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Abstract

Given two sets of elements (such as cell types and drug compounds), researchers
typically only have access to a limited subset of their interactions. The task of causal
imputation involves using this subset to predict unobserved interactions. Squires
et al. (2022) have proposed two estimators for this task based on the synthetic
interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend
their work and introduce a novel causal imputation estimator, generalized synthetic
interventions (GSI). We prove the identifiability of this estimator for data generated
from a more complex latent factor model. On synthetic and real data we show
empirically that it recovers or outperforms their estimators.

1 Introduction

The problem of determining the result of untested interactions from tested interactions is pervasive in
science. Evaluating every possible interaction is often either prohibitively expensive (e.g. examining
the effect of thousands of compounds on dozens of different cell types) or unethical (e.g. testing med-
ications on new patient groups). While there are many approaches to this matrix completion problem
(increasingly important in unsupervised machine learning), methods that exploit some assumption on
the causal structure of these interactions are deemed to be performing causal imputation Squires et al.
(2022).

Recently, Squires et al. (2022) have proposed a set of estimators for this particular task. At a high
level, the idea of their estimators is a generalization of the idea of synthetic controls Abadie and
Gardeazabal (2003). Consider the example of predicting the result of an untested cell type/drug
compound pair. Using existing interaction data for this cell type (which they call a context), they write
the effect of drugs on this cell type as a linear combination of these drugs on other cell types. Applying
this linear combination on the drug of interest yields an estimate of the untested combination. This
estimator can also be applied in the other direction (i.e. on the drug compounds, which they call
actions). By assuming the data follows a particular low-rank structure given by a linear factor model,
they show their estimators are identifiable.

One potential issue with their estimator is the way they treat the various output dimensions of the
interaction. For example, they study the widely-used CMAP (Connectivity Map) dataset, which
contain an incomplete collection of interactions between 76 cell types and over 20,000 chemical
compounds Subramanian et al. (2017). For each available interaction, 978 gene expression levels
are measured using the L1000 assay (i.e. there is a high-dimensional output for each interaction).
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Figure 1: Two-dimensional view of the incomplete matrix and the subsets used by SI-A/SI-C/GSI.
The two last columns are missing either donor elements or the target and are thus not included in the
train set.

Problematically, their estimators use the same linear combination for each dimension of the output:
the prediction for the expression of every gene is made using the same linear combination of cell-type
expression data. A different linear combination for each dimension of the output could potentially be
more appropriate.

Our contributions: Building on the work of Squires et al. (2022), we propose an extended latent
factor model that accounts for the inherent differences between output dimensions. Using this more
complex model, we modify their estimator and propose GSI as a novel, more general estimator. We
prove the identifiability of this estimator under slightly modified assumptions. Finally, we compare
the performance of these estimators on synthetic data and CMAP, showing the efficacy of our method.

2 Problem Formulation

We begin by defining the causal inference problem of interest. Let A = {a1, . . . , an}, B =
{b1, . . . , bm} denote the two sets whose interactions we are interested in. We denote by M ∈
Rn×m×d the incomplete tensor of interaction outputs. Its entries mij correspond to either the
d-dimensional result of the interaction of ai and bj or ⋆ if this interaction is not available.

Additionally, we denote by A(j) the set {ai : mij ̸= ⋆} and B(i) the set {bi : mij ̸= ⋆}. Concretely,
A(i) is the set of all elements of A for which the interaction with bj is available (this set is referred to
as the donor set by Squires et al. (2022)) and similarly for B(i). Our goal is to infer a missing entry
mij of M by leveraging the non-missing entries of the tensor.

2.1 Latent factor models

In Squires et al. (2022), the data in M is assumed to come from the following latent factor model:
mij = Uivj (1)

where Ui ∈ Rd×r,vj ∈ Rr. This model allows each context to have different latent factors for each
output dimension. However, for each action, there is only a single set of latent factors. There are
many practical cases where this assumption is unlikely to hold. For example, consider the effect
of various drugs on human proteins. It is likely that the latent factors of the drug affecting binding
affinity will be different from those affecting activation strength, reaction speed, etc. To have a single
set of latent factors for all these dimensions, the set of latent factors would have to be large which
violates the assumptions Squires et al. (2022) need to show identifiability.

To remedy this issue, we propose allowing greater flexibility for the latent factors of the actions with
the following linear factor model:

mij = ⟨Ui,Vj⟩ where Ui and Vj ∈ Rd×r (2)
i.e. each dimension of mij is equal to the inner product between the corresponding latent factors of the
context and the action for that dimension. Interestingly, as a result of this change, the context/actions

2



are now symmetric in the latent factor model: there is nothing differentiating a context from an
action.

This more general formulation says that we have 2 sets of objects A,B and some operation that
makes them interact.2 Instead, in Squires et al. (2022) it is necessary to assign A and B to either
contexts or actions (perhaps based on what seems more semantically appropriate). This assignment is
sometimes arbitrary and creates undesired asymmetries (for example, when A = B).

3 Related Work

We review the literature related to synthetic controls (SC), synthetic interventions (SI) and synthetic
interventions - action (SI-A). These estimators progressively extend the idea of estimating potential
outcomes to more general cases.

3.1 Synthetic Controls (SC) (Abadie and Gardeazabal (2003))

SC aims to estimate the impact of an intervention on a specific target unit. It does this by constructing
a synthetic control unit from a combination of units that were not intervened upon. The non-intervened
units are combined using weights to create a synthetic control unit which is as similar as possible to
the target unit. The impact of the intervention can then be estimated by comparing the actual outcome
in the target unit with the outcome predicted by the synthetic control.

3.2 Synthetic Interventions (SI) (Agarwal et al. (2023)

One limitation of SC is that it can only estimate the impact of the intervention on the intervened-upon
units, and not on non-intervened-upon units. SI fixes this by allowing us to predict the impact of any
intervention on any unit. SI assumes a pre-intervention period where all units are observed without
interventions, followed by a post-intervention period where each unit is intervened upon by one
intervention. Given this structure, for a specific intervention d and unit n, SI learns a linear model from
the pre-intervention data of the units which were intervened upon by d to the pre-intervention data of
n. The effect of d on n can then be predicted using this same model applied to the post-intervention
data of the units which were intervened upon by d.

3.3 Synthetic Interventions - Actions (SI-A) (Squires et al. (2022)

One major limitation with SI is its assumption about the structure of the problem. SI-A extends SI
to more general observation patterns by allowing potentially multiple interventions. It does this by
building the linear model along the intervention dimension instead of along the unit dimension, which
allows the possibility for multiple interventions to happen to one unit.

3.4 Matrix Completion (Agarwal et al. (2021)

Matrix completion is the problem of reconstructing a ground-truth matrix from a sparse set of noisy
observations. The entries of the matrix are usually assumed to be "missing completely at random"
(MCAR). Agarwal et al. (2021) introduce the Synthetic Nearest Neighbours (SNN) estimator to
perform matrix completion and prove the finite-sample consistency and asymptotic normality of their
estimator.

4 Method

We now describe our estimator GSI as a generalization of the estimators SI-A/SI-C proposed
by Squires et al. (2022). To simplify notation, for any tensor x, we denote by x(d) the tensor
that results from indexing the tensor’s last index at the d-th position (e.g. M(d) is a n×m matrix
corresponding to the d-th dimension of M).

For a target, mij, we first identify the donor set A(j) of all elements of A for which the interaction
with bj is available. Then, letting A = A(j) ∪ {ai}, we define B :=

⋂
ai∈A B(i) as the set of all

2The changes we make to the notation of Squires et al. (2022) is to illustrate this increase in generality.
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Figure 2: Visualization of the full process for estimating GSI(ai, bj). Steps 3 and 4 are performed
for each dimension d of the output independently.

elements of B for which we have observed interactions between both the donor set and the target
ai. Using the data from B, we will learn a mapping from donors to target. This mapping will then
be used to generalize from the donor interactions and infer the target value. To do so, we define the
following 4 sets:

Xtrain := MA(b),B , ytrain := Ma,B , Xtest := MA(b),b , ytest := Ma,b (3)

where indexing by a set is a slight abuse of notation that corresponds to selecting all the indices that
match those of the set (see Figure 2. for an illustration). Here, Xtrain and ytrain are order three tensors.
To learn a linear mapping from Xtrain to ytrain, SI-A/SI-C learn the mapping on the flattened tensors.
As a result, they only learn a single set of weights which they apply to all dimensions.

Instead, in GSI, we propose learning a set of weights per dimension by simply treating each dimension
independently (i.e. each slice of the Xtrain and ytrain becomes a regular linear regression problem).
Once this mapping is learned, we apply it to each dimension of Xtest and get our estimate GSI(ai, bj)
of ytest. Concretely, for each dimension d:

β(d) = X
(d)†
train y

(d)
train (4)

GSI(ai, bj)(d) = ŷ
(d)
test := X

(d)
testβ

(d) (5)

where X
(d)†
train denotes the pseudoinverse given by (XTX)−1XT . The entire procedure is illustrated

in Figure 2. Our estimator can also be constructed in the opposite direction 3, obtaining the donor
elements from B(i) and finding the elements of A for which we have data for both the B(i) and bj .
We denote this alternative estimator as GSI(bj , ai).

In practice, a latent factor model in between (1) and (2) is likely to hold (e.g. latent factors are shared
between some actions and not others). In such cases, particularly if the data is noisy, imposing some
sparsity constraints on the learned β(d) is helpful. To do so, instead of (4), we can instead solve the
following optimization problem:

β = argmin
β

1

|B|

d∑
i=1

||X(d)
trainβ

(d) − y
(d)
train||

2
2 + λ

∑
i<j<d

||β(i) − β(j)||2 (6)

where λ is a hyperparameter and the regularization term is akin to group lasso regularization,
encouraging groups of parameters to be shared between dimensions. We denote by GSIλ(ai, bj)
the estimator obtained when replacing (4) with the above (with GSI0(ai, bj) corresponding to the
original formulation). To solve (6), we use gradient descent with a decreasing step size, as per
Nesterov (2004).

Finally, as mentioned in Squires et al. (2022), there is a tradeoff between the size of the donor set and
the training examples (the more donor items in A you require, the less likely it is that an element in
B will have observed interactions with all the donor items). To address this tradeoff, we add an extra
hyperparameter k. Instead of selecting A(j) as donor set, we greedily add actions (based on |B(i)|)
until there are less than k elements in B.

3This change is analogous to the difference between SI-A and SI-C.
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5 Theory

We first detail the assumptions we make to show identifiability. These consist of slight modifications
to those of Squires et al. (2022) but we believe they are similarly reasonable.
Assumption 1. The entries of the tensor M satisfy the multi-dimensional latent factor model defined
above where mij = ⟨Ui,Vj⟩ with Ui and Vj ∈ Rd×r.
Assumption 2. For any target (i, j), we have that the latent factors Ui,Vj can be written as a linear
combination of the latent factors of the corresponding donor sets:

∃λa : Ui =
∑

a∈A(i)

λaUa (7)

∃γb : Vj =
∑

b∈B(j)

γbVb (8)

The left equation in (8) is equivalent to Assumption 1 of Squires et al. (2022). On the other hand, the
right equation in (8) is similar to Assumption 2 in Squires et al. (2022). Notably, it links the elements
of B through their latent factors instead of assuming that the link exists at the level of the entries of
M (and thus its rowspan). In practice, it is likely that only Assumption 1. is required since, if r is
sufficiently small relative to the size of the donor sets, then it is highly likely that Assumption 2 is
satisfied as well.
Theorem 1. Suppose M ∈ RN×M×D satisfies the high-dimensional latent factor model (Assumption
1) with latent factors that satisfy Assumption 2. Then, if ŷ(d)

test is derived as above, we have that
∀d : ŷ

(d)
test = m

(d)
ij .

Proof. Our proof is inspired by the one of Squires et al. (2022) but adapted to GSI and with more
explicit steps.

Let d ∈ {1, . . . , D}. As in Squires et al. (2022), we first show that the entries of M can be linked
through (7). Specifically, we have that ∀j:

m
(d)
aj = ⟨U(d)

a ,V
(d)
j ⟩ using (2)

=

〈 ∑
i∈A(b)

λiU
(d)
i ,V

(d)
j

〉
using (7)

=
∑

i∈A(b)

λi

〈
U

(d)
i ,V

(d)
j

〉
=

∑
i∈A(b)

λim
(d)
ij .

A symmetric argument shows that, ∀i:

m
(d)
ib =

∑
j∈B(a)

γjm
(d)
ij .

Thus, there exists some set of coefficients β (namely the λi) such that X(d)
trainβ = y

(d)
train. The linear

regression in (4) will recover a β that satisfies the above.

Note that if the linear regression recovered βi = λi,∀i, we would be done. However, we cannot
guarantee that this solution is unique, only that

m
(d)
aj =

∑
i∈A(b)

βim
(d)
ij (9)

when regressing over the elements of A or that

m
(d)
ib =

∑
j∈B(a)

βjm
(d)
ij (10)
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when regressing over the elements of B. Using the above, we can now rewrite our estimator as:

ŷ
(d)
test = X

(d)
testβ

(d)

=
∑

i∈A(b)

m
(d)
ib β

(d)
i expanding the matrix multiplication

=
∑

i∈A(b)

〈
U

(d)
i ,

∑
j∈B(a)

γjV
(d)
j

〉
β
(d)
i using (2), (8)

=
∑

j∈B(a)

γj
∑

i∈A(b)

β
(d)
i

〈
U

(d)
i ,V

(d)
j

〉
=

∑
j∈B(a)

γj
∑

i∈A(b)

β
(d)
i m

(d)
ij using (2)

=
∑

j∈B(a)

γjm
(d)
aj using (9)

= m
(d)
ab using (8)

A symmetric proof exists for regressing over B. Essentially, for these estimators to work, two forms
of generalization are needed. One first needs to be able to write the target ai as a linear combination
of the A(b). This ensures that it is possible to generalize from the known elements of A to the target.
Then, we need to be able to write the target bj as a linear combination of the B(a). This ensures that
the linear combination we learn on Xtrain will generalize to Xtest.

6 Experiments & Results

We compare the proposed set of estimators against the baseline estimators used in Squires et al.
(2022), namely: Mean over Actions, Mean over Contexts, Two Way Mean, Fixed Action Effect in
addition to SI-A and SI-C.

6.1 Synthetic data

We first evaluate and compare all approaches on multi-dimensional synthetic data generated by the
data generating processes described by the latent factor models (1) and (2). respectively. For each,
we set |A| to 50, |B| to 100 and randomly sample values for their latent factors. We use d = 3 as the
number of dimension of the data (showing the benefits of GSI even for low dimensional data). Table 1
shows the Mean Absolute Errors (MAE) of all the estimators w.r.t to the ground truth, including the
newly proposed GSI.

Table 1: Comparisons of MAE different estimators across singular dimensional and multi-dimensional
latent factor models

Original Latent Factor Model Multidimensional Latent Factor Model

Estimator Mean Standard Deviation Mean Standard Deviation

Mean over Actions 1.74 1.36 3.35 2.60
Mean over Contexts 1.79 1.46 3.36 2.60

Two Way Mean 1.74 1.38 3.28 2.55
Fixed Action Effect 2.85 2.37 4.32 3.23

SI-A 0.81 0.87 2.32 5.60
SI-C 0.08 0.32 2.82 2.42

GSI(a,b) 0.81 0.87 1.86 1.93
GSI(b,a) 0.08 0.32 0.09 0.42
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Figure 3: Distribution of NRMSEs for various estimators on the test set (n = 578). The bold values
correspond to the median NRMSE for each estimator.

As expected, on the original latent factor model, the GSI variants perform exactly like SI-A and
SI-C respectively, since both the two newly proposed estimators are equivalent to SI-A and SI-C
for the original latent factor model . However, in multidimensional cases, the two variants of GSI
significantly outperform SI-A and SI-C respectively, with GSI(b, a) performing the best of all
with a mean MAE of 0.08.

6.2 CMAP

We then test our estimator on data from the CMAP dataset, following the methodology of Squires et al.
(2022). The CMAP dataset is an incomplete tensor of the interactions of 71 cell types and >20,000
chemical compounds, with each interaction containing the measurement of 978 gene transcription
levels. We select two random subsets of 100 compounds (including the "control" compound), the
first as validation set and the second as test set.

Without loss of generality, we set A as the set of compounds and B as the set of 71 cell types, yielding
two incomplete tensors of size 100×71×978. Here, as we test the regularized version of GSI whose
solution is no longer invariant to linear transformations, we standardize each feature dimension to
have mean 0 and standard deviation 1.

For each available interaction, we mask the value and then apply the estimators tested above,
comparing their estimate with the ground truth using the normalized root mean-square error (NRMSE)
used by Squires et al. (2022). We use hyperparameters selected through grid search on the validation
set for SI-A (over the values of k) and GSIλ(a, b) (over the values of k, λ). For both, we find that
k = 1 works best (i.e. keep adding compounds until you are left with a single cell type to learn from)
and λ values between 0.1 and 2 performed similarly (with λ = 1 performing slightly better). No
regularization (λ = 0) or high regularization (λ > 5) performed noticeably worse.

We plot the results on the test set in Figure 3. We find that SI-A and GSI1(a, b) outperform all
baselines with median NRMSEs of 0.424 and 0.396 respectively. We then perform a Wilcoxon signed-
rank test (Wilcoxon (1992)) using paired NRMSEs for the two estimators. For the one-sided test
that the NRMSEs of GSI1(a, b) are lower than those of SI-A we obtain a p-value of 4.71× 10−9,
indicating a statistically significant improvement from our estimator.

While GSI does require tuning an additional hyperparameter and is computationally more expensive
than SI-A, it is computationally tractable and still orders of magnitude faster than other methods (e.g.
MissForest (Stekhoven and Bühlmann (2012)) which, as per (Squires et al. (2022)) can take hours
per prediction in this context).

7 Conclusion

In this work, we build upon the work of Squires et al. (2022) to develop GSI, a new causal imputation
estimators. We prove the identifiability of this estimator under mild assumptions and show that it
outperform baselines on synthetic and CMAP data, thus demonstrating its flexibility and effectiveness.
Potential future avenues of research include extending these estimators to the nonlinear case, as well
as testing it on larger and more diverse datasets.
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