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Abstract

We are interested in privatizing an approximate posterior inference algorithm called
Expectation Propagation (EP). EP approximates the posterior by iteratively refining
approximations to the local likelihoods, and is known to provide better posterior
uncertainties than those by variational inference. However, using EP for large-
scale datasets imposes a challenge in terms of memory requirements as it needs to
maintain each of the local approximates in memory. To overcome this problem,
stochastic expectation propagation (SEP) was proposed, which only considers
a unique local factor that captures the average effect of each likelihood term to
the posterior and refines it in a way analogous to EP. Therefore in this work, we
focus on developing a differentially private stochastic expectation propagation
(DP-SEP) algorithm, which outputs differentially private natural parameters of the
exponential-family posteriors in each step of SEP.

1 Introduction

Bayesian learning provides a level of certainty about the parameters of a model, which then provides
reasoning about how certain the model is about its output through the posterior predictive distribution.
Variational inference (VI) [2, 5] is a popular Bayesian inference method that refines a global approxi-
mation of the posterior and scales well to large applications. However, VI often underestimates the
variance of the posterior and poor performance for models with non-smooth likelihoods [3, 12].

In contrast, expectation Propagation (EP) is known to provide better posterior uncertainties than
VI [8, 9]. EP constructs the posterior approximation by iterating local computations that refine
approximating factors which capture each likelihood contribution to the true posterior. With large
datasets, however, using EP imposes challenges as maintaining each of the local approximates
in memory is costly. Stochastic Expectation Propagation (SEP) [7] overcomes this challenge by
iteratively refining a single approximated factor that is repeated as many times as number of datapoints
that are in the dataset. This makes the algorithm suitable for large-scale datasets as it only has to
maintain in memory the global approximation in contrast to EP, that needs to keep in memory each
of the approximating factors.

More importantly, in terms of applying DP, the SEP algorithm is more suitable. To apply DP to EP, a
difficulty arises in sensitivity analysis: at each step of the algorithm, the approximating factor that
is being refined depends on the rest, and so the sensitivity of the approximated posterior depends
not only the particular factor that is being refined but also the rest of the factors that contribute to
the posterior. On the other hand, in every SEP step it considers a single approximating factor at a
time while all the other factors are fixed to the initial value. Hence, the sensitivity analysis of the
approximate posterior becomes straightforward as we demonstrate in the following sections.
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This work provides a framework to perform diferentilly private Bayesian learning for conjugate-
exponential family models. To the best of our knowledge, there exists some previous works that
desing differentially private VI methods [6, 10, 11] but this is the first differentially private algorithm
that focuses on the approximating family of EP algorithms.

2 Background

We begin describing relevant background information.

Algorithm 1 EP
1: Choose a factor fn to refine
2: Compute the cavity distribution

q−n(θ) ∝ q(θ)/fn(θ)
3: compute tilted distribution

p̃n(θ) ∝ p(xn|θ)q−n(θ)
4: moment matching

fn(θ)← proj[p̃n(θ)]/q−n(θ)
5: inclusion

q(θ)← q−n(θ)fn(θ)

Algorithm 2 SEP
1: Choose a datapoint xn ∼ D
2: Compute the cavity distribution

q−1(θ) ∝ q(θ)/f(θ)
3: compute the tilted distribution

p̃n(θ) ∝ p(xn|θ)q−1(θ)
4: moment matching

fn(θ)← proj[p̃n(θ)]/q−1(θ)
5: implicit update

f(θ)← f(θ)1−
1
N fn(θ)

1
N

6: inclusion
q(θ)← q−1(θ)f(θ)

Expectation propagation (EP) and Stochastic EP (SEP) Consider a dataset D = {xn}Nn=1
containing N i.i.d samples and the parametric probabilistic model given by the prior p0(θ) of the
unknown parameters θ and the likelihood p(x|θ). The true (intractable) posterior in Bayesian
inference can be computed by:

p(θ|D) ∝ p0(θ)

N∏
n=1

p(xn|θ) ≈ q(θ) ∝ p0(θ)

N∏
n=1

fn(θ). (1)

EP is an iterative algorithm that produces a simpler and tractable approximating posterior distribution,
q(θ), by refining the approximating factors fn(θ). The process that EP follows to refine itelativelely
these factors can be depicted in four steps. As shown in Algorithm 1, we initialize the approximating
factors and form the cavity distribution q−n(θ) by taking the n-th approximating factor out from the
approximated posterior (i.e q−n(θ) ∝ q(θ)/fn(θ)). On second step, the tilted distribution, p̃n(θ),
is computed by including the corresponding likelihood term to the cavity distribution: p̃n(θ) ∝
q−n(θ)p(xn|θ). The third step updates the approximating factor by minimizing the Kullback-
Leibler (KL) divergence between the tilted distribution and qn(θ)fn(θ) in order to capture the
likelihood term contribution to the posterior. When the approximating distribution belongs to
the exponential family, the KL minimization is reduced to moment matching [1] step, denoted
by:fn(θ)← proj[p̃(θ)]/q−1(θ).

A major difference between EP and SEP is that SEP constructs an approximate posterior, q(θ), by
iteratively refining N copies of an unique factor, f(θ), such that

∏N
n=1 p(xn|θ) ≈ f(θ)N . The

intuition behind SEP is that the approximating factor captures the average effect of a likelihood
term on the posterior distribution since updates are performed analogously to EP. Similar to EP, as
shown in Algorithm 2, SEP algorithm starts by initializing the approximating factor and computing
the cavity distribution by removing one copy of the approximating factor from the approximate
posterior: q−1(θ) ∝ q(θ)/f(θ). Then, it calculates the tilted distribution in the same way as EP
by p̃(θ) ∝ q−1(θ)p(xn|θ). In the third step, SEP minimizes the KL-divergence between the tilted
distribution and q−1(θ)fn(θ) to find an intermediate factor approximate, fn(θ).

Differential privacy Given privacy parameters ε ≥ 0, δ ≥ 0 randomized algorithm,M, is said to
be (ε, δ)-DP [4] if for all possible sets of mechanism’s outputs S and for all neighboring datasets
D,D′ differing in an only single entry (d(D,D′) ≤ 1), the following inequality holds: Pr[M(D) ∈
S] ≤ eε · Pr[M(D′) ∈ S] + δ. The definition states that the amount of information revealed by a
randomized algorithm about any individual’s participation is limited. In this work we will use the
Gaussian mechanism to privatize the natural parameters of the posterior distribution and use [13] for
computing the cumulative privacy loss.
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Algorithm 3 DP-SEP
Require: Dataset D. Initial natural parameters (bounded by C)damping value γ, and the privacy parameter σ.
Ensure: (ε, δ)-DP natural parameters of the approximated posterior
1: for t = 1, . . . , T do
2: for n ∈ {1, . . . , N}, uniformly random without replacement do
3: Choose a datapoint xn ∼ D
4: Compute cavity distribution q−1(θ) ∝ q(θ)/f(θ)
5: Compute tilted distribution p̃n(θ) ∝ q−1(θ)p(xn|θ)
6: Moment matching fn(θ)← Proj[p̃n(θ)]/q−1(θ) and clip its natural parameters: ‖θfn‖2 ≤ C
7: Update approximate posterior qnew(θ)← fn(θ)

γ
N f(θ)1−

γ
N q−1(θ)

8: Add noise to natural parameters: θ̃new = θnew + n where n ∼ N (0, σ2∆2
θnewI)

9: Update f(θ) ∝
(
qnew(θ̃new)/p0(θ)

) 1
N and clip its natural parameters: ‖θ̃fnew‖2 ≤ C

10: end for
11: end for

3 Our algorithm: DP-SEP

Here we introduce and describe our proposed method: DP-SEP. As shown in Algorithm 3, we output
the differentially private natural parameters of the approximate posterior computed in SEP. First, our
algorithm initialize the approximating factor, f(θ), such that the norm of it’s natural parameters, θf ,
and prior natural parameters, θ0, are bounded by a constant C (i.e. ‖θf‖2 ≤ C, ‖θ0‖2 ≤ C). We
need to take in account this consideration in order to further compute the sensitivity of the natural
parameters for the global approximate q(θ). As the approximating distribution is in the exponential
family, we can express the approximate posterior natural parameters, θ, as a linear combination of
the natural parameters of the approximating factor and the prior (i.e. θ = Nθf + θ0).

At each run of the algorithm, we first subsample uniformly without replacent one datapoint from the
dataset, xn ∈ D, then compute the cavity distribution q−1(θ), the tilted distribution p̃n(θ) and the
intermediate factor approximation fn(θ) for xn as in SEP algorithm. The computation of fn(θ) is
reduced to a moment matching step as we considered in the begining that the approximating factor is
in the exponential family. Once fn(θ) is computed, we need to ensure that it’s natural parameters,
θfn , are also norm bounded by C (i.e ‖θfn‖2 ≤ C). This is due to the fact that the approximate
posterior update also takes into account this intermediate factor natural parameters. After that, the
algorithm updates the approximate posterior natural parameters by making a partial update of the
approximating factor and the cavity distribution: qnew(θ) ← fn(θ)

γ
N f(θ)1−

γ
N q−1(θ). Note that

all those distributions belong to the exponential family and thus θnew = γ
N θfn +

(
N − γ

N

)
θf + θ0.

In the next step, DP-SEP pertubs θnew by adding Gaussian noise. The last step ensures that its norm
is also bounded by C. The DPSEP algorithm is summarized in Algorithm 3.

The following propositions state that (1) the sensitivity of the natural parameters is 2γC
N and (2) the

resulting algorithm is differentially private.

Proposition 1. The natural parameters, θnew, on DP-SEP algorithm have sensitivity ∆θnew = 2γC
N

Proposition 2. The DP-SEP algorithm produces (ε, δ)-DP approximate posterior distributions.

See Appendix for proof. Note that given a chosen privacy level ε, δ, and the number of repetitions
N,T , we use the auto-dp package by [13] to compute the privacy parameter σ.

4 Experiments

We reproduced Mixture of Gaussian for clustering problem presented in the SEP paper and tested it
on DP-SEP. The problem considers a synthetic dataset containing N = 1000 datapoints drawn from
J = 4 Gaussians with the following assumptions: each mean is sampled from a Gaussian distribution
p(µj) = N (µ;m, I), each mixture component is isotropic p(x|hn) = N (x;µhn , 0.5

2I) and the
cluster identity variables are sampled from a categorial uniform distribution p(hn = j) = 1

4 . Figure 1
visualizes the posterior means after 100 iterations for the true labels, EP, SEP and DP-SEP at different
values of ε with clipping norm set to C = 1. For SEP and DP-SEP we fixed the damping value,
γ = 1, i.e., γ/N = 1/1000. The figure shows that for a restrictive privacy regime ε = 1, the clusters
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truth EP SEP

DP-SEP eps=1.0 DP-SEP eps=5.0 DP-SEP eps=50.0

Figure 1: Mean posterior approximation for the Gaussian components (black rings indicate 98 %
confidence level). The top row shows the the true labels (left), EP (middle) and SEP (right). The
bottom row shows the labels for DPSEP with δ = 10−5 and ε = 1, 5.5, 50.

obtained by DP-SEP are overlapping. As we increase the privacy loss, the performance of DP-SEP
gets closer to the non-private ones (SEP and EP) and the ground truth. The posterior from DP-SEP
exhibits a higher uncertainty than the other non-private methods due to the added noise to the mean
and covariance during training.

In Table 4, we also provide a quantitative analysis of the results above in terms of F-norm of the
difference between the ground truth parameters and the estimated parameters by each method. In
addition, we use KL divergence between the ground truth posterior and the posterior obtained by each
method. Under the mixture of Gaussians model, there is no closed form KL divergence. We instead
use a proxy to the KL divergence in the following way: We first pair two Gaussians in terms of their
mean locations (i.e., from a given Gaussian in ground truth, which estimated Gaussian is closest in
terms of the mean estimate), and the compute the KL divergence between the paired Gaussians and
averaged over those KL divergences across four paired Gaussians.

Method F-norm KL-divergence (proxy)
SEP (ε =∞) 0.0007 4.3524

DP-SEP (ε = 50) 0.5650 516.8689
DP-SEP (ε = 5.5) 1.6237 955.0533
DP-SEP (ε = 1) 4.2722 4162.9041

5 Conclusions

In this work we have introduced DP-SEP, the first method for performing differentially private
stochastic expectation propagation. The current experimental results follow the sensitivity we derived,
i.e., the noise scales with the number of datapoints in the dataset. We will continue testing this
algorithm to other models such as linear and logistic regression. A meaningful step to pursue is a
theoretical understanding of the effect of noise added for privacy to the accuracy of the posterior
estimates under these models.
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A Appendix

A.1 Proof of Prop. 1

Proof. Consider two neighboring databases,D,D′ difering only in thexn, n ∈ {1, · · · , N} datapoint
with respective updated approximated posterior parameters θnew and θ′new.

∆2θnew = max
D,D′

‖θnew − θ′new‖2

= max
D,D′

∥∥∥( γ
N
θfn +

(
N − γ

N

)
θf + θ0

)
−
( γ
N
θ′fn +

(
N − γ

N

)
θf + θ0

)∥∥∥
2

=
γ

N
max
D,D′

‖θfN − θ′fN ‖2 by the triangle inequality:

≤ γ

N
max
D,D′

(
‖θfn‖2 + ‖ − θ′fn‖2

)
=

γ

N
max
D,D′

(
‖θfn‖2 + ‖θ′fn‖2

)
≤ γ

N
(C + C) =

2Cγ

N

A.2 Proof of Prop. 2

Proof. Due to the Gaussian mechanism, the natural parameters after each perturbation are DP. By
composing these with the subsampled RDP composition [13], the final natural parameters are (ε, δ)-
DP, where the exact relationship between (ε, δ), T (how many repetitions SEP runs), N (how many
datapoints a dataset has), and σ (the privacy parameter) follows the analysis of [13].
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