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Abstract

With direct access to human-written reference as memory, retrieval-augmented
generation has achieved much progress in a wide range of text generation tasks.
Since better memory would typically prompt better generation (we define this as
primal problem). The traditional approach for memory retrieval involves selecting
memory that exhibits the highest similarity to the input. However, this method
is constrained by the quality of the fixed corpus from which memory is retrieved.
In this paper, by exploring the duality of the primal problem: better generation
also prompts better memory, we propose a novel framework, Selfmem, which
addresses this limitation by iteratively employing a retrieval-augmented generator
to create an unbounded memory pool and using a memory selector to choose one
output as memory for the subsequent generation round. This enables the model
to leverage its own output, referred to as self-memory, for improved generation.
We evaluate the effectiveness of Selfmem on three distinct text generation tasks:
neural machine translation, abstractive text summarization, and dialogue generation,
under two generation paradigms: fine-tuned small model and few-shot LLM.
Our approach achieves state-of-the-art results in four directions in JRC-Acquis
translation dataset, 50.3 ROUGE-1 in XSum, and 62.9 ROUGE-1 in BigPatent,
demonstrating the potential of self-memory in enhancing retrieval-augmented
generation models. Furthermore, we conduct thorough analyses of each component
in the Selfmem framework to identify current system bottlenecks and provide
insights for future research1.

1 Introduction

In recent years, retrieval-augmented text generation has attracted growing interest across various
fields, including neural machine translation[28, 17, 2], dialogue response generation[81, 6, 46], and
language modeling[36, 77, 19]. This innovative generation paradigm initially equips a fine-tuned
small model or a large language model (LLM) with access to an external database (typically the
training corpus) using information retrieval techniques. Subsequently, the generation process is
conducted based on both the input text and the retrieved memory.

In this paradigm, the guiding principle for memory retrieval is to find the memory that exhibits
the highest similarity to the current input [36, 96, 49]. This aligns with the human intuition that a
more similar demonstration sample typically offers more hints. As demonstrated in Figure 1, for a
retrieval-augmented translation model, the memory similarity alone exhibits a strong correlation with
the final translation quality, regardless of other factors that may influence translation quality (e.g.,

1Code and data available at: https://github.com/Hannibal046/SelfMemory
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polysemy, morphology, and coreference). We define this as the primal problem: better memory
prompts better generation. Consequently, numerous studies have focused on how to retrieve better
memory, ranging from sparse retrieval to dense retrieval [10, 63], from a fixed retriever to a learnable
retriever [41, 8], and from sentence-level memory to more fine-grained token-level memory [36, 35].
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Figure 1: Relation between memory and hy-
pothesis on JRC-Acquis En→De dataset.
The hypothesis is generated by a retrieval-
augmented translator whose memory is re-
trieved from the training set. The X-axis
represents the similarity between memory
and the reference.

However, a fundamental limitation exists in all previous
works: the memory is retrieved from a fixed corpus
and is constrained by the corpus’s quality. Due to the
finite retrieval space, bounded memory significantly
restricts the potential of memory-augmented generation
models [97]. In this paper, we explore the duality of the
primal problem, which posits that better generation
also prompts better memory. We propose a novel
framework called Selfmem, which iteratively employs
a retrieval-augmented generator to create an unbounded
memory pool and uses a memory selector to choose one
output as memory for the subsequent generation round.
By combining the primal and dual problem, a retrieval-
augmented generation model can elevate itself using
its own output, referred to as self-memory. The key
insight behind Selfmem is that the text more closely
resembling the data distribution during inference is not
the training data [87], but the model’s own output.

Selfmem consists of two complementary components:
a retrieval-augmented generator and a memory selector. The generator operates under two distinct
paradigms: fine-tuning a small model or few-shot prompting an LLM. For the former, we train the
generator with labeled data and retrieved memory, while for the latter, we employ a fixed black-box
LLM exclusively for inference alongside retrieved in-context learning samples. We then use the
generator’s output to train a memory selector based on a specific performance metric. By simply
replacing the retrieved memory with unbounded generated memory, we achieve higher-quality
generation output (primal problem), which subsequently serves as memory for the next round after
being refined by the memory selector (dual problem).

To evaluate the efficacy of the Selfmem, we carry out comprehensive experiments in three distinct text
generation tasks: neural machine translation, abstractive text summarization, and dialogue generation.
We witness substantial enhancements over robust baselines, attaining state-of-the-art outcomes in
JRC-Acquis (four directions), XSum (50.3 ROUGE-1), and BigPatent (62.9 ROUGE-1). To gain
deeper insights into the Selfmem, we meticulously investigate each crucial component and pinpoint
the existing system bottleneck to guide future research endeavors.

2 Related Work

2.1 Retrieval-augmented Text Generation

Since the world is not a snapshot once the training corpus is collected, we can never expect an
ever-large model to capture everything in its parameters, even for LLMs like GPT-4 [62]. Therefore,
it is crucial to equip these models with an external memory bank to store additional knowledge or
useful demonstration examples for solving various NLP tasks[41, 78, 95].

In the translation domain, retrieval techniques have long been employed by the localization industry
to enhance human translators’ productivity and consistency even before the advent of machine
translation [94]. Early works on machine translation primarily focused on utilizing memory for
statistical machine translation (SMT) systems [80, 50]. For neural machine translation (NMT),
[28] were the first to use search engines to retrieve memory from the training set and incorporate
it with an external memory network. Subsequent research explored various aspects of retrieval-
augmented NMT, such as memory encoding methods [92, 93, 31], joint training of retrievers and
generators with monolingual data [8], memory granularity [35], and memory diversity [17]. For
few-shot LLM generation, strategies for in-context example selection have been proposed to improve
translation quality [2]. Furthermore, in-context machine translation has been shown to be effective
for on-the-fly adaptation [79]. For dialogue response generation tasks, employing exemplar/template
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retrieval as an intermediate step has proven advantageous for generating informative responses [89,
91, 6, 7]. In-context learning example retrieval also aids in controllable dialogue [46]. Other
applications include abstractive summarization [64, 14, 18, 15], code generation [30], paraphrase
generation [34, 83], language modeling [36, 105], counterfactual data generation [24], open domain
question answering [12, 33] and semantic parsing [99].

2.2 Neural Text Reranking

By alleviating the discrepancy between training and inference (i.e., exposure bias) and directly
optimizing desired metrics, two-stage reranking methods have facilitated significant progress in
various text generation tasks. In machine translation, pioneering works by [75] and [61] introduced
and popularized discriminative reranking for SMT. In the context of NMT, research has focused on
two primary reranking approaches: generative reranking [56, 32, 88] and discriminative reranking [39,
71, 23]. For syntactic parsing, [21] were the first to employ a two-stage reranking method to select
outputs from a base parser, while [11] introduced a maximum entropy reranker. In text summarization,
RefSum [53] proposed a second-stage summarization framework to address train-test distribution
mismatches. SimCLS [54] used pairwise Learning To Rank (LTR) to select candidates with the
highest matching scores. SummaReranker [68] adopted a multi-task mixture-of-experts framework
to leverage different metrics capturing various aspects of generated candidates. BRIO [55] reused
the base model for a second round of fine-tuning with both cross-entropy loss and a candidate-level
ranking loss. JGR [76] employed an alternate training paradigm to train the generator and reranker.

A key limitation of these reranking methods is that they only represent a one-way process, wherein the
selected candidates become the system’s final output. In contrast, our framework innovatively utilizes
the chosen candidates as memory for the subsequent generation round of a retrieval-augmented
generator, which can produce better candidates with enhanced memory.

3 Methods

In this section, we begin with a motivating experiment on generation as memory (§ 3.1). Then, we
introduce Selfmem, a framework comprising a retrieval-augmented generator (§ 3.2) and a memory
selector (§ 3.3). The complete framework and algorithm are illustrated in Figure 2 and Algorithm 1.

3.1 Generation as Memory

The primary motivation behind our framework stems from the observation that the memory, which is
more similar in distribution to the data during inference, is not the training data (38.89 BLEU, as
shown in the first row of Table 1). Instead, it is the model’s own output (58.58 BLEU) within the
unbounded generation space. One interesting exploration involves directly utilizing the generated
output as memory in relation to the primal problem: better memory prompts better generation.

Table 1: Experiments on the relation between mem-
ory quality and the final hypothesis quality, measured
by the BLEU score with ground truth translation. The
retrieval-augmented translator keeps fixed while the
memory is obtained from different sources.

Memory Source Memory Quality Hypothesis Quality

Retrieval 38.89 58.58
Beam 58.58 58.43

Reference 100 90.43
Random 1.14 49.08

We conduct experiments on the JRC-Acquis
En→De dataset. The first row in Table 1
represents conventional retrieval-augmented
training with retrieved memory and achieves
a 58.58 BLEU score. However, directly in-
corporating beam output of this trained model
as memory (Beam) back into the generation
model does not yield any improvements (row
2), despite its higher similarity to the reference
compared to the retrieved ones. We hypoth-
esize two potential reasons for this: (1) the
retrieval-augmented generator may not gen-
eralize effectively in this context due to the
memory distribution shift (from 38.89 to 58.58), and (2) the beam memory does not offer any
information gain compared to the retrieved one, even it exhibits more overlap with the references.

To investigate the first hypothesis, we conduct experiments under the oracle and random scenarios by
using the reference as memory (Reference) and randomly sampled sentences as memory (Random).
The result is shown in Table 1 and it illustrates that a retrieval-augmented generator (trained with
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Figure 2: Overall framework. There are two components in Selfmem, a retrieval-augmented genera-
tor (a) and a memory selector (b). For the primal problem, (a) takes source and memory as input to
generate candidates for (b). For the dual problem, (b) takes as input source and generated candidates
to select memory for (a).

retrieved memory) has already learned to discriminate between different memories in both oracle and
random scenarios, without updating the model weights.

To evaluate the second conjecture, we first define the token sets of the reference, retrieved memory,
and beam memory as R,M, and B, respectively. The overlap token set, denoted by O, is defined
as the tokens that overlap with the references in the beam memory but not in the retrieved memory,
which is represented as R ∩ B −R ∩M. O is considered as the additional information provided
by the beam memory. Inspired by the confidence analysis of NMT model [58], we compute the set
confidence score, ψ(·), as follows:

ψ(·) = 1

| · |
∑
yi∈·

p(yi|x, y<i) (1)

where p(yi|x, y<i) is defined by the generation model. ψ(·) measures the confidence with which the
generation model generates the tokens. The value of ψ(R) is 0.58, while that of O is 0.76, indicating
that the generator is relatively confident in generating tokens in O, and therefore does not need to
resort to external memory [38]. Beam search ranks generated candidates based on p(y|x), where the
selected memory falls within the confidence region of the generator and consequently provides no
information gain. This observation motivates us to select memory according to metrics other than
p(y|x) in the memory selector (§3.3).

3.2 Retrieval-augmented Generator

Given a text pair (x, y), where x = {x1, ..., x|x|} is the source, y = {y1, ..., y|y|} is the target. They
could be (document, summary) in summarization, (context, response) in dialogue generation or
(source, target) in machine translation. The retrieval-augmented generation would first use x to
retrieve memory m from datastore D. Then the generator Gξ(x,m), parameterized by ξ, would take
both x and m as input to generate the target sentence y. In this paper, following standard practice,
we choose the training set as D = {(xi, yi)}|D|i=1. For LLM as Gξ, we use the standard in-context
learning format to give (x, y) as demonstration example. For tunable generator Gξ , we only keep the
target side of top-1 retrieval results as memory and we consider two commonly used architectures:
Joint-Encoder [29, 87, 41] and Dual-Encoder [92, 8, 17].

Joint-Encoder This architecture is the standard encoder-decoder-based model [3, 84]. The input is
the concatenation of x and m. The encoder would first map the input into the hidden states H:

H = Encoder(x [SEP] m) (2)
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And the decoder would incorporate H by attention mechanism and generate tokens in an auto-
regressive manner:

hi = Decoder(CrossAttn(H), y<i) PGξ
(·|x, y<i) = Softmax(hi) (3)

Dual-Encoder Instead of treating x and m as a long sequence, this architecture has two encoders,
one for x and the other for m. Their outputs are sequentially attended by the decoder with dual cross
attention as in [17]:

Hx = SourceEncoder(x) Hm = MemoryEncoder(m) (4)

hi = Decoder(CrossAttn(Hx, Hm), y<i) (5)
We use Transformer [84] as the building block for both architectures and optimize Gξ with NLL loss:

Lnll = −
|y|∑
t=1

log PGξ
(yt|x,m, y<t) (6)

3.3 Memory Selector

The role of memory selector Sθ(x, c), parameterized by θ, is to select one candidate c from the
candidate pool C generated by Gξ based on a specific metric ∆(·, ·). The chosen candidate c is
then utilized as memory m for the subsequent generation round of Gξ. As discussed in §3.1, using
pGξ

(y|x) as the metric ∆(·, ·) would result in falling into the confidence region of Gξ, leading to
no information gain. Moreover, a larger value of pGξ

(y|x) does not necessarily guarantee improved
generation quality [59]. Consequently, we define ∆(·, ·) as model-free metrics that are widely
employed for assessing generation quality, such as BLEU for Neural Machine Translation (NMT)
and ROUGE for Summarization. Our memory selector takes the concatenation of the source x and
candidate ci as input, and produces a multinomial distribution pSθ

(·|x) over C.

In this paper, we focus on the role of the memory selector, Sθ(x, c), which is parameterized by θ.
The objective of this selector is to choose a single candidate c from the candidate pool C, generated
by Gξ, based on a specific metric, ∆(·, ·).

pSθ
(ci|x) =

exp(Sθ(x [SEP] ci))∑|C|
j=1 exp(Sθ(x [SEP] cj))

(7)

In accordance with [39], the training goal for Sθ is to minimize the discrepancy between the Sθ’s
predictions and the scores determined by ∆(·, ·). This divergence is quantified using the Kullback-
Leibler (KL) divergence.

Lkl = −
|C|∑
i=1

pM (ci)logpSθ
(ci|x) where pM (ci) =

exp(∆(ci, y)/τ)∑|C|
j=1 exp(∆(cj , y)/τ)

(8)

τ is the temperature to control the smoothness of the distribution. At inference, the output of the Sθ

is argmax
ci∈C

pSθ
(ci|x).

3.4 Combine Generator and Selector

We define two generation modes for Gξ . The first mode, referred to as the hypothesis mode, generates
a single output for each input, which is utilized for system evaluation. The second mode, known as
the candidate mode, produces N outputs for a given input, and is employed for training Sθ as well as
memory selection. By integrating two modes together, we present the complete framework of our
proposed model, Selfmem, as illustrated in Algorithm 1.

4 Experimental Setup

4.1 Dataset

We assess the performance of Selfmem on three generation tasks, utilizing a total of seven datasets.
Translation. We evaluate our framework on JRC-Acquis datasets [82], a collection of parallel
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Algorithm 1 Selfmem Framework

Require: a dataset D, a retriever R, a memory selection metric ∆(·, ·), a retrieval-augmented
generator Gξ, and a memory selector Sθ

1: retrieve memory M in D with R
2: train Gξ with D and M (if not LLM)
3: use Gξ to generate candidate pool C with M in candidate mode
4: train Sθ on C with ∆(·, ·)
5: while not converged in the validation set do
6: Sθ selects memory from C as M
7: Gξ generates candidate pool C with M in candidate mode
8: end while
9: Gξ generates the final hypothesis with M in hypothesis mode

legislative text of European Union Law. It is the benchmark dataset used in translation memory-
augmented NMT task [28, 92, 8, 17]. We choose 4 translation directions, namely, Spanish↔English
(Es↔En), German↔English (De↔En). Summarization. We evaluate on 2 summarization datasets:
1) XSum [60], extreme summarization, a single-document summarization dataset with highly abstrac-
tive articles from British Broadcasting Corporation. 2) BigPatent [73], consisting of 1.3 million
records of U.S. patent documents along with human-written abstractive summaries. Dialogue. We
experiment on DailyDialog [44], which contains multi-turn dialogs on daily life topics and is used
by [13, 4, 103]. The detailed statistics for these datasets can be found in the Appendix A.

4.2 Implementation Details

We utilize the BM25 algorithm [70] for retrieval purposes. For all tasks, the candidate generation
method consists of beam search with a beam width of 50. The number of iterations is determined
by the performance on the validation set. For translation, we follow the approach of [93, 8, 17],
employing a randomly initialized Transformerbase architecture as Gξ for trainable small model and
XGLM [48] for LLM in-context learning. Evaluation metrics include BLEU, TER, and chrF++
obtained from SACREBLEU[66]. The memory selector Sθ utilizes an XLM-Rbase[22] as back-
bone, with BLEU serving as ∆(·, ·). For summarization, we initialize Gξ with BARTbase[40]
for BigPatent and employ BRIO [55] for XSum. The evaluation metric comprises ROUGE (R-
1/2/L) [47]. For dialogue generation, BARTbase serves as the backbone for Gξ . Our dialogue system
is evaluated using BLEU (B-1/2) and Distinct (D-1/2) scores [43]. For both dialogue and summariza-
tion tasks, we adhere to the methods of [54, 26], adopting RoBERTabase [52] as the backbone for Sθ.
The linear combination of B-1/2 is chosen as ∆(·, ·) for Dialogue Generation, while R-1/2/L is used
for Summarization, following [76]. For further implementation details, please refer to the Appendix
B and Appendix C for evaluation metrics.

5 Experimental Results

5.1 Machine Translation

We select four translation directions and experiment with two generation paradigms: trainable small
models and few-shot prompted LLMs [85, 20]. For trainable models, we explore two architectures
(joint and dual, as detailed in §3.2). The baselines comprise two types of translation systems: one
being the vanilla sequence-to-sequence model [3, 84] without memory augmentation, and the other
consisting of retrieval-augmented translation models focusing on memory encoding [28, 92], memory
construction [101], memory retrieval [8], and memory diversity [17]. Based on the experimental
results2 shown in Table 2, Selfmem significantly enhances the performance of Gξ across four
translation datasets and two different architectures. This is noteworthy, given that the parameters of
the Gξ remain fixed, with the only variable being the input memory. This finding is consistent with
the primal problem which posits that improved memory typically leads to better generation results.

2As higher BLEU scores in this range do not necessarily guarantee a superior translation system [9], we also
evaluate our system using TER and chrF++. The results can be found in the Appendix D.
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Table 2: Results of translation task on JRC-Acquis measured by BLEU. Models denoted by the
same symbol (⋆ and †) have the same parameters and only differ in memory as input. The bolded
numbers show the SOTA performance and the underlined numbers show the second-best result. ∗
denotes the system is significantly better than baselines with p-value < 0.05 tested by [37].

System Es→En En→Es De→En En→De
Dev Test Dev Test Dev Test Dev Test

None Memory

RNNsearch [3] 55.02 59.34 50.54 50.48 50.20 49.74 44.94 43.98
Transformer [84] 64.08 64.63 62.02 61.80 60.18 60.16 54.65 55.43

Retrieval Memory

SEG-NMT [28] 60.28 59.34 57.62 57.27 55.63 55.33 49.26 48.80
NMT-pieces [101] 63.97 64.30 61.50 61.56 60.10 60.26 55.54 55.14
G-TFM [92] 66.37 66.21 62.50 62.76 61.85 61.72 57.43 56.88
MonoNMT [8] 67.73 67.42 64.18 63.86 64.48 64.62 58.77 58.42
CMM [17] 67.48 67.76 63.84 64.04 64.22 64.33 58.94 58.69
Transformerdual⋆ 66.87 67.12 63.14 63.54 64.09 63.36 58.69 58.06
Transformeruni† 67.74 67.32 63.93 64.12 64.50 64.40 58.16 58.58

Self-Memory

Transformerdual⋆ 68.63∗ 69.20∗ 64.12∗ 64.67∗ 65.06∗ 64.98∗ 59.26∗ 59.49∗

Transformeruni† 68.26∗ 68.80∗ 66.07∗ 65.94∗ 65.32∗ 65.65∗ 59.88∗ 60.11∗

Table 3: Comparison between retrieval memory and self-memory. The quality of memory and
hypothesis is measured by the n-gram overlap with reference (BLEU). All experiments are conducted
with Transformerjoint on JRC-Acquis.

Retrieval Self
memory hypothesis memory hypothesis

En-De → 38.89 58.58 57.92 60.11
← 42.56 64.40 64.32 65.65

En-Es → 40.67 64.12 63.57 65.94
← 43.05 67.32 67.78 68.80

The dual problem is revealed in Table 3. Self-memory, which essentially represents the model’s
own output, exhibits greater similarity with the ground truth and serves as a more effective memory
for generating the final output. This observation highlights a key distinction between Selfmem and
previous reranking works [39, 68]. Reranking aims to select candidates of higher quality than the
beam output, whereas in Selfmem, the chosen candidates serve as memory for the retrieval-augmented
generator and do not necessarily need to surpass the quality of the beam hypotheses.

Table 4: Evaluation results of in-context learning with self-memory.

XGLM-1.7B XGLM-4.5B XGLM-7.5B
Random kNN Self Random kNN Self Random kNN Self

En-De → 11.51 37.87 40.94 17.51 37.60 38.25 18.48 47.82 48.32
← 27.42 51.00 51.88 30.62 48.12 48.36 33.03 55.65 55.12

En-Es → 23.87 46.20 48.56 31.83 48.37 49.17 29.97 53.86 54.32
← 25.29 51.55 53.13 32.16 48.55 49.22 35.22 57.25 57.56

In Table 4, we present the results of LLM with self-memory. We employ XGLM [48] as our backbone
generator, with three different sizes ranging from 1.7B to 7.5B. We utilize the recommended prompt
as described in [48]. We select three in-context learning examples and report the average scores
from three separate runs, taking into account the sensitivity of example selection in ICL [49]. From
the table, we first observe a general trend where few-shot translation performance improves as the
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size of the model increases. Furthermore, we find that more similar translation demonstrations
significantly enhance performance across all model sizes (from random, kNN to Self). This suggests
that demonstration examples in in-context learning not only act as triggers for model ability but also
adhere to the primal problem, where better demonstration example leads to better generation. Also,
by comparing the results in Table 2 and Table 4, we can conclude that the cross-lingual LLM with
designed examples still falls short of the supervised baselines in this task.

5.2 Summarization

In this paper, we compare the performance of our trainable model with those of REINA [87],
PEGASUS [100], and BART [40]. The results are presented in Table5. Initially, it can be observed
that memory has varying impacts on different datasets. The enhancement brought by memory in the
BigPatent dataset is significantly larger than that in the XSum dataset. This can be attributed to the
inherent characteristics of the BigPatent dataset, which consists of official patent documents that
exhibit considerable similarity. Consequently, this greatly improves the summarization quality in
accordance with the primal problem. Furthermore, we discovered that self-memory substantially
enhances the performance of both BRIO (+1.2 R1) and BART (+18.5 R1), achieving state-of-the-art
results on both datasets. We selected these baselines for a fair comparison, as they share the same
base generator. Due to space constraints, additional comparisons and the confidence region of the
SOTA model can be found in the Appendix E.

Table 5: Results of summarization task on XSum and BigPatent measured by ROUGE.

System Memory R-1 R-2 R-L
XSum

PEGASUS None 47.2 24.6 39.3
BRIO None 49.1 25.6 40.4
REINA (PG) Retrieval 48.2 26.0 40.2
REINA (B) Retrieval 43.2 21.0 35.5
REINA (L) Retrieval 46.5 24.1 38.6
BRIOdual⋆ Retrieval 48.6 26.1 40.6
BRIOjoint† Retrieval 49.5 26.5 41.2
BRIOdual⋆ Self 49.2 26.2 40.8
BRIOjoint† Self 50.3 26.7 41.6

System Memory R-1 R-2 R-L
BigPatent

PEGASUS None 53.6 33.2 43.2
BART None 44.4 21.3 31.0
REINA (B) Retrieval 59.5 42.6 50.6
REINA (L) Retrieval 60.7 43.3 51.3
REINA (PG) Retrieval 44.6 21.5 33.3
BARTdual⋆ Retrieval 57.4 43.3 49.7
BARTjoint† Retrieval 59.6 43.4 51.0
BARTdual⋆ Self 61.2 44.6 52.3
BARTjoint† Self 62.9 48.1 59.6

5.3 Dialogue Generation

As demonstrated in Table 6, the self-memory significantly enhances the performance of the retrieval-
augmented generator for dialogue generation tasks. By optimizing memory using BLEU as ∆(·, ·),
the self-memory improves the B-1,2 score over retrieved memory by 3.08 B-1 and 0.6 B-2 on
BARTjoint. Intriguingly, although Selfmem surpasses the baselines in terms of B-1/2, it falls behind in
D-1 and D-2, which can be attributed to the trade-off between BLEU score and Distinct score when
evaluating a dialogue system [104]. To address this issue, we opt for D-1,2 as ∆(·, ·) when optimizing
Sθ, denoted as BARTjoint†(D). The results in Table 6 highlight the remarkable flexibility of Selfmem
by directly optimizing memory to achieve the desired attributes for diverse and informative dialogue.

6 Further Analysis

To gain a deeper insight into Selfmem, we first examine the impact of each key component, namelyGξ

and Sθ. Subsequently, we perform a detailed token-level analysis of the generated output concerning
their frequency in the training set. Experiments are conducted on the JRC-Acquis En→De dataset.
We also include latency analysis and human evaluation on Appendix F and G.

Tuning Sθ We explored various Sθ by direct selection from the candidate pool based on gold
rankings. As shown in Figure 3a, both architectures with enhanced Sθ significantly outperform
the current SOTA performance (60.11 BLEU). Moreover, we assessed the candidate pool quality
during this iterative process using an oracle Sθ, as displayed in Figure 3b. A clear pattern emerges
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Table 6: Results of dialogue generation task on DailyDialog measured by B-1/2 and D-1/2.
BARTjoint (D) denotes the metric ∆(·, ·) for Sθ is the average of D-1 and D-2.

System Memory B-1 B-2 D-1 D-2
NCM [86] None 33.60 26.80 3.00 12.80
iVAE [25] None 30.90 24.90 2.90 25.00
PLATO-2 [5] None 34.80 25.12 3.54 25.11
DialoFlow [45] None 36.17 27.67 4.56 27.12

BART None 20.72 11.36 3.92 19.44
BARTdual⋆ Retrieval 29.50 21.89 4.74 26.01
BARTjoint† Retrieval 36.72 31.55 6.13 35.65
BARTdual⋆ Self 33.43 22.85 4.66 26.16
BARTjoint† Self 39.80 32.15 5.84 32.16

BARTjoint† (D) Self 36.92 32.09 9.12 37.05
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Figure 3: (a) shows generation quality in the iteration process with different Sθ in both trainable
generator architectures. (b) shows candidates quality in the iteration process with an oracle Sθ.

in this boxplot, revealing improvements in the oracle, quartile, average, and minimum scores of
the candidate pool. These two experiments jointly clarify the Selfmem’s underlying intuition: a
retrieval-augmented generator profits from superior memory, which can be chosen from its own
unbounded output, and subsequently, the generator with improved memory produces a higher-quality
candidate pool for the next selection round. Consequently, the model lift itself up.
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Figure 4: 1-gram F1 score sorted by
training corpus frequency.

Tuning Gξ As discussed in §3.1, we demonstrated that a
trained retrieval-augmented generator, with fixed parameters,
possesses the ability to distinguish between "good" and "bad"
memory. This observation not only justifies our decision to
maintain a fixed generator within our framework but also im-
plies that the Gξ is not the current bottleneck of the Selfmem.

Frequency Analysis We conduct a comprehensive token-
level analysis by computing the 1-gram F1 scores for generated
translations and subsequently categorizing the tokens based
on their frequency in the training set. The results are depicted
in Figure 4. A noticeable pattern emerges, suggesting that the
more frequently a model encounters a token during training,
the higher the accuracy of the generated output [102]. Moreover, our findings indicate that retrieval-
augmented models, particularly those incorporating self-memory augmentation, exhibit superior
performance in handling long-tail inputs which are challenges for parametric models [67, 57].
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7 Conclusion

For the first time, we investigate the fundamental limitation of bounded memory in the current
retrieval-augmented literature. We combine the primal and dual problems together and propose
Selfmem, a general framework for retrieval-augmented text generation by uplifting generation model
with its own output. We conduct comprehensive experiments across various text generation tasks
and different generation paradigms, including trainable small model and few-shot prompted LLM.
We surpass strong baselines and improve the state-of-the-art performance in serval datasets. We also
meticulously investigate each crucial component and pinpoint the existing system bottleneck to guide
future research endeavors.

Limitations

We discuss the limitations of our framework as follows:

(1) Although Selfmem greatly improves the generation quality compared with other retrieval-
augmented generation models, it requires more computational resources with respect to the memory
selection process. For large dataset with long context (e.g., BigPatent), it would become a more
crucial problem considering the quadratic time complexity of transformer architecture.

(2) This paper proposes a general idea for the retrieval-augmented generation. But we only experiment
with transformer-based architecture for both generator and memory selector and the architecture
of generator and memory selector keeps the same across all text generation tasks. We believe the
task-specific design for the model architecture, training objective and generation methods in different
text generation scenarios would further improve the performance.
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A Dataset Details

Table 7: Dataset statistics for three tasks.

Task Dataset #Train #Dev #Test

Translation JRC (en↔ de) 663,487 2,454 2,483
JRC (en↔ es) 653,127 2,533 2,596

Summarization BigPatent 1,207,222 67,068 67,072
XSum 204,045 11,332 11,334

Dialogue DailyDialog 87,170 8,069 7,740

B Self Memory Details

For machine translation tasks, following [93, 8, 17] we use randomly initialize Transformerbase
architecture [84] as Gξ. We use the joint-bpe algorithm [72] and share the parameters between the
memory encoder and source encoder for dual encoder architecture. The hyper-parameter setting
follows [17] with dropout 0.1, label smoothing 0.1, gradient clipping 1.0, Adafactor [74], warm-up
steps 4000, maximum learning rate 4.4e-2 and training epochs 30 for total. The evaluation metrics
are BLEU, TER and chrF++ from SACREBLEU [66]. The backbone of memory selector Sθ is
XLM-Rbase [22] with BLEU as ∆(·, ·). The hyper-parameter setting for Sθ follows [39] with τ 0.5,
minmax normalization for candidates ranking, Adam optimizer with max learning rate 5e-5 and
polynomial decay scheduler, and classifier dropout 0.2.

For Summarization, we init the Gξ with BARTbase [40] for BigPatent following [87] and state-of-the-
art BRIO [55] for XSum. Optimization is based on Adafactor with a maximum learning rate of 5e-3,
warm-up steps 10000 and gradient clipping value 1.0. The maximum input length is 512 for XSum
and 1024 for BigPatent. The evaluation metric is Rouge (R-1/2/L) [47].

For Dialogue Generation, we use BARTbase as the backbone for Gξ on DailyDialog. We tune the
hyper-parameters from learning rate {5e-3,1e-3,4e-4} and set dropout 0.1, batch size 64, label
smoothing factor 0.1, maximum input length 120 for DailyDialog. Following [4, 13], we evaluate
our dialogue system with BLEU (B-1/2) and Distinct (D-1,2) [43]. For both Summarization and
Dialogue Generation task, we follow [54, 26] and adopt RoBERTabase [52] as the backbone for
Sθ. We choose the linear combination of B-1/2 as ∆(·, ·) for Dialogue Generation and R-1/2/L for
Summarization following [76]. We tune the hyper-parameters τ from {0.08,0.2,0.5,0.8}, learning
rate from {5e-5,7e-5,2e-4}. The maximum input length for Sθ is 512 and we truncate tokens from
the longer input of source and candidate.

C Evaluation Details

Machine Translation We evaluate our MT system with BLEU, TER and chrF++ from SACRE-
BLEU3 [66]. The signatures for BLEU, TER and chrF++ are shown in Table 8.

Table 8: Signature from SACREBLEU.

[c]Signature
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
nrefs:1|case:lc|tok:tercom|norm:no|punct:yes|asian:no|version:2.0.0
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.0.0

3https://github.com/mjpost/sacrebleu.git
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Summarization We evaluate our Summarization system with standard ROUGE [47] Perl package4

for evaluation. Following [55], we use PTB tokenizer5 for tokenization. And the parameters for
ROUGE are "-c 95 -r 1000 -n 2 -m".

Dialogue Generation Following [27], we evaluate our dialogue system with NLTK BLEU 6 with
space as tokenizer and smoothing method1. The Distinction score is from [42].

D More results on translation tasks

Table 9: Evaluation results on JRC-Acquis En→De measured by BLEU, TER and chrF++.

System Memory BLEU ↑ chrF++ ↑ TER↓
Transformer None 55.43 70.31 36.35
Transformerdual Retrieval 58.06 71.58 35.41
Transformerjoint Retrieval 58.58 72.22 34.39

Transformerdual Self 59.49 72.62 34.04
Transformerjoint Self 60.11 73.25 32.62

E More Summarization Baselines

In this Table 10, we include more baselines on the benchmark dataset XSum and BigPatent. We also
report the confidence region of SOTA model for XSum and BigPatent as shown in Table 11.

Table 10: More baselines on XSum and BigPatent.

System R-1 R-2 R-L
XSum

[51] 38.8 16.5 31.3
[40] 45.1 22.3 37.3
[100] 47.2 24.6 39.3
[54] 47.6 24.6 39.4
[55] 49.1 25.6 40.4
[87](PG) 48.2 26.0 40.2
[87](B) 43.1 21.0 35.5
[87](L) 46.5 24.1 38.6
[68] 48.1 25.0 40.0
[69] 47.1 24.1 38.8
[16] 47.8 25.0 39.7

Selfmem 50.3 26.7 41.6

System R-1 R-2 R-L
BigPatent

[100] 53.6 33.1 42.3
[40] 44.4 21.3 31.0
[98] 60.6 42.5 50.0
[65] 38.7 12.3 34.1
[90] 45.0 20.3 39.2
[1] 52.3 33.5 42.8
[87] (B) 59.5 42.6 50.6
[87] (L) 60.7 43.3 51.3
[87] (PG) 44.6 21.5 33.3

Selfmem 62.9 48.1 59.6

F Empirical analysis of latency

In Table 12, we present empirical results of Selfmem latency, measured in seconds. We compare
Selfmem with a retrieval-augmented baseline model across various datasets and computational
platforms, including CPU and CUDA. The number of iterations for Selfmem is set to one. All
experiments are conducted on the same device, equipped with one NVIDIA A100 GPU and one
AMD EPYC 7V13 64-Core Processor.

4https://github.com/summanlp/evaluation/tree/master/ROUGE-RELEASE-1.5.5
5https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/

PTBTokenizer.html
6https://www.nltk.org/_modules/nltk/translate/bleu_score.html
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Table 11: Confidence region for SOTA model in XSum and BigPatent.

System ROUGE-1/2/L 95%-conf.int
XSum

BRIOjoint

50.3 0.49986 - 0.50602
26.7 0.26300 - 0.26989
41.6 0.41231 - 0.41900

BigPatent

BARTjoint

62.9 0.62664 - 0.63080
48.1 0.47783 - 0.48333
59.6 0.59401 - 0.59847

Table 12: Generation Latency analysis.

NMT XSum BigPatent DailyDialog
Average Input Length 87 512 1024 71

Average Output Length 44 75 127 16

CPU
Retrieval-augmented Baseline 0.97 1.79 3.16 0.32

Selfmem
Candidate Generation 3.20 7.50 15.00 1.02

Memory Selection 0.50 0.52 0.95 0.14
Hypothesis Generation 0.97 1.79 3.00 0.32

×4.80 ×5.47 ×6.04 ×4.63

CUDA
Retrieval-augmented Baseline 0.29 0.44 0.75 0.10

Selfmem
Candidate Generation 0.51 1.00 1.72 0.18

Memory Selection 0.01 0.01 0.01 0.01
Hypothesis Generation 0.29 0.44 0.75 0.10

×2.76 ×2.99 ×3.35 ×2.91
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G Human and GPT-4 Evaluation

We employ both human annotators and GPT-4 (gpt-4-0314) annotators to perform pairwise ranking
of the output generated by Selfmem and baseline systems. For GPT-4 annotators, we utilize the
prompt from Alpaca Eval 7. We randomly select 50 samples for translation tasks and 20 samples for
summarization and dialogue tasks. The win rate of Selfmem versus retrieval-augmented baselines is
depicted in Figure 1.
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Figure 5: Human and GPT-4 evaluation results.

7https://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_eval/evaluators_
configs/alpaca_eval_gpt4/alpaca_eval.txt
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