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ABSTRACT

Adversarial scenario generation is a cost-effective approach for safety assessment
of autonomous driving systems. However, existing methods are often constrained
to a single, fixed trade-off between competing objectives such as adversariality
and realism. This yields behavior-specific models that cannot be steered at in-
ference time, lacking the efficiency and flexibility to generate tailored scenarios
for diverse training and testing requirements. In view of this, we reframe the
task of adversarial scenario generation as a multi-objective preference alignment
problem and introduce a new framework named Steerable Adversarial scenario
GEnerator (SAGE). SAGE enables fine-grained test-time control over the trade-
off between adversariality and realism without any retraining. We first propose
hierarchical group-based preference optimization, a data-efficient offline align-
ment method that learns to balance competing objectives by decoupling hard
feasibility constraints from soft preferences. Instead of training a fixed model,
SAGE fine-tunes two experts on opposing preferences and constructs a continu-
ous spectrum of policies at inference time by linearly interpolating their weights.
We provide theoretical justification for this framework through the lens of lin-
ear mode connectivity. Extensive experiments demonstrate that SAGE not only
generates scenarios with a superior balance of adversariality and realism but also
enables more effective closed-loop training of driving policies. Project page:
https://tongnie.github.io/SAGE/.
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Figure 1: Limitation of existing adversarial generation methods, our solution, and its application.

Safety assessment of autonomous driving (AD) systems is a prerequisite for their large-scale deploy-
ment. A cornerstone of verifying and enhancing their capabilities is simulated testing, particularly
through scenario-based methods (Xu et al., 2022; Ding et al., 2023). To improve testing efficiency
and alleviate the issue of “curse of rarity” (Liu & Feng, 2024), adversarial scenario generation has
emerged as a cost-effective technique. Built on this method, practitioners can move beyond simple
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testing and enable closed-loop adversarial training, where an AD policy is continuously improved by
the very challenges it fails (Ma et al., 2018; Wachi, 2019). This is achieved by systematically creat-
ing challenging, long-tailed corner cases that efficiently probe the system’s operational boundaries,
identify its blind spots, and thereby accelerate the development of more robust driving policies.

Instead of creating scenarios from scratch, many modern generation paradigms operate by perturbing
a learned naturalistic driving prior and converting it into an adversarial posterior. Viewed through
this lens, whether the adversarial model is built using Reinforcement Learning (RL) (Feng et al.,
2023; Ransiek et al., 2024a), guided diffusion (Xie et al., 2024; Chang et al., 2024; Xu et al., 2025),
or direct optimization (Wang et al., 2021; Hanselmann et al., 2022; Zhang et al., 2023), the task can
be framed as an objective-oriented adversarial optimization problem. The core challenge lies in con-
trollably navigating the inherent trade-off between adversariality (capacity to induce a failure) and
realism (physical and behavioral plausibility). This controllability is crucial for serving two distinct
purposes: targeted stress testing may require highly extreme scenarios, while data augmentation for
closed-loop training demands challenging yet realistic behaviors to ensure effective improvement.
Fulfilling both needs requires a generation framework that is exceptionally flexible and steerable.

However, existing paradigms that directly solve the adversarial optimization problem fall short in
providing this necessary level of controllability, especially at test time (Fig. 1(a)). On the one hand,
naively optimizing for a single objective, such as maximizing adversariality, often leads to a collapse
in realism. For example, methods based on aggressive search for collisions can generate physically
implausible trajectories where a vehicle spins in place or executes a kinematically impossible turn
to intercept the ego agent (Zhang et al., 2022; 2023). While adversarial, such scenarios offer limited
value as they do not reflect behaviors that could occur in reality. On the other hand, while framing it
as a multi-objective problem is a natural solution, the prevailing approach linearly scalarizes multiple
loss terms (Chang et al., 2024; Xu et al., 2025), which reduces the problem to managing a set of
delicate weighting hyperparameters. This is highly heuristic and prone to instability, particularly
when objectives induce conflicting gradients and involve a mixture of soft and hard constraints (Deb
et al., 2016). More critically, even a well-tuned model remains tied to a single fixed preference in the
parameter space, mapping to a single point in the behavior space of possible trade-offs. This limits
their test-time steerability, as adapting to a new preference usually requires expensive retraining.

In this paper, we propose the first paradigm that reframes the solution of the adversarial optimiza-
tion problem through the lens of preference alignment (Fig. 1(b)). Drawing inspiration from multi-
objective alignment (Wortsman et al., 2022; Rame et al., 2023), we tackle intricate relationships
between competing objectives on the Pareto front directly from preference data, balancing adver-
sariality, realism, and feasibility, analogous to the “3H” (helpful, honest, and harmless) principles
in Large Language Models (LLMs) (Bai et al., 2022). Crucially, our method enables test-time con-
trol in both weight and behavior spaces. Instead of producing a single model for a fixed trade-off,
we derive a mixture-of-preferences model that generates a continuous spectrum of policies. With
this posteriori selection, a user can adjust preferences at inference to generate better-informed trade-
offs on the Pareto front tailored to specific needs without retraining. This framework is positioned
as generalizable, applicable to various methods that employ adversarial optimization, as well as to
different driving policies under test. In essence, we shift the paradigm from manually designing
weighted objectives to learning a controllable preference landscape. Our contributions are fourfold:

• We introduce SAGE (Steerable Adversarial scenario GEnerator), the first policy- and backbone-
agnostic paradigm that reframes the task as a multi-objective preference alignment problem.

• We propose hierarchical group-based preference optimization, a sample-efficient offline alignment
fine-tuning technique that decouples hard feasibility constraints from soft preference trade-offs.

• SAGE uniquely provides a principled way for test-time preference control, enabling users to nav-
igate the entire Pareto front to generate tailored scenarios without retraining. Furthermore, we
theoretically and empirically ground this paradigm in the hypothesis of linear mode connectivity.

• Comprehensive experiments demonstrate that SAGE establishes a superior trade-off, delivering
competitive adversariality alongside the highest realism, and thereby enabling more effective
closed-loop training of driving policies (Fig. 1(c)) than state-of-the-art methods.

2 RELATED WORK

Adversarial Scenario Generation. This problem has been explored through several distinct
paradigms. RL methods are well-suited for closed-loop training but suffer from limited transferabil-
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ity and a tendency toward unrealistic reward hacking without meticulous engineering design (Kuutti
et al., 2020; Feng et al., 2023; Ransiek et al., 2024a; Qiu et al., 2025). Conversely, diffusion-based
models excel in generation with controllability (Zhong et al., 2023; Xie et al., 2024; Xu et al., 2025),
but their high computational expense currently renders them impractical for the on-the-fly genera-
tion required in closed-loop settings. Optimization and sampling-based methods (Wang et al., 2021;
Hanselmann et al., 2022; Zhang et al., 2022; 2023) offer a computationally efficient and transferable
alternative suitable for closed-loop training. However, they often struggle to balance adversariality
with realism, frequently producing physically implausible scenarios without principled control.
Preference Alignment. Our SAGE is inspired by recent advances in steering LLMs. This field
aims to align model behavior with complex and often conflicting human values, exemplified by
the “3H” principles (Bai et al., 2022). Representative methods such as Reinforcement Learning
from Human Feedback (RLHF) (Ouyang et al., 2022) and Direct Preference Optimization (DPO)
(Rafailov et al., 2023) offer powerful tools for aligning models into an aggregated preference signal.
However, a key limitation is that they only produce a single model for a fixed trade-off. To over-
come this, recent multi-objective alignment research has shifted towards enabling test-time control
(Rame et al., 2023; Shi et al., 2024; Xie et al., 2025). They typically train a set of experts, each
specializing in a different objective, and then interpolate parameters or predictions at test time to dy-
namically navigate the Pareto front of trade-offs without retraining. While preference-based meth-
ods are emerging in scenario generation (Cao et al., 2024; Qiu et al., 2025; Yu et al., 2025; Chen
et al., 2025), they primarily focus on aligning with a single objective, such as realism or safety, by
using standard DPO or RLHF during training. Our work is the first to ground the multi-objective
test-time alignment paradigm in adversarial scenario generation. By learning the trade-offs directly
from preference data, we provide a principled framework for steerable generation without retraining.

3 SAGE: STEERABLE ADVERSARIAL SCENARIO GENERATOR

3.1 PROBLEM FORMULATION

The goal of adversarial scenario generation is to discover or synthesize situations that reveal the
vulnerabilities of a given driving policy πego (Ding et al., 2023). Instead of creating scenarios from
scratch, a common and effective paradigm is to perturb existing, typically naturalistic scenarios Slog
logged from the real world. This approach, which we refer to as adversarial optimization (Zhang
et al., 2022; Xu et al., 2025), can be abstracted into a general multi-objective optimization problem.

Definition 1 (Perturbation-based Adversarial Optimization). Given a naturalistic scenario Slog con-
taining an initial trajectory τlog for an opponent agent, the goal is to find an optimal perturbation δ
that, when applied to τlog, maximizes the objective Jobj while adhering to a set of constraints Tvalid:

δ∗ = argmax
δ

Jobj(Slog, δ;πego) s.t. τlog + δ ∈ Tvalid, (1)

where Jobj typically involves multi-objective trade-offs, and Tvalid enforces validity constraints.

Eq. 1 provides a unifying lens through which various existing methods can be viewed. Trajectory
optimization (Hanselmann et al., 2022; Zhang et al., 2022) solves Eq. 1 directly using gradient-based
techniques. Sampling-based methods (Zhang et al., 2023) approximate the solution by sampling
from re-weighting candidates based on Jobj. Diffusion-based generators (Xie et al., 2024; Xu et al.,
2025) use Jobj as a guidance signal to steer the reverse denoising process toward adversariality. The
trade-off between competing objectives gives rise to a Pareto front: a set of optimal solutions where
no single objective can be improved without degrading another. However, directly solving Eq. 1 for
a fixed Jobj yields only a single strategy corresponding to one point on the Pareto front. Our goal is
to shift from optimizing for a single δ to generating a continuous spectrum of adversarial policies
{πθ,i}i that can trace the entire Pareto front at test time. This paradigm is generalizable to various
methods grounded in the adversarial optimization problem, enabling steerable scenario generation.

3.2 PREFERENCE-ALIGNED ADVERSARIAL TRAJECTORY OPTIMIZATION

Existing adversarial generation methods are often optimized for aggressiveness without sufficient
constraints, leading to physically unrealistic or infeasible trajectories. Therefore, we fine-tune a
pretrained motion generation model to generate trajectories that are simultaneously adversarial,
realistic, and map-compliant. We frame this as a preference alignment problem, developing a new
hierarchical preference optimization method that strategically handles the multi-objective nature.
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Multi-Objective Formulation. Let πref be a pretrained, probabilistic motion generation model
that maps a scenario context c to a distribution over future trajectories for a specific agent. The
context c includes the road map geometryM and the historical states of all agents. Our objective is
to learn a new policy πθ, fine-tuned from πref, that generates trajectories τ ∼ πθ(·|c) biased towards
our desired attributes. The quality of a generated trajectory τ is multifaceted. A naive approach
would be to define a scalar preference score function Rtotal(·) that holistically evaluates a trajectory:

Rtotal(τ ; c) = wadvRadv(τ, τego; c)− wrealPreal(τ)− wmapPmap(τ,M), (2)
where Radv measures the adversarial potency against the future trajectory of the ego vehicle τego; It
should maximize the probability of causing a failure or a near-miss event to expose vulnerabilities
of πego. Preal ensures τ to adhere to the patterns of naturalistic driving; It should be statistically
plausible and avoid behaviors that are physically possible but extremely unlikely, which could lead
to an overly conservative ego policy. Pmap penalizes violations of map constraints (e.g., crossing
solid lines or driving off-road). The weights w(·) balance these competing objectives. A trajectory
τw is preferred over τ l, denoted as τw ≻ τ l, if and only if Rtotal(τ

w) > Rtotal(τ
l).

However, this linear scalarization formulation presents a structural issue: it conflates soft preference
objectives (trade-off between adversariality and realism) with hard feasibility constraints (map com-
pliance). A trajectory that passes through a building is totally invalid, not just less preferable. The
binary nature is not well captured by a continuous penalty. This complicates the optimization land-
scape, which can result in unreliable outcomes where the model only partially satisfies constraints.
Hierarchical Group-based Preference Optimization. To address this issue, we propose Hierar-
chical Group-based Preference Optimization (HGPO), a new framework that decouples hard con-
straints from soft preferences and improves the data efficiency of the alignment process. First, we
treat map compliance not as a component of the reward, but as a precondition. We define a binary
feasibility function F (τ,M) ∈ {0, 1}, which returns 1 if the trajectory τ is fully compliant withM
and 0 otherwise. The soft preference is then judged by a separate preference reward function Rpref:

Rpref(τ ; c) = wadvRadv(τ, τego; c)− wrealPreal(τ). (3)

Second, a direct way would be to sample many feasible trajectories, identify the single best (τw) and
worst (τ l) according to Rpref(·), and apply the standard DPO loss. However, this approach is data-
inefficient as it discards fine-grained preference information contained within the rest of the samples.
Inspired by the efficiency of group-wise learning (Shao et al., 2024), but adapted for an offline set-
ting, we move beyond the single winner-loser pair. For each context c, we sample a group of N can-
didates Gc = {τi}Ni=1 ∼ πθ(·|c). We then partition Gc into a feasible set Gfeas

c = {τ ∈ Gc | F = 1}
and an infeasible set G infeas

c = {τ ∈ Gc | F = 0}. From these sets, we construct a dataset of pref-
erence pairs Dpref

c = {(τw, τ l)} based on the following two principles, which hierarchically inject
the desired inductive bias: (1) Feasibility First: Any feasible trajectory is strictly preferred over
any infeasible one. We generate pairs (τw, τ l) where τw ∈ Gfeas

c and τ l ∈ G infeas
c . (2) Preference

within Feasibility: Among feasible trajectories, we prefer those with higher preference reward. We
generate pairs (τw, τ l) where both are in Gfeas

c , but satisfy Rpref(τ
w; c) > Rpref(τ

l; c) + δm. The
margin δm prevents learning from noisy preferences where the reward difference is negligible.
Fine-tuning Objective. Hierarchical principles enable the model to learn from a wider distribution
of suboptimal and near-optimal examples. The preference fine-tuning process optimizes the policy
πθ to explain the preference data better while being regularized by the reference policy πref. Our
proposed HGPO extends this to maximize the likelihood of the entire set of group-sampled pairs:

LHGPO(θ) = E c∼D
Gc∼πθ(·|c)

(τw,τ l)∼Dpref
c

[
− log σ

(
β

(
log

πθ(τ
w|c)

πref(τw|c)
− log

πθ(τ
l|c)

πref(τ l|c)

))]
, (4)

where β controls the strength of the alignment. This formulation offers several advantages. First, by
decoupling hard constraints, it simplifies the optimization landscape and directly enforces absolute
feasibility. Second, by using group-wise sampling, it significantly improves data efficiency and
learns a more robust model from a richer set of comparisons. Last, the entire process remains offline,
ensuring stable and efficient fine-tuning without the complexities of online reward modeling.

3.3 TEST-TIME STEERABLE GENERATION BY MIXTURE OF PREFERENCES

While HGPO provides an efficient way to manage hard constraints, it still requires fine-tuning a
policy for a fixed preference trade-off. This static approach has a notable limitation: a model fine-
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tuned on a fixed set of linearly scalarized rewards produces solutions corresponding to only a single
point on the Pareto front of competing objectives. Adapting to different testing requirements needs
costly retraining. Drawing inspiration from LLM alignment (Rame et al., 2023), we introduce a test-
time alignment method that enables continuous control over the properties of generated trajectories
by creating a mixed preference model, allowing users to navigate the entire Pareto front at inference.

Training Expert Preference Models. Instead of training a single policy, we first train a set of
expert models, each specialized towards a different trade-off between core goals. In our primary
case with two objectives (i.e., adversariality and realism), we train two expert policies, πθadv and πθreal .
Crucially, these are not trained on single objectives in isolation. Instead, they are fine-tuned from
the same pretrained model πref using HGPO described in Section 3.2, but with opposing rewards:

Radv-pref(τ) = w∗Radv(τ)− (1− w∗)Preal(τ) for training πθadv ,

Rreal-pref(τ) = (1− w∗)Radv(τ)− w∗Preal(τ) for training πθreal ,
(5)

where w∗ ∈ (0.5, 1] is a fixed hyperparameter that pushes the experts towards the extremes of the
preference space. This preconditions the models to understand the trade-off space, a key difference
from methods that train on purely orthogonal rewards. These two expert models effectively anchor
the endpoints of the achievable Pareto front for further preference interpolation in the entire space.
Steerable Generation via Test-Time Weight Interpolation. At test time, given a user-specified
preference weight µ ∈ [0, 1] defining the desired trade-off between adversariality and realism, we
do not need to retrain. Instead, inspired by Wortsman et al. (2022); Rame et al. (2023), we directly
construct a novel, preference-mixed model πθ(λ) by linearly interpolating the weights of two experts:

θ(λ) = (1− λ)θreal + λθadv, (6)

where λ is a coefficient linked to the user preference µ. The mixed model πθ(λ) then generates a set
of K candidates {τk}Kk=1. The final output τ∗ is selected by ranking these candidates according to
the user’s real-time reward τ∗ = argmaxτk∈{τk}Rµ(τk) withRµ(τ) = µRadv(τ)−(1−µ)Preal(τ).
By varying λ ∈ [0, 1], we can trace a continuous path in weight spaces, which in turn generates a
continuous Pareto front of behaviors, from naturalistic to aggressive, without any retraining. This
defines a set of (near) Pareto-optimal solutions {πθ(λ)}λ, replacing costly multi-policy strategies.
Furthermore, we can extrapolate beyond the interpolation range using preference vectors to generate
more extreme and out-of-distribution cases for rigorous stress testing, as detailed in Appendix B.3.

SAGE in Closed-loop Adversarial Training. The steerability of SAGE is particularly useful
when integrated into a closed-loop adversarial training pipeline to improve an ego policy πego. This
process follows a min-max structure where, at each iteration, SAGE generates a new adversary tai-
lored to the latest ego policy’s weaknesses using the adversarial policy πθ(λ). The ego agent is then
updated to handle these new challenges. To stabilize training and prevent the agent from overfitting
to adversarial cases while failing in normal driving, we employ a dual-axis curriculum. This curricu-
lum progressively increases the challenge by gradually annealing two parameters: (1) the intensity
of the scenarios, controlled by the interpolation weight λ, which shifts from realistic to more aggres-
sive behaviors, and (2) the frequency of adversarial encounters. This structured approach ensures
the ego agent develops robust, generalizable skills. Further details are provided in Appendix B.1.

3.4 LINEAR MODE CONNECTIVITY IN FINE-TUNED MOTION GENERATION MODELS

We now provide a theoretical justification for our test-time weight interpolation scheme (Eq. 6),
grounding its effectiveness in the phenomenon of Linear Mode Connectivity (LMC) (Frankle et al.,
2020; Ainsworth et al., 2022). LMC posits that when models are fine-tuned from the same pretrained
initialization on related tasks, the resulting solutions often lie within a single, wide, low-loss basin
and can be connected by a linear path in the parameter space along which performance remains high.
SAGE leverages this property, hypothesizing that this path effectively traces the Pareto front of the
underlying multi-objective problem. This geometric property of the reward landscape has two key
consequences that we formalize below, with full derivations provided in Appendix C.

Bounded Suboptimality of Weight Interpolation. First, LMC implies that the path between θadv
and θreal likely traverses a region of high reward. This suggests that an interpolation along it, θ(λ) =
(1−λ)θreal +λθadv, can serve as a high-quality approximation for the true optima θ̂µ corresponding
to any user preference µ ∈ [0, 1]. We formalize this by bounding the suboptimality gap.
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Theorem 1 (Suboptimality of Weight Interpolation). Let the base reward functions Radv(θ) and
Rreal(θ) be L-smooth and m-strongly concave in the local region of the fine-tuned optima. Let θ1
and θ2 be the optimal parameters for the two expert models (e.g., Eq. 5) trained with mixing weight
β ∈ (0.5, 1], and let θ̂µ be the true optimum for a user preference Rµ(θ) = µRadv(θ) + (1 −
µ)Rreal(θ), µ ∈ [0, 1]. Then the suboptimality gap of our interpolated model is bounded by:

Rµ(θ̂µ)− max
λ∈[0,1]

Rµ((1− λ)θ2 + λθ1) ≤ C(µ, β, L,m) · ∥θ2 − θ1∥2, (7)

where C(µ, β, L,m) is a constant dependent on the user preference µ, the expert weight β, and the
geometry of the reward landscape (smoothness L and concavity m). See Appendix C.2 for details.

Theorem 1 provides a quantitative guarantee on the performance of our method. The LMC hypoth-
esis suggests that because both experts are fine-tuned from the same powerful pretrained model πref
on closely related objectives, they likely reside in the same basin of the reward landscape, mak-
ing their distance small. This controlled suboptimality ensures that the weight interpolation can
closely approximate the true Pareto front. This result generalizes the intuition from a simplified
quadratic reward setting (Appendix C.1), where we show that there exists a range of user prefer-
ences µ ∈ [1− β, β] defined by the experts’ training weights for which it is exactly optimal.

Superiority of Weight-Space over Output-Space Mixing. Second, LMC provides a principled
reason to prefer mixing model weights over mixing their outputs (i.e., ensembling trajectories).
While ensembling is a common alternative, the concavity of the reward landscape between solutions
makes weight-space interpolation particularly effective. We analyze the difference in expected loss
(e.g., mean square error (MSE) against an ideal trajectory) between the two strategies.
Proposition 1 (Advantage of Weight Mixing over Output Ensembling). Consider the expected loss
Lweight(λ) of a weight-mixed model πθ(λ), and an output-mixed model, Lens(λ). The difference in
their performance is approximated by:

Lweight(λ)− Lens(λ) ≈ −λ(1− λ)
2

d2Lweight

dλ2︸ ︷︷ ︸
Term 1: Benefit from Reward Concavity

+
λ(1− λ)

2
E
[
∥∆τ(c)∥22

]
︸ ︷︷ ︸

Term 2: Benefit from Output Diversity

, (8)

where ∆τ(c) = πθ2(·|c) − πθ1(·|c) is the difference in the mean predicted trajectories for a given
context c. The proof is detailed in Appendix C.3.

Proposition 1 reveals a crucial trade-off. Term 2 is always non-negative and represents the benefit of
ensembling diverse outputs. However, Term 1 depends on the geometry of the loss landscape along
the linear path connecting θ1 and θ2. For weight mixing to be superior, Term 1 must be negative
and dominate Term 2. This requires the loss function to be convex along the interpolation path,
i.e., d2Lweight

dλ2 > 0. This convexity in the loss landscape corresponds to a concave geometry in the
reward landscape. Intuitively, a linear path in the weight space traces a curved and concave path
in the reward space. This means an interpolated model θ(λ) can achieve a reward greater than the
linear average of the experts’ rewards. While LMC posits that both experts reside in a common
low-loss basin, this does not imply zero curvature. Instead, the path connecting them acts as a
high-reward ridge (Fig. 6(c)). The concavity of this ridge provides the necessary positive curvature
in the loss, making Term 1 negative and dominant. This phenomenon is empirically validated by
the concave reward curves shown in Fig. 6(d), which lie strictly above the linear interpolation line.
By operating in the weight space of a well-structured model, our method exploits this geometric
property to generate high-quality behaviors learned by a coherent model.

Together, these results suggest that the geometric properties of the fine-tuning landscape make linear
weight interpolation not merely a heuristic but a principled method for controllable generation.

4 EXPERIMENTS

We conduct comprehensive experiments to validate SAGE. Our evaluation is designed to answer
three research questions: (1) In an open-loop setting, how does it compare against SOTA baselines in
generating challenging yet realistic scenarios? (2) In a closed-loop setting, does training with these
scenarios translate into superior driving policies? (3) How can the steerable generation capability be
comprehended in a principled way? (4) Do the key designs, such as HGPO, have positive impacts
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on the performance? All experiments are conducted in the MetaDrive (Li et al., 2022) simulator
using real-world scenarios from the Waymo Open Motion Dataset (Ettinger et al., 2021). Detailed
setups and supplementary results are provided in Appendix B and D.

4.1 BENCHMARKING SAFETY-CRITICAL SCENARIO GENERATION METHODS

Table 1: Evaluation of adversarial generation methods against the Replay policy. Higher is better
for Attack Success Rate and Adversarial Reward (↑), while lower is better for penalty metrics (↓).
WD denotes Wasserstein distance. SAGE is trained using separate adversarial weights wadv.

Attack Succ. Adv. Real. Pen. ↓ Map Comp. ↓ Dist. Diff. (WD)

Methods Rate ↑ Reward ↑ Behav. Kine. Crash Obj. Cross Line Accel. Vel. Yaw

Rule 100.00% 5.048 2.798 5.614 1.734 7.724 2.080 8.546 0.204
CAT (Zhang et al., 2023) 94.85% 3.961 8.941 3.143 2.466 9.078 1.556 7.233 0.225
KING (Hanselmann et al., 2022) 40.85% 2.243 5.883 3.434 3.126 6.056 0.972 255.5 0.098
AdvTrajOpt (Zhang et al., 2022) 70.46% 2.652 4.500 2.775 2.547 10.16 1.754 6.177 0.268
SEAL (Stoler et al., 2025) 63.93% 1.269 3.017 2.423 2.732 11.612 1.544 6.959 0.202
GOOSE (Ransiek et al., 2024a) 36.07% 2.378 4.718 21.32 4.426 14.48 6.368 8.286 0.154

SAGE (wadv = 0.0) 16.26% 1.065 0.332 1.998 0.677 0.948 1.459 9.313 0.054
SAGE (wadv = 0.5) 50.41% 2.523 0.483 2.064 0.755 0.949 1.521 8.471 0.079
SAGE (wadv = 1.0) 76.15% 4.121 1.429 2.479 0.731 1.084 2.098 8.088 0.184

Table 2: Evaluation of adversarial generation methods against the RL policy.
Attack Succ. Adv. Real. Pen. ↓ Map Comp. ↓ Dist. Diff. (WD)

Methods Rate ↑ Reward ↑ Behav. Kine. Crash Obj. Cross Line Accel. Vel. Yaw

Rule 65.57% 2.761 2.180 113.7 1.803 6.148 10.85 13.47 0.336
CAT (Zhang et al., 2023) 30.33% 1.319 8.191 3.039 2.623 6.967 1.539 8.877 0.187
KING (Hanselmann et al., 2022) 19.14% 1.148 2.041 2.596 3.114 5.857 0.983 259.1 0.097
AdvTrajOpt (Zhang et al., 2022) 19.40% 0.992 4.542 2.779 2.459 9.973 1.749 6.187 0.269
SEAL (Stoler et al., 2025) 31.40% 0.752 5.871 2.684 3.030 11.98 1.563 8.267 0.267
GOOSE (Ransiek et al., 2024a) 12.46% 0.667 4.369 15.47 3.507 11.45 4.662 8.070 0.152

SAGE (wadv = 0.0) 11.20% 0.722 0.332 2.000 0.738 0.956 1.456 9.344 0.055
SAGE (wadv = 0.5) 13.66% 0.819 0.496 2.066 0.820 0.820 1.515 8.475 0.080
SAGE (wadv = 1.0) 28.42% 1.400 1.468 2.496 0.792 1.366 2.098 8.114 0.188

We first benchmark SAGE in an open-loop setting against SOTA adversarial baselines. Tabs. 1 and
2 suggest that SAGE shows a superior balance between adversariality and realism. When configured
for maximum adversariality, SAGE achieves a high attack success rate and adversarial reward, com-
petitive with the strongest baselines. More importantly, it maintains significantly lower realism and
map compliance penalties across the board. For instance, against the Replay policy, SAGE reduces
map violations (e.g., Cross Line penalty of 1.084) by over 85% compared to Rule-based (7.724) and
CAT (9.078), while also achieving the highest behavioral realism. This highlights the effectiveness
of treating map compliance as a hard constraint rather than a soft penalty. A noteworthy observa-
tion arises from the distributional distance metrics. While SAGE excels at maintaining low realism
penalties for individual trajectories, it can produce a higher distributional distance than other meth-
ods, though within a reasonable range. This suggests that it achieves adversariality not by generating
physically implausible actions, but by discovering coherent and statistically rare long-tail scenarios
that challenge the ego agent precisely because they are underrepresented in the training distribution.

Adversarial Vehicle Ego Vehicle Other Vehicle

CAT Rule SAGERAW

Figure 2: Behavioral realism comparison. Adver-
sarial generation against the Replay policy.

Qualitative results in Fig. 2 (more examples in
section D.5.2) confirm these findings. While
baselines often produce physically awkward
or rule-violating trajectories, SAGE generates
challenging yet plausible maneuvers. This abil-
ity is crucial for meaningful safety validation
and robust agent training. Similar trends are
observed when testing against a stronger RL
policy (Tab. 2), confirming the robustness of
SAGE. Quantitative results against other reac-
tive policies are provided in Appendix D.1 and
visualized in Fig. 12. Fig. 3 shows that SAGE

generates diverse types of plausible adversarial behaviors for effective stress tests and training.
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Adversarial Vehicle Ego Vehicle Other Vehicle

Sudden-breakRear-endCut-in Turning overtakeOpposite conflictLeft-turn

Figure 3: SAGE generates diverse types of meaningful adversarial behaviors (Replay policy).

4.2 TEST-TIME STEERABLE GENERATION VIA PREFERENCE ALIGNMENT

A key contribution of SAGE is the ability to steer scenarios at test time without retraining. Fig. 4(a)
illustrates this capability by comparing the Pareto fronts of different mixing strategies. Our proposed
weight mixing traces a superior Pareto front, achieving a better realism score for any given level of
adversariality compared to logit-space or trajectory-space mixing (see section B.3), which empiri-
cally validates Proposition 1. The continuous and monotonic curves in Fig. 4(b) further indicate the
fine-grained controllability: aswadv increases, the collision rate smoothly rises, with a corresponding
increase in the distributional distance from naturalistic data, indicating a controlled trade-off. The
performance of SAGE at different weight configurations, shown in Tabs. 1 and 2, further quantifies
this smooth transition. This controlability is visualized in Fig. 5: the generated trajectory transitions
smoothly from a compliant lane-following maneuver to a highly aggressive cut-in or sudden brake.
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Figure 4: Pareto front and continuous performance transition at test time. (a) We compare the trade-
off curves for different model merging strategies in terms of their adversariality and realism. (b)
SAGE achieves smooth and continuous outcome control by varying the adversarial weight.

Adversarial Vehicle Ego Vehicle

Other Vehicle

Wadv = 0.0Raw Wadv = 0.5 Wadv = 1.0

Adversarial Weight 

Figure 5: More aggressive behaviors are generated from SAGE by increasing wadv from 0 to 1 (see
Appendix D.5.3 for more examples). Adversarial generation against the Replay policy.

4.3 DECIPHERING THE PREFERENCE-ALIGNED SPACES OF FINE-TUNED MOTION MODELS

We empirically validate the theoretical understanding of weight interpolation and LMC. Since we
fine-tune a well-pretrained model, it is plausible that the learned experts remain in a local region of
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the weight space with favorable geometry. Fig. 6 provides strong evidence. Fig. 6(a) visualizes the
preference vectors in a PCA-projected space, showing they are distinct and non-collinear, captur-
ing unique aspects of the desired behaviors. The interpolated points lie between the line segment
connecting two vectors, while the extrapolation points are scattered in space, which aligns with our
understanding. In addition, the angle between the directions of two vectors lies within (0◦, 90◦),
which is reasonable to cover a wide Pareto front. As we interpolate between θadv and θreal, Fig. 6(b)
shows a smooth, monotonic transform in both the L2 norm of the preference vector and its cosine
similarity to the target adversarial vector, indicating a well-behaved and controllable path.
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(e) Preference vector extrapolation.

Figure 6: Empirical evidence for LMC and preference vector manipulation in the weight space. (a)
PCA plot shows the preference vectors (∆adv, ∆real, see Eq. 14) forming a well-defined space for
interpolation. (b) The interpolated vector’s properties transform smoothly, indicating a controllable
path. (c) The reward landscape reveals a high-reward ridge connecting two experts, which is a key
property of LMC. (d) The rewards exhibit concavity along the path, justifying the superiority of
weight mixing. (e) Preference vector extrapolation improves performance beyond the convex hull.

Crucially, Fig. 6(c) shows the reward landscape along a 2D plane defined by the two experts. The
linear path connecting them traverses a high-reward plateau, consistent with the LMC prediction of
a flat loss basin. This flatness and curvature are key to the success of weight interpolation, making
the suboptimality gap well-bounded. Fig. 6(d) provides direct evidence: the measured rewards of
interpolated models closely track or even exceed the rewards predicted by a linear interpolation
of the rewards of endpoints. This confirms that interpolating in weight space is more effective
than simply expecting a linear combination of outcomes, supporting Proposition 1. Furthermore,
Fig. 6(e) demonstrates that preference vector extrapolation (see Appendix B.3) successfully extends
generation beyond the convex hull of the experts, yielding a path that achieves even higher rewards
and lower penalties than the solution on the original Pareto front, thereby enabling the creation of
out-of-distribution scenarios for rigorous testing. More results are provided in Appendix D.4.

4.4 CLOSED-LOOP ADVERSARIAL TRAINING FOR IMPROVED DRIVING POLICY

Table 3: Evaluation of trained RL policies in the generated (adversarial, wadv = 1.0) environments.
Methods Reward ↑ Cost ↓ Compl. ↑ Coll. ↓ Ave. Speed ↑ Ave. Jerk ↓

SAGE 45.14± 3.27 0.61± 0.04 0.69± 0.03 0.31± 0.02 8.98± 0.02 28.85± 0.68
CAT 37.70± 1.53 0.70± 0.04 0.58± 0.02 0.37± 0.04 6.85± 0.03 31.83± 1.10
Replay (No Adv) 41.32± 3.21 0.68± 0.04 0.62± 0.04 0.44± 0.06 8.77± 0.01 30.42± 1.12
Rule-based Adv 32.99± 4.89 0.72± 0.03 0.50± 0.04 0.33± 0.02 5.99± 0.04 30.51± 0.99

To assess the downstream utility of SAGE, we integrate it into a closed-loop RL training pipeline. As
shown in Fig. 9 (in Appendix D.2) and Tab. 3, an ego agent trained with SAGE consistently outper-
forms baselines across all metrics: it achieves higher rewards, lower costs, greater route completion,
and a lower crash rate. Beyond the safety metrics, it also achieves better efficiency and comfort
performances. Moreover, SAGE alleviates catastrophic forgetting as evidenced by Tab. 10 (in Ap-
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pendix D.2). The policy trained with SAGE also achieves the best overall performance in log-replay
scenarios. This justifies the effectiveness of our dual-axis curriculum (see Appendix B.1).

To further ensure a fair evaluation and assess the risk of overfitting, we conducted a cross-evaluation
of the trained RL policies. In this setup, we benchmarked every trained agent on held-out test sets
generated by the CAT and Rule-based methods. The results in Tab. 4 provide several key insights.
First, we observe that an agent tends to achieve the best performance on the adversarial metric
when evaluated on scenarios created by its own training generator. For example, the CAT-trained
agent has the lowest collision rate in CAT-generated scenarios. This validates the importance of
this cross-evaluation. Second, and more importantly, the SAGE-trained agent demonstrates superior
generalizability across all environments. Its safety performance remains highly competitive, ranking
a close second. Notably, the SAGE-trained agent achieves the highest route completion rate across
all adversarial test sets, demonstrating that it learns to handle challenges more effectively without
compromising its primary driving objective. This robustness across diverse adversarial distributions
suggests that the curriculum-based training with SAGE, which exposes the agent to a wide spectrum
of adversarial intensities, prevents overfitting to a specific attack pattern and enables a more general-
izable and practical driving policy. In contrast, agents trained on more static adversarial distributions
(CAT, Rule-based) show a more significant performance drop when tested out-of-distribution.

Table 4: Evaluation of Trained RL Policies in Different Adversarial Environments.
CAT-generated scenarios Rule-generated scenarios

Training Methods Compl. ↑ Coll. ↓ Compl. ↑ Coll. ↓

SAGE 0.678± 0.034 0.307± 0.037 0.655± 0.037 0.334± 0.038
CAT 0.660± 0.039 0.298± 0.050 0.633± 0.043 0.389± 0.044
Replay (No Adv) 0.665± 0.042 0.454± 0.051 0.642± 0.027 0.461± 0.046
Rule-based Adv 0.569± 0.050 0.348± 0.028 0.556± 0.059 0.293± 0.043

4.5 ABLATION STUDY

(c) Winner Reward (Map Pen. Ablations) (d) Feasibility Rate (Map Pen. Ablations)

(a) Training Loss (CGPO vs DPO) (b) Average Sample Pairs (CGPO vs DPO)

HGPO (Ours)

HGPO (Ours)

HGPO (Ours)
HGPO (w/ opt map)
HGPO (w/o map)

HGPO (Ours)
HGPO (w/ opt map)
HGPO (w/o map)

Figure 7: Ablation studies.

We conduct ablation studies to validate key de-
sign choices. Fig. 7(b) highlights the superior
sample efficiency of HGPO over DPO. By con-
structing multiple preference pairs from a group
of samples, HGPO utilizes much more infor-
mation per scenario, leading to a more stable
training loss and faster convergence (Fig. 7(a)).
We also validate our approach of treating map
compliance as a precondition. Figs. 7(c,d) show
that this maintains a high map feasibility rate
of nearly 90% and a higher reward throughout
training. In contrast, removing the map con-
straint leads to a collapse in feasibility, as the
model learns to exploit off-road shortcuts. Us-
ing a weighted penalty improves feasibility but
remains suboptimal compared to our HGPO.
This confirms that decoupling hard constraints

from soft preferences is critical for generating valid trajectories. See more results in Appendix D.3.

5 CONCLUSION

This work introduced SAGE, a new paradigm that reframes adversarial scenario generation as a
test-time preference alignment problem. By fine-tuning experts on opposing preferences and inter-
polating their weights at inference, SAGE enables fine-grained, steerable control over the trade-off
between adversariality and realism. SAGE not only yields a superior Pareto front in open-loop eval-
uations but also results in improved driving policies in closed-loop training. Our work establishes
a principled foundation for steerable generation and opens several future avenues. First, the cur-
rent framework could be extended to incorporate a richer set of objectives, such as scenario novelty
or complexity. Second, more advanced model merging techniques could potentially uncover better
paths in the parameter space. Finally, an automated curriculum where the model is dynamically
adapted based on the agent’s learning progress could lead to more intelligent adversarial training.
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ability. The authors reviewed the content as needed and take full responsibility for the content.

APPENDIX

This technical appendix provides comprehensive supplementary materials to the main paper. It is
structured as follows: Section A offers a detailed review of essential background concepts. Section B
outlines the full implementation details of our experiments. Section C presents a rigorous theoretical
analysis. Finally, Section D provides extensive supplementary experimental results.
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A BACKGROUND AND PRELIMINARY

A.1 PRELIMINARY ABOUT ADVERSARIAL SCENARIO GENERATION

This section first introduces concepts and notation for representing traffic scenarios and agent be-
haviors. We then formalize the closed-loop adversarial training framework discussed in section 3.3.

A.1.1 TRAFFIC SCENARIO REPRESENTATION

We model a traffic scenario S as a collection of interacting agents operating within a static envi-
ronment. The environment is defined by a high-definition mapM, which contains geometric and
semantic information. The set of agents in the scenario is denoted by A = {a0, a1, . . . , aN−1},
where a0 is the AD agent being tested (ego), and {ai}N−1

i=1 are the other traffic participants, referred
to as other agents. The state of an agent ai at timestep t is represented by sit = (xit, y

i
t, θ

i
t, v

i
t), which

includes its 2D position, heading, and speed. The trajectory of an agent ai over a time horizon T is
a sequence of its states, τ i = {si0, si1, . . . , siT }. The collective behavior of all agents in the scenario
is described by the set of all trajectories T = {τ i}N−1

i=0 . Thus, a complete scenario can be defined as
a tuple S = (M, {τ ego, τ1, . . . , τN−1}). In this sense, the scenario context c refers to the historical
scenario or the initial scenario to be predicted. Here, scenarios are sourced from real-world driving
logs. In this work, we consider the ego agent a0 is controlled by an end-to-end driving policy πego,
which directly maps a sequence of observations ot to a future plan or a low-level action.

A.1.2 CLOSED-LOOP ADVERSARIAL TRAINING FOR SAFE DRIVING

To enhance the robustness of an ego agent’s driving policy, we leverage the paradigm of adversarial
training (Ma et al., 2018; Wachi, 2019). This approach goes beyond training on a fixed dataset of
benign scenarios by dynamically generating challenging scenarios that are specifically tailored to the
policy’s current weaknesses. In the context of reinforcement learning (RL), the standard objective
for the ego agent is to learn a policy πego that maximizes the expected cumulative reward J within
a given environment, characterized by a transition function f :

max
πego
J (πego, f) = max

πego
Eτ∼πego,f

[
T∑

t=0

R(st, at)

]
, (9)

where R is the environment reward function and the trajectory τ is sampled by executing policy
πego in the environment f . Adversarial training extends this into a min-max optimization problem.
The adversary actively modifies the environment’s transition function to fadv to minimize the ego
agent’s reward, while the ego agent simultaneously learns to maximize its reward in this worst-case
environment:

max
πego

min
fadv∈F

J (πego, fadv), (10)

where F is the space of feasible adversarial environments. The inner loop, minfadv , corresponds to
the adversarial scenario generation process, and the outer loop maxπego is the policy optimization
step, where πego is updated using an RL algorithm to overcome the challenges posed by fadv. This
formulation can lead to a closed-loop and iterative training pipeline (Zhang et al., 2023). The policy
is continuously improved by training on adversarial scenarios generated on-the-fly against its most
recent version. This co-evolution of the agent and environment forces the policy to learn general-
izable and robust driving skills, rather than overfitting to a static set of scenarios (Anzalone et al.,
2022). The efficiency and quality of the generator are therefore critical to the success of the pipeline.

A.2 DETAILED RELATED WORK ON ADVERSARIAL SCENARIO GENERATION

The generation of safety-critical scenarios is crucial for testing and enhancing the robustness of au-
tonomous driving (AD) systems (Xu et al., 2022; Ding et al., 2023; Nie et al., 2025). In recent years,
several distinct paradigms have emerged to automate this process, each with its own strengths and
limitations. In this section, we provide a comprehensive review of these paradigms, focusing on Re-
inforcement Learning-based, Diffusion-based, and Optimization/Sampling-based methods. We po-
sition our work within this landscape, addressing key unresolved challenges of existing paradigms.
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RL-based Generation. RL has been widely adopted to generate adversarial scenarios by training
an adversary agent to maximize a reward function correlated with the failure of the ego policy
(Wachi, 2019; Kuutti et al., 2020; Feng et al., 2021; 2023; Chen et al., 2024; Ransiek et al., 2024a;
Qiu et al., 2025). In this paradigm, the ego agent is treated as part of the environment, and the
adversary learns complex, non-intuitive behaviors to exploit its weaknesses. A significant advantage
of RL-based methods is their inherent suitability for closed-loop training, enabling the ego agent to
be hardened against an adapting adversary (Kuutti et al., 2020; Ransiek et al., 2024a). However, this
approach suffers from two major drawbacks. First, limited transferability: the adversarial policy
is tightly coupled with the specific ego agent it was trained against. A scenario generated for one
AD stack may not be challenging for another, necessitating costly retraining for each new system
under test (Ransiek et al., 2024b; Ding et al., 2020). This makes it ill-suited for large-scale, general-
purpose testing. Second, unrealistic behaviors: RL agents are prone to reward hacking, where they
discover unrealistic or physically implausible strategies to maximize the reward, such as erratic
movements or violating basic traffic rules, unless the reward function is meticulously engineered
(Kuutti et al., 2020; Qiu et al., 2025).

Diffusion-based Generation. Leveraging their success in high-fidelity image and video synthe-
sis, diffusion models have recently been applied to traffic scenario generation (Zhong et al., 2023;
Xie et al., 2024; Xu et al., 2025). These methods learn the distribution of real-world traffic data and
can generate realistic, diverse, and controllable scenarios. By incorporating controllability during
the reverse diffusion process, these models can be steered to produce safety-critical events, such as
collisions or near-misses, based on textual descriptions (Zhong et al., 2023) or predefined objective
functions (Xie et al., 2024; Chang et al., 2024; Xu et al., 2025). This controllability is primarily
achieved with guidance and conditioning. Diffusion guidance is strong in control but slow, and the
other is statistically true but weak in adjustability. This paradigm excels in generating realistic and
highly controllable scenarios. Moreover, these methods are generally policy-agnostic, as the gener-
ative model is trained on real-world data rather than against a specific ego agent, leading to better
transferability. The primary limitation of diffusion-based methods is their significant computational
overhead. The iterative denoising process is computationally expensive and slow, which makes
it currently unsuitable for closed-loop adversarial training, where scenarios need to be generated
on-the-fly to continuously challenge and improve the ego agent’s policy.

Optimization and Sampling-based Generation. This category of methods focuses on perturbing
existing real-world scenarios or sampling from a learned prior to generate adversarial variants (see
section A.1). The search for adversarial parameters is often performed in different spaces, such as
the parameter space of vehicle kinematics (Hanselmann et al., 2022; Cao et al., 2022; Mei et al.,
2024), the latent space of a generative model such as a VAE (Rempe et al., 2022), or directly in the
trajectory space (Wang et al., 2021; Zhang et al., 2023; Mei et al., 2025a;b). Especially, CAT (Zhang
et al., 2023) falls into this category by modeling adversarial traffic as a probabilistic factorization
and sampling trajectories with the highest collision probability. Their main advantage lies in their
computational efficiency, which makes them viable for closed-loop adversarial training frameworks.
They are also typically policy-agnostic and thus highly transferable. Nevertheless, these methods
often struggle with controllability and realism. The optimization or sampling process, if not properly
constrained, can push trajectories into unrealistic regimes. As noted in our motivation, methods like
CAT can produce overly aggressive yet physically implausible trajectories, such as vehicles spinning
in place, which limits their utility for training robust and realistic AD policies.

Summary. Existing paradigms for adversarial scenario generation present a fundamental dilemma
between generalizability, efficiency and controllability. Reinforcement Learning (RL) methods, for
instance, can discover complex adversarial strategies but are often coupled to a specific AD policy
and prone to reward hacking, leading to unrealistic behaviors (Feng et al., 2023; Qiu et al., 2025).
Conversely, diffusion-based generative models offer superior generalizability and fine-grained con-
trol (Zhong et al., 2023; Xie et al., 2024; Xu et al., 2025), yet their significant computational over-
head renders them impractical for on-the-fly generation required in closed-loop settings. A promis-
ing avenue lies in optimization or sampling-based methods, which operate on perturbing a learned
naturalistic driving prior (Wang et al., 2021; Hanselmann et al., 2022; Zhang et al., 2023). They are
efficient and generalizable for closed-loop training, but achieving meaningful control over the gen-
eration process remains a challenge. A new paradigm that can inherit the merits of both is desired.
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B DETAILED IMPLEMENTATION

B.1 EXPERIMENTAL SETUPS

This section provides a detailed description of our experimental setups, including the dataset, simu-
lation environment, backbone model, baseline methods, and our fine-tuning and RL training proce-
dures, to ensure the reproducibility of our results.

Datasets. Our experiments are conducted using the Waymo Open Motion Dataset (WOMD) (Et-
tinger et al., 2021), which is consistent with prior works (Zhang et al., 2023; Stoler et al., 2025).
WOMD provides a large collection of real-world, complex, and interactive traffic scenarios. From
the standard set of 500 scenarios used in Zhang et al. (2023), we select a filtered subset of 370
scenarios for our experiments. This subset is curated by excluding scenarios where the adversar-
ial agent’s initial trajectory is either too short for meaningful interaction or already violates map
boundaries, ensuring a high-quality and challenging cases for adversarial generation. This dataset is
utilized for both generating adversarial scenarios and for fine-tuning our generative models.

Environment. All our experiments are performed in the MetaDrive (Li et al., 2022) simula-
tor, a lightweight and efficient simulation platform for AD research. Following the setup in Zhang
et al. (2023), we use MetaDrive to reconstruct scenarios from the WOMD dataset. This allows
for closed-loop evaluation, where the ego agent can react dynamically to the behavior of the ad-
versarially controlled traffic participants. The simulation runs at a frequency of 10Hz. To ensure a
fair and direct comparison with prior work, we adopt the specific environmental and agent training
parameters from Zhang et al. (2023). The key hyperparameters for the scenario generation process
used for evaluation are detailed in Tab. 5.

Table 5: Hyperparameters for the open-loop
scenario generation evaluation.

Hyper-parameter Value

Scenario Horizon T 9s
History Horizon t 1s
# of OV candidates M 32
# of EV candidates N 1
Penalty Factor α 0.99
Policy Training Steps 1× 106

Table 6: Hyperparameters for training the TD3
RL agent.

Hyper-parameter Value

Discounted Factor γ 0.99
Train Batch Size 256
Critic Learning Rate 3× 10−4

Actor Learning Rate 3× 10−4

Policy Delay 2
Target Network τ 0.005

Pretrained Backbone Model. The foundation of our scenario generation framework is a prob-
abilistic motion generation model. To ensure a fair comparison with the baselines, we employ
DenseTNT (Gu et al., 2021), the same backbone model used in CAT (Zhang et al., 2023).
DenseTNT is one of the state-of-the-art goal-conditioned motion prediction model that generates
a diverse set of future trajectory proposals along with their corresponding confidence scores. The
pretraining task is to train the model to predict future trajectories using historical observations and
scene context, supervised by human experts. This follows the standard imitation learning (Gu et al.,
2021). This pretrained model serves as the learned traffic prior that SAGE fine-tunes and that all
baselines (except for the rule-based one) leverage to generate adversarial behaviors. To enable end-
to-end preference optimization, we modify the decoding procedure of DenseTNT by outputting
the top-k candidates directly, bypassing the non-differentiable non-maximum suppression (NMS)
sampling process. Furthermore, our backbone-agnostic framework is generalizable and applicable
to any probabilistic motion forecasting (generation) backbone that can generate multimodal trajec-
tories with their probabilities (predicted logits). We take DenseTNT as an example in the experi-
ments. We adopt the publicly released pretrained model checkpoint from the CAT’s repository for
experiments to ensure a fair comparison.

Baselines. We compare SAGE against a comprehensive set of strong baselines from recent litera-
ture on safety-critical (adversarial) scenario generation.
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• CAT (Zhang et al., 2023): A state-of-the-art method that generates adversarial scenar-
ios by resampling trajectories from a learned traffic prior (DenseTNT) to maximize a
collision-based objective in a closed-loop setting. Following the original implementation,
CAT employs a heuristic objective. It generates a set of candidate trajectories T from the
DenseTNT prior and selects the adversarial trajectory τ∗adv that maximizes the collision
probability with the ego vehicle’s planned path τego: τ∗adv = argmaxτi∈T P (coll(τi, τego)).

• SEAL (Stoler et al., 2025): A recent approach that employs a skill-enabled adversary.
It combines a learned objective function with a reactive, skill-based policy to generate
more realistic and human-like adversarial behaviors than CAT. We utilize the official open-
sourced implementation of SEAL. Its objective is based on a learned scoring network,
πscore, which is trained to predict two criticality metrics: collision closeness (fcoll) and
ego behavior deviation (fdiff). The final adversarial objective is to select trajectories that
maximize the sum of these predicted scores: maxEτadv [fcoll(τadv, τego) + fdiff(τadv, τego)].
This learned objective, combined with a skill-based policy, aims to produce more nuanced
and realistic adversarial behaviors.

• KING (Hanselmann et al., 2022): A gradient-based approach that perturbs adversarial tra-
jectories by backpropagating through a differentiable kinematic bicycle model to induce
collisions. For a fair comparison, we re-implemented its core mechanism within our exper-
imental environment, as detailed in our supplementary code. The optimization is performed
for 100 steps with a learning rate of 0.005 using an Adam optimizer.

• AdvTrajOpt (Zhang et al., 2022): This method models adversarial scenario generation as
a trajectory optimization problem and solves it using Projected Gradient Descent (PGD).
We adapted its PGD-based trajectory perturbation logic into our environment, ensuring it
operates on the same initial conditions and interacts with the same ego agent. Our imple-
mentation uses 50 PGD steps with a learning rate of 0.2. For both KING and AdvTrajOpt,
we use the same multi-objective reward function as SAGE, defined in Eq. (2) to ensure a
fair comparison. To align with their goal of generating highly challenging scenarios, we
set the weights to a fixed point on the Pareto front that heavily prioritizes adversariality
over realism, with wadv = 0.9 and wreal = 0.1. This provides a direct comparison of the
generation quality under a shared, aggressive objective.

• GOOSE (Ransiek et al., 2024a): A goal-conditioned RL framework for safety-critical sce-
nario generation. GOOSE models the entire trajectory using Non-Uniform Rational B-
Splines (NURBS), and the RL agent learns to manipulate the NURBS control points to
achieve predefined adversarial goals. For our experiments, we use the pretrained model
checkpoint released by SEAL’s repository for the WOMD dataset to ensure a fair compar-
ison.

• Rule-based: A heuristic baseline consistent with the one described in Appendix F of
Zhang et al. (2023). This method generates an adversarial path by selecting waypoints
from the ego vehicle’s future path, mixing them with the adversary’s original waypoints,
and fitting a smooth Bezier curve through them to create an aggressive cut-in or blocking
maneuver.

To justify the superiority of the test-time alignment scheme proposed in section 3.3, we further
compare two different alignment methods as described below:

• Trajectory mixing: The output is generated by directly mixing trajectories from the two
expert models: τ(λ) = (1−λ)τreal+λτadv. This is an instantiation of the output ensembling
method discussed in Proposition 1.

• Multi-objective decoding (Shi et al., 2024): Inspired by Shi et al. (2024), we mix the
predicted logits of two experts. Following the architecture of DenseTNT (Gu et al., 2021),
we use the logits of all candidate goal points as the approximation of trajectory probability.
This gives a mixed goal score g(c;λ) = (1 − λ)g(c; θreal) + λg(c;λadv). Then, the final
trajectory is generated by decoding g(c;λ) with the highest score value using the pretrained
trajectory decoder. This scheme mimics the token prediction stage of LLMs.

Compared to our weight-space mixing, both of them are action-space mixing strategies, thus serving
as direct counterparts to justify Proposition 1.
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HGPO Fine-tuning. Our preference fine-tuning approach has several hyperparameters. For the
number of trajectory candidates, we let the policy model generate a group of M = 32 trajectories
used for reward computing. A reward difference exceeding a margin of δm = 0.2 is regarded as
a valid signal. We sample up to 8 pairs per scenario for the group-based learning process. The
temperature parameter is set to β = 0.05 to regularize the alignment. We use the AdamW optimizer
with a learning rate of 1 × 10−5. We train two specialized models by adjusting the weights in the
preference reward calculation:

• Adversarial Model: We set the adversarial weight wadv = 0.9 and the realism weight
wreal = 0.1. This configuration strongly encourages the model to prioritize generating
trajectories that result in safety-critical interactions.

• Realism Model: We set wadv = 0.1 and wreal = 0.9. This configuration prioritizes kine-
matic and behavioral plausibility, encouraging the model to generate more human-like and
realistic, albeit potentially less aggressive trajectories.

The models are trained for 200 epochs on the 370 selected training scenarios. Hyperparameters for
HGPO are provided in Tab. 7.

Details of the System Under Test. To thoroughly evaluate the generated adversarial scenarios, we
test them against a diverse set of ego agent policies, representing different levels of driving capability
and design philosophies of AD systems.

• Replay Policy: This is the most basic agent, which deterministically replays the ground-
truth trajectory of the ego vehicle as recorded in the WOMD dataset. It serves as a non-
reactive baseline to measure the raw difficulty of a scenario.

• Intelligent Driver Model (IDM): A standard, rule-based car-following model widely used
in traffic simulation. The IDM agent maintains a safe following distance and adjusts its
speed based on the vehicle directly ahead. It is also equipped with rule-based lane change
and overtake maneuvers to enable lateral control.

• Trained RL Agent: A standard TD3 agent (Fujimoto et al., 2018) trained via RL on the
original, non-adversarial WOMD scenarios. The observation input of the RL agent contains
ego states, navigation information and surrounding information provided by 2D LiDAR
sensor. This agent represents a competent end-to-end learning-based policy but is naive to
adversarial behaviors, allowing us to measure the impact of adversarial training.

• Rule-based Expert: A sophisticated and safety-oriented rule-based policy. The rule-based
policy operates on perfect state observations, which directly provide the ground-truth po-
sitions of surrounding vehicles. This expert agent employs a hierarchical control structure.
At the low level, it uses separate PID controllers for lateral and longitudinal control. Crit-
ically, it features a proactive safety layer that uses a kinematic bicycle model to forecast
its own trajectory and the future states of surrounding vehicles. It continuously checks
for potential future collisions by performing oriented bounding box intersection tests. If
a high-risk situation is predicted, it activates the collision avoidance strategy, which is to
reduce the vehicle speed. This expert serves as a challenging SUT, representing a robust,
well-engineered AD system.

Open-loop Evaluation. The open-loop evaluation protocol is designed to benchmark the effec-
tiveness and characteristics of different scenario generation methods against a target ego agent be-
havior, ensuring a fair comparison. The process follows a two-stage procedure (Zhang et al., 2023)
for each scenario and each SUT:

1. Ego Trajectory Collection: First, the SUT (e.g., the Rule-based Expert or the Trained RL
Agent) is executed in the original, unmodified WOMD scenario. Its complete trajectory
over the 9-second horizon is recorded. This step establishes a consistent and deterministic
behavioral target for all adversarial generation methods.

2. Adversarial Attack and Re-simulation: The environment is then reset to the initial state
of the same scenario. The adversarial generation method under evaluation uses the ego
trajectory recorded in the first stage as a target to generate an optimal adversarial trajectory
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for a designated background vehicle. Finally, the scenario is re-simulated with the SUT
and the newly generated adversarial trajectory.

During the re-simulation, we measure key metrics, including the success rate of the attack (i.e., col-
lision rate), the adversarial reward (measuring the severity of the interaction), and various realism
metrics that penalize kinematically implausible behaviors and map violations. In addition, we calcu-
late the Wasserstein distance (WD) using the kinematic profiles (speed, yaw rate, and acceleration)
of the generated and logged scenarios, serving as a distributional metric. This open-loop setup iso-
lates the performance of the generator by holding the ego agent’s reactive behavior constant across
all compared methods.

Note that the measure of adversarial reward is different for the replay policy and others (Tables 1
and 2). For interactive policies, this reward is calculated using the resulting ego trajectory after
interacting with the adversarial agent, i.e., after the re-simulation step.

Closed-loop Adversarial Training with Dual Curriculum Learning. The ultimate goal is to
integrate SAGE into a closed-loop training pipeline to progressively improve the capabilities of the
policy πego, as discussed in section 3.3 and A.1.2. In this setup, the scenario generator and the
RL agent (a TD3 agent with hyperparameters detailed in Tab. 6) are trained concurrently. A dual
curriculum is designed to alleviate catastrophic forgetting, where πego is overly optimized for corner
cases and fails in normal conditions.

• SAGE in RL Loops. The adversarial training follows the min-max structure in section
A.1.2. At each iteration, we solve the inner-loop optimization by generating a new adver-
sary tailored to the current policy π(i)

ego. Instead of having the adversary find a single worst
case, we define the adversarial environment fadv from the mixed policy πθ(λ(i)). This pro-

cess samples from a controllable adversarial priors: τ (i+1)
adv ∼ Generate(πθ(λ(i)), π

(i)
ego, c(i)),

where c(i) is the current context and λ(i) is the interpolation weight at iteration i. The ego
is then trained for several steps, forming the outer loop: π(i+1)

ego ← UpdateRL(π
(i)
ego, τ

(i+1)
adv ).

At the end of each training episode, the RL agent’s trajectory is recorded and stored in a
buffer. When an adversarial episode is initiated, the scenario generator uses the most recent
trajectories from this buffer to generate a new adversarial scenario specifically tailored to
the agent’s current policy and its emergent weaknesses. This iterative co-evolution forces
the ego agent to continuously adapt. Unlike training on a fixed set of scenarios, SAGE gen-
erates a dynamically shifting distribution of scenarios. This enhances the generalizability
of πego, as it learns to handle a wide range of adversarial behaviors rather than overfitting
to a narrow set of hard but unrealistic cases.

• Dual Curriculum. As discussed in section 3.3, SAGE enables a natural implementation
of a scenario curriculum along two axes: intensity and frequency. Exposing a nascent
policy to frequent aggressive scenarios from the start can destabilize RL training. We
mitigate this by smoothly increasing the challenge as the agent becomes more competent.
(1) Intensity: The adversarial intensity is controlled by annealing λ over the course of
training. Let Ttotal be the total number of training steps. At timestep t, λ(t) is given by:
λ(t) = λstart + (λend − λstart) · min

(
t

Ttotal
, 1.0

)
. This ensures the ego agent first learns

to handle common deviations before being confronted with safety-critical maneuvers. (2)
Frequency: Simultaneously, we control how often the ego agent encounters an adversarial
scenario. At the end of each episode, we decide whether to generate an adversary with a
probability p(t)adv, which is given by: p(t)adv = pstart + (pend − pstart) ·min

(
t

Ttotal
, 1.0

)
, where

pstart and pend are initial and final values. Specifically, it starts from a low probability of 0.1
and achieves 0.9 by the halfway point. Second, the weight of the adversarial objective wadv
is annealed from an initial value of 0.5 to a final value of 1.0.

After several training steps, the RL agent is evaluated on both normal and adversarial scenarios (with
a fixed wadv = 1.0 for the latter). The performance is measured by collision rate, route completion
rate, total environment reward, and total cost. The environment reward is the cumulative sum of
rewards throughout an episode, reflecting overall task performance. It includes a dense reward for
progress along the planned route, a positive reward for successfully reaching the destination, and
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significant penalties for failures like crashing or going off the road. The total cost is a pure safety
metric, representing the cumulative sum of costs from safety violations during an episode. A cost
of 1.0 is incurred for each instance of a crash or an out-of-road event. An episode with zero total
cost is considered perfectly safe, making this a direct measure of the agent’s safety failures. In this
experiment, we use 300 randomly selected scenarios for RL training, and 70 scenarios are used
for evaluation. To evaluate the superiority of SAGE in closed-loop training, we compare it with
several different scenario generators in the same training environment, including Replay, CAT, and
a rule-based generator.

B.2 DETAILED FORMULATION OF REWARD AND PENALTY FUNCTIONS

This section provides the detailed mathematical formulations for the functions used to evaluate and
filter generated trajectories. These include the adversarial reward (Radv), the realism penalty (Preal),
and the binary map compliance function (F (τ,M)). For full reproducibility, we provide a list of all
hyperparameters used in reward functions in Table 7.

Table 7: Hyperparameters for reward functions and HGPO.

Category Hyperparameter Value

HGPO Fine-tuning

Optimizer AdamW
Learning Rate 1.0× 10−5

Training Epochs 200
Batch Size 1 (scenario)
Group Size (N) 32
Max Pairs per Group (K) 8
Preference Margin (δm) 0.2
Beta (β) 0.05

Preference Reward

Adversarial Expert (πθadv )
wadv / wreal 0.9 / 0.1
Realism Expert (πθreal )
wadv / wreal 0.1 / 0.9

Radv Components
Collision Reward Scale 10.0
Proximity Reward Scale 1.0
Proximity Decay Rate 0.2

Preal Components

wturn 5.0
wstop-turn 3.0
Kinematic Penalty Factor (Accel) 5.0
Kinematic Penalty Factor (Ang. Vel.) 5.0
Accel. Comfort Zone 7.0 m/s2

Lat. Accel. Comfort Zone 6.0 m/s2
Ang. Vel. Comfort Zone 0.8 rad/s
Max Reasonable Turn π radians

Map Feasibility Cross Solid Line Penalty 50.0
Crash Object Penalty 10.0

Adversarial Reward (Radv) The adversarial reward Radv(τadv, τego) is designed to quantify the
threat level of a generated adversarial trajectory τadv with respect to the ego vehicle’s recorded (re-
simulated) future trajectory τego. A high reward should correspond to a high-risk scenario. The
function provides a dense signal by rewarding both direct collisions and near-miss events.

Let the adversarial and ego trajectories be represented as sequences of 2D positions over T future
timesteps:

τadv = {padv
t }Tt=1, padv

t ∈ R2

τego = {pego
t }Tt=1, pego

t ∈ R2

We define B(p, ψ, l, w) as the oriented bounding box (polygon) of a vehicle at position p with yaw
ψ, length l, and width w. A collision occurs at timestep t if the bounding boxes of the two vehicles
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intersect: B(τadv,t) ∩B(τego,t) ̸= ∅. Let tcoll be the first timestep at which a collision occurs:

tcoll = min{t ∈ [1, T ] | B(τadv,t) ∩B(τego,t) ̸= ∅}

If no collision occurs, we define tcoll =∞.

The adversarial reward is then defined as a piecewise function:

Radv(τadv, τego) =

{
Ccoll

(
1− tcoll

T

)
if tcoll ≤ T

Cprox exp(−λprox · dmin) if tcoll > T
(11)

where Ccoll is a large constant reward for achieving a collision (e.g., 10.0). The term (1 − tcoll/T )
incentivizes earlier collisions, as they are typically more critical and harder to avoid. dmin =
mint∈[1,T ] ∥padv

t − pego
t ∥2 is the minimum Euclidean distance between the vehicle centers through-

out the horizon. Cprox is a scaling factor for the proximity reward (e.g., 1.0), and λprox is a decay
rate (e.g., 0.2). This term provides a smooth, dense reward signal for near-misses, encouraging the
agent to generate trajectories that are spatially close to the ego vehicle even if they do not result in a
collision.

Realism Penalty (Preal) The realism penalty, Preal(τ), is designed to discourage trajectories that
are physically implausible or exhibit unnatural driving behavior. It is composed of two sub-penalties:
a kinematic penalty Pkin and a behavioral penalty Pbeh.

Let a trajectory τ be a sequence of states {pt, ψt}Tt=1, where ψt is the yaw angle at timestep t. We
first compute the primary kinematic quantities with a time interval of ∆t = 0.1s:

• Speed: st = ∥pt − pt−1∥2/∆t

• Longitudinal Acceleration: along,t = (st − st−1)/∆t

• Angular Velocity: ωt = (ψt − ψt−1)/∆t, where the heading ψ is unwrapped to handle
angle discontinuities.

• Lateral Acceleration: alat,t = st · ωt

We define a smooth penalty function S(x, xthresh) = log(1 + exp(|x| − xthresh)), which penalizes
values of |x| that exceed a threshold xthresh.

Kinematic Penalty (Pkin). This penalty discourages violations of physical limits.

Pkin(τ) =
1

T

T∑
t=1

(
wa [S(along,t, amax) + S(alat,t, alat,max)]

+ wωS(ωt, ωmax)
)

(12)

where wa and wω are weight factors, and {amax, alat,max, ωmax} are comfort thresholds for longitu-
dinal acceleration (e.g., 7.0 m/s2), lateral acceleration (e.g., 6.0 m/s2), and angular velocity (e.g.,
0.8 rad/s), respectively.

Behavioral Penalty (Pbeh). This penalty targets unnatural maneuvers, such as spinning in place or
executing excessively sharp turns over the trajectory horizon.

Pbeh(τ) = wturnS(∆ψtotal,∆ψmax) +
wstop-turn

T

T∑
t=1

|ωt|
st + ϵ

(13)

where: ∆ψtotal = |ψT − ψ1| is the total change in heading over the trajectory. The penalty dis-
courages total turns exceeding a reasonable maximum ∆ψmax (e.g., π radians). The second term
penalizes high angular velocity at low speeds, a characteristic of unrealistic spinning maneuvers.
wturn and wstop-turn are weight factors, and ϵ is a small constant to prevent division by zero.

The total realism penalty is the sum of these components: Preal(τ) = Pkin(τ) + Pbeh(τ).
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Map Compliance Function (F (τ,M)) Unlike the continuous-valued rewards and penalties, map
compliance is treated as a hard, binary constraint. The function F (τ,M) returns 1 if the trajectory
τ is feasible with respect to the map M, and 0 otherwise. A trajectory is deemed infeasible if it
violates any of the following conditions:

1. Road Boundary Violation: The trajectory must remain within the drivable area. Let
Limpassable ⊂ M be the set of impassable map polylines (e.g., road edge boundaries). The
trajectory is infeasible if the vehicle’s bounding boxB(τt) intersects with any of these lines
at any time.

∃t ∈ [1, T ],∃l ∈ Limpassable s.t. B(τt) ∩ l ̸= ∅ =⇒ F (τ,M) = 0

2. Static Object Collision: The trajectory must not collide with other static or near-static
background vehicles. LetOstatic be the set of non-player vehicles in the scenario, each with
their own future trajectory of bounding boxes B(τobj,t).

∃t ∈ [1, T ],∃τobj ∈ Ostatic s.t. B(τt) ∩B(τobj,t) ̸= ∅ =⇒ F (τ,M) = 0

If none of these violation conditions are met, the trajectory is considered feasible, and F (τ,M) = 1.
This strict separation of feasibility from preference allows the optimization to focus on learning
meaningful trade-offs within the space of valid behaviors. Computationally, these checks are imple-
mented efficiently using spatial data structures like STR-trees and broad-phase/narrow-phase colli-
sion detection.

B.3 WEIGHT EXTRAPOLATION VIA PREFERENCE VECTORS

While weight interpolation effectively traces the Pareto front between the two expert models, it
cannot generate scenarios that are more extreme than what the experts themselves can produce.
To overcome this, we introduce a post-hoc extrapolation technique inspired by the model editing
(Ilharco et al., 2022; Liu, 2025). This section provides a more detailed discussion on this weight
extrapolation technique introduced in section 3.3. The core idea is to reframe the model merging
process in terms of preference (task) vectors, which enables principled extrapolation beyond the
space spanned by the expert models.

Preference Vectors as Learned Task Representations. We begin by formally defining the prefer-
ence vectors (Ilharco et al., 2022). These vectors capture the specific parameter updates that involve
each preference. Given a pretrained reference model πref with parameters θref, and two expert mod-
els, πθadv and πθreal , trained to specialize in adversariality and realism respectively, we define their
corresponding preference vectors as:

∆adv = θadv − θref,

∆real = θreal − θref.
(14)

Each vector ∆ represents the directional update in the high-dimensional parameter space that adapts
the general-purpose reference model to satisfy a specific preference objective (e.g., maximizing
Radv-pref). It contains the knowledge required for that particular task.

Equivalence of Model Interpolation and Vector Interpolation. The linear interpolation of
model weights, as described in Eq. 6, can be shown to be equivalent to applying an interpolated
preference vector to the reference model. This is clear by rewriting interpolated parameters θ(λ):

θ(λ) = (1− λ)θreal + λθadv,

= (1− λ)(θref +∆real) + λ(θref +∆adv),

= (1− λ)θref + (1− λ)∆real + λθref + λ∆adv,

= θref + λ∆adv + (1− λ)∆real.

(15)

This shows that creating a mixing of expert models is mathematically identical to starting with the
reference model and adding a weighted combination of the preference vectors. This perspective
shifts the focus from merging final models to combining the underlying learned skills.
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Extrapolation for Pareto Front Improvement. The interpolated model πθ(λ) is confined to the
line segment connecting θreal and θadv in the parameter space. This traces out a corresponding path on
the Pareto front of objectives, but this path is not guaranteed to be the globally optimal one (will be
discussed below). The optimization landscape for the combined objectives may have better solutions
that lie outside this segment. Extrapolation allows us to search for these superior solutions (Liu,
2025). Instead of being limited to convex combinations of the experts, we can form an extrapolated
policy πθext by moving beyond the interpolation segment. We construct a new policy by adding a
linear combination of preference vectors to an existing point:

θext = θbase +
∑

i∈{adv, real}

ϕi∆i, (16)

where θbase is a starting point (e.g., θref, one of the experts, or an interpolated θ(λ)) and ϕi are
scalar coefficients. For instance, setting λ = 1 and ϕadv > 0 pushes the model to become even more
adversarial than the original πθadv . This allows for the generation of truly extreme, out-of-distribution
scenarios, providing a more rigorous stress test for the ego agent without any additional training.

Intuition from Gradient Optimization. To understand why this works, we can draw an analogy
to gradient-based optimization, following the insights from Liu (2025). Let Radv(θ) and Rreal(θ)
be the expected preference rewards that the expert models πθadv and πθreal were optimized for, re-
spectively. The fine-tuning process that produced θadv from θref can be seen as an approximation of
moving along the gradient of Radv. Therefore, the resulting preference vector ∆adv is closely related
to the integrated gradient of the objective function. A first-order approximation suggests:

∆adv = θadv − θref ≈ η · Eτ∼π [∇θRadv(θ)] , (17)

where η represents an effective learning rate over the entire training process.

Next, the extrapolation step
∑
ϕi∆i is approximately equivalent to taking a new optimization step

in a direction defined by a weighted combination of the original objective gradients:∑
i

ϕi∆i ≈ η · Eτ∼π

[
∇θ

(∑
i

ϕiRi(θ)

)]
. (18)

Recall that the interpolated model πθ(λ) might have converged to a point in the parameter space that
is a local optimum or a saddle point with respect to the true, combined multi-objective landscape.
The extrapolation, by adding

∑
ϕi∆i, provides a new gradient-like momentum. This momentum,

constructed from the gradients of diverse objectives, can help the policy skip out of the local op-
timum and move towards a region of the parameter space that yields a better trade-off, which is a
point on a superior Pareto front. This allows us to generate out-of-distribution scenarios that can be
crucial for the safety assessment of AD systems.

B.4 PSEUDOCODE FOR OFFLINE PREFERENCE OPTIMIZATION AND ONLINE RL TRAINING

The complete procedures for offline preference optimization and closed-loop RL training are sum-
marized in Algorithms 1 and 2.

C THEORETICAL ANALYSIS

In this section, we provide a detailed theoretical analysis to bound the suboptimality gap between the
true optimal solution for a user’s preference and the best solution achievable by linearly interpolating
two mixed-reward expert motion models. We aim to show that for a given user preference, the
optimal parameters for the mixed reward are well approximated by interpolation of expert model
weights, as a justification for Theorem 1. We first consider a simplified version and then extend the
analysis to a more general case. Finally, we provide a detailed analysis of Proposition 1.

General Assumptions. Before presenting the detailed derivations, we first clarify general assump-
tions that bridge the theoretical analysis with the practical implementation of our method. Recall that
the fine-tuning is performed using the HGPO loss (Eq. 4), which is a preference-based objective.
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Algorithm 1 Offline Fine-tuning of Expert Models with HGPO
1: Input: Pre-trained motion model πref, scenarios dataset Dscenarios, expert rewards Radv-pref, Rreal-pref (from

Eq. 5), group size N , pairs per group K, margin δm, DPO parameter β.
2: function FINETUNEEXPERT(Rexpert)
3: Initialize policy πθ with weights from πref.
4: Initialize an optimizer for θ.
5: for each training epoch do
6: for each scenario context c ∈ Dscenarios do
7: Sample a group of trajectories using the latest policy Gc = {τi}Ni=1 ∼ πθ(·|c).
8: Partition Gc into feasible Gfeas

c and infeasible G infeas
c sets using F (τ,M).

9: Initialize preference pairs set Dpref
c ← ∅.

10: ▷ Rule 1: Feasibility First
11: Sample pairs (τw, τ l) with τw ∈ Gfeas

c , τ l ∈ G infeas
c and add to Dpref

c .
12: ▷ Rule 2: Preference within Feasibility
13: Sample pairs (τw, τ l) with {τw, τ l} ⊂ Gfeas

c s.t. Rexpert(τ
w) > Rexpert(τ

l) + δm, add to Dpref
c .

14: Limit |Dpref
c | to K.

15: Compute HGPO loss: L = E
(τw,τl)∼Dpref

c
[− log σ(β(log πθ(τ

w|c)
πref(τ

w|c) − log πθ(τ
l|c)

πref(τ
l|c) ))].

16: Update θ using the gradient of L.
17: end for
18: end for
19: return fine-tuned parameters θ.
20: end function
21: θadv ← FineTuneExpert(Radv-pref)
22: θreal ← FineTuneExpert(Rreal-pref)
23: Output: Expert model parameters θadv, θreal.

Algorithm 2 Closed-Loop Adversarial Training with Dual-Axis Curriculum
1: Input: Fine-tuned expert models πθadv , πθreal ; RL algorithm; Total timesteps Ttotal; Warm-up steps Tstart;

Schedules λ(t), p
(t)
adv; Environment ‘env’.

2: Initialize ego policy πego and replay buffer B.
3: s← env.reset()
4: for t = 0 to Ttotal − 1 do
5: ▷ Ego agent interaction
6: if t < Tstart then a ∼ Uniform(env.action space) ▷ Initial exploration
7: else a ∼ πego(s)
8: end if
9: s′, r, d, info← env.step(a)

10: Store (s, a, r, s′, d) in B; s← s′

11: Train πego using samples from B.
12: if d is True then
13: s← env.reset(); Get context c. ▷ Episode ends, reset and generate
14: Update curriculum λ← λ(t), padv ← p

(t)
adv (Sec. B.1).

15: if random() < padv then ▷ Generate an adversarial scenario
16: θ(λ)← (1− λ)θreal + λθadv
17: τadv ∼ Generate(πθ(λ), πego, c) (Sec. 3.3 and Sec. B.1).
18: env.set adversary(τadv)
19: else ▷ Generate a benign scenario
20: env.set adversary(None)
21: end if
22: end if
23: end for
24: Output: Robust ego policy πego.
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However, our theoretical analysis is based on the direct optimization of expected reward functions
R(θ) and the geometry of their corresponding loss landscapes. To bridge this gap, we introduce the
following assumption, which is well-grounded in the literature, to make the analysis tractable while
still capturing the core principles that enable our approach.
Assumption 1 (Implicit Reward Function for HGPO). We assume that the process of optimizing the
HGPO objective is equivalent to implicitly maximizing an underlying reward function, regularized
by the KL-divergence from the reference policy πref. This connection is formally established for DPO
under the Bradley-Terry framework (Rafailov et al., 2023), which shows that minimizing the DPO
loss is equivalent to solving a reward-maximization problem. Therefore, we posit that the continuous
and differentiable functions, the expected adversarial reward Radv(θ) = Eτ∼πθ

[Radv(τ)] and the
expected realism reward Rreal(θ) = Eτ∼πθ

[−Preal(τ)], in our analysis represent these implicitly
learned reward proxies for the optimization landscape shaped by the HGPO objective.

This assumption allows us to analyze the behavior and geometry of the HGPO-optimized solution
using reward landscape analysis, even though the practical algorithm operates on preference pairs.

C.1 SUBOPTIMALITY GAP WITH QUADRATIC REWARD APPROXIMATION

Before presenting the general suboptimality analysis for non-quadratic functions, we first provide an
intuitive derivation under the assumption that the reward landscapes are quadratic. This simplified
setting, inspired by the analysis in Rame et al. (2023), allows for a closed-form solution for the
suboptimality gap and offers clear insights into how our mixed-expert interpolation method behaves.
This analysis serves as a foundation for understanding the more general results in section C.2.

C.1.1 PROBLEM FORMULATION

We model the reward functions as quadratic forms, which can be seen as a second-order Taylor
approximation of the true reward landscape in the vicinity of the optima.
Assumption 2 (Simplified Quadratic Rewards). The expected base rewardsRadv(θ) andRreal(θ) are
quadratic functions of the model parameters θ ∈ Rd. Specifically, their Hessians are proportional
to the identity matrix:

Radv(θ) = Cadv −
ηadv

2
∥θ − θ∗adv∥2,

Rreal(θ) = Creal −
ηreal

2
∥θ − θ∗real∥2,

(19)

where θ∗adv and θ∗real are the unique global optima for the pure adversarial and realism rewards,
respectively. The constants ηadv, ηreal > 0 determine the curvature of the reward landscapes, and
C(·) are the maximum reward values.

Under this assumption, we can analytically find the optima for the expert and user reward functions.

Expert Optima. Two expert models are trained on mixed rewards, defined by β ∈ (0.5, 1]:

R1(θ) = βRadv(θ) + (1− β)Rreal(θ),

R2(θ) = (1− β)Radv(θ) + βRreal(θ).
(20)

The global optimal parameters θ1 and θ2 that maximize these rewards are found by setting their
gradients to zero. The gradient of R1(θ) is:

∇R1(θ) = −βηadv(θ − θ∗adv)− (1− β)ηreal(θ − θ∗real). (21)

Setting∇R1(θ1) = 0 and solving for θ1 yields:

θ1 =
βηadvθ

∗
adv + (1− β)ηrealθ

∗
real

βηadv + (1− β)ηreal
. (22)

By symmetry, the optimum for the second expert, θ2, is:

θ2 =
(1− β)ηadvθ

∗
adv + βηrealθ

∗
real

(1− β)ηadv + βηreal
. (23)

This shows that the expert optima, θ1 and θ2, are themselves weighted averages of the pure optima
θ∗adv and θ∗real, and thus lie on the line segment connecting them.
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True User Optimum. A user’s preference is defined by Rµ(θ) = µRadv(θ) + (1 − µ)Rreal(θ),
with µ ∈ [0, 1]. Following the same procedure, the true optimal parameters θ̂µ for the user are:

θ̂µ =
µηadvθ

∗
adv + (1− µ)ηrealθ

∗
real

µηadv + (1− µ)ηreal
. (24)

C.1.2 DERIVATION OF THE EXACT SUBOPTIMALITY GAP

Our method approximates θ̂µ by interpolating the expert weights: θ(λ) = (1 − λ)θ2 + λθ1 for
λ ∈ [0, 1]. Since θ1, θ2, and θ̂µ are all collinear (as they are all different weighted averages of θ∗adv

and θ∗real), we can perfectly represent θ̂µ if it falls within the line segment [θ2, θ1].

To simplify the analysis and gain clearer insight, we consider the case where the reward curvatures
are equal, i.e., ηadv = ηreal = η. The optima then become simple linear interpolations:

θ1 = βθ∗adv + (1− β)θ∗real,

θ2 = (1− β)θ∗adv + βθ∗real,

θ̂µ = µθ∗adv + (1− µ)θ∗real.

(25)

Optimal approximation. Our interpolated solution is θ(λ) = (1 − λ)θ2 + λθ1. We seek a λ ∈
[0, 1] such that θ(λ) = θ̂µ. Substituting the expressions for θ1 and θ2:

θ(λ) = (1− λ)((1− β)θ∗adv + βθ∗real) + λ(βθ∗adv + (1− β)θ∗real),

= [(1− λ)(1− β) + λβ]θ∗adv + [(1− λ)β + λ(1− β)]θ∗real.
(26)

Then we have the following equality of the coefficients:

(1− λ)(1− β) + λβ = µ =⇒ λ =
µ+ β − 1

2β − 1
. (27)

Since β ∈ (0.5, 1], the denominator 2β − 1 is positive. The solution is achievable via interpolation
if λ ∈ [0, 1]. This condition holds if and only if µ ∈ [1− β, β].

Suboptimality Gap. If the user’s preference µ falls outside the range [1 − β, β], we cannot
perfectly match the true optimum θ̂µ. The best achievable solution is found at the boundary
of the interpolation range, i.e., at λ = 0 (giving θ2) or λ = 1 (giving θ1). The suboptimal-
ity gap, ∆Rµ = Rµ(θ̂µ) − Rµ(θbest), can then be calculated. Consider the linear combination
of quadratic functions with the same quadratic coefficient, the user reward function is given by
Rµ(θ) = Cµ − η

2∥θ − θ̂µ∥
2. Therefore, the gap is:

∆Rµ =
η

2
∥θbest − θ̂µ∥2. (28)

Let µclipped = clip(µ, 1 − β, β). The optimal point achievable through interpolation corresponds to
the user preference µclipped. The distance between the true optimum and the best achievable one is:

θ̂µ − θbest = (µθ∗adv + (1− µ)θ∗real)− (µclippedθ
∗
adv + (1− µclipped)θ

∗
real)

= (µ− µclipped)(θ
∗
adv − θ∗real)

(29)

This leads to the final expression for the suboptimality gap.

Theorem 2 (Suboptimality Gap for Quadratic Rewards). Under Assumption 2 with equal curvatures
(ηadv = ηreal = η), the suboptimality gap of the mixed-expert model for a user preference µ ∈ [0, 1]
is given by:

Rµ(θ̂µ)− max
λ∈[0,1]

Rµ(θ(λ)) =
η

2
(µ− clip(µ, 1− β, β))2∥θ∗adv − θ∗real∥2 (30)

where β ∈ (0.5, 1] is the mixing coefficient used to train the expert models.
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Interpretation. This result provides several key insights. (1) Region of Optimality: Our method is
completely optimal when the user’s preference µ lies within the range [1− β, β]. The width of this
range is controlled by the expert mixing coefficient β. A value closer to 0.5 creates less specialized
experts but covers a wider range of user preferences optimally. A value closer to 1 creates more spe-
cialized experts but narrows the region of perfect optimality. (2) Error Growth: Outside the optimal
region, the suboptimality gap grows quadratically with the distance of µ from the boundary of the
region. (3) Task Dissimilarity: The gap is scaled by ∥θ∗adv − θ∗real∥2, the squared distance between
the pure optima. This confirms the intuition that the approximation is worse when the underlying
objectives are fundamentally more conflicting, requiring very different model parameters. Since we
fine-tune a pretrained model πref, it is plausible that the learned parameters remain in a local region
of the weight space with similar geometry.

This simplified analysis demonstrates the effectiveness and predictable behavior of our method. We
now proceed to the more general analysis for non-quadratic reward functions, which builds upon
these core ideas.

C.2 SUBOPTIMALITY GAP WITH NON-QUADRATIC REWARD

In the following, we generalize the above discussion to non-quadratic rewards by leveraging standard
assumptions from convex optimization theory. This provides a complete proof of Theorem 1.

C.2.1 PROBLEM FORMULATION

Following the above ideas, we have similar components but with the consideration of a more class
of reward functions: the expected adversarial reward Radv(θ) = Eτ∼πθ

[Radv(τ)] and the expected
realism reward Rreal(θ) = Eτ∼πθ

[−Preal(τ)]. The definition of other ingredients such as expert
rewards, user reward, expert optima, and true optimum keep the same. Our goal is to derive an
upper bound for the suboptimality gap: ∆Rµ = Rµ(θ̂µ)−maxλ∈[0,1]Rµ(θλ).

To analyze the behavior of our non-quadratic reward functions, we introduce two standard assump-
tions from optimization theory.
Assumption 3 (L-Smoothness). The base reward functions Radv(θ) and Rreal(θ) are differentiable
and their gradients are Lipschitz continuous with constants Ladv > 0 and Lreal > 0, respectively.
That is, for any θa, θb ∈ Rd:

∥∇Radv(θa)−∇Radv(θb)∥ ≤ Ladv∥θa − θb∥,
∥∇Rreal(θa)−∇Rreal(θb)∥ ≤ Lreal∥θa − θb∥.

(31)

Assumption 4 (m-Strong Concavity). The base reward functions Radv(θ) and Rreal(θ) are strongly
concave with constants madv > 0 and mreal > 0, respectively. That is, for any θa, θb ∈ Rd:

Radv(θa) ≤ Radv(θb) +∇Radv(θb)
T (θa − θb)−

madv

2
∥θa − θb∥2. (32)

A similar inequality holds for Rreal(θ) with constant mreal.

Notes. While the global reward landscape in deep learning is highly non-concave, these assump-
tions are reasonable in our case for analyzing the behavior of models in the vicinity of a local opti-
mum found during fine-tuning. (1) L-Smoothness: The reward functions Radv and Preal described in
section B.2 are constructed from compositions of smooth operations (e.g., exponential, logarithm,
norms) and the output of a neural network, which is itself a smooth function of its weights θ. The
expectation over trajectories further smooths the landscape, making the L-smoothness assumption
plausible. (2) m-Strong Concavity: This is a stronger assumption. However, it is common in theoret-
ical analysis to assume that the reward landscape is locally strongly concave around a good solution
(Kawaguchi, 2016). Furthermore, the use of regularization techniques like L2 weight decay during
training explicitly adds a quadratic term to the objective, which helps enforce strong concavity. Our
analysis thus characterizes the suboptimality within such a well-behaved local region.

C.2.2 DERIVATION OF THE SUBOPTIMALITY GAP BOUND

The derivation proceeds in four steps.
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Step 1. We begin by relating the approximation gap to the gradient norm. A standard result for an
m-strongly concave function f(x) with the maximum at x∗ is that f(x∗) − f(x) ≤ 1

2m∥∇f(x)∥
2.

The user reward Rµ(θ) is a linear combination of strongly concave functions and is thus itself
strongly concave with constant mµ = (1−µ)madv +µmreal. Applying this result, we can bound the
suboptimality gap by:

∆Rµ = Rµ(θ̂µ)−Rµ(θλ̄) ≤
1

2mµ
∥∇Rµ(θλ̄)∥2. (33)

Our task now is to bound the squared norm of the gradient at the best interpolated point θλ̄.

Step 2. We decompose the user’s preference gradient in the expert basis. The user gradient ∇Rµ

is expressed as a linear combination of the expert gradients ∇R1 and ∇R2. The expert rewards are
defined by the linear system:

∇R1 = β∇Radv + (1− β)∇Rreal,

∇R2 = (1− β)∇Radv + β∇Rreal.
(34)

Solving this system for the base gradients∇Radv and∇Rreal yields:

∇Radv =
β∇R1 − (1− β)∇R2

β2 − (1− β)2
=
β∇R1 − (1− β)∇R2

2β − 1
,

∇Rreal =
−(1− β)∇R1 + β∇R2

β2 − (1− β)2
=
−(1− β)∇R1 + β∇R2

2β − 1
.

(35)

Substituting these into the definition of the user gradient∇Rµ = (1− µ)∇Radv + µ∇Rreal:

∇Rµ(θ) =
1− µ
2β − 1

(β∇R1 − (1− β)∇R2) +
µ

2β − 1
(−(1− β)∇R1 + β∇R2),

=

(
(1− µ)β − µ(1− β)

2β − 1

)
∇R1(θ) +

(
µβ − (1− µ)(1− β)

2β − 1

)
∇R2(θ),

= c1(µ, β)∇R1(θ) + c2(µ, β)∇R2(θ),

(36)

where we define the coefficients c1 and c2 for notational simplicity.

Step 3. Using the decomposition from Step 2 and the triangle inequality, we can bound the gradient
norm at the interpolated point:

∥∇Rµ(θλ̄)∥ ≤ |c1|∥∇R1(θλ̄)∥+ |c2|∥∇R2(θλ̄)∥. (37)

We now bound each expert gradient term using Assumption 3. The expert reward R1 is L1-smooth
with L1 = βLadv + (1− β)Lreal. Since θ1 is the maximizer of R1, we have ∇R1(θ1) = 0. Thus:

∥∇R1(θλ̄)∥ = ∥∇R1(θλ̄)−∇R1(θ1)∥ ≤ L1∥θλ̄ − θ1∥,
= L1∥(1− λ̄)θ1 + λ̄θ2 − θ1∥ = λ̄L1∥θ2 − θ1∥.

(38)

Similarly, R2 is L2-smooth with L2 = (1− β)Ladv + βLreal, and ∇R2(θ2) = 0. Thus:

∥∇R2(θλ̄)∥ = ∥∇R2(θλ̄)−∇R2(θ2)∥ ≤ L2∥θλ̄ − θ2∥,
= L2∥(1− λ̄)θ1 + λ̄θ2 − θ2∥ = L2∥(1− λ̄)(θ1 − θ2)∥ = (1− λ̄)L2∥θ2 − θ1∥.

(39)
Substituting these bounds back into Eq. 37:

∥∇Rµ(θλ̄)∥ ≤
(
|c1|L1λ̄+ |c2|L2(1− λ̄)

)
∥θ2 − θ1∥. (40)

Step 4. The bound in Eq. 40 depends on the unknown optimal interpolation coefficient λ̄. To
obtain a general bound, we find the maximum value of the term in the parenthesis over all possible
λ ∈ [0, 1]. Let f(λ) = |c1|L1λ+ |c2|L2(1− λ). Since f(λ) is a linear function of λ, its maximum
over the interval [0, 1] must occur at one of the endpoints:

max
λ∈[0,1]

f(λ) = max(f(0), f(1)) = max(|c2|L2, |c1|L1). (41)
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This gives us a general upper bound on the gradient norm:

∥∇Rµ(θλ̄)∥ ≤ max(|c1|L1, |c2|L2)∥θ2 − θ1∥. (42)

Finally, we substitute this into our initial inequality from Eq. 33 to arrive at the final bound on the
suboptimality gap:

∆Rµ ≤
1

2mµ
(max(|c1|L1, |c2|L2)∥θ2 − θ1∥)2 . (43)

The final result is given by:

∆Rµ ≤
max

((
(1−µ)β−µ(1−β)

2β−1

)2
L2
1,
(

µβ−(1−µ)(1−β)
2β−1

)2
L2
2

)
2((1− µ)madv + µmreal)

∥θ2 − θ1∥2, (44)

where L1 = βLadv + (1− β)Lreal, L2 = (1− β)Ladv + βLreal. This concludes our derivation.

Interpretation. The final expression shows that the suboptimality of our method is quadratically
dependent on the distance between the expert models in parameter space, and is modulated by the
conditioning of the reward functions (ratio of smoothness to strong concavity) and the alignment
between the user’s preference µ and the expert design β.

C.3 ANALYTICAL COMPARISON OF WEIGHT MIXING AND OUTPUT MIXING SCHEMES

In this section, we provide a theoretical analysis comparing the performance of weight mixing (ours)
and trajectory mixing (output ensemble) for trajectory generation tasks. Our goal is to understand the
conditions under which one method is favored over the other and provide theoretical justification on
the Linear Mode Connectivity (LMC) discussed in sections 3.3 and 4.3. The analysis is conducted
in a generic loss landscape. In line with Assumption 1, we interpret this loss function L(θ) as the
negative of the implicitly learned expected reward, i.e., L(θ) = −R(θ). Therefore, the properties
of the loss landscape, such as its curvature (convexity), are directly related to the geometry of the
underlying reward landscape (concavity), making this analysis applicable to our problem setting.

Assumption 5 (Loss as an Analytical Proxy for Preference Objective). The HGPO loss implicitly
encourages the model’s output distribution to shift towards trajectories that better align with the
desired preferences. In this context, the ideal trajectory y can be conceptualized not as a single
ground truth, but as a representative point in the high-preference region of the output space that the
model is being steered towards.

Under this assumption, the conclusions drawn from the MSE-based analysis are argued to hold in
principle for our preference-driven optimization setting.

Lemma 1. Let f(x; θ) ∈ RC be a model that predicts a future trajectory for input x, parameterized
by weights θ ∈ Rd. Consider two fine-tuned models with parameters θ1 and θ2. For an interpolation
parameter α ∈ [0, 1], we define:

1. The weight-mixed model with parameters θα = (1 − α)θ1 + αθ2, producing output
fweight(x;α) = f(x; θα).

2. The output-mixed (ensemble) model producing output f ens(x;α) = (1 − α)f(x; θ1) +
αf(x; θ2).

Let the per-sample loss be the Mean Squared Error (MSE), l(f, y) = 1
2∥f − y∥

2
2, where y is the

expected ground-truth trajectory. The expected losses over the data distribution are denoted by
Lweight(α) = Ex,y[l(f

weight, y)] and Lens(α) = Ex,y[l(f
ens, y)]. Then, the difference in expected loss

is approximated by:

Lweight(α)− Lens(α) ≈ −α(1− α)
2

(
d2

dα2
Lweight(α)− Ex,y

[
∥∆f(x)∥22

])
, (45)

where ∆f(x) = f(x; θ2)−f(x; θ1) is the difference in predictions between the two endpoint models.
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Proof. The proof follows Wortsman et al. (2022) and is adapted under the regression framework,
which is standard for motion generation (forecasting) tasks. We first establish an exact expression
for the loss difference, then approximate the key term related to output difference, connect it to the
curvature of the loss landscape, and finally synthesize the result. For clarity, we treat the model
output f as a scalar; the extension to the vector case (where ∥ · ∥22 is used) is straightforward.

Step 1. We begin by deriving an exact, non-approximated expression for the per-sample loss dif-
ference. Using the difference of squares formula, a2 − b2 = (a− b)(a+ b), we have:

lweight − lens =
1

2
(fweight − y)2 − 1

2
(f ens − y)2,

=
1

2

(
(fweight − y)− (f ens − y)

) (
(fweight − y) + (f ens − y)

)
,

=
1

2
(fweight − f ens)(fweight + f ens − 2y),

= (fweight − f ens)(f ens − y) + 1

2
(fweight − f ens)2.

(46)

This expression is exact and serves as our starting point. To obtain a simpler, more interpretable
approximation, we will focus on the first-order term, (fweight − f ens)(f ens − y), and approximate
f ens − y ≈ fweight − y.

Step 2. The core of the analysis lies in understanding the difference between weight-mixing and
ensemble, which relates to the function’s convexity. Let δ = θ2− θ1 and θτ = θ1+ τδ. By applying
the fundamental theorem of calculus twice, we can write an exact integral expression for the output
difference (Wortsman et al., 2022):

f ens(x)− fweight(x) =

∫ 1

0

δT∇2
θf(x; θτ )δ · wα(τ)dτ, (47)

where wα(τ) = min((1− α)τ, α(1− τ)) is a triangular weight function and∇2
θf is the Hessian of

the model output with respect to its parameters θ.

Following Wortsman et al. (2022), we assume that the Hessian∇2
θf(x; θτ ) is approximately constant

along the linear path between θ0 and θ1, i.e., ∇2
θf(x; θτ ) ≈ ∇2

θf(x; θα). This leads to:

f ens(x)− fweight(x) ≈
(
δT∇2

θf(x; θα)δ
) ∫ 1

0

wα(τ)dτ,

=
α(1− α)

2

(
δT∇2

θf(x; θα)δ
)
.

(48)

Therefore, the output difference we need is fweight(x)− f ens(x) ≈ −α(1−α)
2

(
δT∇2

θf(x; θα)δ
)
.

Step 3. Our goal is to express the term involving the output Hessian, δT∇2
θfδ, in terms of the

curvature of the loss function itself. The loss curvature along the parameter path is defined by the
second derivative of the loss with respect to the interpolation parameter α, i.e., d2

dα2 l(f(θα), y).

First, we compute the first derivative using the chain rule:

d

dα
l(f(θα), y) =

∂l

∂f

df(θα)

dα
. (49)

The derivative of the MSE loss with respect to its input f is ∂l
∂f = (f − y). The derivative of the

model output with respect to α is found using the multivariate chain rule:

df(θα)

dα
= (∇θf(θα))

T dθα
dα

= (∇θf(θα))
T δ. (50)

since θα = θ1 + αδ, so dθα
dα = δ. Combining these gives the first derivative of the loss:

d

dα
l(f(θα), y) = (f(θα)− y) · ((∇θf(θα))

T δ). (51)
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Next, we compute the second derivative. Let u = (f(θα) − y) and v = ((∇θf(θα))
T δ). Then the

derivatives of u and v are:

du

dα
=

d

dα
(f(θα)− y) =

df(θα)

dα
= (∇θf(θα))

T δ,

dv

dα
=

d

dα

(
(∇θf(θα))

T δ
)
= δT∇2

θf(θα)δ.

(52)

Substituting these back into the product rule:

d2

dα2
l(f(θα), y) =

(
(∇θf(θα))

T δ
) (

(∇θf(θα))
T δ
)
+ (f(θα)− y)

(
δT∇2

θf(θα)δ
)
,

=
(
(∇θf(θα))

T δ
)2

+ (f(θα)− y) · (δT∇2
θf(θα)δ).

(53)

By rearranging, we can isolate the term containing the output Hessian that appeared in Step 2:

(f(θα)− y) · (δT∇2
θf(θα)δ) =

d2

dα2
l(f(θα), y)−

(
(∇θf(θα))

T δ
)2
. (54)

This result forms the link between the model’s output geometry and the loss landscape’s geometry.

Step 4. We combine the results from the previous steps. Starting from the dominant first-order
term of the loss difference from Step 1, and substituting the approximations from Steps 2 and 3:

lweight − lens ≈ (fweight − f ens)(fweight − y),

≈
(
−α(1− α)

2

(
δT∇2

θf(x; θα)δ
))

(f(x; θα)− y),

= −α(1− α)
2

[
(f(θα)− y) · (δT∇2

θf(θα)δ)
]
,

= −α(1− α)
2

[
d2

dα2
l(f(θα), y)−

(
(∇θf(θα))

T δ
)2]

.

(55)

Taking the expectation over the data distribution (x, y) gives the difference in expected loss:

Lweight(α)− Lens(α) ≈ −α(1− α)
2

[
d2

dα2
Lweight(α)− Ex,y

[(
(∇θf(x; θα))

T δ
)2]]

. (56)

Finally, we make the first-order approximation (∇θf(x; θα))
T δ ≈ f(x; θ1) − f(x; θ0) = ∆f(x).

This holds if the gradient∇θf is roughly constant between θ0 and θ1. This yields the final expression
as stated in the lemma.

Interpretation. The approximation in Eq. 45 reveals a trade-off between two key factors:

Lweight − Lens ≈ −α(1− α)
2

d2Lweight

dα2︸ ︷︷ ︸
Term 1: Loss Curvature

+
α(1− α)

2
E
[
∥∆f(x)∥22

]
︸ ︷︷ ︸

Term 2: Prediction Difference

. (57)

(1) Curvature: This term is proportional to the negative second derivative of the loss of the mixed
model along the linear path connecting the parameters. For weight mixing to be advantageous, this
term needs to be negative, which requires the loss function to be convex along this path (d

2Lweight

dα2 >
0). This directly corresponds to the underlying reward landscape being concave. (2) Prediction
Difference: This term is proportional to the mean squared difference between the predictions of the
two endpoint models. Since it is always non-negative, this term favors the ensemble. It captures the
benefit of mixing diverse outputs, a basic principle of ensembling. When two models produce highly
dissimilar predictions (high ∥∆f∥22), output mixing is more likely to outperform weight mixing.

LMC suggests that solutions fine-tuned from a common pretrained model lie within a wide and
low-loss basin. However, the path connecting two distinct experts is not perfectly zero-curvature.
Instead, it can be conceptualized as a high-reward ridge. As the model traverses this path from
one expert to another, the combined reward often has an arc-like shape, which signifies reward
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concavity. The reward landscape in Fig. 6(c) illustrates this high-reward plateau, and the measured
performance in Fig. 6(d) provides direct empirical evidence of this concavity, showing that the
rewards of interpolated models are consistently higher than a linear combination of the endpoint
rewards. This inherent concavity of the reward path ensures the loss is convex, making Term 1
negative and significant, thereby providing a principled reason for the superiority of weight-space
mixing in the fine-tuning regime.

This analysis provides a theoretical basis for why weight mixing is effective, particularly in the
fine-tuning regime, where the loss landscape’s curvature can make the first term dominant. By
training on combined rewards, we ensure our expert models θadv and θreal exist in a space where
linear interpolation is meaningful for generating intermediate behaviors and desired trade-offs. To
help better understand Eq. 57, in the following, we provide an intuitive illustration to formalize the
exact condition where Term 1 can dominate.
Remark 1 (Remark on the Dominance of Loss Curvature Benefit). Based on Eq. 57, weight mixing
is superior if E

[
∥∆f(x)∥2

]
<

d2Lweight

dα2 . To make this condition more intuitive, we formalize it under
a local quadratic approximation of the loss landscape. Similar to section C.1, we assume that in
the local vicinity of the expert solutions θ1 and θ2, the loss function L(θ) can be approximated by a
quadratic form with L(θ) ≈ η

2∥θ − θ
∗∥2 + C, where θ∗ is the minimum of the loss basin, η > 0 is

a scalar representing the curvature of the basin, and C is a constant.

The right-hand side represents the curvature of the loss along the linear path θα = (1−α)θ1+αθ2.
We can compute its second derivative with respect to α:

dLweight

dα
= ∇L(θα)⊤

dθα
dα

= η(θα − θ∗)⊤(θ2 − θ1),

d2Lweight

dα2
= η(θ2 − θ1)⊤(θ2 − θ1) = η∥θ2 − θ1∥2.

The left-hand side is the expected squared difference in outputs. We can approximate this difference
using a first-order Taylor expansion of the model function f(x; θ) around θ1:

∆f(x) = f(x; θ2)− f(x; θ1) ≈ J(x; θ1)(θ2 − θ1),
where J(x; θ) = ∂f

∂θ is the Jacobian of the model’s output with respect to its parameters. The
expected squared difference is then:

E
[
∥∆f(x)∥2

]
≈ E

[
∥J(x; θ1)(θ2 − θ1)∥2

]
= (θ2 − θ1)⊤E

[
J(x; θ1)

⊤J(x; θ1)
]
(θ2 − θ1)

= (θ2 − θ1)⊤F (θ2 − θ1),
where F is the Fisher information matrix, which measures the sensitivity of the model’s output to
changes in its parameters. By substituting these results back, we obtain the final condition:

(θ2 − θ1)⊤F (θ2 − θ1) < η∥θ2 − θ1∥2,

⇒ η >
(θ2 − θ1)⊤F (θ2 − θ1)

∥θ2 − θ1∥2
.

(58)

This derivation yields an intuitive condition: weight mixing is superior whenever the intrinsic cur-
vature of the loss landscape exceeds the sensitivity of the model’s output in the direction connecting
the experts. This condition is readily satisfied in our fine-tuning setting. On one hand, LMC implies
that fine-tuned models develop robust representations, making their outputs relatively insensitive to
parameter changes along the solution path. On the other hand, because the experts are trained
on conflicting objectives, the path connecting them has a non-zero curvature (η > 0) to reflect the
trade-off in rewards, which provides the necessary signal for alignment.

This theoretical insight is directly justified by our empirical findings in Fig. 6. The superiority of
weight mixing requires the reward function to be concave along the interpolation path. Fig. 6(d) pro-
vides direct visual proof, showing the measured reward curves of interpolated models lying strictly
above the linear interpolation line. This confirms that the reward landscape possesses the required
curvature. This view also reconciles with LMC: the path connecting experts is not a completely
flat plateau but a high-reward ridge (Fig. 6(c)). While LMC ensures the solution remains on this
low-loss ridge, our analysis shows that it is the ridge’s concave curvature that allows weight-space
interpolation to discover superior trade-offs.
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D SUPPLEMENTARY RESULTS

D.1 ADVERSARIAL GENERATION EVALUATION AGAINST IDM AND RULE-BASED POLICIES

In addition to the Replay and RL policies presented in the main paper, we provide comprehensive
benchmark results against two other common types of policies: a rule-based autopilot and the Intel-
ligent Driver Model (IDM). Tab. 8 and Tab. 9 show that the trends observed previously hold. SAGE
consistently achieves the best trade-off, delivering competitive adversarial performance while main-
taining unparalleled realism and map compliance. Specifically, the realism and map compliance
penalties of our generated scenarios are an order of magnitude lower than most baselines, under-
scoring the general applicability and effectiveness of our HGPO framework across a variety of ego
agent behaviors. Without the elaborated design of reward functions, some baselines can generate
unexpected and unstable behaviors, which can violate basic traffic rules (see Fig. 8).

Table 8: Evaluation of adversarial generation methods against the Rule-based/Autopilot policy.
Attack Succ. Adv. Real. Pen. ↓ Map Comp. ↓ Dist. Diff. (WD)

Methods Rate ↑ Reward ↑ Behav. Kine. Crash Obj. Cross Line Accel. Vel. Yaw

Rule 24.18% 0.724 2.623 111.184 1.658 6.386 7.631 10.572 0.248
CAT (Zhang et al., 2023) 18.21% 0.659 8.346 3.071 2.799 9.647 1.565 7.781 0.201
KING (Hanselmann et al., 2022) 16.43% 0.558 2.445 2.565 3.116 5.807 0.956 256.921 0.097
AdvTrajOpt (Zhang et al., 2022) 19.00% 0.543 4.445 2.818 2.567 10.833 1.753 6.207 0.271
SEAL (Stoler et al., 2025) 19.45% 1.584 4.902 2.584 3.260 9.178 1.494 6.756 0.248
GOOSE (Ransiek et al., 2024a) 5.10% 0.325 2.387 14.56 4.363 14.31 5.322 8.107 0.167

SAGE (wadv = 0.0) 4.89% 0.397 0.332 2.000 0.707 0.951 1.460 9.332 0.055
SAGE (wadv = 0.5) 11.14% 0.466 0.497 2.068 0.815 0.951 1.523 8.482 0.080
SAGE (wadv = 1.0) 19.84% 0.749 1.430 2.480 0.788 1.087 2.100 8.100 0.185

Table 9: Evaluation of adversarial generation methods against the IDM policy.
Attack Succ. Adv. Real. Pen. ↓ Map Comp. ↓ Dist. Diff. (WD)

Methods Rate ↑ Reward ↑ Behav. Kine. Crash Obj. Cross Line Accel. Vel. Yaw

Rule 60.54% 2.763 4.833 36.947 1.973 6.856 4.466 8.447 0.309
CAT (Zhang et al., 2023) 43.48% 1.746 10.275 3.207 3.345 8.696 1.595 7.550 0.231
KING (Hanselmann et al., 2022) 16.48% 1.146 2.451 2.566 3.097 5.824 0.955 257.619 0.097
AdvTrajOpt (Zhang et al., 2022) 20.44% 0.963 4.528 2.797 2.561 10.354 1.750 6.173 0.270
SEAL (Stoler et al., 2025) 33.70% 0.942 5.785 2.719 3.562 11.233 1.695 7.368 0.276
GOOSE (Ransiek et al., 2024a) 16.39% 0.439 5.092 11.25 3.722 12.64 3.716 8.223 0.157

SAGE (wadv = 0.0) 13.90% 0.864 0.332 2.000 0.708 0.954 1.461 9.318 0.055
SAGE (wadv = 0.5) 20.98% 1.183 0.498 2.068 0.817 0.954 1.522 8.458 0.080
SAGE (wadv = 1.0) 33.51% 1.779 1.433 2.480 0.790 1.090 2.098 8.070 0.185

KINGRule

T1

T2

Adversarial Vehicle Ego Vehicle Other Vehicle

Figure 8: Unexpected case of KING and Rule baselines.
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D.2 FULL RESULTS OF CLOSED-LOOP RL TRAINING

Tab. 10 provides the full evaluation results for the trained RL policies in normal driving environ-
ments, sourced from the WOMD log-replay data. We also display the training trajectories of differ-
ent methods on all metrics in Fig. 9. As can be seen, the agent trained with our adversarial generator
not only demonstrates superior robustness in adversarial settings (as shown in Tab. 3 in the main
paper and Fig. 9) but also achieves the highest reward, route completion, and average speed in these
standard scenarios. This result is critical as it shows our curriculum-based adversarial training en-
hances the agent’s general driving capabilities, rather than causing it to overfit to rare edge cases at
the expense of normal performance. This alleviates catastrophic forgetting, which is a key advantage
of our closed-loop training framework.

Figure 9: Training performances of the agent under different scenario generation methods.

Table 10: Evaluation of Trained RL Policies in the Log-replay (Normal, WOMD) Environments.
Methods Reward ↑ Cost ↓ Compl. ↑ Coll. ↓ Ave. Speed ↑ Ave. Jerk ↓

SAGE 51.99± 1.22 0.48± 0.05 0.77± 0.02 0.16± 0.05 9.27± 0.03 24.97± 0.53
CAT 46.81± 4.33 0.50± 0.05 0.67± 0.02 0.18± 0.05 7.21± 0.05 28.15± 1.06
Replay (No Adv) 50.16± 5.32 0.50± 0.07 0.72± 0.04 0.23± 0.02 9.03± 0.03 27.53± 0.98
Rule-based Adv 44.61± 3.88 0.52± 0.05 0.63± 0.04 0.13± 0.00 6.00± 0.10 28.22± 1.44

D.3 FULL RESULTS OF ABLATION STUDIES

To evaluate the effectiveness of our design, we evaluate the performance of the following variations:

1. w/o map penalty: The hierarchical map feasibility preconditioning procedure in section 3.2
is removed;

2. w/o realism penalty: The realism penalty function is removed;

3. w/ weighted map penalty: The hierarchical map feasibility preconditioning procedure is
replaced by a direct weighted map penalty, i.e., Eq. 2;

4. w/ DPO: We replace the proposed HGPO with the standard DPO for fine-tuning;

5. The impact of reward margin δm in HGPO: we report the training performances under
different δm values;

6. We also report the performance of separately trained models with different expert weights.

Tab. 11 presents quantitative results for ablation studies. The “w/o Map Pen.” variant shows a dra-
matic increase in map compliance penalties (Crash Obj. and Cross Line), confirming the necessity
of explicitly handling map constraints. The “w/ Weighted Map Pen.” variant improves over having
no penalty but is still inferior to our hierarchical conditioning approach, yielding lower adversarial
rewards and higher map violations. This reinforces the core idea of HGPO that separating hard
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(a) Impact of δ on Sample Pairs (b) Impact of δ on Trajectory Reward

Figure 10: Ablation studies on reward margin δm.

feasibility constraints from soft preferences simplifies the learning problem and leads to better out-
comes. Comparing our steerable model to separately trained models with fixed scalarized weights
(“Scalar. Weight” rows) shows that our interpolation approach can effectively span the performance
range of multiple individually trained models, highlighting its great flexibility.

Furthermore, Fig. 10 investigates the impact of the reward margin δm. Fig. 10(a) shows that as δm
increases, the number of generated preference pairs per scenario decreases, as a larger reward differ-
ence is required to form a valid pair. More importantly, Fig. 10(b) illustrates the impact on learning
performance. The setting with δm = 0 results in the poorest performance, confirming that learning
from pairs with insignificant reward differences introduces noise and impedes the training process.
Conversely, setting a moderate margin (δm in [0.2, 1.0]) significantly improves performance by
focusing the model on more distinct and informative preferences. The model shows robust perfor-
mance within this range, indicating that it is not overly sensitive to this hyperparameter. We selected
δm = 0.2 for our main experiments as it empirically provided the best balance between sample
efficiency and final performance. An overly large margin, such as δm = 2.0, can slightly degrade
performance by filtering out too many useful training samples.

Table 11: Ablation study (wadv = 1.0, wreal = 0.0).
Attack Succ. Adv. Real. Pen. ↓ Map Comp. ↓

Methods Rate ↑ Reward ↑ Behav. Kine. Crash Obj. Cross Line

w/o Map Pen. 66.40% 3.841 1.580 2.665 3.848 11.65
w/o Real. Pen. 77.78% 4.308 1.966 3.077 0.705 1.762
w/ Weighted Map. Pen. 78.05% 4.115 1.438 2.411 1.165 1.491

Scalar. Weight (wadv = 3, wreal = 7) 50.68% 2.592 0.444 2.071 0.785 0.952
Scalar. Weight (wadv = 5, wreal = 5) 57.99% 3.047 0.553 2.167 0.650 1.084
Scalar. Weight (wadv = 7, wreal = 3) 66.67% 3.508 0.786 2.396 0.678 1.491

SAGE (wadv = 1.0) 76.15% 4.121 1.429 2.479 0.731 1.084

D.4 ADDITIONAL RESULTS OF WEIGHT EXTRAPOLATION

We compare the task vector-based extrapolation scheme (sections B.3 and 3.3) with a more naive
approach of directly extrapolating the model weights, i.e., θext = (1−λ)θreal+λθadv for λ /∈ [0, 1]. As
shown in Fig. 11(b), this direct weight extrapolation quickly leads to unstable models and degraded
performance, as evidenced by the sharp drop in preference rewards outside the [0, 1] interpolation
range. In contrast, Fig. 11(a) shows that the task vector-based extrapolation provides a much more
stable and effective means of pushing the model’s behavior beyond its trained distribution. By
adding multiples of the learned preference vectors, we can controllably increase both adversarial
reward and realism penalty in their respective directions, demonstrating that this method correctly
identifies and amplifies the underlying skill vectors within the model’s parameter space.

37



Published as a conference paper at ICLR 2026

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
Adversarial Weight (wadv)

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

R
ea

lis
m

 W
ei

gh
t (
w
re
al

)

23.50 12.43 9.70 13.88 42.07 1.61 5.71 5.52 6.50 7.49 9.91

7.14 5.50 7.56 24.94 0.97 6.27 4.45 4.96 5.68 8.70 8.83

1.39 2.31 7.36 0.32 3.38 2.42 2.80 3.75 5.88 5.85 7.55

-1.23 -1.63 -0.32 -0.31 0.20 0.76 2.01 4.05 2.98 2.02 -1.63

-4.58 -0.97 -1.36 -0.67 -0.24 0.84 2.19 0.89 -1.82 -10.79 -26.44

-1.61 -2.15 -1.49 -1.05 -0.41 0.53 -0.43 -4.54 -17.93 -44.10

-3.59 -2.00 -1.75 -1.39 -0.78 -1.34 -7.04 -25.58 -59.24

-2.68 -2.39 -2.12 -1.85 -2.69 -9.16 -32.05 -77.70

-3.01 -2.69 -2.60 -3.80 -11.48 -37.32 -99.89

-3.22 -3.21 -5.20 -16.15 -42.04-113.68

-3.89 -6.84 -19.42 -50.75-120.96

Reward Landscape of Interpolated Models

wadv+wreal=1 (Pareto Condition)

−120

−100

−80

−60

−40

−20

0

20

40

M
ea

n 
Pr

ef
er

en
ce

 R
ew

ar
d

(b) Direct Weight Extrapolation

(a) Task Vector-based Weight Extrapolation

-0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5
Adversarial Extrapolation (φ_adv)

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.0

0.
1

0.
2

0.
3

0.
4

0.
5

R
ea

lis
m

 E
xt

ra
po

la
tio

n 
(φ

_r
ea

l)

3.68 3.76 3.98 4.19 4.09 4.20 4.25 4.53 4.59 4.71 4.59

3.64 3.87 3.92 4.10 4.14 4.34 4.29 4.38 4.56 4.71 4.52

3.61 3.83 3.90 3.99 4.09 4.28 4.37 4.40 4.42 4.36 4.52

3.78 3.85 3.80 3.95 4.01 3.91 4.21 4.24 4.40 4.46 4.25

3.61 3.69 3.79 4.00 3.86 3.75 4.08 4.03 4.09 4.11 3.80

3.63 3.73 3.69 3.54 3.71 3.75 3.80 3.57 3.61 3.56 3.48

3.44 3.59 3.55 3.49 3.51 3.42 3.42 3.24 3.42 3.05 3.54

3.09 3.15 3.26 3.24 3.30 3.19 3.02 3.24 3.21 3.59 3.20

2.91 3.04 3.10 3.10 3.06 3.10 3.08 3.18 3.38 3.42 3.28

3.11 3.10 3.18 3.24 3.35 2.99 3.06 3.35 3.15 3.15 3.06

3.03 3.07 3.06 3.09 3.03 3.08 3.16 3.04 3.02 3.05 2.70

Adversarial Reward (λ_adv=0.5)

Optimization Path
Start (Interpolation)
End (Extrapolation)

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

M
ea

n 
Ad

ve
rs

ar
ia

l R
ew

ar
d

-0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5
Adversarial Extrapolation (φ_adv)

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.0

0.
1

0.
2

0.
3

0.
4

0.
5

R
ea

lis
m

 E
xt

ra
po

la
tio

n 
(φ

_r
ea

l)

3.13 2.76 2.73 2.75 2.72 2.75 2.73 2.85 2.86 2.90 2.94

2.87 2.72 2.70 2.74 2.73 2.70 2.75 2.79 2.80 2.95 2.93

2.71 2.71 2.73 2.70 2.67 2.75 2.78 2.78 2.81 2.85 2.96

2.70 2.70 2.68 2.65 2.68 2.66 2.74 2.71 2.81 2.89 3.15

2.66 2.68 2.64 2.67 2.64 2.60 2.73 2.72 2.83 2.86 2.99

2.67 2.66 2.69 2.56 2.65 2.68 2.66 2.65 2.73 2.92 3.21

2.62 2.71 2.65 2.62 2.60 2.55 2.57 2.90 2.84 2.98 3.21

2.52 2.57 2.58 2.55 2.53 2.51 2.86 2.79 2.96 3.08 3.27

2.54 2.57 2.57 2.55 2.57 2.83 2.67 3.49 3.06 3.16 3.37

2.62 2.60 2.64 2.56 2.67 2.69 2.84 3.02 3.06 3.22 3.54

2.63 2.64 2.66 2.64 2.67 2.78 2.83 2.89 3.06 3.29 3.69

Realism Penalty (λ_adv=0.5)

Optimization Path
Start (Interpolation)
End (Extrapolation) 2.6

2.8

3.0

3.2

3.4

3.6

M
ea

n 
R

ea
lis

m
 P

en
al

ty

R
ea

lis
m

 E
xt

ra
po

la
tio

n 
(φ

_r
ea

l)

-0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5
Adversarial Extrapolation (φ_adv)

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.0

0.
1

0.
2

0.
3

0.
4

0.
5

2.97 2.86 2.55 2.32 2.30 2.28 2.27 2.26 2.29 2.29 2.31

2.88 2.71 2.40 2.31 2.28 2.27 2.27 2.27 2.28 2.29 2.31

2.79 2.45 2.35 2.30 2.27 2.26 2.27 2.28 2.29 2.30 2.32

2.54 2.38 2.32 2.29 2.26 2.27 2.27 2.29 2.34 2.37 2.57

2.45 2.35 2.31 2.28 2.27 2.27 2.29 2.30 2.30 2.34 2.47

2.39 2.35 2.31 2.28 2.28 2.28 2.30 2.33 2.35 2.46 2.57

2.38 2.33 2.31 2.29 2.30 2.32 2.35 2.36 2.46 2.49 3.00

2.37 2.34 2.32 2.31 2.33 2.36 2.37 2.40 2.48 2.83 2.61

2.37 2.35 2.34 2.34 2.37 2.37 2.43 2.50 2.57 2.84 2.65

2.37 2.36 2.36 2.39 2.38 2.43 2.51 2.60 2.84 2.68 2.94

2.40 2.38 2.42 2.49 2.52 2.61 2.67 2.68 2.86 2.77 2.97

Realism Penalty (λ_adv=0)

2.6

2.8

3.0

3.2

3.4

3.6

M
ea

n 
R

ea
lis

m
 P

en
al

ty

R
ea

lis
m

 E
xt

ra
po

la
tio

n 
(φ

_r
ea

l)

-0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 0.5
Adversarial Extrapolation (φ_adv)

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

-0
.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.83 0.87 1.03 1.04 1.00 1.05 1.06 0.99 1.17 1.08 1.33

0.82 0.94 1.04 1.10 0.92 1.06 0.93 1.20 1.21 1.14 1.23

0.85 0.95 0.92 1.08 1.03 1.13 1.06 1.28 1.24 1.43 1.47

1.00 1.00 0.99 0.89 1.03 1.15 1.25 1.28 1.30 1.36 1.24

1.16 0.99 1.08 1.07 1.03 1.18 1.18 1.38 1.37 1.42 1.30

1.13 1.05 1.16 1.03 1.04 1.18 1.36 1.33 1.39 1.35 1.41

1.06 1.01 1.03 1.04 1.15 1.34 1.36 1.58 1.29 1.47 1.50

1.01 1.02 0.96 1.18 1.21 1.25 1.45 1.57 1.61 1.53 1.64

0.95 1.01 1.17 1.29 1.20 1.55 1.45 1.61 1.69 1.57 1.88

1.02 1.20 1.35 1.32 1.50 1.36 1.76 1.80 1.83 2.08 1.93

1.12 1.30 1.32 1.40 1.37 1.82 1.68 1.90 2.00 1.97 2.29

Adversarial Reward (λ_adv=0)

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

M
ea

n 
Ad

ve
rs

ar
ia

l R
ew

ar
d

Figure 11: Comparison of vector-based extrapolation and direct weight extrapolation.

D.5 ADDITIONAL CASE STUDIES

D.5.1 EXAMPLES OF ADVERSARIAL GENERATION AGAINST DIFFERENT EGO POLICIES

Fig. 12 demonstrates the ability of SAGE to generate effective adversarial behaviors against reactive
policies. In addition to the fixed Replay policy, SAGE can also be adopted for discovering long-
tailed events of reactive and well-developed driving policies. This indicates its practical value in
developing learning- or rule-based ADS.

Seed 176

RLIDMAutopilotReplay

Adversarial Vehicle Ego Vehicle Other Vehicle

T1

T2

Figure 12: Examples of SAGE-generated adversarial behaviors against different ego policies.

D.5.2 MORE EXAMPLES OF GENERATED SCENARIOS

Figs. 13 and 14 provide additional qualitative comparisons between SAGE and SOTA baselines
across a variety of scenarios, including intersections and lane changes. These examples further
illustrate the superior quality of scenarios generated by SAGE. While baselines frequently produce
unrealistic behaviors, such as unnatural swerves (CAT), physically impossible braking (Rule), or
trajectories that disregard lane boundaries, SAGE consistently generates adversarial behaviors that
are challenging, contextually appropriate, and physically plausible. For instance, in Scenario 5,
SAGE generates a subtle but dangerous squeeze maneuver, whereas baselines resort to more chaotic
actions.
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D.5.3 MORE CASES ON PREFERENCE CONTROLLABLE GENERATION

Fig. 15 shows more examples of the test-time controllability of SAGE. By simply increasing the ad-
versarial weight from 0 to 1, the generated scenarios transition from naturalistic to highly aggressive,
enabling efficient target-conditioned testing of AD systems.
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Figure 13: Examples of generated scenarios by different methods.
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Figure 14: Examples of generated scenarios by different methods.
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Figure 15: Examples of generated scenarios (SAGE) under different adversarial weights.
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