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Abstract

Data scarcity in low-resource languages can001
be addressed with word-to-word translations002
from labeled task data in high-resource lan-003
guages using bilingual lexicons. However, bilin-004
gual lexicons often have limited lexical over-005
lap with task data, which results in poor trans-006
lation coverage and lexicon utilization. We007
propose lexicon-conditioned data generation008
(LexC-Gen), a method that generates low-009
resource-language classification task data at010
scale. Specifically, LexC-Gen first uses high-011
resource-language words from bilingual lexi-012
cons to generate lexicon-compatible task data,013
and then it translates them into low-resource014
languages with bilingual lexicons via word015
translation. Across 17 extremely low-resource016
languages, LexC-Gen generated data is com-017
petitive with expert-translated gold data, and018
yields on average 5.6 and 8.9 points improve-019
ment over existing lexicon-based word transla-020
tion methods on sentiment analysis and topic021
classification tasks respectively. Through abla-022
tion study, we show that conditioning on bilin-023
gual lexicons is the key component of LexC-024
Gen. LexC-Gen serves as a potential solution025
to close the performance gap between open-026
source multilingual models such as BLOOMZ027
and state-of-the-art commercial models like028
GPT-4o on low-resource-language tasks.029

1 Introduction030

Extremely low-resource languages do not have any031

labeled data and are thereby considered the “Left-032

Behinds” in NLP language technology develop-033

ment (Joshi et al., 2020; Mabokela et al., 2022;034

Robinson et al., 2023). Nonetheless, many of them035

have bilingual lexicons resources, which are usu-036

ally the first product of language documentation037

(Meara, 1993; Schreuder and Weltens, 1993; Kroll038

and Ma, 2017). Bilingual lexicons are dictionaries039

that map words from one language to their trans-040

lations in another languages, and they cover more041
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(a) Intuition of LexC-Gen.
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(b) Lexical overlap between
lexicons and data.

Figure 1: We observe data-lexicon mismatch (i.e., low
lexical overlap) between existing task data and bilingual
lexicons (Figure 1a). LexC-Gen addresses the issue
by generating data using words from lexicons so the
data will have more words translated (i.e., higher word
translation coverage) and higher lexicon utilization rate
(Figure 1b).

than 5000 languages around the world (Wang et al., 042

2022; Koto et al., 2024). 043

Previous work uses bilingual lexicons to directly 044

translate labeled data from high-resource languages 045

to low-resource languages through word-for-word 046

substitution (Wang et al., 2022; Jones et al., 2023, 047

inter alia). However, we argue that it is ineffective 048

because of data-lexicon mismatch. Often, the words 049

in the existing task data—readily available labeled 050

data in high-resource languages for a target task, 051

e.g., sentiment analysis or topic classification— 052

have low lexical overlap with the words in the task- 053

agnostic bilingual lexicons, as shown in Figure 1. 054

This mismatch not only results in many words re- 055

main untranslated, but also causes entries in the 056

bilingual lexicon, which possibly contain useful se- 057

mantic information for downstream tasks, missing 058

from the translated dataset. 059

In this work, we introduce LexC-Gen,1 which 060

is a lexicon-conditioned data generation method, to 061

1pronounced as lek-see-jen
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…
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Figure 2: LexC-Gen Given a bilingual lexicon and the set of classes for a classification task, (1) we randomly
sample the class label and a set of words from bilingual lexicon, for as many instances we desire to generate.
(2) We use these pairs to build the prompts to query CTG-trained LLM (Figure 3) and generate the task data in
high-resource language. (3) Then, we train a task classifier on existing task data to filter generated data and ensure
input-label consistency. (4) After filtering, we apply word-to-word translation with the bilingual lexicon following
prior work (Wang et al., 2022). Finally we get the synthetic task data for the target low-resource language, which is
used to finetune task classifier.

mitigate data-lexicon mismatch through synthetic062

data generation. Specifically, we train LLMs to gen-063

erate task data using words from bilingual lexicons,064

so the data have a higher lexical overlap with the065

lexicons. This results in better word translation cov-066

erage and lexicon utilization rate (Figure 1). We067

also propose a quality-control method that checks068

for input-label consistency to filter out poor-quality069

generated data.070

We evaluated LexC-Gen across 17 extremely071

low-resource languages on sentiment analysis and072

topic classification tasks. We found that finetuning073

classifiers on LexC-Gen generated data improves074

on average 5.6 and 8.9 points in accuracy respec-075

tively over word-translated existing training data076

(Wang et al., 2022). Surprisingly, finetuning on077

LexC-Gen word-translated data even matches the078

performance of finetuning on gold data in the target079

language curated by native speakers or professional080

translators. We show that lexicon-conditioning is081

the critical success factor of LexC-Gen.082

Finally, we discuss how LexC-Gen helps close083

the performance gap of open-source LLMs in low-084

resource-language tasks. We show that instead of085

zero-shot or few-shot prompting, it is better to use086

them to generate training data with LexC-Gen.087

The data generation process is cost-effective, and088

the permissive nature of the models allows gen-089

erated data to be made open access for further090

research and building systems for extremely low-091

resource languages, which benefits multilingual092

NLP progress for these data-scarce languages.093

Our contributions can be summarized as follows:094

1. We present LexC-Gen, a method that condi-095

tions LLMs on bilingual lexicons to generate096

low-resource-language task data to address097

data-lexicon mismatch problem.098

2. We demonstrate that training on word-099

translated task data can match training on gold 100

data for extremely low-resource-languages. 101

3. Our extensive ablation study on LexC-Gen 102

shows that simply scaling up generated task 103

data is insufficient. Lexicon-conditioning is 104

necessary to maximize lexical overlap be- 105

tween task data and bilingual lexicons. 106

2 Related Work 107

Generating task data with LLMs LLM- 108

powered data generation is a recent promising area 109

of research that enables cost-effective collection of 110

diverse task data with minimal human labor (Hon- 111

ovich et al., 2023; Radharapu et al., 2023; Wang 112

et al., 2023; Nayak et al., 2023; Yehudai et al., 113

2024). Nonetheless, this line of work has been un- 114

derexplored in a multilingual setting. Whitehouse 115

et al. (2023) demonstrated that GPT-4’s generated 116

multilingual training data for commonsense rea- 117

soning task in mid-/high-resource languages can 118

improve cross-lingual performance. However, lan- 119

guage coverage of LLMs and translation models 120

are significantly smaller than lexicons (Wang et al., 121

2022; Bapna et al., 2022; Koto et al., 2024). In- 122

stead, we use LLMs to generate task data that max- 123

imize lexical overlap with bilingual lexicons for 124

translations, and we show that our synthetic data 125

can improve NLU semantic task performance in 126

extremely low-resource languages. 127

Lexicon-based cross-lingual data augmentation 128

Lexicon-based augmentation creates data for low- 129

resource languages by swapping words in high- 130

resource-language data with their dictionary word 131

translations in bilingual lexicons. This is useful 132

for low-resource languages that cannot be read- 133

ily translated by translation models/APIs with lim- 134

ited language coverage. Prior work has demon- 135
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strated their effectiveness across a wide range of136

NLP tasks, such as machine translation (Streiter137

and Iomdin, 2000; Ramesh and Sankaranarayanan,138

2018; Thompson et al., 2019; Kumar et al., 2022;139

Jones et al., 2023), sequence labeling (Scherrer140

and Sagot, 2013; Mayhew et al., 2017; Wang et al.,141

2022), sentiment classification (Rasooli et al., 2018;142

Ali et al., 2021; Mohammed and Prasad, 2023),143

and topic classification (Song et al., 2019). How-144

ever, many lexicon-based data augmentation strate-145

gies for semantic tasks in low-resource languages146

rely on domain-specific lexicons (Das and Bandy-147

opadhyay, 2010; Buechel et al., 2016; Ali et al.,148

2021; Mohammed and Prasad, 2023; Koto et al.,149

2024), and performance-wise they still fall short150

of gold training data collected in the target low-151

resource language (Rasooli et al., 2018; Koto et al.,152

2024). Our method LexC-Gen not only works153

with domain-agnostic bilingual lexicons, but also154

demonstrates competitive performance with gold155

training data on sentiment analysis and topic classi-156

fication tasks across many low-resource languages.157

3 LexC-Gen158

We aim to generate data for classification tasks159

in a low-resource language L, given access to (1)160

labeled task data TH with C classes in a high-161

resource language H , (2) a bilingual lexicon DL
H162

that maps words from H to L, and (3) an LLM163

supporting H .164

LexC-Gen uses these inputs to generate labeled165

task data T̃L in low-resource language. Our key166

idea is to prompt the LLM to generate task data us-167

ing high-resource-language words from bilingual168

lexicons in order to create task data that have a169

higher lexical overlap with those bilingual lexicons170

(Figure 1a), and thus can be more effectively trans-171

lated into L. In the following, we describe the steps172

to obtain T̃L. For readability, we refer to DL
H as D.173

3.1 Sample Lexicon Words and Class Label174

First, we randomly sample a set WH of high-175

resource-language words wH from D and a class176

label c. This corresponds to step (1) in Figure 2.177

The goal is to prompt our LLM to generate task178

inputs of class c using as many words from WH as179

possible.180

3.2 Generate Data with LLM Trained with181

Controlled-Text Generation (CTG)182

Next, we prompt an LLM to generate high-183

resource-language task data T̃H|D conditioned on184

We are creating a 
dataset for English 
sentiment analysis 

using a provided set 
of words [‘joyfully’, 
'lethargic'] Positive 

sentence:

Existing Task Data

Prompt template
Controlled-Text Generation (CTG)

Sampled Words and Classes

Sentence: I'm joyfully unwinding after a lethargic day 
Label: Positive

I'm joyfully 
unwinding after a 

lethargic day

CTG-trained 
LLM

Sentence: I'm joyfully unwinding after a lethargic day 
Label: Positive

Sentence: I'm joyfully unwinding after a lethargic day 
Label: Positive

(['joyfully', 'lethargic'], Positive)(['joyfully', 'lethargic'], Positive)([‘joyfully’, ‘'lethargic'], Positive)

Figure 3: Controlled-Text Generation (CTG) training.
This figure shows the pipeline for the LLM finetuning
for CTG. We construct the training data starting from the
existing labeled task data TH . From each instance tH ,
we sample without replacement a set of words WH and
associate it to class c. This information is plugged into
the prompt template, and it is used to finetune an LLM
that generates sentences conditioned on c and WH .

the bilingual lexicon. This is step (2) in Figure 2. 185

However, because open-access instruction-tuned 186

LLMs such as BLOOMZ (Muennighoff et al., 187

2023) are not finetuned for this purpose, we carry 188

out controlled text generation (CTG) training of 189

LLMs (Zhang et al., 2023; Zhou et al., 2023b) to 190

create CTG-trained LLM. 191

CTG Training We construct CTG training data 192

from existing task data TH . Each instance tH ∈ TH 193

consists of a pair of text xH and task label c. We 194

randomly sample a variable number of word tokens 195

wH uniformly at random without repetition from 196

xH to create WH . Then, we format the CTG train- 197

ing data using the prompt template in Figure 3, so 198

that the LLM learns to generate task input x̃H|c,WH
199

conditioned on c and WH . 200

CTG training is data-efficient. We found that 201

generating only a single CTG training example per 202

each tH ∈ TH is already sufficient to instruction- 203

tune the model. Specifically, our CTG training data 204

consists of 500 and 701 instances for our sentiment 205

analysis and topic classification tasks respectively. 206

Task Data Generation After CTG training, we 207

prompt the LLM reusing the template in Figure 3, 208

but now we use lexicon words with random task 209

class labels from Section 3.1. We can now generate 210

synthetic high-resource-language task data T̃H|D 211

at scale conditioned on bilingual lexicons. 212
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Methods #data ace ban bbc bjn bug mad min Avg

Zero-shot/Few-shot prompting

BLOOMZ-7.1.B 0 47.0 50.5 43.0 49.5 38.5 48.0 52.5 47.0
Aya-101-13B 0 58.8 59.2 48.1 82.8 35.9 48.4 77.9 58.7
Aya-101-13B (few-shot) 5 60.8 62.6 53.0 83.9 45.7 53.9 79.9 62.8
GPT-4o 0 75.3 81.3 65.8 83.8 51.5 74.0 85.3 73.8

Cross-lingual zero-shot

Existing Task Data (en) 500 56.8 60.2 51.1 63.3 45.8 56.0 57.7 55.8

Word translation

Existing Task Data (T) 500 63.6 58.3 55.8 66.4 57.7 59.3 71.6 61.8
+ Existing Task Data (en) 1000 67.8 62.4 60.4 66.3 56.7 62.4 75.1 64.4
+ Label Distillation 1000 58.8 52.9 45.7 58.8 43.9 56.8 68.7 55.1(Wang et al., 2022)

LexC-Gen-1K (T) ∼ 370 42.4 47.1 49.6 53.9 43.5 42.3 44.3 46.2
+ Existing Task Data (en) ∼ 870 67.8 62.4 60.4 66.3 56.7 62.4 75.1 64.4

LexC-Gen-10K (T) ∼ 3.7K 66.6 67.1 61.0 72.3 57.3 61.2 70.7 65.2
+ Existing Task Data (en) ∼ 4.2K 68.2 67.0 62.8 71.4 58.5 57.9 70.3 65.2

LexC-Gen-100K (T) ∼ 37K 70.0 71.5 65.1 73.4 63.7 69.9 76.5 70.0
+ Existing Task Data (en) ∼ 38K 70.7 71.4 67.8 74.6 65.8 69.9 76.9 71.0

Gold Translations 500 72.1 71.6 68.6 72.8 68.1 66.7 77.3 71.0

Table 1: Sentiment analysis accuracy on 7 Indonesian extremely low-resource local languages in the NusaX dataset
(Winata et al., 2023b). (T) indicates word-translated data, and (en) refers to the existing task data in English. The
terms -1K, -10K and -100K refer to the size of training data generated by LexC-Gen before filtering. We bold the
best result and underline the second-best. We report results averaged over 5 seeds of classifier finetuning.

3.3 Input-Label Consistency Filter213

To ensure high-quality data, we apply an input-214

label consistency filter after data generation to re-215

duce training noise from labeling errors. For in-216

stance, CTG-trained LLM may generate a sentence217

with negative sentiment even though the specified218

task label c is positive sentiment in the input prompt219

(Figure 3). Therefore, we finetune a small classi-220

fier mBERT on the same existing task data TH and221

use it to relabel T̃H|L. Then, we filter out all data222

instances where the classifier’s prediction does not223

match the generated input-label pairs.224

At this point (step (3) in Figure 2), we have high-225

quality lexicon-compatible task data in language226

H that allows for better word-to-word translation227

into language L by using D.228

3.4 Word-to-Word Translation into229

Low-Resource Languages230

Finally, we carry out word-to-word translation fol-231

lowing the procedures in prior work (Wang et al.,232

2022; Jones et al., 2023). We use D to substitute the233

high-resource-language words wH ∈ T̃H|D with234

their low-resource-language word translation wL,235

thus creating T̃L. We randomly sample wL if wH236

has multiple possible translations and keep wH as237

is in T̃H|D if there is no translation for it in D. After238

we obtain the synthetic cross-lingual task data T̃L,239

we use it as training data to finetune a classifier for 240

the target task in the low-resource-language. 241

4 Experimental Setup 242

We compare LexC-Gen against baselines and gold 243

translations on sentiment analysis and topic clas- 244

sification tasks. We describe the task datasets in 245

Section 4.1, how we instantiate LexC-Gen in Sec- 246

tion 4.2, and our baselines as well as gold transla- 247

tions in Section 4.3. 248

4.1 Tasks and Datasets 249

We evaluate LexC-Gen on sentiment analysis and 250

topic classification tasks across 17 low-resource 251

languages. The task datasets contain gold training 252

data that are curated with translations by native 253

speakers or professional translators. Detailed infor- 254

mation for the tasks and languages can be found in 255

Appendix A. 256

Sentiment analysis We use the NusaX sentiment 257

analysis dataset (Winata et al., 2023b) developed 258

for Indonesian low-resource languages. The dataset 259

has 3 sentiment labels: positive, neutral, and neg- 260

ative. In our setup, we evaluate LexC-Gen on 7 261

languages that also exist in the Gatitos lexicon. 262

Topic classification SIB-200 (Adelani et al., 263

2023) is a topic classification benchmark that cov- 264
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Methods #data bam ewe fij grn lin lus sag tso tum twi Avg

Zero-shot/Few-shot prompting

BLOOMZ-7.1.B 0 41.7 34.3 35.3 41.7 42.2 38.7 36.8 41.7 40.2 41.7 39.4
Aya-101-13B 0 36.8 39.1 50.9 48.8 52.4 43.7 40.2 54.1 50.0 37.7 45.4
Aya-101-13B (few-shot) 5 42.2 46.1 60.4 55.1 59.7 48.2 49.4 56.2 57.5 43.8 51.9
GPT-4o 0 58.1 56.2 63.9 75.8 69.4 65.3 57.8 57.2 59.8 64.8 67.7

Cross-lingual zero-shot

Existing Task Data (en) 701 29.6 32.5 42.5 57.7 42.0 49.9 37.6 39.6 40.3 40.7 41.2

Word translation

Existing Task Data (T) 701 40.2 41.4 49.1 63.9 52.3 61.8 46.7 39.1 42.5 54.9 49.2
+ Existing Task Data (en) 1402 42.5 41.4 47.8 67.2 55.9 63.4 47.9 40.0 43.4 56.4 50.6
+ Label Distillation 1402 37.5 33.1 41.9 59.0 37.8 56.5 38.5 42.1 41.2 35.0 42.3(Wang et al., 2022)

LexC-Gen-1K (T) ∼ 220 22.9 37.8 40.2 50.1 45.0 52.5 40.9 29.2 37.6 42.1 39.8
+ Existing Task Data (en) ∼ 920 36.5 41.2 45.3 68.3 53.0 61.9 49.1 37.1 39.0 53.7 48.5

LexC-Gen-10K (T) ∼ 2.2K 38.5 40.5 51.4 67.1 57.6 64.1 55.3 41.1 42.6 55.1 51.3
+ Existing Task Data (en) ∼ 2.9K 33.8 42.6 51.3 67.1 59.3 64.8 53.8 43.8 43.2 54.3 51.4

LexC-Gen-100K (T) ∼ 22K 44.0 51.1 70.2 74.3 67.4 69.3 61.0 42.2 50.9 64.9 59.5
+ Existing Task Data (en) ∼ 23K 46.2 47.6 68.0 73.0 67.2 68.9 57.0 42.6 53.0 65.8 58.9

Gold Translations 701 54.9 53.0 61.7 71.2 64.6 68.4 60.7 55.9 63.4 62.2 61.6

Table 2: Topic classification accuracy for 10 worst-performing languages in the SIB-200 dataset (Adelani et al.,
2023). We follow the schema defined in Table 1.

ers 200 languages and 7 topic categories. We eval-265

uate LexC-Gen on the 10 worst-performing lan-266

guages that we found to have the largest perfor-267

mance gap between gold translations and the word268

translation baseline (Wang et al., 2022).269

4.2 LexC-Gen Instantiation270

LLM We use the BLOOMZ model (Muen-271

nighoff et al., 2023) with 7.1 billion parameters272

(BLOOMZ-7.1B) as our initial instruction-tuned273

LLM. This allows us to compare performance be-274

tween its zero-shot prompting and its usage with275

LexC-Gen.276

Bilingual lexicons We choose Gatitos bilingual277

lexicons (Jones et al., 2023) to translate the gen-278

erated English data into low-resource languages.279

Gatitos includes English entries such as frequent280

English words, numbers, and time, and they are281

translated into 170 extremely low-resource lan-282

guages. Gatitos have been manually reviewed, so283

its entries have higher quality than other bilingual284

lexicons such as Panlex (Kamholz et al., 2014).285

Generated task data We first use LexC-Gen to286

generate English datasets with 1K, 10K, and 100K287

instances, to which we refer as LexC-Gen-1K,288

-10K, and -100K, before filtering out mismatched289

input-label pairs. The effective data size after fil-290

tering with input-label consistency checking is be-291

tween 20% and 40% of the generated task data.292

Then, we use Gatitos lexicons (Jones et al., 2023) 293

to translate them into low-resource languages. 294

Training and data generation with LLM We 295

provide further training and inference details of 296

LexC-Gen in Appendix B. We also showcase ex- 297

amples of the generated data in Appendix D. 298

Task finetuning We finetune pretrained 299

mBERT2 with classification heads on LexC- 300

Gen generated low-resource-language data for 301

sentiment analysis and topic classification tasks 302

evaluation (further details are in Appendix C). 303

4.3 Baselines 304

We compare LexC-Gen against (1) zero-shot 305

prompting with BLOOMZ-7.1B, Aya-101-13B 306

(Üstün et al., 2024) and GPT-4o;3 (2) few-shot 307

prompting with Aya-101-13B using five in-context 308

learning examples; (3) cross-lingual zero-shot 309

transfer where mBERT is finetuned on En- 310

glish training data and evaluated on low-resource- 311

language test data; (4) word translation (Wang 312

et al., 2022) where mBERT is finetuned on the data 313

that are translated from the English training data via 314

word-substitution with the same bilingual lexicon 315

Gatitos (Jones et al., 2023); (5) gold translations 316

where mBERT is finetuned on expert-translated 317

2bert-base-multilingual-cased model.
3We used the latest version gpt-4o-2024-05-13. See Ap-

pendix E for more details.
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task training data in the target low-resource lan-318

guage (see Section 4.1)319

We implement the word translation baseline320

by referring to the state-of-the-art method (Wang321

et al., 2022). Here, we do not adapt the pretrained322

mBERT before task finetuning for fair compari-323

son. We follow the protocol by Wang et al. (2022)324

and report the result where we also combine word-325

translated data with English training data (“+ Ex-326

isting Task Data (en)”) and perform label distilla-327

tion—a technique that uses a classifier (mBERT in328

our case) trained on existing task data to relabel the329

translated data.330

5 Results and Analysis331

5.1 LexC-Gen improves over open-source332

LLMs and direct word translation333

LexC-Gen outperforms prompting open-source334

models, such as BLOOMZ and Aya-101, and word335

translation baselines in both sentiment analysis (Ta-336

ble 1) and topic classification tasks (Table 2). In337

sentiment analysis, finetuning classifiers on the338

mixture of LexC-Gen-100K (100K generated data339

instances that are filtered down to around 37K in-340

stances) and existing English task data improves341

over the cross-lingual zero-shot baseline by 15.2342

percentage points and word translation baseline343

by 6.6 points. In topic classification, LexC-Gen-344

100K yields improvement of 18.3 points over the345

cross-lingual zero-shot baseline and 8.9 points over346

the word translation baseline. The accuracy gain347

from adding existing English data reduces from348

LexC-Gen-1K to LexC-Gen-100K because the349

English data are dominated by the substantially350

larger size of generated data (see more discussion351

in Appendix K).352

While the commercially available model GPT-4o353

yields the best performance—even surpassing clas-354

sifiers trained on gold data—it is unclear whether355

the evaluation data has been seen during training.356

Furthermore, the release of GPT-4o is subsequent357

to our work (Anonymous). In contrast, our evalua-358

tion tasks of NusaX and SIB-200 are not part of the359

training of open-source models BLOOMZ-7.1B360

and Aya-101-13B (Workshop et al., 2022; Singh361

et al., 2024; Üstün et al., 2024). Our results reveal362

the performance gap in these open-source models.363

For instance, zero-shot prompting with BLOOMZ-364

7.1B is the weakest baseline (Table 1 and Table 2).365

However, using it in LexC-Gen to generate task366

data (i.e., LexC-Gen-100K) can achieve state-of-367

the-art performance. Our results suggest that, for 368

applying open-source LLMs to low-resource- 369

language tasks, it is best to leverage them to 370

generate training data at scale instead of prompt- 371

ing them directly in zero-shot or few-shot settings. 372

LexC-Gen-100K improves over baselines be- 373

cause first, it improves the word translation cover- 374

age of data instances (Figure 1b left) so there are 375

fewer undesirable artifacts of untranslated words in 376

high-resource languages. Second, it significantly in- 377

creases the lexicon utilization rate (Figure 1b right 378

and Section 5.4), which allows more low-resource- 379

language words from the lexicon to be present in 380

the task data so the task classifier can associate 381

task labels with the semantic information carried 382

by these words. 383

5.2 LexC-Gen is competitive with gold 384

translations 385

Table 1 and Table 2 show that finetuning classifiers 386

on LexC-Gen-100K generated cross-lingual data 387

is competitive with training on expert-translated 388

data for many low-resource languages. Our find- 389

ings also generalize to larger task classifiers, such 390

as XLMR-base and XLMR-large (Conneau et al., 391

2020) (see Figure 9 in Appendix H). Our result 392

is surprising because LexC-Gen generated data 393

still use English syntax with SVO word order. Yet, 394

LexC-Gen still works for languages with different 395

word orders, such as Balinese (ban) and Mizo (lus) 396

with OSV word order and Toba batak (bbc) with 397

VOS word order. 398

One possible explanation is that solving senti- 399

ment analysis and topic classification tasks relies 400

more on semantic information than syntactic infor- 401

mation. Because of the larger word translation cov- 402

erage and extremely high lexicon utilization rate 403

(Figure 1b), LexC-Gen generated data at scale 404

contain sufficient semantic information in low- 405

resource languages for classifiers to learn the task. 406

Nonetheless, it requires a much larger LexC-Gen 407

dataset to match gold translations performance. 408

LexC-Gen data (after filtering) are around 75× 409

and 30× the size of gold translations as shown in 410

Table 1 and Table 2 for sentiment analysis and topic 411

classification tasks respectively. 412

5.3 Lexicon-conditioning is crucial for strong 413

task performance 414

Figure 4 shows that using words from lexicons to 415

generate task data (i.e., lexicon-conditioning) is 416

necessary for matching gold translations perfor- 417
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mance. Ablating away lexicon-conditioning and418

quality control (“Gen w/o filter”) has the worst419

performance— it even underperforms the word420

translation baseline (Wang et al., 2022) on 500421

existing task data samples for sentiment analy-422

sis. Even with quality control from Section 3.4,423

scaling data generation without lexicon condition-424

ing (“Gen”) still performs worse than LexC-Gen-425

100K. This is due to low lexical overlap between426

the data and bilingual lexicons. “Gen” data have427

poorer lexicon utilization rate, as it only covers428

62.5% of low-resource-language words in the bilin-429

gual lexicon. In contrast, LexC-Gen-100K covers430

92.8% words. We refer our readers to Appendix F431

for further details of our ablation study.432
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Figure 6: Ablation of input-label consistency filter on
LexC-Gen generated data for sentiment analysis.

5.4 Scaling generated data increases lexicon 433

utilization rate 434

Figure 5 shows that scaling up the data genera- 435

tion process improves the utilization rate of bilin- 436

gual lexicons, which is the total proportion of low- 437

resource-language words in bilingual lexicons ap- 438

pearing in the translated dataset, because LexC- 439

Gen uses more words from lexicons to generate 440

task data. We observe that as lexicon utilization rate 441

improves, sentiment analysis accuracy increases. 442

This is because there is more semantic informa- 443

tion for classifiers to learn the downstream tasks in 444

the target language. We also obtain a similar graph 445

with the topic classification task (see Appendix Fig- 446

ure 8). Scaling is enabled by the generative nature 447

of LexC-Gen, as opposed to previous approaches 448

constrained to the quantity of labeled task data in 449

high-resource languages. 450

5.5 Quality control reduces training data size 451

and boosts performance 452

Figure 6 shows that applying input-label consis- 453

tency filter as data quality control not only reduces 454

the size of the generated training data by two-third, 455

which results in 3 times faster finetuning of the 456

task classifier, but also increases the task perfor- 457

mance from 56.2 points (ablation of quality control 458

at 100K generated data) to 70.0 points (37K gener- 459

ated data after quality control filtering), which even 460

matches the performance of finetuning on gold 461

translations. Our findings align with prior work 462

with English data (Zhou et al., 2023a) that shows 463

that optimizing for data quality results in more sig- 464

nificant gains than simply scaling up data quantity. 465

Quality control with a classifier trained on exist- 466

ing task data is effective for LexC-Gen, but not for 467

label distillation in Wang et al.’s (2022) word trans- 468
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lation baseline (Table 1 and Table 2). There are469

two possible reasons. First, label distillation uses470

the classifier trained on high-resource-language471

data to relabel translated data in low-resource lan-472

guages. This cross-lingual transfer may introduce473

errors in the classifier’s predictions, as opposed to474

LexC-Gen’s relabeling in the same high-resource475

language. Second, LexC-Gen offers stricter qual-476

ity control by discarding all instances with mis-477

matched labels between the classifier and LLMs,478

thus improving task performance (see Figure 11 in479

Appendix J).480

6 Discussion481

Application in resource-scarce scenarios482

LexC-Gen addresses the resource-scarce scenar-483

ios faced by extremely low-resource languages that484

lack labeled data. We show that we can leverage485

their existing-yet-scarce lexical resources such as486

Gatitos (Jones et al., 2023), which only contains487

around a few thousand of lexicon entries for488

common words or phrases, to generate labeled489

task data. Furthermore, LexC-Gen is a practical490

solution to data-lexicon mismatch problem, as it491

does not require linguists to build task-specific492

lexicons, such as multilingual sentiment lexicons493

(Chen and Skiena, 2014), or practitioners to collect494

labeled task data in low-resource languages.495

Open-source models Current open-source mod-496

els like BLOOMZ (Muennighoff et al., 2023) and497

Aya-101 (Üstün et al., 2024) fail to close the per-498

formance gap against GPT-4o and gold translation499

baseline. Our work bridges the gap—we show that500

using them to generate training data improves per-501

formance over direct zero-shot or few-shot prompt-502

ing and can match training classifiers on human-503

labeled data. Furthermore, due to the permissive504

nature of the models, their generated data can be505

used for proprietary or public research for broader506

multilingual applications.507

Effectiveness of lexicon-conditioned generation508

We shows that task-agnostic bilingual lexicons like509

Gatitos (Jones et al., 2023) al contain sufficient se-510

mantic information for sentiment analysis and topic511

classification in extremely low-resource languages.512

However, it requires a high degree of lexical over-513

lap between task data and lexicon to include the514

information in the translated data (Figure 1a). We515

also found that lexicon size and quality are impor-516

tant. Using Gatitos lexicons (Jones et al., 2023) for517

LexC-Gen outperforms using Panlex (Kamholz 518

et al., 2014) because the former contains more en- 519

tries and is higher in quality for extremely low- 520

resource languages (see Appendix G). 521

LexC-Gen differs from prior work on lexi- 522

cally constrained text generation (Hokamp and Liu, 523

2017; Post and Vilar, 2018; Hu et al., 2019). We 524

introduce an additional step of CTG training so 525

LLMs can learn to generate natural text that both 526

maximizes lexicon usage and aligns with class la- 527

bels. This step allows LexC-Gen to outperform 528

lexically constrained decoding (see Appendix I). 529

Cost-effectiveness LexC-Gen relies on the 530

CTG-trained LLM that follows the prompt instruc- 531

tion of generating task data using a set of given 532

words. Our CTG training of open-source LLMs 533

only depends on high-resource-language task data, 534

and is independent of low-resource languages and 535

bilingual lexicons. In other words, once an LLM is 536

CTG-trained, researchers can reuse it with differ- 537

ent bilingual lexicons to generate data for various 538

low-resource languages on the same task without re- 539

training. Furthermore, LexC-Gen only takes less 540

than a day to generate 100K data samples on one 541

V100 GPU. 542

Bilingual lexicon induction (BLI) We analyze 543

the generated data and discover that on average 544

34% of the high-resource-language words cannot 545

be found in Gatitos and thus cannot be translated. 546

This leaves room for improvement with BLI to 547

expand the word coverage of bilingual lexicons 548

(Nasution et al., 2016; Irvine and Callison-Burch, 549

2017; Bafna et al., 2024), so that more words can 550

be translated into low-resource languages. Nonethe- 551

less, given that LexC-Gen already matches gold 552

performance, we leave enhancing LexC-Gen with 553

BLI to future work. 554

7 Conclusion 555

We propose LexC-Gen to generate low-resource- 556

language task data by using LLMs to generate 557

lexicon-compatible task data that are better trans- 558

lated into low-resource languages with bilingual 559

lexicons. We show that finetuning on our gener- 560

ated data for sentiment analysis and topic classifi- 561

cation tasks can match gold data that are difficult 562

to collect. Since LexC-Gen improves open-source 563

LLMs on NLP tasks in low-resource languages, we 564

hope our work accelerates NLP language technol- 565

ogy for long-tail languages. 566

8



Limitations567

Word ambiguity In our word-to-word transla-568

tion, we follow the protocol of prior work (Wang569

et al., 2022) and randomly choose a word transla-570

tion if a particular word is mapped to multiple trans-571

lations. In other words, we do not disambiguate572

word translations in low-resource languages be-573

cause the low-resource-language words existing574

in lexicons do not come with linguistic informa-575

tion (such as parts-of-speech tags) or context (such576

as example sentences) that are necessary for word577

sense disambiguation (Navigli, 2009). Therefore,578

our word translations may introduce errors in the579

translated task data. Future work could expand580

the entries in bilingual lexicons to incorporate lin-581

guistic or contextual information to enable word582

sense disambiguation and improve the quality of583

the translated data in low-resource languages.584

Syntax mismatch Since LexC-Gen is based on585

word-to-word translation, it suffers the inherent586

limitation that the syntax of its generated word-587

translated sentences remains unchanged and there-588

fore might not match that of low-resource lan-589

guages. Nonetheless, we have shown that despite590

this limitation, LexC-Gen still improves perfor-591

mance significantly in semantic tasks such as sen-592

timent analysis and topic classification for lan-593

guages with different word orders. This suggests594

that LexC-Gen is a viable solution for semantic595

tasks when in-language training data are extremely596

difficult to collect for low-resource languages. Fu-597

ture work should explore syntactical transformation598

of LexC-Gen’s synthetic data to better align with599

low-resource languages for tasks, such as machine600

translation and named entity recognition, that heav-601

ily rely on syntactic information.602

Tasks We experimented LexC-Gen on senti-603

ment analysis and topic classification tasks, both of604

which are NLU tasks that low-resource languages605

are still lagging behind high-resource languages606

(Winata et al., 2023b; Adelani et al., 2023). We607

acknowledge that future work is warranted to ex-608

plore the potentials and limitations of LexC-Gen609

on other NLU tasks that (1) require sensitivity to610

semantic complexity at the sentence level, such as611

common sense reasoning and natural language in-612

ference, or (2) syntax information, such as named613

entity recognition and information retrieval.614

Source language In our experiments, we follow615

prior work (Jones et al., 2023; Wang et al., 2022)616

and generate low-resource-language task data from 617

English task data using English-based Gatitos bilin- 618

gual lexicons (Jones et al., 2023). Future work 619

should explore extending LexC-Gen beyond En- 620

glish and generating task data in high-resource lan- 621

guages that are more related to the low-resource 622

languages than English language. It would also be 623

interesting to explore if BLOOMZ or other open- 624

access LLMs are capable in terms of controlled-text 625

generation abilities for non-English languages. 626

Broader Impacts and Ethical 627

Considerations 628

Since our work addresses the training data scarcity 629

problem of extremely low-resource languages 630

(Joshi et al., 2020; Yong et al., 2023; Singh et al., 631

2024, inter alia), we foresee adoption and further 632

research of our methods by NLP practitioners for 633

tackling other NLU semantic tasks. Since our ap- 634

proach works well with LLMs with permissive li- 635

censes, it is possible that the generated task data are 636

widely distributed for NLP applications in many 637

different low-resource languages. 638

One potential risk of synthetic data is model 639

collapse (Shumailov et al., 2023) where synthetic 640

data cause the tails of the original data distribu- 641

tion disappear. Here, our work focuses on synthetic 642

data for long-tail languages. We want to emphasize 643

that LexC-Gen’s generated cross-lingual training 644

data are not substitute for natural in-language data. 645

Our work actually encourages more human invest- 646

ment in low-resource languages in terms of lexi- 647

con curation and task data collection. We not only 648

demonstrate that high-quality bilingual lexicons are 649

effective in improving semantic task performance, 650

but also show that gold translations in the target 651

low-resource language require less data to achieve 652

strong task performance. 653
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A Tasks and Languages1013

We evaluated LexC-Gen on sentiment analysis1014

and topic classification tasks across 17 extremely1015

low-resource languages. All of them are classified1016

as 0 or 1 in Joshi et al.’s (2020) taxonomy. Ap-1017

pendix A shows the language information of all1018

the languages covered by our evaluation tasks. The1019

datasets we use here are for research purposes.1020

For NusaX sentiment analysis dataset (Winata1021

et al., 2023b), the authors employ two expert an-1022

notators who are native speakers of each local1023

language to translate text from Indonesian senti-1024

ment analysis dataset (Purwarianti and Crisdayanti,1025

2019; Wilie et al., 2020) while maintaining the sen-1026

tence’s sentiment polarity, preserving entities, and1027

maintaining the complete information content of1028

the original text. The dataset has 500 train, 100 val-1029

idation, and 400 test examples for each language.1030

Our baseline BLOOMZ has only been exposed1031

to 5 out of 17 languages, which are Bambara, Lin-1032

gala, Tsonga, Tumbuka, and Twi. These languages1033

are in the topic classification tasks.1034

For SIB-200 topic classification dataset (Adelani1035

et al., 2023), it is constructed using the translations1036

from FLORES-200 (Costa-jussà et al., 2022), a1037

multi-way parallel corpus that are curated with pro-1038

fessional translators. The authors annotated the En-1039

glish portion of the Flores-200 dataset and extend1040

the topic classification labels to the remaining 2041041

languages covered in FLORES-200. The dataset1042

contains 701 training examples, 99 validation ex-1043

amples, and 204 test examples for each language1044

for each language.1045

B CTG Training and Data Generation1046

Details1047

CTG training of LLMs We construct the CTG1048

training dataset, which have 500 and 701 English1049

instances respectively, for sentiment analysis and1050

topic classification following CTG training part1051

of Section 3.2. Then, we finetune BLOOMZ-7.1B1052

model (with permissive RAILS license) on a sin- 1053

gle V100 GPU using BitsAndBytesConfig and 1054

LoraConfig from transformers library for 4-bit 1055

QLoRA parameter-efficient finetuning (Dettmers 1056

et al., 2023). With 4-bit QLoRA, we can now fine- 1057

tune 7-billion parameter LLMs on commercially 1058

available GPUs without special setup (which other- 1059

wise would have been challenging as such finetun- 1060

ing would be restricted to GPUs with larger GPU 1061

memory such as A100 40GB GPUs.). We use the 1062

paged AdamW optimizer and set the learning rate 1063

to 2e−4, the sequence length to 1024, and the to- 1064

tal effective training batch size to 1. We use the 1065

following hyperparameters for QLoRA adapters 1066

(Table 4). 1067

We perform CTG training for 10 epochs and 1068

save the checkpoint every 500 steps. The entire 1069

CTG training can be finished within an hour on a 1070

single GPU. 1071

Selection of CTG-trained LLM checkpoint Af- 1072

ter CTG training, we want to select the best model 1073

checkpoint that can maximize the usage of pro- 1074

vided English word tokens when generating task 1075

data so the task data will have more lexical cover- 1076

age with bilingual lexicons. Section 3.4. Specifi- 1077

cally, we prompt the model to generate T̃X input 1078

text and measure how well it uses tokens from 1079

LwX∼DY
X

to generate text. The best checkpoint is 1080

the one that uses the most tokens. In practice, it is 1081

already sufficient to select the best checkpoint by 1082

evaluating only 200 generations per checkpoint. 1083

In our search for the best generation hyperpa- 1084

rameters, we found that either a low p or a low 1085

temperature (but not both at the same time) is the 1086

best for models to maximize the usage of provided 1087

tokens to generate text. 1088

Data generation For each data instance gen- 1089

eration, we randomly sample 10 high-resource- 1090

language (English) words from the bilingual lexi- 1091

cons and a class label to prompt the CTG-trained 1092

LLM, using the prompt template from Figure 3, 1093

to generate a maximum of 256 tokens. All these 1094

sampled words from lexicons do not come with 1095

linguistic information (such as parts-of-speech tags 1096

information) or task-related information (such as 1097

whether the words are topic or sentiment related). 1098

Following our findings before, we perform top-p 1099

sampling using p = 0.1 and temperature of 1 for 1100

data generation. 1101
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Languages ISO Code Task Is seen? Language Family Subgrouping Script Word Order

Acehnese ace SA ✗ Austronesian Malayo-Polynesian Latin SOV
Balinese ban SA ✗ Austronesian Malayo-Polynesian Latin OVS
Toba batak bbc SA ✗ Austronesian Malayo-Polynesian Latin VOS
Banjarese bjn SA ✗ Austronesian Malayo-Polynesian Latin SVO
Buginese bug SA ✗ Austronesian Malayo-Polynesian Latin VOS
Madurese bug SA ✗ Austronesian Malayo-Polynesian Latin SVO
Minangkabau min SA ✓ Austronesian Malayo-Polynesian Latin SVO
Bambara bam TC ✗ Niger-Congo Mande Latin SOV
Ewe ewe TC ✗ Atlantic-Congo Volta-Congo Latin SVO
Fijian fij TC ✗ Austronesian Malayo-Polynesian Latin VOS
Guarani grn TC ✗ Tupian Tupi–Guaran Latin SVO
Lingala lin TC ✗ Atlantic–Congo Benue–Congo Latin SVO
Mizo lus TC ✗ Sino-Tibetan Tibeto-Burman Latin OSV
Sango sag TC ✗ Atlantic–Congo Ngbandi-based creole Latin SVO
Tsonga tso TC ✗ Atlantic–Congo Volta–Congo Latin SVO
Tumbuka tum TC ✗ Atlantic–Congo Volta–Congo Latin SVO
Twi twi TC ✗ Atlantic–Congo Kwa Latin SVO

Table 3: Languages covered in our sentiment analysis (SA) and topic classification (TC) evaluation tasks. “Is seen?”
refers to whether the language has been seen in pretraining of our mBERT task classifier. Note that while many
African languages as well as Guarani language use Latin-based scripts, they have language-specific alphabets such
as African reference alphabets (Silva, 2021) and Guarani alphabets (e.g., G̃/g̃).

Hyperparameters Values

Dropout 0.1
α 16
r 64
Layers query_key_value,

dense,
dense_h_to_4h,
dense_4h_to_h

Table 4: Hyperparameters for QLoRA (Dettmers et al.,
2023) finetuning for controlled text generation (CTG)
training of LLMs.

Input-label consistency filter We finetune1102

mBERT classifier on our existing English task data1103

in high-resource languages (English) following the1104

setup described in Appendix C. On the English val-1105

idation set (existing task data), it has 84.6±0.7 and1106

86.6± 2.9 accuracy points for sentiment analysis1107

and topic classification respectively. Then, we use1108

the classifier to relabel the generated data and filter1109

out instances where the classifier’s labels do not1110

match the original provided labels that are used to1111

prompt LLMs to generate data in LexC-Gen.1112

Word-to-word translation After filtering the1113

generated data, we tokenize the words using the1114

English Stanza tokenizer (Qi et al., 2020) and then1115

perform word-to-word substititon with the bilin-1116

gual lexicon as described in Section 3.4. We follow1117

Wang et al. (2022) and do not perform any lemmati-1118

zation or stemming before word translation, as our 1119

preliminary experiments found that they introduce 1120

noises and harm task performance. 1121

C Finetuning Task Classifiers 1122

Task classifiers For both sentiment analysis and 1123

topic classification tasks, we finetune our mBERT 1124

classifier for 100 epochs in all setups with early 1125

stopping with patience of 3 evaluated on task val- 1126

idation sets. All finetuning runs took between 5 1127

to 20 epochs to complete because of early stop- 1128

ping, allowing each run (even for on LexC-Gen’s 1129

larger-scale generated task dataset) to be completed 1130

within 24 hours on a single V100 GPU. We use a 1131

batch size of 32, a learning rate of 1e−5, and the 1132

AdamW optimizer for classifier finetuning. 1133

Task validation set To select the best task classi- 1134

fier for evaluation after finetuning on LexC-Gen 1135

generated training data, we use the validation set 1136

that is readily provided along with the task (instead 1137

of splitting our LexC-Gen generated data into 1138

train-validation data splits) and is word-translated. 1139

Specifically, we translate the English validation 1140

datasets with word-for-word substitution using 1141

bilingual lexicons and select the best classifier us- 1142

ing the highest F1 score on the word-translated 1143

validation set. We also use this word-translated val- 1144

idation set for our word translation baseline (Wang 1145

et al., 2022). For cross-lingual zero-shot baseline, 1146

we use the readily available English task validation 1147

data. 1148
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D Samples of Generated Task Data1149

Table 5 and Table 6 show the LexC-Gen gener-1150

ated text samples for each class label in sentiment1151

analysis and topic classification tasks respectively.1152

E Zero-Shot/Few-Shot Prompting1153

BLOOMZ-7B1 and Aya-101-13B For zero-shot1154

prompting with BLOOMZ-7B1 and Aya-101-13B,1155

we use the prompts created for sentiment analysis1156

and topic classification tasks in xP3 (Muennighoff1157

et al., 2023) and take the average accuracy scores.1158

GPT-4o We use gpt-4o-2024-05-13 and follow1159

Adelani et al. (2023) for their zero-shot prompting1160

template for the topic classification task: “Is this1161

a piece of news regarding {{‘science, technology,1162

travel, politics, sports, health, entertainment, or ge-1163

ography’}}? {{INPUT}}” For sentiment analysis,1164

we adapt the prompt to become “Does this sentence1165

have {{’positive, negative, neutral’}} sentiment?1166

{{INPUT}}”1167

F Ablation of Lexicon-Conditioning1168

Lexicon-conditioned generation refers to generat-1169

ing data using words from lexicons. In our abla-1170

tion study in Section 5.3, we ablate away two com-1171

ponents: lexicon-conditioning and quality control1172

with input-label consistency filter.1173

Gen w/o filter This refers to generating data with1174

LLM that only learns to generate task data in CTG.1175

In other words, we remove the provided set of1176

words in the prompt in Figure 3 when we perform1177

CTG-training. In data generation, we do not pro-1178

vide words from lexicons, and we use high tem-1179

perature and high p (p = 0.9) in top-p sampling1180

so the CTG-trained LLM can generate diverse task1181

data. After data generation, we did not perform any1182

quality control filtering. This ablation setup mea-1183

sures the significance of both lexicon-conditioned1184

generation and input-label consistency filter.1185

Gen This follows Gen w/o filter above but with1186

filtering to ensure that the generated task data have1187

matching labels and input text. This ablation setup1188

measures the significance of lexicon-conditioned1189

generation.1190

Controlled variables In both Gen and Gen w/o1191

filter, we control the training data size by randomly1192

sampling a subset of data so that they match the ef-1193

fective training dataset size of LexC-Gen-100K af-1194

ace ban bbc bjn bug mad min
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Figure 7: Sentiment analysis accuracy on NusaX dataset
between word translation of LexC-Gen generated data
with Gatitos (Jones et al., 2023) and Panlex (Kamholz
et al., 2014).

ter input-label consistency filtering. Aside from re- 1195

moval of lexicon-conditioning prompt as described 1196

above and high p for sampling, the CTG training 1197

and data generation setups used for Gen and Gen 1198

w/o filter are the same as LexC-Gen-100K. 1199

G Lexicons: Gatitos versus Panlex 1200

Gatitos (Jones et al., 2023) is an open-source bilin- 1201

gual lexicon dataset that consists of around 4000 1202

short English segments translated into 170 ex- 1203

tremely low-resource languages. 93% of Gatitos 1204

consists of single-word tokens, and all the entries 1205

were reviewed by Jones et al. (2023). On the other 1206

hand, Panlex (Kamholz et al., 2014) is an open- 1207

access massive database consisting of word and 1208

phrase translations for 5000+ languages. The data 1209

come from more than 2500 individual dictionar- 1210

ies and contains more than 1 billion translations in 1211

total across all language pairs. 1212

Figure 7 shows that translating LexC-Gen gen- 1213

erated data with Gatitos outperforms translating 1214

with Panlex on NusaX sentiment analysis dataset. 1215

One reason is that Panlex has a smaller lexicon 1216

size than Gatitos, as for the seven extremely low- 1217

resource languages in NusaX, Panlex only has 1218

around 840 entries, but Gatitos has around 4271 1219

entries. Therefore, the task data have a poorer word 1220

translation coverage with Panlex. In addition, while 1221

the data source of Gatitos is not detailed by (Jones 1222

et al., 2023) from Google, the authors describe that 1223

Gatitos lexicons are manually reviewed and are 1224

less noisy than Panlex. In other words, the word 1225

translations with Gatitos are of higher quality. 1226
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Generated Text Sentiment

ulon ’m reusam leumeeh ngeun hek , ulee sikula papeun tuleh member . Hike
trails , ta’jub jamek let man keun keu lon .

Negative

(I’m feeling weak and tired, principal board member. Hike trails, wonderful
plural pursuit but not for me.)

Please , peutamah nyan pre uteun handbook jadwal keulayi keu umum ureung
umum , nyan ’s jareung hadiah lam nyan areusip

Neutral

(Please, extend the free forest handbook schedule for general public, it’s hardly
present in the archive)

Wonderful , trang ngeun mangat , superior guna , tajam ngeun carong , ngeun
nyan barang nakeuh superb . ulon nasihat meujuang toke ’s ho jak keu nyan ,
nyan ’s saboh konfiden peuningkat .

Positive

(Wonderful, bright and comfortable, superior service, sharp and smart, and
the package is superb. I advise struggling entrepreneur’s to go for it, it’s a
confidence booster.)

Table 5: Text samples of generated sentiment analysis data in Acehnese language by LexC-Gen. The English words
that remain untranslated are underlined. The bracketed English text is the originally generated text by LexC-Gen in
Section 3.2 before being tokenized and translated with the bilingual lexicons in Section 3.4.
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Figure 8: Topic classification accuracy (red, left y-axis)
and lexicon utilization rate (blue, right y-axis) against
the size of LexC-Gen task data in log10-scale.

H Data Requirement for Larger Task1227

Classifiers1228

Figure 9 breaks down the LexC-Gen generated1229

data size required for task classifiers of differ-1230

ent sizes—mBERT (Devlin et al., 2019) has 1721231

million parameters, XLMR-base (Conneau et al.,1232

2020) has 270 million parameters, and XLMR-1233

large has 550 million parameters—to match gold1234

translations performance. First, we observe that1235

LexC-Gen generated data scales with task classi-1236

fiers. Large task classifiers trained on LexC-Gen1237

data can still match gold translations performance.1238

Furthermore, the larger the task classifier size, the1239

less data we need to achieve the same accuracy. For1240

5K 15K 25K 35K
Training Data Size

50

60

70

80

A
cc

ur
ac

y 
(%

) (1)
(2)

(3)

LexC-Gen (XLMR-large)
LexC-Gen (XLMR-base)
LexC-Gen (mBERT)

Figure 9: Sentiment analysis accuracy on the NusaX
dataset (averaged across all 7 languages) with differ-
ent task classifiers. The dotted lines (1), (2), and (3)
represent the accuracy for mBERT, XLMR-base and
XLMR-large classifiers when trained on gold transla-
tions respectively.

instance, XLMR-large already exceeds accuracy of 1241

70 points with 5K LexC-Gen data but mBERT 1242

requires 35K LexC-Gen data to reach the same 1243

accuracy. 1244

Second, we find that XLMR-base matches gold 1245

performance at around 15K, as opposed to mBERT 1246

at around 35K, but XLMR-large requires around 1247

10K more LexC-Gen data than XLMR-base to be 1248

as competitive as gold translations. This result sug- 1249

gests that as size of task classifiers increases, the 1250

required synthetic data size to match gold transla- 1251

tions performance does not necessarily decrease. 1252

16



ace ban bbc bjn bug mad min
0

20

40

60

80

A
cc

ur
ac

y 
(%

)
Lexically
Constrained
Decoding

LexC-Gen Gold
Translations

Figure 10: Sentiment analysis accuracy on NusaX
dataset between lexically constained decoding (Post and
Vilar, 2018; Hu et al., 2019) and LexC-Gen.

I Lexically Constrained Decoding1253

Lexically constrained decoding is an inference-1254

time technique that enforces explicit word-/phrase-1255

based constraints in generation (Hokamp and Liu,1256

2017; Post and Vilar, 2018; Hu et al., 2019) so1257

that certain words and phrases will appear in out-1258

put strings. We are curious if it can also create1259

lexicon-compatible task data like LexC-Gen. We1260

use out-of-the-box lexically constrained decod-1261

ing method, implemented in the HuggingFace’s1262

generation function with force_words_ids, to1263

generate from BLOOMZ-7.1B model finetuned1264

only on controlled-text generation task with class1265

label c (i.e., “Gen” models in Section 5.3) with1266

beam size of 5. We apply the lexical constraint such1267

that a random subset of 10 words tokens from bilin-1268

gual lexicons will appear in the model’s generations1269

of task inputs given a class label. We generate 100K1270

samples from lexically constrained decoding and1271

apply the same input-label consistency filter.1272

Figure 10 shows that lexically constrained de-1273

coding underperforms LexC-Gen. Upon non-1274

exhaustive inspection of the generated instances,1275

we find that while lexically constrained decoding1276

yields generations with high lexicon utilization rate,1277

in many cases it simply join some lexicon tokens1278

together in order to satisfy the lexical constraint,1279

hence forming grammatically incorrect and unnat-1280

ural sentences. This suggests that it is non-trivial1281

to generate natural sentences using random and1282

independent word tokens in inference time.1283
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Figure 11: Relabeling all labels for generated data (i.e.,
label distillation (Wang et al., 2022)) as opposed to
input-label consistency filter for LexC-Gen on senti-
ment analysis.

J Label Distillation for LexC-Gen 1284

Generated Data 1285

We extend the quality control study in Section 5.5 1286

and compare LexC-Gen’s input-label consistency 1287

filter against label distillation for LexC-Gen 1288

(Wang et al., 2022), where we use the mBERT 1289

classifier trained on existing English task data to 1290

relabel all LexC-Gen generated data. Since label 1291

distillation does not filter out poor-quality data in- 1292

stances, the generated data from LexC-Gen-1K, 1293

-10K and -100K remains the same. Therefore, for 1294

fair comparison against our state-of-the-art LexC- 1295

Gen-100K performance, we randomly sample data 1296

subsets from the relabeled 100K data to match the 1297

size of filtered LexC-Gen-100K training data at 1298

37K samples. 1299

Figure 11 shows that simply relabeling generated 1300

data (blue line) underperforms by input-label con- 1301

sistency filter (red line) at training data size of 37K. 1302

For label distillation to match the performance, we 1303

need 100K relabeled data, which is significantly 1304

more than filtered LexC-Gen data and thus incurs 1305

significant task finetuning costs. Therefore, input- 1306

label consistency filter is a better quality control 1307

method as it gives better task performance while 1308

reducing the training data size. 1309

K Mixing in English task data helps for 1310

small-scale translated data 1311

In both word translation baseline (Existing Task 1312

Data (T)) and LexC-Gen-1K with small-scale 1313

translated data, including existing English task data 1314

during classifier finetuning improves task perfor- 1315

mance substantially. For instance, in sentiment anal- 1316

ysis, it yields 18.2 points performance gain for 1317
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Figure 12: English language performance for sentiment
analysis and topic classification.

LexC-Gen-1K. However, at larger scales of data1318

such as LexC-Gen-100K, mixing in English task1319

data only gives marginal performance gain; for in-1320

stance, 1 point average gain in the sentiment anal-1321

ysis task. This is because LexC-Gen-100K has1322

around 37K training examples (after input-label1323

consistency filtering), which dominate over the1324

small-sized existing English task data with 5001325

examples. 41326

L Do Generated Data Help1327

High-Resource Languages?1328

While our work is focusing on low-resource lan-1329

guages, we are interested in whether our LexC-1330

Gen generated data in English can also help En-1331

glish tasks (that LexC-Gen is CTG-trained on).1332

We compared filtered LexC-Gen-100K data and1333

existing English data (which are the gold task data)1334

for both sentiment analysis and topic classification1335

tasks.1336

Figure 12 shows that for sentiment analysis, us-1337

ing existing data (which have 500 training exam-1338

ples) outperforms LexC-Gen data (which have1339

around 37K examples) by average 1.4 points. On1340

the other hand, for topic classification, LexC-Gen1341

data (which have around 22K examples) outper-1342

forms existing data (which have 701 examples) by1343

average 2.0 points. Similar to our findings with low-1344

resource languages, LexC-Gen generated data are1345

also as competitive as gold data for high-resource1346

languages. However, the synthetic data do not bring1347

significant performance gains in high-resource-1348

language tasks where labeled data are readily avail-1349

4In the following subsections, analysis of LexC-Gen does
not include English existing task data.

able. 1350

M Full Results for Larger Task 1351

Classifiers 1352

We also report results with XLMR-base and 1353

XLMR-large task classifiers (Conneau et al., 2020) 1354

for sentiment analysis (Table 7 and Table 8) and 1355

topic classification (Table 9 and Table 10). 1356
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Generated Text Topic

Badminton y bi agodie mu de w he players fa di dwuma badges ( fr rackets mu
tennis ) k b balls k mu bi sap .

Sports

(Badminton is a game in which players use badges (called rackets in tennis) to
hit balls into a net.)

The mptam mfikyifuo y located so no koko boro so no refugee camp ne serves
s bi ahynsode firi no camp ’s pere k kora no nkae firi no tragedy te ase ber a
moving so .

Travel

(The community garden is located on the hill above the refugee camp and serves
as a symbol of the camp’s struggle to keep the memory of the tragedy alive
while moving on.)

Information visualization enne becomes bi akade k boa users te ase kuntann
asm .

Science/
Technology

(Information visualization then becomes a tool to help users understand complex
information.)

Voters mu France b si gyinae mu bi referendum so June 15 s k ma kwan saa ara
- sex civil unions .

Politics

(Voters in France will decide in a referendum on June 15 whether to allow
same-sex civil unions.)

aane , no awia aduane bu y ber bn nnipa k firi mu firi wn kwan k w bi ny
nkmmdie , k y anigye firi , anaas embarrass obi .

Entertainment

(Yeah, the lunch break is when people go out of their way to have a bad
conversation, to make fun of, or embarrass someone.)

Benada ’s nkaeb na y wie a bi ayarehw agyinatukuo firi nhwehwmu ]ulcon-
cluded a Mr. Garfield ’s owuo na n aso k akwanhyia .

Health

(Tuesday’s announcement was made after a medical board of inquiry concluded
that Mr. Garfield’s death was not due to accident.)

Rarely y ahum surges , de w he y no san tene firi waves breaking adum no
mpoano , duru no mpoano .

Geography

(Rarely do storm surges, which are the return flow from waves breaking off the
shore, reach the beach.)

Table 6: Text samples of generated topic classification data in Twi language by LexC-Gen. The English words that
remain untranslated are underlined. The bracketed English text is the originally generated text by LexC-Gen in
Section 3.2 before being tokenized and translated with the bilingual lexicons in Section 3.4.
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Methods #data ace ban bbc bjn bug mad min Avg

Zero-shot prompting

BLOOMZ-7.1.B 0 47.0 50.5 43.0 49.5 38.5 48.0 52.5 47.0
Aya-101-13B 0 58.8 59.2 48.1 82.8 35.9 48.4 77.9 58.7
Aya-101-13B (few-shot) 5 60.8 62.6 53.0 83.9 45.7 53.9 79.9 62.8
GPT-4o 0 75.3 81.3 65.8 83.8 51.5 74.0 85.3 73.8

Cross-lingual zero-shot

Existing Task Data (en) 500 54.3 55.4 40.0 66.1 38.0 50.0 68.9 53.2
DistFuse (Winata et al., 2023a) 500 65.5 70.5 65.3 75.3 58.0 67.3 73.5 67.9

Word translation

Existing Task Data (T) 500 69.0 62.4 65.5 76.9 59.8 64.4 70.7 67.0
+ Existing Task Data (en) 1000 68.0 72.7 63.4 80.5 59.1 73.8 81.2 71.2
+ Label Distillation 1000 63.1 66.4 58.4 73.0 44.2 67.8 80.1 64.7(Wang et al., 2022)

LexC-Gen-1K (T) ∼ 370 38.4 38.0 38.3 38.9 38.3 38.2 39.2 38.5
+ Existing Task Data (en) ∼ 870 70.1 70.2 56.5 78.2 43.3 60.2 73.0 64.5

LexC-Gen-10K (T) ∼ 3.7K 70.4 70.0 59.8 78.2 61.7 67.8 79.0 69.6
+ Existing Task Data (en) ∼ 4.2K 70.6 71.2 61.9 79.3 62.7 68.0 79.3 70.4

LexC-Gen-100K (T) ∼ 37K 75.3 77.7 71.2 81.7| 68.3 73.3 81.8 75.6
+ Existing Task Data (en) ∼ 38K 75.6 77.0 73.0 81.8 66.1 75.2 81.5 75.7

Gold Translations 500 73.9 75.8 64.2 76.1 68.2 71.8 78.8 72.7

Table 7: Sentiment analysis accuracy on 7 Indonesian extremely low-resource local languages in the NusaX dataset
(Winata et al., 2023b) with XLMR-base classifier (Conneau et al., 2020). We follow the schema defined in Table 1.
We also include the reported scores from another baseline DistFuse (Winata et al., 2023a) that uses cross-lingual
retrieval to improve NusaX task performance.

Methods #data ace ban bbc bjn bug mad min Avg

Zero-shot prompting

BLOOMZ-7.1.B 0 47.0 50.5 43.0 49.5 38.5 48.0 52.5 47.0
Aya-101-13B 0 58.8 59.2 48.1 82.8 35.9 48.4 77.9 58.7
Aya-101-13B (few-shot) 5 60.8 62.6 53.0 83.9 45.7 53.9 79.9 62.8
GPT-4o 0 75.3 81.3 65.8 83.8 51.5 74.0 85.3 73.8

Cross-lingual zero-shot

Existing Task Data (en) 500 65.8 71.4 39.6 78.4 35.2 61.5 81.8 62.0

Word translation

Existing Task Data (T) 500 71.0 60.8 64.9 74.4 58.1 69.1 82.3 68.7
+ Existing Task Data (en) 1000 73.1 78.2 67.2 82.7 58.1 67.8 80.1 72.5
+ Label Distillation 1000 65.4 70.9 70.9 73.4 45.6 71.1 77.8 67.9(Wang et al., 2022)

LexC-Gen-1K (T) ∼ 370 38.2 38.5 43.1 40.4 39.0 38.2 42.6 40.0
+ Existing Task Data (en) ∼ 870 71.5 74.3 59.5 82.5 54.5 70.1 79.9 70.3

LexC-Gen-10K (T) ∼ 3.7K 68.0 69.9 68.3 81.8 61.8 67.3 83.2 71.5
+ Existing Task Data (en) ∼ 4.2K 68.3 77.2 63.9 83.9 60.3 70.3 85.3 72.7

LexC-Gen-100K (T) ∼ 37K 74.6 78.8 73.2 83.5 68.3 75.1 82.2 76.5
+ Existing Task Data (en) ∼ 38K 75.9 79.1 72.3 84.7 67.1 76.7 84.2 77.1

Gold Translations 500 76.6 75.6 65.8 84.4 65.3 77.0 83.5 75.5

Table 8: Sentiment analysis accuracy on 7 Indonesian extremely low-resource local languages in the NusaX dataset
(Winata et al., 2023b) with XLMR-large classifier (Conneau et al., 2020). We follow the schema defined in Table 1.
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Methods #data bam ewe fij grn lin lus sag tso tum twi Avg

Zero-shot prompting

BLOOMZ-7.1.B 0 41.7 34.3 35.3 41.7 42.2 38.7 36.8 41.7 40.2 41.7 39.4
Aya-101-13B 0 36.8 39.1 50.9 48.8 52.4 43.7 40.2 54.1 50.0 37.7 45.4
Aya-101-13B (few-shot) 5 42.2 46.1 60.4 55.1 59.7 48.2 49.4 56.2 57.5 43.8 51.9
GPT-4o 0 58.1 56.2 63.9 75.8 69.4 65.3 57.8 57.2 59.8 64.8 67.7

Cross-lingual zero-shot

Existing Task Data (en) 701 33.1 38.4 35.6 57.2 42.1 59.3 42.0 36.7 35.2 43.1 42.3

Word translation

Existing Task Data (T) 701 37.5 36.9 44.8 66.5 51.3 63.5 47.5 39.6 42.3 50.6 48.1
+ Existing Task Data (en) 1402 40.0 36.8 45.9 66.3 48.2 62.5 47.7 41.5 44.4 51.8 48.5
+ Label Distillation 1402 37.5 22.5 40.4 62.5 44.4 60.4 45.3 41.1 43.2 37.9 43.5(Wang et al., 2022)

LexC-Gen-1K (T) ∼ 220 17.8 27.9 29.4 34.8 31.0 24.9 29.8 28.6 29.2 29.8 28.3
+ Existing Task Data (en) ∼ 920 31.8 37.8 37.3 65.0 50.0 59.7 46.8 35.9 37.9 48.1 45.0

LexC-Gen-10K (T) ∼ 2.2K 39.3 40.3 50.0 64.2 55.9 66.5 55.0 41.4 46.5 54.9 51.4
+ Existing Task Data (en) ∼ 2.9K 36.9 42.4 50.6 67.2 55.9 64.8 54.6 39.8 46.4 53.9 51.2

LexC-Gen-100K (T) ∼ 22K 48.4 51.6 62.5 73.0 68.0 70.3 58.0 41.7 53.7 62.7 59.0
+ Existing Task Data (en) ∼ 23K 48.6 53.6 62.5 72.7 65.2 72.8 60.3 41.2 53.3 61.7 59.2

Gold Translations 701 31.2 53.7 38.1 68.6 63.1 69.5 56.7 44.8 56.5 58.0 54.0

Table 9: Topic classification accuracy for 10 worst-performing languages in the SIB-200 dataset (Adelani et al.,
2023) with XLMR-base classifier (Conneau et al., 2020). We follow the schema defined in Table 1.

Methods #data bam ewe fij grn lin lus sag tso tum twi Avg

Zero-shot prompting

BLOOMZ-7.1.B 0 41.7 34.3 35.3 41.7 42.2 38.7 36.8 41.7 40.2 41.7 39.4
Aya-101-13B 0 36.8 39.1 50.9 48.8 52.4 43.7 40.2 54.1 50.0 37.7 45.4
Aya-101-13B (few-shot) 5 42.2 46.1 60.4 55.1 59.7 48.2 49.4 56.2 57.5 43.8 51.9
GPT-4o 0 58.1 56.2 63.9 75.8 69.4 65.3 57.8 57.2 59.8 64.8 67.7

Cross-lingual zero-shot

Existing Task Data (en) 701 29.6 27.2 32.1 63.6 39.9 56.0 41.6 38.3 41.6 43.1 41.3

Word translation

Existing Task Data (T) 701 42.4 43.1 48.5 70.6 52.9 66.4 43.4 43.5 47.7 52.9 51.1
+ Existing Task Data (en) 1402 43.1 45.2 45.2 71.7 54.8 65.7 49.9 43.1 50.9 54.3 52.4
+ Label Distillation 1402 37.9 27.8 42.9 64.6 43.5 58.9 48.3 42.6 48.8 39.5 45.5(Wang et al., 2022)

LexC-Gen-1K (T) ∼ 220 23.5 32.4 33.9 47.1 35.3 44.7 34.1 27.2 33.0 26.2 33.7
+ Existing Task Data (en) ∼ 920 37.5 45.7 41.8 70.2 52.8 60.7 48.2 43.3 44.6 51.0 49.6

LexC-Gen-10K (T) ∼ 2.2K 43.2 46.6 53.3 68.1 59.1 68.1 50.6 46.2 55.5 53.2 54.4
+ Existing Task Data (en) ∼ 2.9K 37.5 44.3 51.7 69.2 57.7 68.1 49.6 42.4 51.3 58.2 53.0

LexC-Gen-100K (T) ∼ 22K 50.5 54.6 66.0 74.1 67.5 70.7 56.7 45.2 56.2 62.8 60.4
+ Existing Task Data (en) ∼ 23K 52.4 53.2 67.4 76.8 67.0 70.0 57.3 45.0 53.1 62.5 60.5

Gold Translations 701 50.6 60.9 58.3 73.1 64.1 68.2 62.5 48.4 60.0 65.8 61.2

Table 10: Topic classification accuracy for 10 worst-performing languages in the SIB-200 dataset (Adelani et al.,
2023) with XLMR-large classifier (Conneau et al., 2020). We follow the schema defined in Table 1.
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