ), f(Ylabel)). With this, the classifier training can be
implemented.

B.2 FINE-TUNE DETAILS

In this study, the fine-tuning process is based on the pre-trained ChatGLM model, aiming to cus-
tomize the model for the specific personality diagnostic task to improve its performance in handling
MBTI personality analysis tasks. To achieve this, we perform fine-tuning using LoRA (Low-Rank
Adaptation) technology through the torchkeras framework.

Data Processing: The fine-tuning data is divided into three parts: instructions, character labels,
and expert reports. The instruction is a simple prompt, formatted as follows: ”Based on personality
test classification and relevant dialogues, analyze the character traits and provide the corresponding
diagnostic report.”

Character labels include the labels obtained through the ability classifier training mentioned earlier.

Expert reports are the personality diagnostic reports provided by the official MBTI website for the
16 personality types.

Each piece of fine-tuning data consists of an input formed by combining the instruction and the
character label, and the output is the diagnostic report suggestion, which corresponds to the expert’s
diagnostic report. Thus, the construction of fine-tuning data is completed.

Parameter Settings: In this work, several hyperparameters are carefully chosen for fine-tuning the
model. The maximum sequence length is set to 1024 tokens, ensuring that input sequences longer
than this are truncated.

For the Low-Rank Adaptation (LoRA) method, three key parameters are used: the rank r is set to
8, which controls the size of the low-rank matrices; the scaling factor α is set to 32, which adjusts
the influence of the low-rank adaptation; and the dropout rate p is set to 0.1, which applies a 10%
dropout during training to help with regularization.

Training-related hyperparameters include a batch size of 8, a learning rate of 2 × 10−6, and a total
of 10 training epochs. Additionally, early stopping is applied with a patience of 2 epochs, meaning
that training stops if the validation loss does not improve over 3 consecutive epochs.

Finally, mixed precision training is employed with a setting of ’fp16’ to improve computational
efficiency, and when saving the model, the maximum shard size is set to 1GB, ensuring that the
model is saved in manageable chunks for later use.

Dataset Information

Here we provide specific information for each dataset, along with concrete examples.The table dis-
plays the number of students, the number of questions, and the count of interaction responses for
each dataset. Below are some specific question contents.

DATASETS Number of Testers Number of Questions Number of Questions

MBTI 1000 60 60000
SCL 500 90 45000
MATH 1940 1485 61860

MBTI: Your personal working style leans more towards spontaneous bursts of energy rather than
systematic and sustained effort.
SCL: Feeling a decrease in energy and a slowing down of activities.
MATH: For a cylinder with a base radius of 1 and a height of 1, the surface area of the cylinder is.
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B.3 MULTIDIMENSIONAL EVALUATION DETAILS

The multidimensional evaluation experiment involves 50 volunteers from different fields, who score
on four dimensions: accuracy, fluency, speed, and interaction. Accuracy refers to how well the vol-
unteer’s results align with their actual situation and whether the final diagnostic recommendations
are accurate. Fluency represents the smoothness of the test. Speed refers to the time taken to com-
plete the test. Interaction measures the level of interactivity in the testing experience. However,
human labeling can be subject to bias, which is inevitable. To reduce this bias, we have selected
volunteers of varying gender, age, and educational background for the test.

Type Category Percentage
Gender Male 62%

Female 38%
Age 10-18 years old 10%

18-30 years old 46%
30-40 years old 20%
40-60 years old 18%
60-70 years old 6%

Education Level College degree 46%
No college degree 54%

Table 4: Demographic Information of Volunteers

We performed significance testing. We conducted hypothesis testing across different dimensions to
eliminate bias in human annotations. The specific data is as follows:

GENDER: INDEPENDENT SAMPLES T-TEST

Null Hypothesis (H0): There is no significant difference in the mean scores between males and
females on a given dimension. That is, the mean scores of males and females are equal. Alternative
Hypothesis (H1): There is a significant difference in the mean scores between males and females
on the given dimension. That is, the mean scores of males and females are different. Since the

Dimension t-statistic p-value
Accuracy -1.34 0.1805
Fluency -1.49 0.1372
Speed 1.05 0.2945

Experience 0.95 0.3416

Table 5: Independent Samples t-test for Gender

p-values are greater than 0.05, we cannot reject the null hypothesis.

AGE: ONE-WAY ANOVA

Null Hypothesis (H0): There is no significant difference in the mean scores between the different
age groups. That is, the scores of different age groups are similar. Alternative Hypothesis (H1): At
least one age group has a mean score that is different from the others. That is, there is a significant
difference in scores between age groups. Since the p-values are greater than 0.05, we cannot reject

Dimension F-statistic p-value
Accuracy 1.0218 0.3971
Fluency 2.1243 0.079
Speed 2.0162 0.0936

Experience 1.3827 0.2413

Table 6: One-Way ANOVA for Age Groups

the null hypothesis.
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EDUCATION LEVEL: INDEPENDENT SAMPLES T-TEST

Null Hypothesis (H0): There is no significant difference in the mean scores between testers who
have attended college and those who have not on a given dimension. Alternative Hypothesis (H1):
There is a significant difference in the mean scores between testers who have attended college and
those who have not on the given dimension. Since the p-values are greater than 0.05, we cannot

Dimension t-statistic p-value
Accuracy -1.29 0.1984
Fluency 1.06 0.2867
Speed 1.26 0.2084

Experience -0.29 0.7653

Table 7: Independent Samples t-test for Education Level

reject the null hypothesis.

TEST COMPARISON: PAIRED T-TEST

We use the paired t-test to compare the score differences between traditional tests and TestAgent
across each dimension. Null Hypothesis (H0): There is no significant difference between tra-
ditional tests and TestAgent on a given dimension. Alternative Hypothesis (H1): TestAgent out-
performs traditional tests on the given dimension. Statistically, if the p-value is less than 0.05, the
novel test on this dimension is considered significantly better than the traditional test. Since the p-

Dimension t-statistic p-value
Accuracy -2.56 0.01188
Fluency -6.53 2.80e-09
Speed -6.09 2.11e-08

Experience -6.46 3.87e-09

Table 8: Paired t-test for Traditional Test vs. TestAgent

values are all less than 0.05, we reject the null hypothesis and conclude that TestAgent outperforms
traditional tests across all dimensions.

C ADDITIONAL EXPERIMENTS AND ANALYSIS

C.1 SIMULATION OF ABILITY ESTIMATION

In the main text, we only provided the test results of the SCL dataset. Here, we present the test
results of two other datasets. The test results are as follows:
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Figure 7: The three pictures above show the performance in the MBTI dataset, and below is the
performance in the MATH dataset.

D DATA GENERATION ALGORITHM

Algorithm 1 Data Generation
Require: Questions Q, GPT4 G, Test dimension M , Initialize parameters θ, β

1: for each Epoch do
The large language model G plays different roles to answer questions Q, generating responses
Y Combine the answers with the questions to obtain the data {(q1, y1), . . . , (qn, yn)} where
qi ∈ Q and yi ∈ [0,M ]

2: end for
3: while not converged do
4: Randomly sample a mini-batch of students with training set Γ and validation set Ω
5: Train using the training set Γ and loss function L(q, y; θ), where L(q, y; θ) =

Ey∼p(y|q)[− log pθ(y|q)]
6: Validate using the validation set Ω; stop training when converged
7: end while
8: Obtain the complete labeled data {(q1, β1), . . . , (qn, βn)}

E PROMPT

This includes the segments mentioned in the main text. These segments include tag judgment, Auto
Feedback Mechanism, Anomaly management, problem transformation, and other methods. The
table below specifically displays the inputs and prompt of each method

F EXAMPLES

This section provides some examples of failures during testing and offers a sample diagnosis report.
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Table 9: An example prompt of Auto Feedkback Mechanism

Input User Response,Question
Situation Auto Feedkback Mechanism
Prompt You will receive two inputs: the test-taker’s response and the current

question. Your task is to evaluate whether the response is relevant, log-
ically sound, and easy to judge. Return the following results: - If the
response is completely unrelated to the question, return ‘False‘. - If the
response is difficult to judge, such as the test-taker saying, ’I don’t know
what to answer,’ return ‘False‘. - If the response is logically inconsis-
tent, also return ‘False‘. Else return ’True’ If you return False, generate
a new question that is similar to the original question but potentially
easier or more specific. Otherwise, proceed with further analysis and
provide appropriate feedback.” Examples:
1. Unrelated responses (Return ‘False‘): - Question: ‘”What is New-
ton’s third law?”‘ - Response: ‘”I like eating pizza.”‘ 2. Difficult-to-
judge responses (Return ‘False‘): - Question: ‘”Explain the process of
cell division.”‘ - Response: ‘”I don’t know how to explain it.”‘ 3. Log-
ically inconsistent responses (Return ‘False‘): - Question: ‘”How do
you prove a triangle is equilateral?”‘ - Response: ‘”Because it has three
angles, it must be equilateral.”‘ - Question: ‘”What is the relationship
between current and voltage?”‘
Question Generation: Original Question: ”Do you prefer being in a
lively environment or being alone?” Generated Similar Question: ”Do
you enjoy socializing with others or spending time by yourself?” Ques-
tion :[Question] Response:[User Response]

Table 10: An example prompt of Anomaly management

Input User Response,Question
Situation Anomaly management
Prompt Task: If it is detected that the respondent is unwilling or reluctant to

answer, break the original question into smaller, easier-to-answer ques-
tions, and gradually guide the respondent to provide more information.
Else return ’True’ to go next stage. If the respondent’s answer is too
brief, provide a short prompt to encourage further elaboration.
Example 1: Avoiding the question
Current question: ”Do you prefer spending time alone or socializing
with others?” Respondent: ”Well, it depends.” Guidance: ”Could you
share a specific example? For instance, when you’re working, do you
prefer working alone or collaborating with a team?” Example 2: An-
swer is too brief
Current question: ”When making decisions, do you rely more on logic
or intuition?” Respondent: ”Logic.” Guidance: ”Could you elaborate?
In what situations do you tend to rely more on logic rather than intu-
ition?” Question:[Question]. User Response: [User Response]

F.1 FAILURE

F.2 DIAGNOSIS REPORT
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Table 11: How to play a role and get the prompt for generating data

Input Question Bank , The simulated role
Situation Question Response Generation
Prompt Please act as a [role] and respond to each question using the following

rating scale. Your response should reflect your attitude or opinion to-
wards the question, using the rating scale to indicate your answer:
0: Completely Disagree 1: Strongly Disagree 2: Mildly Disagree 3:
Neutral 4: Mildly Agree 5: Strongly Agree 6: Completely Agree Re-
quirements:
Understand the Question: Carefully read each question and provide a
response based on your understanding and hypothetical background as
[role].
Select an Appropriate Rating: Choose the most appropriate rating (from
0 to 6) based on the content of the question. Example:
Question: Do you believe that teamwork is more effective than working
alone in urgent situations?
Response: 5 (Strongly Agree) — In urgent situations, teamwork brings
together more skills and resources, which helps to resolve issues more
quickly. Question: Do you think frequent communication at work re-
duces productivity?
Response: 1 (Strongly Disagree) — Although leaders should consider
team members’ opinions, final decisions should be based on overall in-
terests and goals. Question: Do you believe that employee autonomy
fosters innovation within a company?
Response: 6 (Completely Agree) — Providing employees with auton-
omy can stimulate creativity and innovative thinking, contributing to the
development of new solutions and products. Question List:
Please provide your ratings and brief explanations for each question
based on the role of [role]. Give me an answer. The format is as follows:
’Question 1’: ’Answer’: 0, ’Response’: ’I feel very tired from making
new friends, so I don’t want to make new friends’.
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Table 12: Transforming Rigid Questions

Input The rigid question selected from the question bank
Situation After selecting the questions, LLM transforms them
Prompt You are an expert in conversation generation, specializing in transform-

ing mechanical questions into lively, natural dialogue forms. Your task
is to make these questions more attractive and interactive to spark the
interest and positive response of the other party. Please refer to the
following examples and transform each mechanical question into a nat-
ural conversational style.Mechanical Question: ”Do you like visiting art
museums?” Natural Dialogue Form: ”Hi! In your leisure time, do you
choose to visit art museums to appreciate various artworks? Or do you
have any particular exhibitions or artists that you especially like?”
Mechanical Question: ”Do you enjoy teamwork?” Natural Dialogue
Form: ”Hello! When you are at work, do you find it more enjoyable
to collaborate with a team? Or do you prefer completing tasks on your
own? I’m curious to know what specific appeal or challenges teamwork
holds for you.”
Mechanical Question: ”Do you like traveling?” Natural Dialogue Form:
”Hey! If given the opportunity, where do you most enjoy traveling to?
Is there a place that has left a lasting impression on you, or experiences
during your travels that excitep you the most?”
Ensure the tone of the conversation is friendly and engaging. Make the
questions interactive to encourage sharing more details. Use a casual,
natural language to make the conversation more approachable. Please
follow these guidelines to transform each mechanical question into a
natural, lively conversation form to facilitate pleasant communication.
Only return the natural dialogue form. Mechanical Question:[Do you
like dog] , Output:
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Table 13: The prompt of summarizing the tester’s response.

Input The tester’s response.”
Situation The summary by LLM after the tester’s response.
Prompt You are a professional psychological test analyst, tasked with analyzing

the degree of agreement of the respondents to each question based on
their answers. The scoring ranges from 0 to 6, where 0 stands for ”com-
pletely disagree” and 6 stands for ”completely agree”.
Scoring Guide:
0: Completely Disagree 1: Strongly Disagree 2: Mildly Disagree 3:
Neutral 4: Mildly Agree 5: Strongly Agree 6: Completely Agree
Please provide the corresponding agreement ratings and brief explana-
tions based on the respondents’ answers below:
Example Questions and Responses:
Question: ”You prefer lively places over being by yourself.” Respon-
dent’s answer: ”Yes, being alone is too boring.” Rating: 6 Explanation:
The respondent expresses a strong preference for lively environments.
The answer clearly indicates their liking for lively places with almost
no hesitation or reservation.
Question: ”You feel more motivated when working in a team.” Respon-
dent’s answer: ”I think teamwork can be more effective at times, but
not always.” Rating: 3 Explanation: The respondent’s answer shows a
neutral stance. While acknowledging the effectiveness of teamwork at
times, there is no explicit strong preference or opposition.
Question: ”You tend to rely on logic rather than emotions when making
decisions.” Respondent’s answer: ”I usually consider facts and logic,
but emotions can also influence me at times.” Rating: 4 Explanation:
The respondent tends to rely on logic but also acknowledges the influ-
ence of emotions on decision-making, hence the rating falls within the
mildly agree range.
Ensure that your ratings and explanations accurately reflect the degree
of agreement for each answer and provide specific reasons to support
your ratings.

Table 14: Example of Hallucination

Error Type Hallucination
Question Do you often make new friends?
Example Response: -1 (Completely Disagree) — I generally find social interac-

tions draining and prefer spending time alone or with a small group of
close friends.

Example As someone who is more introverted, I find social interactions can
be quite exhausting. While I value meaningful connections and enjoy
spending time with close friends, I often prefer solitude or low-key so-
cial settings over large gatherings or frequent social activities.
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Table 15: Example of False Nagetive

Error Type False Nagetive
Question You’re definitely not the artistic type.
Example Response: 6 (Completely Agree) — I really enjoy solitary activities like

art creation. I appreciate art pieces and engage in art-related activities.
I also like sharing these experiences with others.

Table 16: Example of redundant answers

Error Type Redundant answers
Question Even a small mistake can make you doubt your overall abilities and

level of knowledge.
Example Response: None (Error) : The responder acknowledges a lack of con-

fidence and mentions that even small mistakes make them doubt their
abilities and level of knowledge, causing significant distress.

Table 17: Example of inappropriate impersonation

Error Type Inappropriate impersonation
Question You avoid taking on a leadership role in group settings.
Example TestAgent:”LLM Response to Tester: Hi! When you’re in a group set-

ting, do you find yourself stepping back and letting others take the lead,
or do you sometimes feel inspired to jump in and guide the team? I’m
curious—what’s your take on being in a leadership role? Is there some-
thing specific that draws you to it or makes you shy away from it?”
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Table 18: A example of an MBTI test diagnosis report.
Type of Test MBTI
Diagnosis Report Diagnosis Report for Alice

Name: Alice Gender: Female Age: 18 years old MBTI Type: INTJ (Introversion, Intuition, Thinking,
Judging)
Personality Type Overview INTJ Overview:
Alice’s MBTI type is INTJ, often referred to as the ”Architect” or ”Mastermind.” INTJs are known for their
strategic and analytical mindset, which is reflected in their preference for Intuition (N) over Sensing (S),
and Thinking (T) over Feeling (F). This personality type is characterized by the following traits:
Introversion (I): Alice is likely to be reserved and prefers spending time alone or with a small group of close
friends. She recharges by reflecting internally rather than engaging in large social gatherings. Intuition (N):
Alice focuses on the big picture and future possibilities rather than immediate details. She tends to think
abstractly and is interested in exploring complex concepts and ideas. Thinking (T): Alice values logic
and objectivity. She makes decisions based on rational analysis and objective criteria rather than personal
feelings. Judging (J): Alice prefers structure and organization. She likes to plan ahead and is often decisive,
seeking closure rather than leaving things open-ended. Main Characteristics:
Strategic Thinking: Alice is adept at seeing long-term implications and developing comprehensive plans to
achieve her goals. Independence: She values her autonomy and often works best on her own or in leadership
roles where she can direct her own efforts. High Standards: Alice has a strong drive for excellence and
tends to set high standards for herself and others. Reserved: She may come across as reserved or distant,
particularly in unfamiliar social settings. Career and Job Advice Career Development Advice:
Leadership Roles: Alice’s strategic mindset and ability to see the big picture make her well-suited for
leadership positions. Careers in management, strategic planning, or executive roles could be fulfilling. An-
alytical Fields: Fields that require complex problem-solving and strategic thinking, such as engineering,
finance, or research, may align well with Alice’s strengths. Autonomy and Innovation: Jobs that offer inde-
pendence and opportunities to innovate will cater to Alice’s preference for working alone and developing
new solutions. Career Growth: Alice should seek roles that allow her to work on long-term projects and
provide opportunities for personal growth and development. Influence on Job Performance:
Alice’s ability to strategize and plan effectively can lead to high job performance, especially in roles that
value long-term vision and critical thinking. Her high standards might lead to perfectionism; thus, it’s
important for her to balance her expectations with practical constraints. Career Satisfaction:
Alice will likely find satisfaction in roles that challenge her intellectually and offer opportunities for ad-
vancement. She may need to ensure she has sufficient time for personal reflection and avoid burnout from
overcommitment. Interpersonal Relationship Advice Strengths:
Insightful: Alice’s ability to analyze situations and understand complex dynamics can be beneficial in both
personal and professional relationships. Reliable: Her structured approach and high standards can make her
a dependable partner or colleague. Challenges:
Communication: Alice’s reserved nature and focus on logic may sometimes make it difficult for her to
connect emotionally with others. She might need to work on expressing her feelings and being more open.
Perfectionism: Her high standards might lead to frustration if others do not meet her expectations or if she
feels things are not progressing as planned. Improvement Suggestions:
Active Listening: Alice should practice active listening to better understand others’ perspectives and build
stronger connections. Empathy: Developing empathy and showing appreciation for others’ feelings and
contributions can improve her relationships. Personal Growth Advice Leveraging Strengths:
Goal Setting: Alice should continue setting clear, long-term goals and devising strategic plans to achieve
them. Learning Opportunities: Pursuing continuous learning and self-improvement will keep her intellec-
tually stimulated and satisfied. Areas for Development:
Emotional Intelligence: Alice could benefit from enhancing her emotional intelligence, including under-
standing and managing her own emotions and those of others. Flexibility: While structure is valuable,
being open to adapting her plans and expectations can help Alice navigate unforeseen challenges and foster
better collaboration. Common Misconceptions Misconceptions to Clarify:
Misconception: INTJs are often seen as cold or distant.
Clarification: While Alice may appear reserved, this doesn’t mean she lacks warmth or compassion. It’s
more about her preference for processing emotions internally. Misconception: INTJs are rigid and inflexi-
ble.
Clarification: Although Alice values structure, she is also capable of adapting her plans when necessary,
especially if it aligns with her strategic goals. Misconception: INTJs are uninterested in others’ opinions.
Clarification: While Alice values logical analysis, she can still be open to feedback and differing perspec-
tives if they contribute to her understanding of a situation.
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