
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LINK PREDICTION ON TEXTUAL EDGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Textual-edge Graphs (TEGs), characterized by rich text annotations on edges,
are increasingly significant in network science due to their ability to capture rich
contextual information among entities. Existing works have proposed various
edge-aware graph neural networks (GNNs), graph foundation models, or even
let language models directly make predictions. However, they often fail to fully
capture the contextualized semantics on edges and graph topology, respectively.
This inadequacy is particularly evident in link prediction tasks that require a
comprehensive understanding of graph topology and semantics between nodes. In
this paper, we present a novel framework - LINK2DOC, designed especially for
link prediction on TEGs. Specifically, we propose to summarize neighborhood
information between node pairs as a human-written document to preserve both
semantic and topology information. We also present a specialized GNN framework
to process the multi-scaled interaction between target nodes in a stratified manner.
Finally, a self-supervised learning model is utilized to enhance the GNN’s text-
understanding ability from language models. Empirical evaluations, including
link prediction, edge classification, parameter analysis, runtime comparison, and
ablation studies, on five real-world datasets demonstrate that LINK2DOC achieves
generally better performance against existing edge-aware GNNs and language
models in link predictions.

1 INTRODUCTION

In network science, the prevalence of networks with rich text on edges, also known as Textual-
edge Graphs (TEGs) (Yang et al., 2015; Guo et al., 2019), increasingly become significant, as they
encapsulate a wealth of relational and contextual information critical for diverse applications. The text
associated with edges in networks can dramatically deepen our understanding of network dynamics
and behavior. For instance, in a social media network, when a user responds to another’s post, the
reply not only creates a directed edge but also includes specific text that can reveal the sentiment,
intent, or relationship between users. Similar cases can also be found in citation networks where text
on edges is the exact reference quote. Both examples illustrate how text-rich edges are pivotal in
accurately interpreting and leveraging networked data for advanced analytical purposes. In TEGs,
link prediction is a unique yet open question due to the rich textual information embedded on edges.

Extensive works have been devoted to studying graphs with rich text, which can be classified into
two categories, i.e., Graph Neural Networks (GNN)-based and language model-based. GNN-based
works have extensively studied the topology connection between nodes and designed various variants.
Specifically, works (Guo et al., 2019; Zhu et al., 2019; Gong & Cheng, 2019) typically compress the
text embedded on edges to latent vectors by text encoders (e.g., Word2Vec (Mikolov et al., 2013) and
BERT (Devlin et al., 2019)), and iteratively merge edge features with/without node features (Jiang
et al., 2019; Yang & Li, 2020). The current most advanced edge-aware GNN (Jin et al., 2022) tries
to refine the text encoder with the GNN training to obtain better representation. However, it still
follows the neighbor aggregation way, which may not comprehensively consider overall semantics.
On the other hand, owing to the strong text understanding ability of Large Language Models (LLMs)
(Ling et al., 2023b), researchers (Chen et al., 2024; Fatemi et al., 2023; Ye et al., 2023; Yan et al.,
2023) have directly used language models to solve graph mining tasks on textual graphs by designing
various prompts to express or summarize the topology connection into natural language.

While these approaches have advanced the study of text-rich graphs, they tend to simplify the diverse
text on edges, potentially losing crucial information necessary for tasks such as link prediction, where

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Paper 𝐸
Paper 𝐴

“We build upon and
further extends it to a
broad range of natural
language tasks …”

𝐴

The Attention is all your need
is a paper first proposed the
Transformer model, which
become the backbone …

Book 𝐶

“BERT, trained on large datasets,
can inadvertently learn and

perpetuate the biases present
in the data.”

“We build on
top of the Paper 𝐴

 architecture”

Book 𝐵

Book 𝐷 𝐶

Bidirectional Encoder
Representations from
Transformers (BERT) uses self-
attention to build the language …

𝐸

On the Dangers of Stochastic
Parrots: Can Language Models
Be Too Big? is a paper examines
the limitations of BERT …

… …

In Book 𝐷,
“the concept of "data statements"
as a framework for documenting is

essential in understanding …”

Figure 1: An example of textual-edge graphs: two books are connected by citation links. Predicting
whether there’ll be a citation between A and E needs to jointly consider both topology and semantic
information embedded on nodes and their edges.

edge text is key to understanding the relationships within the graph. Both GNN-based and LLM-based
methods may fall short of addressing the link prediction on TEGs due to two challenges, respectively.

Challenge 1: Understand graph topology in language models. For LLM-based approaches,
existing works have worked on prompting LLMs by expressing or summarizing graph topology into
text, but the graph topology is generally expressed in a linear shape, which may lead to a significant
loss of graph-based structural information. For example, as shown in Figure 1, if we summarize the
relation between Book A and E as Breadth-first Search, the dependencies along specific paths would
be overlooked. This approach would not capture the multi-hop interactions and the rich contextual
dependencies among nodes and edges. On the other hand, if we summarize all paths from A to
E, the same edge, such as the negative reference on edge C to E, could appear in several paths.
Representing this repeated edge in text multiple times leads to unnecessary duplication and potential
noise, complicating the model’s ability to discern the true nature of the relationships. If the graph is
too large, potential overflow of the language model’s context window limitation may also emerge.

Challenge 2: Comprehensively consider context information on all connections. For GNN-based
methods, predicting links in TEGs requires a comprehensive examination of all potential paths
connecting two nodes. Neighborhood aggregation approaches often focus on immediate neighbors
and fail to account for the complex interactions that can occur in textual-edge graphs. As shown
in Figure 1, there are many multi-hop paths with different intermediate nodes between A and B,
and each edge is annotated with different contexts, including user descriptions and user comments,
describing their complex relations. It’s already hard for existing GNN-based methods to use one
latent vector to describe the complex context on edges. Moreover, user’s preferences may also differ
from one path to another (i.e., A → C → E is negative while A → B → D → E is positive),
creating a conflicting semantic landscape. However, GNN’s neighbor aggregation would treat these
paths uniformly, potentially diluting the sentiment difference in these paths.

Present Work. To effectively make link predictions on TEGs by jointly considering rich semantic
information and graph topology, in this paper, we propose a novel representation learning framework,
LINK2DOC, that transforms local connections between nodes into a coherent document for better-
reflecting graph topology along with semantic information. To process rich textual information
efficiently, we further propose a stratified representation learning framework that captures multi-scale
interactions between target nodes. The crafted document further enhances GNNs to make link
predictions in a contextualized way. The key contributions are summarized as follows:

• Problem. We formulate the problem of link prediction on textual-edge graphs and highlight the
unique challenges of learning representations on textual-edge graphs for link predictions.

• Method. We propose an integrated framework to jointly consider topology and semantic informa-
tion in textual-edge graphs, which consists of 1) coherent document composition to summarize
semantic relations between node pairs in plain language; 2) a specialized Transition Graph Neural
Network to process topology information between target nodes in a stratified manner; and 3)
a self-supervised learning module to combine semantic understanding and topology processing
ability for better link prediction on textual-edge graphs.

• Experiment. We empirically compare our method against existing state-of-the-art in four real-
world datasets. Results have shown our proposed methods can elevate the performance of general
GNNs and achieve competitive performance against edge-aware GNNs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Edge-aware Graph Representation Learning. Earlier research of Graph Neural Networks (GNNs)
(Wu et al., 2020; Cui et al., 2023) tends to only focus on node features. Later on, research on heteroge-
neous graph representation learning (Yang et al., 2020) began to consider categorical information on
edges. In text-attributed graphs, to more comprehensively utilize edge information during the network
representation learning, some edge-aware GNNs (Zhu et al., 2019; Gong & Cheng, 2019; Jiang et al.,
2019; Yang & Li, 2020) were proposed to consider edge text by designing various architectures (e.g.,
attention on edges, node and edge role switch, etc.). The recent state-of-the-art method EdgeFormer
(Jin et al., 2022) involved pre-trained language models and proposed to better consider edge text by
designing a cross-attention mechanism to merge node and edge representation in Transformer layers.
However, these approaches still use the neighborhood aggregation way to obtain graph representation
and cannot consider the local connections as a whole unit. Neighborhood aggregation may not always
work especially when nodes are dissimilar (as shown in Figure 1) (Xie et al., 2020). Moreover,
existing edge-aware GNNs tend to deliberately erase text on nodes and only explore the effect of
edge information on various graph-related tasks (Jin et al., 2022), which lacks the flexibility to extend
to other text-attributed scenarios.

Language Modeling Augmented Graph Learning. Large language models have been proven to
have the ability to interpret graph-structured data (Jiang et al., 2023; Guo et al., 2023; Jin et al., 2023).
In the past year, many works (Chen et al., 2023; 2024; Huang et al., 2023; Pan et al., 2024) have been
proposed to prove LLMs have great potential (and even become state-of-the-art) to classify nodes in
text-attributed graphs. However, how LLMs can better assist link prediction in text-attributed graphs
is still an under-explored area, let alone the more complicated scenario of edge-attributed graphs that
contain rich textual information on both edges and nodes. Existing works (Zou et al., 2023; Zhao
et al., 2023; Li et al., 2023; Wen & Fang, 2023) have tried to distill implicit knowledge from LLMs
to smaller GNN models for text-attributed graph tasks, but they still focus on learning good node
embeddings. In edge-attributed graphs, text on edges cannot be uniformly processed in the same
manner as node text, necessitating more specialized techniques that account for the unique semantics
and structural roles of edge attributes in enhancing graph-based learning models.

3 LINK PREDICTION ON TEXTUAL-EDGE GRAPH

In this section, we begin by introducing key notations and formulating the problem of link prediction
on Textual-edge Graphs. We then describe a novel way of constructing a transition document that
summarizes the relationship between node pairs for link prediction. Finally, we provide an LLM-
enhanced Graph Neural Network framework that learns the local topology and semantic information
to retain both efficiency and efficacy.

3.1 PROBLEM FORMULATION

A Textual-edge graph (TEG) is a type of graph in which both nodes and edges contain free-form
text descriptions. These descriptions provide detailed, contextual information about the relationships
between nodes, enabling a richer representation of relational data than in traditional graphs.
Definition 1 (Textual-edge Graphs). A TEG G = (V, E) is an undirected graph, which consists of a
set of nodes V and a set of edges E ⊆ V × V . Each node vi ∈ V contains a textual description di,
and each edge eij ∈ E also associates with free-form texts dij describing the relation of (vi, vj).

In this work, we target at the Link Prediction task on TEGs, where we aim to predict the existence (or
the label) of edges between pairs of nodes (vi, vj) /∈ E based on the neighborhood information of
(vi, vj). Due to the rich edge text information, local edges in TEGs can inherently be represented by
natural language sentences. For example, the connection vi → eij → vi can be represented as “di
is connected to dj via dij”, which directly describes the relation in plain text.

Compared to categorical-edge graphs that have edges labeled with simple, predefined categories,
textual-edge graphs feature edges annotated with free-form text, which offer detailed and contextual
relationship descriptions. Take Figure 1 again as an example, books are connected by textual edges,
where text on edges consists of exact quotations that one book cites another. To predict whether A
and E will have a citation link, we not only need to analyze semantics embedded within each edge’s
description, but different paths may also depict different semantic meanings due to the varying textual

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑠 𝑡

We have two paragraphs below summarizing
the transition graph between 𝑠 and 𝑡.

[Paragraph 𝑠] [Paragraph 𝑡]

GNN

(a) Transition Graph Construction

Contrastive
Learning

(c) Transition Document Composition

(b) Transition Graph Separation
(d) Self-supervised
Knowledge Distillation

𝐺! 𝐺"

Transition Graph 𝐺($,&)

Figure 2: Overall framework of LLM-enhanced link prediction on Textual-edge graphs, where orange
and blue nodes in G(s,t) belong to s’s and t’s local neighborhood (namely Gs and Gt), respectively.
Half blue and half orange nodes denote shared nodes between Gs and Gt.

descriptions and types of relationships they represent. As noted in Figure 1, the Red Path contains
negative reference from A to E, while the Blue Path indicates another group of researchers endorse
the research conducted by book A.

Challenge. The rich and complex text on edges makes the link prediction on TEGs not a trivial
task, and there are two essential difficulties regulating existing GNN-based and LLM-based methods,
respectively. For edge-aware GNN-based methods, directly combine and update each node vi’s feature
based on its neighbor’s Nvi(vj) features as well as features of edges eij . However, neighborhood
aggregation would fall short since semantics carried on each edge dij needs to be viewed in the
context of the whole connections from s to t. For LLM-based methods, existing works tend to prompt
language models by linearly summarizing graph topology, e.g., “G(s,t) contains s, v1, v2, ..., vn, t
nodes, v1 is connected to v2 via d12, v2 is connected to v4 via d24, etc.” This way may let LLMs fail
to understand how information propagates from s to t and the contextual dependencies among nodes.

3.2 OVERALL ARCHITECTURE

In this work, we introduce LINK2DOC, a novel approach that leverages a self-supervised learning
scheme to endow GNNs with text comprehension capabilities akin to those of LLMs. LINK2DOC
is designed to preserve and synergize rich semantic information, topology information, and their
interplay within TEGs for link prediction. We propose learning and aligning representations from two
complementary perspectives: the text view and the graph view. The text view, termed Text-of-Graph,
organizes the text associated with TEG’s nodes in a way that reflects the graph’s topology, forming
a structured document that inherently captures logical and relational data. Conversely, the graph
view, or Graph-of-Text, transforms the nodes and topology of TEGs into structured graph data. By
employing pretrained language models (PLMs), the text view adeptly maintains textual integrity,
while the graph view, processed through GNNs, ensures the retention of graph-specific characteristics.
Aligning these views allows each representation to enrich the other, fostering a holistic understanding
where textual nuances inform graph structures and vice versa.

Specifically, as noted in Figure 2 (a), to reduce the search space and to eliminate the noise from
unrelated connections, we propose to formulate a (s, t)-transition graph containing all the possible
routes through which s could correlate to t for link prediction.

Definition 2 (Transition Graph). For any pair of two entities (s, t) in the Textual-edge Graph, all
paths from s to t collectively form an (s, t)-transition graph, which is denoted by G(s,t). We use
n and m to denote the number of nodes and edges in G(s,t), respectively. Figure 1 exemplifies an
(s, t)-transition graph, where s is Book A and t is Book B. In practice, the length of paths can be
upper-bounded by an integer K, which can usually be set as the diameter of the Textual-edge graph.

The transition graph G(s,t), as well as all the text on edges, provide the necessary information needed
to understand the relation between s and t. Next, as shown in Figure 2(b), we separate two subgraphs:
Gs and Gt from G(s,t) for preserving local neighborhood of s and t, respectively. In Figure 2(c), to
view the topology and semantic information of G(s,t) in a joint unit, we compose a manageable and
coherent document that expresses G(s,t) as a human-written document. Finally, in Figure 2(d), we
distill the text processing ability from large language models to graph neural networks for inference
scalability while maintaining performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝑠
321

1.1 3.23.1

2.1.1

𝑠 𝑡
𝑣!
𝑣"

𝑣#

We have two paragraphs below
summarizing the relation
between 𝑠 and 𝑡.

[Paragraph 𝑠]

[Paragraph 𝑡]

1.1.1

1.2

Pre-order
Traversal

Hidden
Edges

[ROOT s]	“Attention is all You Need”.
[1] “XLNet ” cites[s]as “we build upon
Transformer-XL and …”

… …

… …

… …

Composing
Paragraph 𝒔

[1.1] “On the opportunities and
risks of foundation models” cites [1]
as “there may exist risks of …”

[1.1.1] ([1.1.2] in
[Paragraph t]) cites [1.1] as
“Humans can naturally and
effectively find salient regions.”

3.1.1

2.1.1.1

[2] “BERT ” cites[s]as “it paves the way
to build self-attention-based model …”

… …
[2.1.1] ([3.1.1] in
[Paragraph t]) cites [2.1] as
“attention mechanisms were
introduced into computer vision …”.
In addition, it also cites [1]as “are
adaptable to a wide range of …”

[3] “High-resolution image synthesis
with latent diffusion models” cites[s]as
 “the image formation can also be
calculated with self-attention …”

𝐺(",$)

Figure 3: We first split G(s,t) into Gs (nodes are marked with orange) corresponding to the local
structure of s (Gt is omitted due to space limit). Commonly shared nodes are marked with half blue
and half orange. We transform the local structure of Gs into a paragraph that summarizes hierarchical
relation with s being the root. For better visibility, hidden edges are highlighted with orange, and
commonly shared nodes are highlighted with blue.

3.3 TRANSITION DOCUMENT CONSTRUCTION

In this work, to address the first challenge, we need to summarize local relations in G(s,t) to com-
prehensively understand the relation between (s, t). Since state-of-the-art LLMs are predominantly
trained on human-written documents and books, in this work, we propose a novel way to express
G(s,t) as a structured document d(s,t) (Lee et al., 1996), complete with an introduction, sections,
subsections, and a conclusion, to let language models better understand the overall semantics between
s and t with preserving topology. The overall process is illustrated in Figure 3, and the algorithm is
summarized in Appendix 1 due to the space limit.

Node-centric Paragraph Composition. For source node s and target node t, we first conduct
Breadth-first Search (BFS) to extract their respective local structure with depth L, i.e., Gs and Gt

from their transition graph G(s,t). As shown in Figure 3, nodes in G(s,t) that belong to Gs are
marked with orange, and nodes belonging to Gt are marked with blue. The structural data (i.e., BFS
tree) obtained is transformed into a textual paragraph aimed at both human readability and machine
processability. Specifically, taking the BFS tree Gs rooted at source node s as an example, s acts as
the main subject of the paragraph’s textual summary. We conduct pre-order traversal to go over all
nodes in both trees. The first and subsequent levels of BFS neighbors are detailed in separate sections
and subsections, akin to a detailed outline:

1. Root: Start with a comprehensive sentence that describes node s and its immediate connec-
tions: “[ROOT s] Node s has three connections. s is connected to v1
via ds1, s is connected to v2 via ds2, and s is connected to v3 via
ds3”, where ds1, ds2, and ds3 are textual descriptions on edges es1, es2, and es3.

2. First-hop Neighbors: For each first-hop neighbor of s, we provide a section detailing its con-
nections: “[1]. Node v1 has two connections. v1 is connected to v11
via d11, and v1 is connected to v12 via d12”; “[2]. Node v2 has one
connection. v2 is connected to v21 via d21”; and “[3]. Node v3 has
two connections. v3 is connected to v31 via d31, ...”.

3. Second (and following)-hop Neighbors: Subsections under each first-hop neighbor detail fur-
ther connections: “[1.1] v11 is connected to ...” “[1.2] v12 is connected
to...”, etc.

This structure is recursively applied up to L levels deep, ensuring each node’s direct connections are
thoroughly described, capturing the intricate topology of the graph. The notation “[X]” refers to
earlier parts of the summary where the connected node was initially described, aiding in understanding
the network’s connectivity beyond a simple hierarchical structure.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Hidden Edges. The neighborhood of s and t may not always form tree structures. As shown in
Figure 3, node v122 is not only the child node of v12, v122 also links back to v1 to form a triangle
structure. To consider a more holistic view of the node relationships, we add an extra description
to the node stating its connection to pre-existing nodes. Specifically, we introduce the hidden edge
information of node v122 in [1.2.2] as “In addition, v122 is also linked to [1]
v1 via ...”. By letting each mention of a hidden edge direct back to the respective section “[X]”,
we aim to ensure clarity and maintain the coherence of the graph’s description.

Transition Graph Document Construction. The unified d(s,t), which consists of paragraphs from s
and t, aims to not only present isolated descriptions but also to highlight the interconnected nature
of Gs and Gt. In this work, we aim to illuminate the interconnectedness between Gs and Gt by
identifying and highlighting nodes that appear in both Gs and Gt’s local structures. These common
nodes are pivotal as they link the context of one paragraph to the other. As shown in Figure 3, the
common nodes are marked with half orange and half blue. For each common node, we include a
cross-reference in the text where the node is mentioned, which is done by adding a note after the
section index. For example, node v122 has a section index “[1.2.2]” in s’s paragraph, and a section
index “[1.2.1]” in t’s paragraph. We then add ([1.2.1] in Paragraph t) after the section
index of v121 in s’s paragraph. We conduct the cross-reference in the other paragraph reversely.

In practice, we keep the depth L to be half of the diameter of the G(s,t) so that Gs and Gt can each
cover their close neighbor information as well as an adequate number of common nodes. We further
enhance the document’s coherence by adding an introduction to the start of the document. Finally,
the generated d(s,t) can be viewed as a structured document. More details can be found in Figure 3.

3.4 REPRESENTATION LEARNING FOR TRANSITION GRAPH NEURAL NETWORK

After obtaining a document d(s,t) summarizing both topology and semantic information of G(s,t),
scalability still poses a significant challenge for language models on large-scale graphs. To conduct
link prediction on a large G(s,t), we need to compose many documents between node pairs with
duplicated content (e.g., d(s,t1) and d(s,t2) may largely overlap if t1 and t2 are neighbors).

On the other hand, GNNs are inherently designed to process graph structures efficiently, making them
a promising alternative for this task. Although LLMs may not be capable of conducting large-scale
link predictions, the implicit knowledge can still be utilized to train GNNs. However, a straightforward
application of GNNs faces limitations: a single GNN may not fully capture the intricate interplay
between the graph’s structural properties and the semantic information on nodes and edges, especially
in large graphs where G(s,t) between two nodes s and t can encompass thousands of nodes due to a
diameter as small as 4 (Ling et al., 2023a). Moreover, independently learning local representations
for s and t fails to account for the multi-scale interactions crucial for accurate link prediction. Each
hop in the graph can reveal different structural and semantic information—immediate neighbors
contribute local properties, while nodes farther away provide broader contextual insights.

Transition Graph Neural Network (TGNN). To better process rich textual information on large-
scale graphs efficiently, we propose TGNN and introduce a novel stratified representation learning
framework to captures multi-scale interactions between target nodes s and t by considering different
“cuts” in the transition graph G(s,t). Each cut is defined by a pair (n,K−n), where K is the diameter
of the G(s,t) between s and t, i.e., the longest path length between s and t in G(s,t). For each
cut, TGNN encompasses two directed graph convolution processes (with shared parameters): one
focuses on learning the representation of s of its n-hop neighborhood, and the other focuses on t’s
(K − n)-hop neighborhood. The TGNN update function at n-th layer for node u is given as:

h(n)
u = fθ(h

(n−1)
u ,AGG({h(n)

v , eu→v : v ∈ N (u)})), (1)

where v is the child node of u, θ is the parameter of the TGNN update function, AGG(·) is the
aggregation function of TGNN. By calculating Equation (1) for n = 1, 2, · · · ,K − 1, we will obtain
all the embeddings of s and t for all the cuts, namely {(h(n)

s ,h
(K−n)
t)}, n = {1, 2, · · · ,K − 1}.

Accelerating Transition Graph Representation Learning by Deduplicating TGNN Computation.
However, naively implementing all K cuts would necessitate 2K times the calculation of the whole
TGNN on the entire graph, resulting in duplicated computation which will be prohibitive, especially
for non-small graphs that are common in the real world. To mitigate this, we exploit the hierarchical
nature of our transition graph to re-order the message-passing process as a cascading process from
higher-hop neighbors of s (or t) progressively to the lower and lower layers. The TGNN update

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

function of cut n for node s given as:

h
(n)
u∈Ln

= xu,

h
(n)
u∈Ln−1

= fθ(h
(n−1)
u∈Ln−1

,AGG({h(n)
v , eu→v : v ∈ NLn

(u)})),

h
(n)
u∈Ln−2

= fθ(h
(n−2)
u∈Ln−2

,AGG({h(n−1)
v , eu→v : v ∈ NLn−1

(u)})),
...

h(n)
s = fθ(h

(n−1)
s ,AGG({h(n)

v , eu→v : v ∈ N (u)})), (2)

where v and u are nodes in the transition graph G(s,t) and Ln means all the n-hop neighbors of s. The
computation of h(n)

s follows the cascading order that aggregates higher-hop neighbors’ information
first, as shown in Eq. (2). Since the cascading (a.k.a, Eq. (2)) for cut n actually uses the node
embeddings calculated in cut n− 1, we, therefore, propose to calculate the cascading processes in
a sequential order n = 1, 2, · · · ,K − 1 so the cut n− 1’s computation is naturally used for cut n,
saving the later from re-compute. Therefore, the entire calculation for all the K cuts for s is the same
as one calling of TGNN and hence we accelerate the compute by K times.

Aligning Topology Representation of G(s,t) with Semantic Information. To bridge the gap
between the semantic understanding capabilities of LLMs and the structural learning strengths of the
TGNN, in this work, we leverage LLMs to generate embeddings h̃(s,t) of d(s,t) to guide the training
of TGNN in a self-supervised learning manner:

h̃(s,t) = fLM

(
d(s,t)

)
, h(s,t) = g(h̄s ⊕ h̄t), h̄s =

1

K − 1

∑K−1

n=1
h(n)
s , h̄t =

1

K − 1

∑K−1

n=1
h
(n)
t

where ⊕ denotes embedding concatenation, fLM (·) denote the LLM query function. We transform
text on nodes and edges with pre-trained language models (e.g., LLaMA models or OpenAI’s
Embedding Models) and feed these attributes along with adjacency matrix of Gs and Gt to GNNs.
The outputs are then concatenated and transformed into LLM’s embedding space by a projection
function g(·) with non-linear transformation. We seed to align the latent embeddings h̃(s,t) produced
by the LLM with the embeddings h(s,t) generated by the GNN:

ℓKD = −E

log exp
(
sim(h̃(s,t),h(s,t))/τ

)
∑K

k=1 exp
(
sim(h(s,t),h(s,h))/τ

)
 , (3)

where the objective function is based on temperature-scaled cross-entropy loss (NT-Xent) (Chen
et al., 2020) to enforce the agreement between h̃(s,t) and h(s,t) compared with latent embedding
h(s,h) from negative pairs. Furthermore, to calibrate h(s,t) more towards the link prediction (and
edge classification) task, we incorporate standard binary cross-entropy loss ℓLP for tuning GNNs.
Note that for dealing with highly imbalanced label distribution for edge classification tasks, we use
weighted cross-entropy loss (e.g., Focal Loss (Lin et al., 2017)) instead.

Finally, the overall objective of the LLM-enhanced Representation Learning for predicting links on
edge-attributed graphs is written as ℓ = λ1ℓKD + λ2ℓLP , where λ1 and λ2 are hyperparameters.

Complexity Analysis. Given the transition graph G(s,t) with the diameter K, we use Breadth-first
Search (time complexity O((N+E)/2) (BFS) with the depth K/2 to extract Gs and Gt, respectively.
We then use pre-order traversal to obtain the document d(s,t), which leads the total complexity to
be O(N + E +N). The time complexity for Pre-trained LMs to process d(s,t) is O(P 2), where P

denotes the number of tokens in d(s,t). Moreover, the GNN module requires O(|E| · f +N2), where
f denotes the dimension of the embedding on nodes/edges. Overall, The complexity encapsulates
the stages of BFS tree construction, document processing with Transformers, and GNN learning,
which gives the training time complexity O(2N + E + P 2 + |E| · f +N2). However, during the
inference stage, the complexity of our work simply reduces to the complexity of normal GNNs:
O(|E| · f +N2) as we do not need to construct documents during the inference phase.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

Setup. This paper focuses on link prediction on TEGs, which aims to predict whether there will be a
strong connection between two nodes in the adopted datasets based on their transition graph. We run
experiments on five real-world networks: Amazon-Movie (He & McAuley, 2016), Amazon-Apps
(He & McAuley, 2016), GoodReads-Children (Wan et al., 2019), GoodReads-Crime (Wan et al.,
2019), and StackOverflow. More specific dataset statistics can be found in the Appendix A.3. We
evaluate the performance using four standard metrics: Mean Reciprocal Rank (MRR), Normalized
Discounted Cumulative Gain (NDCG), Area Under ROC Curve (AUC) metric, and F1 score.

Comparison Methods. We compare our model with general GNNs, language model integrated
GNNs, and large language models. For general GNNs, we select MeanSAGE (Hamilton et al., 2017),
MaxSAGE (Hamilton et al., 2017), GIN (Xu et al., 2019) and RevGAT (Li et al., 2021), which only
use an adjacency matrix as the input. For language model-enhanced GNNs, we utilize Pre-trained
LMs, e.g., BERT (Devlin et al., 2019), to acquire text representations on edges. Our baselines consist
of BERT + Graph Transformer (GTN) (Yun et al., 2019), BERT + GINEConv (Hu et al., 2019) and
BERT + EdgeConv (Wang et al., 2019). Furthermore, we also incorporate state-of-the-art edge-aware
GNN - Edgeformer (Jin et al., 2022), which is constructed based on graph-enhanced Transformers
to combine language modeling into each layer of the Graph transformer. A novel graph foundation
model - THLM (Zou et al., 2023) is also included that integrates language modeling with GNN
training. Finally, we adopt state-of-the-art LLMs, i.e., LLAMA-3-70B and GPT-4O by directly
translating the transition graph G(s,t) between the node pair (s, t) to natural language as (Fatemi
et al., 2023) do. Note that state-of-the-art language model integrated GNNs, namely EdgeFormer,
cannot incorporate text on nodes. For a fair comparison, we present two variants of our method:
LINK2DOC does not consider node texts, and LINK2DOC-NT takes node text into account.

Implementation Details. To process all node and edge text, we leverage OpenAI’s embedding
model1 with dimension 3, 072. For both general GNNs and language model enhanced GNNs, the
dimensions of the initial node and edge embeddings are further normalized to 64 and 128 respectively.
Additionally, for the Edgeformer model, we adhere to the same experimental settings as outlined
in (Jin et al., 2022). Our model uses Graph Transformer (GTN) as our backbone in Eq. (1), where
both node and edge embeddings mirror those of language model integrated GNNs. For LINK2DOC,
we follow the same settings as general GNNs to obtain node and edge embeddings from OpenAI’s
embedding model. We set λ1 = 1 and λ2 = 2 respectively. All GNN baseline layers are set to 2. The
temperature τ in Eq. (3) to 2. We use Adam as the optimizer with a learning rate of 1e − 5. The
batch size is 1, 024. We run our model and other baselines 10 times with different random seeds and
report the average performance.

4.1 RESULTS ON LINK PREDICTION

As can be seen from Table 1 and Table 2, LINK2DOC can consistently achieve better performance
than other methods. Specifically, LINK2DOC outperforms the second best on average 5% of both
AUC and F1 (Table 1) and 10% of both MRR and NDCG across all datasets (Table 2). We further
draw several observations from the results. 1) There are no clear differences between general GNNs
and edge-aware GNNs: both types of GNNs show comparable performance, with edge-aware GNNs
having a slight edge but not consistently outperforming general GNNs in all metrics, which implies co-
training language models with GNNs still cannot capture the subtle cues on edge texts. For instance,
while EDGEFORMER achieves the second-best AUC on the Goodreads-Children dataset, it doesn’t
consistently outperform general GNNs like MAXSAGE across all datasets. 2) Directly summarizing
topology and letting LLMs make predictions may not perform well: LLMs, such as LLAMA-3-70B
and GPT-4O, tend to underperform compared to specialized GNNs and our proposed LINK2DOC. It
is evident that state-of-the-art LLMs may not be able to fully understand graph topology from the
linear topology summarization, highlighting the advantage of the composed document. 3) Text on
nodes can further improve the performance: As can be seen from the table, even though LINK2DOC
can achieve a generally better performance than other approaches, by considering the text on nodes,
LINK2DOC-NT can achieve a generally better performance than its no node-text version.

1https:/platform.openai.com/docs/guides/embeddings/embedding-models

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Goodreads-Children Goodreads-Crime Amazon-Apps Amazon-Movie StackOverflow
AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

General GNN
MAXSAGE 0.870 0.637 0.858 0.624 0.727 0.571 0.706 0.527 0.895 0.631
MEANSAGE 0.828 0.611 0.829 0.615 0.700 0.569 0.686 0.525 0.887 0.615
REVGAT 0.862 0.622 0.839 0.619 0.662 0.562 0.689 0.541 0.819 0.533
GIN 0.859 0.571 0.857 0.577 0.705 0.543 0.692 0.512 0.873 0.605

LM-enhanced GNN
GTN 0.880 0.654 0.863 0.640 0.728 0.572 0.742 0.539 0.911 0.675
GINECONV 0.881 0.657 0.864 0.636 0.701 0.573 0.692 0.543 0.920 0.681
EDGECONV 0.879 0.646 0.860 0.622 0.692 0.551 0.682 0.532 0.835 0.563
THLM 0.871 0.651 0.871 0.635 0.718 0.587 0.749 0.534 0.911 0.659
EDGEFORMER 0.882 0.662 0.862 0.643 0.722 0.580 0.744 0.540 0.903 0.663

LLMs
LLAMA-3-70B 0.832 0.573 0.869 0.587 0.694 0.509 0.643 0.482 0.252 0.471
GPT-4O 0.878 0.609 0.889 0.604 0.712 0.512 0.659 0.503 0.407 0.561

LINK2DOC 0.902 0.705 0.901 0.652 0.762 0.588 0.753 0.553 0.938 0.697
LINK2DOC-NT – – – – 0.769 0.595 0.759 0.565 0.940 0.707

Table 1: The performance comparison of Link Prediction on all datasets (the higher the better), where
the bests are highlighted with bold, and the second bests are highlighted with underline. Note that −
indicates the dataset does not have text on nodes so that LINK2DOC-NT cannot be conducted.

Goodreads-Children Goodreads-Crime Amazon-Apps Amazon-Movie StackOverflow
MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG

General GNN
MAXSAGE 0.2059 0.3342 0.2130 0.3372 0.2119 0.3938 0.2148 0.4299 0.2256 0.3313
MEANSAGE 0.2156 0.3619 0.2006 0.3199 0.2179 0.3951 0.2433 0.4340 0.2155 0.3351
REVGAT 0.2079 0.3567 0.1921 0.2997 0.2039 0.3865 0.2253 0.4318 0.2159 0.3369
GIN 0.2147 0.4160 0.2354 0.3644 0.2313 0.3486 0.2061 0.4305 0.2254 0.3351

LM-enhanced GNN
GTN 0.2239 0.4207 0.2536 0.4398 0.3134 0.4296 0.2872 0.4958 0.2321 0.4201
GINECONV 0.2458 0.4399 0.2628 0.4629 0.2916 0.4467 0.2587 0.4472 0.2340 0.4243
EDGECONV 0.2389 0.4281 0.2486 0.4265 0.2871 0.4318 0.2492 0.4432 0.2326 0.4218
THLM 0.1732 0.2998 0.2416 0.3964 0.2337 0.3845 0.2969 0.4284 0.1696 0.3283
EDGEFORMER 0.1754 0.3000 0.2395 0.3875 0.2239 0.3771 0.2919 0.4344 0.1754 0.3339

LLMs
LLAMA-3-70B 0.1356 0.2127 0.0692 0.0778 0.0500 0.1692 0.0683 0.1657 0.1421 0.2144
GPT-4O 0.2079 0.4106 0.2684 0.3633 0.2740 0.3697 0.2352 0.4228 0.2299 0.3751

LINK2DOC 0.3167 0.5988 0.3518 0.6115 0.4139 0.5287 0.3926 0.6141 0.3618 0.6359

Table 2: The performance comparison of Link Prediction on all datasets (the higher the better), where
the bests are highlighted with bold, and the second bests are highlighted with underline.

4.2 RESULTS ON EDGE CLASSIFICATION

Amazon-APPs
AUC F1

MEAN-SAGE 0.551 0.479
GINE 0.573 0.488
GTN 0.567 0.503
EDGEFORMER 0.612 0.526

LINK2DOC 0.626 0.541

Table 3: Comparison on Edge Classi-
fication on Amazon-APPs dataset.

In the task of edge classification, the model is asked to predict
the category of each edge based on its associated text and
local network structure. There are 5 categories for edges in
the Amazon-APPs dataset (i.e., from 1 star to 5 star). The
results of the 5-class edge-type classification are shown in
Table 3. As clearly can be observed in the table, LINK2DOC
improves the AUC by an average of 5% and the F1 score by
4.2% compared to other models, demonstrating its superior
performance in edge classification.

4.3 ABLATION STUDY AND PARAMETER ANALYSIS

We further demonstrate the effectiveness of each component in our framework and analyze the
importance of different hyper-parameter settings.

Performance Elevation from Transition Document. We first aim to check the general performance
elevation brought by the composed transition document d(s,t). We adopt three GNNs using BERT to
obtain embeddings on edges and illustrate whether using the composed d(s,t) as a reference would
improve their performance in both link prediction and edge classification tasks. The results on the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

GTN GINConv MeanSAGE65

68

71

74

77

AU
C

(%
)

+4.53%

+3.11%

+8.10%
Naive GNN Document augmented GNN

(a) Link Prediction Improvement
GTN GINEConv MeanSAGE

50

53

56

59

62

AU
C

(%
)

+6.07% +5.24%

+4.25%

Naive GNN Document augmented GNN

(b) Edge Classification Improvement
Figure 4: Leveraging composed documents to enhance base GNNs on Amazon-APPs dataset.

Amazon-APPs dataset are presented in Figure 4. As can be seen from the figure, the document-
augmented GNNs excel in their general version with an average improvement of 5%. By summarizing
all relations from s to t as a coherent document, language models can give positive feedback on
the proposed self-supervised learning module to guide different GNNs in learning. An additional
ablation study on the effectiveness of TGNN is provided in Appendix A.4.

0 1 2 3 4 5
72

74

76

Effect of 2 on AUC (upper) and F1 Score (lower)
AUC (%)
GTN

0 1 2 3 4 5
The scale of 2 from 0 to 5

57

58

59
F1 Score (%)
GINE

Figure 5: The performance on Amazon-APPs.

Hyperparameter Analysis. We then aim to
investigate the sensitivity of the key hyperpa-
rameter λ2 and their impact on LINK2DOC’s
performance. Specifically, since λ1 controls the
basic objective function for link prediction, we
fix λ1 = 1 and show the link prediction perfor-
mance on the Amazon-APPs dataset under dif-
ferent λ2 values (ranging from 0 to 5). As shown
in Figure 5, both metrics show consistent results
across varying parameter values. By comparing
with the second-best methods (highlighted with
red dash horizontal lines), LINK2DOC with var-
ious λ2 values can achieve overall better results.
This demonstrates that our model maintains su-
perior performance across different configurations, highlighting its stability and effectiveness.

4.4 RUNTIME ANALYSIS

Children Crime
Inference Time (s)
EDGEFORMER 1450.67 3307.66
LINK2DOC 49.35 23

Training Time (h)
EDGEFORMER 12.17 12.65
LINK2DOC 5.253 7.04

Table 4: Comparison of inference and training time on
Goodreads-Children and Goodreads-Crime.

We further illustrate the runtime compar-
ison between our proposed LINK2DOC
with the state-of-the-art competitor - Edge-
former. The comparison table (Table 4)
highlights the efficiency of our method,
Link2Doc, which significantly outperforms
Edgeformer in both inference and training
times. For the Goodreads-Children dataset,
Link2Doc is approximately 29 times faster
in inference and more than twice as fast in
training. On the Goodreads-Crime dataset,
Link2Doc demonstrates an even greater advantage, being about 144 times faster in inference and
almost twice as fast in training. These improvements stem from Link2Doc’s design, which does
not require fine-tuning language models; instead, it builds document representations and uses a
pre-trained GNN, avoiding the extensive matrix calculations in Edgeformer’s cross-attention design.
Consequently, Link2Doc is more scalable and efficient for large-scale link prediction tasks.

5 CONCLUSION

In this work, we study the problem of link prediction on textual-edge graphs, where existing GNN-
based and LLM-based methods may fall short of jointly capturing both semantic and topology
information to make more accurate link predictions. We present a novel framework LINK2DOC that
learns and aligns the semantic representation and topology representation by 1) building a structured
document to preserve both topology and semantic information; 2) proposing a Transition Graph
Neural Network module for better learning representations of the transition graph; and 3) designing a
self-supervised learning module to let TGNN have text understanding ability like LLMs. Our method
generally outperforms other approaches from multiple aspects on five datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang
Tang. Label-free node classification on graphs with large language models (llms). arXiv preprint
arXiv:2310.04668, 2023.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning
on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42–61, 2024.

Hejie Cui, Jiaying Lu, Shiyu Wang, Ran Xu, Wenjing Ma, Shaojun Yu, Yue Yu, Xuan Kan, Tianfan
Fu, Chen Ling, et al. A survey on knowledge graphs for healthcare: Resources, application
progress, and promise. In ICML 3rd Workshop on Interpretable Machine Learning in Healthcare
(IMLH), 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171–4186, 2019.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Conference on Learning Representations, 2023.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models understand graph
structured data? an empirical evaluation and benchmarking. arXiv preprint arXiv:2305.15066,
2023.

Xiaojie Guo, Liang Zhao, Cameron Nowzari, Setareh Rafatirad, Houman Homayoun, and Sai
Manoj Pudukotai Dinakarrao. Deep multi-attributed graph translation with node-edge co-evolution.
In 2019 IEEE International Conference on Data Mining (ICDM), pp. 250–259, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, pp. 1024–1034, 2017.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In proceedings of the 25th international conference on world
wide web, pp. 507–517, 2016.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

Jin Huang, Xingjian Zhang, Qiaozhu Mei, and Jiaqi Ma. Can llms effectively leverage graph structural
information: when and why. arXiv preprint arXiv:2309.16595, 2023.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong Wen. Structgpt: A
general framework for large language model to reason over structured data. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 9237–9251, 2023.

Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: Convolution with edge-node switching in
graph neural networks. In IJCAI, pp. 2656–2662, 2019.

Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. Edgeformers: Graph-empowered transformers for
representation learning on textual-edge networks. In The Eleventh International Conference on
Learning Representations, 2022.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon, and P Bruce Berra. Index structures for structured
documents. In Proceedings of the first ACM international conference on Digital libraries, pp.
91–99, 1996.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021.

Yichuan Li, Kaize Ding, and Kyumin Lee. Grenade: Graph-centric language model for self-supervised
representation learning on text-attributed graphs. EMNLP, 2023.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988,
2017.

Chen Ling, Xuchao Zhang, Xujiang Zhao, Yanchi Liu, Wei Cheng, Mika Oishi, Takao Osaki, Katsushi
Matsuda, Haifeng Chen, and Liang Zhao. Open-ended commonsense reasoning with unrestricted
answer candidates. In The 2023 Conference on Empirical Methods in Natural Language Processing,
2023a.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy
Chowdhury, Yun Li, Hejie Cui, Tianjiao Zhao, et al. Domain specialization as the key to make
large language models disruptive: A comprehensive survey. arXiv preprint arXiv:2305.18703,
2305, 2023b.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

Bo Pan, Zheng Zhang, Yifei Zhang, Yuntong Hu, and Liang Zhao. Distilling large language models
for text-attributed graph learning. arXiv preprint arXiv:2402.12022, 2024.

Mengting Wan, Rishabh Misra, Ndapa Nakashole, and Julian McAuley. Fine-grained spoiler detection
from large-scale review corpora. arXiv preprint arXiv:1905.13416, 2019.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):
1–12, 2019.

Zhihao Wen and Yuan Fang. Augmenting low-resource text classification with graph-grounded
pre-training and prompting. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 506–516, 2023.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Yiqing Xie, Sha Li, Carl Yang, Raymond Chi-Wing Wong, and Jiawei Han. When do gnns work:
Understanding and improving neighborhood aggregation. In IJCAI’20: Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence,{IJCAI} 2020, volume 2020, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs: Bench-
marking and rethinking. Advances in Neural Information Processing Systems, 36:17238–17264,
2023.

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network representa-
tion learning: A unified framework with survey and benchmark. IEEE Transactions on Knowledge
and Data Engineering, 34(10):4854–4873, 2020.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. Network representation
learning with rich text information. In IJCAI, volume 2015, pp. 2111–2117, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yulei Yang and Dongsheng Li. Nenn: Incorporate node and edge features in graph neural networks.
In Asian conference on machine learning, pp. 593–608. PMLR, 2020.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language is all
a graph needs. arXiv preprint arXiv:2308.07134, 2023.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. ICLR, 2023.

Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu, and Bin Wang. Relation structure-aware
heterogeneous graph neural network. In 2019 IEEE international conference on data mining, pp.
1534–1539, 2019.

Tao Zou, Le Yu, Yifei Huang, Leilei Sun, and Bowen Du. Pretraining language models with text-
attributed heterogeneous graphs. In Findings of the Association for Computational Linguistics:
EMNLP 2023, 2023.

A SUPPLEMENTAL MATERIAL

A.1 ALGORITHM OF TRANSITION DOCUMENT COMPOSITION

Algorithm 1: Transition Document Composition
Data: The transition graph G(s,t), the diameter K of G(s,t).
Result: Composed document d(s,t) with hierarchical relation, hidden edge references, and

cross-paragraph references.
1. Gs ← BFS(ROOT = s,GRAPH = G(s,t),DEPTH = K//2);
2. Gt ← BFS(ROOT = t,GRAPH = G(s,t),DEPTH = K//2);
; /* Obtaining local structure of s and t’ neighbor by
breadth-first search with depth K//2. */

3. Ehidden
s ← {eij |∀ vi ∈ Gs, vj ∈ Gs, eij ∈ G(s,t), eij ̸∈ Gs};

4. Ehidden
t ← {eij |∀ vi ∈ Gt, vj ∈ Gt, eij ∈ G(s,t), eij ̸∈ Gt};

; /* For both subgraphs Gs and Gt, we obtain hidden edges. */
5. V cross ← Vs ∪ Vt;
; /* Get common nodes shared by Gs and Gt. */
6. Initiate the document d(i,j) with an initial prompt: ““We have two paragraphs
that summarize the relation between s and t...”;

7. for each node vi ∈ Gs do
8. Assign document sections (e.g., [SEC. 1.1]) following pre-order traversal of Gs;

9. Assign hidden edge following Ehidden
s to d(i,j) ;

10. for each node vi ∈ Gt do
11. Assign document sections (e.g., [SEC. 1.1]) following pre-order traversal of Gt;

12. Assign hidden edges following Ehidden
t to d(i,j) ;

13. Assign cross-paragraph reference ∀ vi ∈ V cross;

We provide the full procedure of producing the document d(i,j) based on the node pair’s transition
graph G(s,t) in Algorithm 1. From Line 1-2, we obtain the respective local structure of s and t based
on their transition graph G(s,t) by BFS search. From Line 3-4, for both Gs and Gt, we extract hidden
edges that are not covered in the BFS tree. In Line 5, we get the intersection of the node sets Vs and
Vt for recording the cross-paragraph nodes. Next, we initiate the document with the initial prompt and
traverse each node in Gs and Gt to assign document section indices and relations to the document.
Finally, we add hidden edges and cross-paragraph references as denoted in Line 12-13.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

𝑠 𝑡

𝒉𝑠
(1)

𝒉𝑠
(2)

𝒉𝑠
(5)

…

Figure 6: The stratified representation learning of Transition Graph Neural Network.

A.2 TRANSITION GRAPH NEURAL NETWORK

Considering a (K − 1)-layer graph neural network, TGNN returns the embedding of s at each
embedding updating layer of the GNN, as shown in Figure 6. The strategy effectively minimizes
duplicated computation by reusing convolution outputs across different cuts, resulting in a total
computational cost equivalent to an K-layer GNN. While it shares computational complexity with a
standard K-layer GNN, it is not strictly equivalent in terms of representation learning. By capturing
and utilizing multi-scale representations at each layer n, the proposed approach offers potential
advantages in expressiveness and performance for link prediction tasks.

A.3 DATASETS

Data. We run experiments on five real-world networks: Amazon-Movie (He & McAuley, 2016),
Amazon-Apps (He & McAuley, 2016), GoodReads-Children (Wan et al., 2019), GoodReads-Crime
(Wan et al., 2019), and StackOverflow2. Amazon is a user-item interaction network, with reviews
serving as textual content associated with the edges. Goodreads is a reader-book network, that utilizes
readers’ comments as textual information within the edges. StackOverflow is an expert-question
network, and there will be an edge when an expert posts an answer to a question. The statistics of the
four datasets can be found in Table 5.

Table 5: Dataset Statistics

Dataset # Node # Edge

Goodreads-Children 192,036 734,640
Goodreads-Crime 385,203 1,849,236
Amazon-Apps 100,468 752,937
Amazon-Movie 173,986 1,697,533
Stack OverFlow 129,322 281,657

A.4 ABLATION STUDY ON THE EFFECTIVENESS OF TRANSITION GRAPH NEURAL NETWORK

Amazon-Apps Amazon-Movie Goodreads-Children Goodreads-Crime StackOverflow
AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Single-Cut 0.7620 0.5880 0.7530 0.5530 0.9020 0.7050 0.9010 0.6520 0.9185 0.6841
Multi-Cut 0.7697 0.5997 0.7731 0.5755 0.9146 0.7099 0.9124 0.6661 0.9374 0.6968

Table 6: Ablation study comparison between LINK2DOC with single cut versus multi-cut across five
datasets, where the best values are bolded.

2https://www.kaggle.com/datasets/stackoverflow/stackoverflow

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We further demonstrate the effectiveness of considering multiple cuts for learning a better representa-
tion of the transition graph. As can be seen from Table 6, Single-Cut denotes we only split G(s,t) in
half, where each Gs and Gt have the depth of K/2.

In general, the Multi-Cut strategy consistently outperforms the Single-Cut approach across all
datasets. For example, in the Amazon-Apps dataset, the Multi-Cut method achieves an AUC of
0.7697 compared to 0.7620 with the Single-Cut method, and an F1 score of 0.5997 compared to
0.5880. This trend is observed across other datasets as well, such as Goodreads-Crime, where the
Multi-Cut approach results in an AUC of 0.9124 versus 0.9010 for Single-Cut, and an F1 score of
0.6661 compared to 0.6520. The improvement is particularly notable in the StackOverflow dataset,
where the AUC increases from 0.9185 with Single-Cut to 0.9374 with Multi-Cut, and the F1 score
rises from 0.6841 to 0.6968.

Overall, the results clearly indicate that the Multi-Cut strategy leads to better performance in both
AUC and F1 scores, suggesting that the model benefits from the multi-scale representation learning
provided by the Multi-Cut approach. This likely enhances the model’s ability to capture more
comprehensive and diverse neighborhood information, leading to improved prediction accuracy.

A.5 LIMITATIONS

This work relies on pre-trained language models like GPT models and LLAMA models, which may
introduce potential biases in the model’s understanding of text. These biases can be perpetuated in
the graph representations and impact the fairness and accuracy of link predictions.

15

	Introduction
	Related Works
	Link Prediction on Textual-edge Graph
	Problem Formulation
	Overall Architecture
	Transition Document Construction
	Representation Learning for Transition Graph Neural Network

	Experiment
	Results on Link Prediction
	Results on Edge Classification
	Ablation Study and Parameter Analysis
	Runtime Analysis

	Conclusion
	Supplemental Material
	Algorithm of Transition Document Composition
	Transition Graph Neural Network
	Datasets
	Ablation Study on the Effectiveness of Transition Graph Neural Network
	Limitations

