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Abstract

We introduce Filter Like You Test (FLYT), an algorithm for curating large-scale
vision-language datasets that learns the usefulness of each data point as a pretrain-
ing example. FLYT trains a scoring model that learns to weigh each example’s
features using gradient signals from downstream tasks training sets. Based on FLYT,
we implement Mixing-FLYT (M-FLYT), which takes the per-example scores gener-
ated by different scoring methods as features, and learns to unify them into a single
score. FLYT naturally produces a distribution over the training examples, which
we leverage through Soft Cap Sampling (SCS), a strategy for obtaining a filtered
pretraining dataset from per-example probabilities that samples examples while
preventing over-representation through a repetition penalty. Using these methods,
we achieve 40.1% ImageNet zero-shot accuracy on the DataComp medium scale
filtering benchmark, a 2% absolute accuracy increase over all previous results and a
5.5% increase over results that—like us—use only public resources. Our approach
also yields 37.7% on the average of 38 DataComp evaluation tasks, outperforming
previous public-resource approaches by 0.4%.

1 Introduction

Filtering the pretraining data of CLIP models [35] has a dramatic effect on the resulting model’s
quality [39, 40, 17, 51]. Despite intense research and considerable progress, the best existing methods
select data based on heuristic proxies for usefulness [16, 22, 49, 29, 27, 21]. In this work, we take a
different approach: adhering to the core principle of machine learning, we optimize a loss function
that measures the usefulness of data for pretraining.

We consider the setting of the DataComp filtering benchmark [17]. Our goal is to find a filtering
method that selects a subset from a candidate pool of web-sourced image-text training data. To
evaluate the quality of the selected subset, it is fed to a fixed training pipeline and the resulting model
is evaluated on a fixed set of zero-shot image comprehension tasks. The DataComp rules do not
constrain the computational cost of the filtering method. Moreover, DataComp allows using external
data (except evaluation test sets) for making the filtering decisions, so long as the selected training set
is a subset of the candidate pool.

In this setting, we introduce methods that together achieve state-of-the-art performance on the
DataComp medium scale. At the core is Filter Like You Test* (FLYT), a method for training a scoring
model that predicts the weight an image-text pair should have in CLIP pretraining. Mixing-FLYT
(M-FLYT) is an implementation of FLYT that uses scores generated by existing scoring methods as
input features to the scoring model. Complementing FLYT, Soft Cap Sampling (SCS) is a simple
sampling strategy that leverages the probabilistic structure of FLYT’s scores to construct the final
pretraining dataset.

Filter Like You Test (FLYT) (Section 3.2). FLYT recasts data selection as data re-weighting
[37], and learns to upweight (and hence select) the pretraining data that contributes the most to
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Figure 1: In each FLYT training loop, the scoring model takes features extracted from a batch of
upstream data and generates a score for each example. These scores are converted to weights via
softmax. A reference model processes the upstream batch, and the resulting embeddings, together
with the weights, are used to compute a weighted CLIP loss. The reference model is then updated
using gradients from this loss. Next, this updated reference model processes downstream data
to compute a downstream loss, which produces a gradient signal that passes through the updated
reference model all the way to the scoring model parameters.

the model’s downstream performance. We jointly train two models: a scoring model that evaluates
the usefulness of training examples using extracted features, and a reference model that provides
feedback on these evaluations. During training, the scoring model assigns weights to each example
in the batch, which are then used in our weighted CLIP loss function to update the reference model.
The updated reference model is then evaluated on downstream data, allowing gradient signal from
the downstream loss to flow through it, to the weights, and finally back to the scoring model. This
allows the scoring model to give higher weights to examples that reduce the downstream loss of the
reference model. We then use the trained scoring model to generate per-example scores. Figure 1
illustrates a single training step of FLYT and Algorithm 1 provides pseudocode.

Mixing-FLYT (M-FLYT) (Section 3.4). Previous work aggregates different filtering methods to
obtain the best results. They either sum together different scores [22], take the intersection/union
of the filtered datasets [17, 29, 22, 49] or pipeline the filtering methods one after the other [53, 49].
Departing from heuristic approaches, we leverage FLYT to directly optimize over a space of mixing
methods defined by a simple linear combination of scores. Replacing the aggregation method of [22]
with M-FLYT improves ImageNet accuracy by 1.3%. More importantly, M-FLYT can aggregate
more scores. When used with 12 different scores, it outperforms the best single score by 1.7% on
ImageNet accuracy, and by at least 0.8% on average accuracy. M-FLYT outperforms all baseline
aggregation methods we evaluated, including summation and ImageNet accuracy-weighted sums by
0.5% on ImageNet accuracy and 0.6% on average accuracy.

A different natural choice for FLYT’s feature extractor component is a multimodal neural network,
such as CLIP; we refer to this Embeddings-FLYT (E-FLYT). While E-FLYT does not improve the
state-of-the-art on its own, incorporating its scores as an input to M-FLYT leads to improved overall
performance.

Soft Cap Sampling (SCS) (Section 3.6). FLYT produces a probability distribution over the training
examples, allowing us to obtain a filtered subset by simply sampling from the distribution. However,
sampling with replacement produces too much repetition of the top-scoring examples, and sampling
without replacement produces too few. To interpolate between the two sampling methods we propose
SCS, a strategy that samples with replacement but reduces repetition using a penalty term (see
Algorithm 2). Using only publicly available resources, M-FLYT with SCS has 40.1% ImageNet
zero-shot accuracy, which is a 2% absolute increase compared to the best prior work, and a 5.5%



Algorithm 1: Filter Like You Test (FLYT)

Algorithm 2: Soft Cap Sampling (SCS)

Input: Scoring model g, with initial
parameters ¢, reference model fp, with
initial parameters 6, feature extractor W,
upstream dataset D, downstream dataset C'
Parameters: Number of steps 7', upstream
data batch size B, downstream data batch
size B’, weighted loss fywcL, and
downstream loss /pg

Input: Training examples z1.5s and their
SCOres S1.pm
Parameters: Repetition penalty «, target
dataset size N and sample count per
iteration GG
D=1]
while |D| < N do

wy.y = softmax(sy.r)

fort=0toT — 1do
218~ D, z21.50 ~C
Ci1:B = V(21:8)
s1:8 = 4y, (C1:B)
wy.p = softmax(s1.5)
Lup = twer(fo, (21:8), wi:B)
01+1 = update(Vg, Lyp)
Laown = fos(fo.,, (21:57))
¢t+1 = upda‘te(v¢f, Ldown)
| > Appendix A

i1.¢ = Sample G indices according to
distribution w;.; without repetitions.
D = concatenate(D, z;, )

Sir.g = Sine — X

return D

return ¢r

improvement compared to the best prior work that uses only publicly available resources. Our filtered
dataset also achieves 37.7% average accuracy across all evaluation tasks, which is within 0.1% of our
reproduction of the best previously published filtering method, and a 0.4% improvement over the
best prior work using only publicly available resources. On the DataComp small scale benchmark
(which we did not evaluate until the end of the project) our method outperforms previous work on
both ImageNet and average accuracy (see Table 4).

Data and code release. We share all the code required to reproduce our work, including E-
FLYT, M-FLYT training, and SCS sampling at https://github.com/forml1l/FLYT. Addition-
ally, we publish our best-performing scoring and mixing models along with the resulting filtered
datasets, and the M-FLYT input scores at https://huggingface.co/collections/formll/
flyt-67bb167366ec0fa0d5b8e4bd.

2 Related work

Early work on curating large-scale image-text datasets established methods to extract, filter, and
organize pairs of images and captions from the web [41, 5, 45, 13]. Beyond assembling large
collections, several lines of research address dataset pruning and deduplication [44, 2], example
characterization [28, 47], and quality assessment [34].

CLIP [35] leveraged large image-text datasets via contrastive learning, producing the first generation
of vision-language foundation models and revolutionizing computer vision. While the original CLIP
was trained on a proprietary set of 400M image-text pairs, subsequent efforts introduced open-source
alternatives. LAION-400M [39] and LAION-5B [40] filtered large web-crawled corpora primarily
using the cosine similarity between image and text embeddings from a pretrained CLIP model, along
with basic image and text quality metrics. Xu et al. [51] attempted to reproduce CLIP’s original data
pipeline and managed to outperform the original model.

Recognizing the importance of data quality for CLIP training, Gadre et al. [17] introduces the
DataComp benchmark. DataComp fixes the data pool as well as the training and evaluation procedures,
and allows researchers to focus on comparing filtering methods while keeping all other parameters
fixed. Below, we survey the literature on data filtering for DataComp.

Filtering methods. Gadre et al. [17] consider several baseline filtering methods, and achieved
best results by combining CLIP score with a clustering-based filtering method using similarity to
the ImageNet training set. T-MARS [29] observe that images containing texts that overlap with the
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caption received high CLIP scores, while not contributing much to the model training. To address
this issue, they mask out these texts before calculating CLIP score. For better results, they take
the intersection of this approach and their variation of Maini et al. [28]. Yu et al. [53] developed a
pipeline merging various techniques categorized as: single modality filtering, cross modality filtering,
and distribution alignment. DFN [16] use CLIP score from a model fine-tuned on a large high-quality
private data. HYPE [22] argues CLIP’s image-text alignment alone is insufficient, and adds individual
information of the images and texts. They use hyperbolic embeddings to generate a hyperbolic
similarity score, and image and text specificity scores, which they sum with the traditional Euclidean
CLIP and the image-based scores. s-CLIPLoss [49] introduce a variation to the standard CLIP score
that normalizes it by the example’s similarity score with other examples in a batch, and after filtering
using this score, filters remaining data using a downstream example similarity metric. While these
heuristic approaches are successful, our approach directly learn how to estimate an example’s quality.

Data sampling. Given a scoring of the data pool, most filtering approaches select the top 15-20% of
examples, resulting in each example appearing 5—7 times during training in the DataComp benchmark.
Goyal et al. [19] analyzed the quality-quantity trade-off of dataset filtering, and found that for the
compute budget of the medium scale DataComp benchmark selecting the top 20% of examples is
optimal, with more aggressive filtering leading to diminishing returns. However, their analysis only
considers uniform sampling while top performing methods created non-uniformly sampled datasets
through concatenation of multiple subsets of data [22, 49]. Our proposed SCS method extends this
approach of non-uniform sampling using a simple probabilistic procedure; in our top performing
dataset, individual examples appear up to 56 times.

Learned data weighting. FLYT shares conceptual and technical similarities with meta-learning
paradigms. Particularly similar meta-learning works address the problem of learned data weighting.
Ren et al. [37] introduced an algorithm for online example weighting which utilizes gradient signals
from a validation dataset for producing per-example weights. Shu et al. [43] employs a similar idea
to Ren et al. [37] with the addition of a weighting model that is optimized to weigh the examples.
FLYT is similar to these methods in that it too learns weights and backpropogates through a “target
loss” after a gradient update on the “training loss.” However, unlike FLYT, these methods consider
online data weighting for standard supervised learning, with the intention of improving robustness to
noise and data imbalance, mostly in small-scale settings.

Concurrent work. Concurrent with our research, two related works also developed data filtering
algorithms evaluated on the DataComp benchmark. Xu et al. [52] introduced EcoDatum which
transforms unimodal and multimodal scores into discrete labels and uses a weak supervision ensemble
model to aggregate them based on agreements and disagreements [36]. Their approach is similar to M-
FLYT in that it combines multiple filtering methods, but unlike us, it doesn’t optimize a downstream
objective for aggregation. Separately, Engstrom et al. [14] proposed metagradient descent (MGD), a
model-free dataset curation method that, similar to our approach, leverages gradient signals from
downstream tasks. While MGD learns to score each example separately, we train a scoring model
that applies to unseen examples, which allows us to extend our method to larger dataset scales at a
low computational cost. Additionally, whereas MGD optimizes for all available downstream tasks in
the DataComp benchmark, we use only the ImageNet training set as the downstream data. MGD sets
a new state-of-the-art average accuracy of 40.2% on the DataComp medium benchmark, though its
ImageNet accuracy is only 27%.

3 Method

In this section, we describe FLYT in detail. We introduce our notation by going over standard CLIP
training (Section 3.1), then move to describing FLYT (Section 3.2). We then go over the weighted
CLIP loss we use to train FLYT (Section 3.3), followed by two different feature extractors for FLYT’s
implementation (Section 3.4), and our choice of downstream data (Section 3.5). Finally, we present
SCS (Section 3.6).

3.1 Notation and problem setting

CLIP training. We denote a CLIP training example z = (27, 27) € D where D is our pretraining
dataset and 2!, 27 are the training image and text, and denote a batch of B training examples by
z1.5. We train a CLIP model with parameters 6 that maps each example z to features fy(z) =

(fo(z1), fo(2T)). Letting fo(z1.5) denote the features of all the examples in the batch, the standard



CLIP loss is
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and 7 is the learnable temperature parameter.

3.2 Filter Like You Test (FLYT)

In this section we describe FLYT. Our goal is to learn a scoring model q4 parameterized by ¢. The
scoring model takes a feature vector ¢ = ¥(z) produced by applying feature extractor ¥ to example
z, and maps it to a score s, such that the higher s is, the more useful z is as a pretraining example.
We overload notation to let

S1:B = q¢(<l:B)
denote the scores computed element wise over the batch. We obtain weights over the batch w;.p
using a softmax transformation:
exp(s;)

S exp(s;)

Now consider a reference CLIP model fy. We define a weighted CLIP loss

w1, p = softmax(s1.5) where softmax(s;) =

Ly, = bwer(fo(z1:8), wi:B)

which is a function of both the reference model embeddings, and the weights produced by the scoring
model. This loss serves as an approximation to the loss we would have gotten had we used the scoring
model to filter the batch. We discuss the weighted CLIP loss in detail in section Section 3.3.

We can use this loss and its gradient to update 6; let
04 (w1.p) = update(VgLyp)

be the result of a gradient-based update to 6. For example, using SGD with learning rate 7, we have
0+ (wi.) = 6 —nVyLyp. Using a more sophisticated optimizer like AdamW, 0 (ws.p) takes a
more complicated form, but we can still think about it as a function of w;.p.

Next, we introduce the key part of our approach, a batch of downstream data (e.g., the ImageNet
training set). Let Z;. - denote this batch (note that B’ does not necessarily have to be equal to B). We
use this batch to obtain a gradient signal for updating w1 .p and hence the scoring model parameters
¢. To that end, define:

Ldown - KDS(fQJr(wl:B)(él:B/))v (2)
Where /pg is some loss over the downstream data: we experiment with standard CLIP loss /¢, as
well as cross-entropy (CE), with or without temperature; see Appendix C.8 for details. We can then
update ¢ using V¢ﬁdown.

Finally, we score each example with our trained scoring model, then filter based on these scores.

3.3 Weighted CLIP loss
Our definition of weighted CLIP loss follows these guiding principles:

1. Crucially, a larger weight means the corresponding example is more represented in the loss.
2. Setting an example’s weight to 0 should be equivalent to excluding it from the batch.

3. Uniform weights should result in the standard CLIP loss.

4. The weight should reflect the example’s importance both as a positive and as a negative example.
To realize these principle we modify the CLIP loss Equation (1), showing modifications in red:
gi‘;age + E:th

5 ; 3)
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3.4 Feature extractors

Mixing-FLYT (M-FLYT) Inspired by past success in mixing multiple filtering heuristics [17, 22,
49, 53], we implement FLYT using existing scoring methods as our feature extractor. Specifically, the
feature extractor ¥ produces a vector ¢ € R* of k different scores, generated by k different scoring
methods. Our scoring model ¢, : R¥ — R then takes as input the different scores to output a single
unified score s. We refer to this implementation of a scoring model as a mixing model.

Using M-FLYT gives us the advantage of not needing to learn example importance from scratch, and
instead use the information gained by other scoring methods. In fact, we notice that a simple linear
mixing model is enough for obtaining strong results.

Embedding-FLYT (E-FLYT) With E-FLYT, we use a pretrained CLIP model as the feature
extractor U to generate image and text embeddings. Our scoring model g, then maps the concatenated
image and text embeddings to a score s.

Despite CLIP’s ability to produce semantically rich representations, our current E-FLYT implementa-
tion does not yet match M-FLYT’s performance. Appendix C.7 documents our experiments, which
show improvements but suggest further work is needed to fully leverage these embeddings.

3.5 Choice of downstream data

FLYT requires high-quality downstream data to effectively learn which examples are more valuable
for pretraining. For our implementation, we use the ImageNet training set as a proxy for downstream
task data, which aligns with the DataComp competition rules permitting “use of other images
associated with these tasks (e.g., supervised training sets)” [17]. This approach follows standard
practice, as all other top-performing methods [17, 49, 53, 16] similarly utilize the ImageNet training
set for their filtering algorithms. The DataComp benchmark includes 38 diverse tasks, some of which
differ significantly from ImageNet. This range of evaluation tasks means that the average downstream
score provides a practical measure of model performance on unfamiliar tasks.

3.6 Soft Cap Sampling (SCS)

We now consider the task of obtaining a filtered pretraining dataset from per-example scores. A
principled data filtering approach should use these scores for deciding the number of repetitions of
each example in the filtered dataset. It is not clear how to do that when using a similarity based score
as in most prior work. In contrast, a sampling strategy emerges directly from the definition of FLYT,
since the scores naturally correspond to the (log) probabilities of including examples in the batch.

A straightforward approach would be to sample from this distribution 128M times to create our final
dataset. In practice, doing that results in over-represented examples. To correct this, we introduce
SCS (Soft Cap Sampling): every time we add an example to our filtered data, we subtract a “repetition
penalty” « from its score, reducing the probability it is sampled again. For implementation efficiency,
we perform the sampling procedure iteratively. In each iteration, we sample a batch of G = 100K
examples without repetitions, then subtract « from the score of each batch member. Algorithm 2
presents SCS, and Figure 2 illustrates the distribution generated via SCS.

4 Experiments

In this section, we present the steps we took to create our top performing dataset which achieves
40.1% zero-shot ImageNet accuracy on the DataComp medium scale benchmark and 37.7% average
accuracy across all DataComp evaluation tasks. We first review key details about our training and
evaluation setup (Section 4.1), then discuss the challenges, design choices and results for M-FLYT
(Section 4.2) and SCS (Section 4.3). Table 1 summarizes our findings and compares them to the
state-of-the-art. In Section 4.4 we apply our algorithm to the DataComp small scale benchmark,
demonstrating that our approach works effectively across different data scales.
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Figure 2: Histogram of example repetitions using SCS on the probabilities produced by M-FLYT.
See Section 4.3 for more details.

Table 1: Comparison of our method to top performing methods on the DataComp medium scale
filtering benchmark. DFN-FT is our best reproduction of DEN [16]. * denotes results from the original
paper, and + indicates evaluations using our downloaded 119M candidate pool using the authors’
provided UIDs. Table 15 compares our evaluations to the results reported in the corresponding papers.

S Public ImageNet .
Filtering Method Resources ImageNet dis t.gshi fis VTAB  Retrieval  Average
Image-basedNCLIP score™ [17] Yes 0.305 0.243 0.342 0.250 0.328
DFN-FT [our reproduction of 16] Yes 0.342 0.274 0.357 0.290 0.348
HYPE 20%* [22] Yes 0.338 0.269 0.357 0.286 0.343
s-CLIPLoss™ [49] Yes 0.333 0.273 0.361 0.251 0.352
DFNT [16] No 0.367 0.303 0.371 0.280 0.364
HYPE+DFENT [22] No 0.372 0.304 0.374 0.287 0.368
DFN+s-CLIPLoss™ [49] No 0.371 0.304 0.390 0.285 0.378
HYPE+DFN+s-CLIPLoss™ [49] No 0.381 0.310 0.392 0.284 0.378
M-FLYT Yes 0.359 0.294 0.383 0.310 0.371
M-FLYT+SCS Yes 0.401 0.311 0.396 0.292 0.377

4.1 General setup

We experiment mainly with the medium scale DataComp filtering track benchmark [17]. In this
benchmark, the goal is to filter a 128M example candidate pool sourced from Common Crawl [1].
The filtered data is then used to train a ViT-B/32 CLIP using a fixed procedure, and the resulting
model undergoes a fixed evaluation on 38 downstream tasks, with performance typically reported in
four main categories: ImageNet, ImageNet distribution shifts, VTAB, and retrieval, along with the
overall average across all tasks.

For our experiments we were only able to download 119M out of the 128M DataComp candidate
pool. To compare our filtered datasets to those published in prior work, we reapply the DataComp
training and evaluation procedure on the intersection of the published datasets and our downloaded
pools. Table 15 shows that the accuracy degradation due to the missing data is between 0.1% and 1%.

The fixed DataComp medium training procedure goes through 128M input examples (hence using
a fixed amount of compute) regardless of the size of the filtered data; if the filtered dataset has less
than 128M examples, it is reshuffled and repeated until reaching 128M examples. In all experiments
except those specifically evaluating sampling strategies, we follow the standard strategy of selecting
the top 20% scoring examples, which means each example is seen by the model 5 or 6 times during
training. Using SCS, we control how many times each example will be seen, forming a dataset with
repeating data and using a shuffle buffer to spread data repetitions across training.

For both M-FLYT (Section 4.2) and E-FLYT (Appendix C.7), we use a CLIP ViT-B/32 model as the
reference model. Unless otherwise mentioned, we use the unfiltered DataComp medium pool as the
upstream dataset, and the ImageNet training set as the downstream dataset.

To enable large-scale training of FLYT, we develope a data parallelism approach, which is detailed in
Appendix A. The computational costs are outlined in Appendix C.2.



Table 2: Left: Performance and linear weight of each input to M-FLYT. For HYPE [22] and s-
CLIPLoss [49], we replicate the scores and mixing methodology used in the original papers. Right:
Baseline aggregation experiments as described in Section 4.2.

Input Weight ImageNet Average

ViT-B/32 0.08 0.282 0.327

VIiT-L/14 021 0.267 0317 Baseline ImageNet  Average
DFN-Base 0.60 0.297 0.333 Sum 0.327 0.331
DFN-FT 0.80 0.342 0.348 Standardized Sum 0.348 0.360
HYPE —dr, 0.45 IN-weighted 7 = 2 0.350 0.364
HYPE ¢; -0.05 0.309 0.341 IN-weighted 7 = 4 0.354 0.359
HYPE ¢, 0.02 IN-weighted r = 8 0.353 0.365
S-CLIPLOSS 0.51 0331 0.363 IN-weighted r = 16 0.352 0.362
NormSime, 0.55

IN1K-Classifier ~ 0.36 0.268 0.294 M-FLYT 0.359 0.371
CC2M-Classifier ~ 0.17 0.287 0.308

E-FLYT 0.65 0.316 0.323

4.2 M-FLYT results

We train a linear mixing model using input scores that are standardized to zero mean and unit standard
deviation. The standardization both improves performance and provides interpretable weights for
each input method. We empirically found that initializing the reference model with a CLIP model
trained using DataComp’s medium scale configuration on their unfiltered dataset and using standard
cross entropy (CE) as the downstream loss produced better results; see Appendix C.3

We create and reproduce 12 input scores. We use the CLIP score of OpenAI’s ViT-B/32 and ViT-L/14
models [35], as well as two reproduced DFNs [16], before and after fine-tuning, which we refer to
as DFN-Base and DFN-FT (Appendix B.1). We reproduce the image and text specificity ¢;, €;, and
negative Lorentzian distance —d, introduced by HYPE [22] using their codebase, and the s-CLIPLoss
and NormSim, (IN1K) scores introduced by Wang et al. [49] using theirs. We also add three new
inputs. Two binary classifiers that classify between some “high quality” dataset and the DataComp
medium scale dataset, and an E-FLYT scoring model described in Appendix C.7. See Appendix B
for more details about the inputs.

We compare M-FLYT to its individual input components and to several baseline approaches. These
baselines include a simple sum of all input scores and a sum of scores after standardization to zero
mean and unit standard deviation. Finding that standardization significantly improves performance,
we further explore weighted standardized sums where inputs are weighted by their normalized Ima-
geNet scores adjusted to achieve a specific max-to-min weight ratio r, for details see Appendix C.5.

Table 2 demonstrate that M-FLYT outperforms all individual scores as well as all baseline aggrega-
tions. Table 9 demonstrates that excluding any individual input score from M-FLYT’s training leads
to performance degradation, suggesting that the method effectively leverages multiple signals, and
could potentially achieve stronger performance given more (or better) input scores.

In Appendix E we complement our quantitative results with a qualitative comparison of filtering
methods. In particular, we plot the top-scoring training example according to different filtering
methods. Figures 5 to 7 show that M-FLYT prioritizes examples containing multiple ImageNet
classes, while sorting by OpenAI’s ViT-B/32 CLIP scores favors images with visible text that matches
the caption text.

4.3 SCS results

For SCS, we experiment with a repetition penalty o between 0.1 and 0.6, and sample in batches of
G = 100K. We choose G to balance efficient sampling while ensuring the resulting dataset closely
approximates what we would get using G = 1. Appendix C.10 shows that the exact value of G has
minimal impact on performance. When preparing the filtered dataset, we use a 1.5M shuffle buffer in
the DataComp resharder to prevent batches from containing many copies of the same example.
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Figure 3: Comparison of sampling strategies (SCS, HCS, threshold filtering, and No Cap) showing
their effect on ImageNet accuracy (left) and average accuracy (right). SCS was tested with o values
from 0.1 to 0.6, HCS with [ values from 5 to 25 and standard threshold with values from 5% to 25%

Table 3: Using SCS with M-FLYT compared to IN-weighted.
Mixing method  Sampling method  ImageNet Average

M-FLYT Threshold top 20% 0.359 0.371
M-FLYT SCS (o = 0.15) 0.401 0.377
IN-weighted Threshold top 20% 0.353 0.365
IN-weighted SCS (a = 0.15) 0.379 0.362

When using the scores produced by M-FLYT, SCS outperforms every other filtering method in the
DataComp ImageNet Leaderboard (Table 1). Figure 3 shows the influence of the repetition penalty
parameter «, and compares SCS to standard threshold filtering, regular sampling (No Cap), as well
as to a sampling method we call Hard Cap Sampling (HCS). HCS allows an example to be sampled
until it reaches a “frequency limit” 3, and then its sampling probability is set to 0. We note that while
SCS outperforms HCS, both methods outperform the standard threshold filtering.

Figure 3 also shows a pattern where for threshold filtering, example diversity improves average
accuracy but reduces ImageNet accuracy: selecting the top 10% of examples (11.93M) performs
better on ImageNet compared to selecting the top 20% (23.86M), but results in lower average accuracy
across tasks. This trade-off is not as apparent with SCS.

To test SCS independently of M-FLYT, we apply it with a repetition penalty o = 0.15 to scores from
our strongest baseline, IN-weighted with » = 8. We convert these scores to probabilities via softmax,
following the same approach as with M-FLYT. Table 3 shows that SCS improves IN-weighted
ImageNet accuracy by 2.6% while decreasing average score by 0.3%. In comparison, applying SCS
to M-FLYT improves ImageNet accuracy by 4.2% and average score by 0.6%. This demonstrates that
a key advantage of FLYT is that it naturally produces a distribution over training examples, which
can be leveraged through sampling approaches like SCS.

4.4 Small scale results

We evaluate our method on the small scale DataComp benchmark. We use the mixing model trained
by M-FLYT described in Section 4.2, and sample using SCS with a repetition penalty o = 0.5 and
a batch size G = 10K. Table 4 shows that our method achieves 8% zero-shot ImageNet zero-shot
accuracy and 18.5% average accuracy, outperforming previous work on both categories. These results
suggest that M-FLYT and SCS can be effectively used across different computational scales. Figure 4
shows the effect of different o values.

5 Limitations and future work

Computational scale is a clear limitation of our work: we only had the resources to experiment at the
DataComp medium scale, and could not test our methods on the larger scales. However, in prior work



Table 4: Comparing our methods to top performing methods on the DataComp small scale filtering
benchmark. * denotes results from the DataComp leaderboard that did not provide a paper to cite.

Filtering method ImageNet  Average
EcoDatum [52] 0.053 0.182
WS [21] 0.056 0.180
HYPE [22] 0.063 0.180
CAM N Flipped CLIP* 0.064 0.178
M-FLYT 0.072 0.185

M-FLYT + SCS (a = 0.5) 0.080 0.185

progress on medium scale usually translated to progress on larger scales, which makes us optimistic
that our proposed methods will also scale well.

The computational overhead of FLYT is a potential limitation, but may also be negligible in some
scaling regimes. In our experiments, M-FLYT achieves high performance using approximately
3x fewer FLOPs than training a DataComp medium-scale model, due to training on relatively few
examples (20M). Scaling up the number of training steps would proportionally increase computational
costs, as detailed in Appendix C.2. Whether the scoring model needs to increase in computational
cost as the data and final model size increases—and hence the relative overhead of FLYT in large
scale settings—remains a topic for future work.

Another notable limitation is that E-FLYT underperforms methods such as DFN, though its scores
did contribute to M-FLYT. To surpass state-of-the-art methods we had to leverage existing filtering
methods through M-FLYT rather than relying on a general feature extractor. We believe this is likely
a deficiency in our optimization stack, solvable by more careful tuning of learning rate (schedules)
for individual components and regularization techniques such as dropout. In similar vein, we believe
that more careful parameter tuning should allow us to leverage downstream data that is more diverse
than ImageNet, though these hypotheses require empirical validation.

A fourth limitation—and direction for future research—is that we use data weighting as a proxy for
data selection when defining the FLYT objective function. It would be interesting to try to model
data selection more directly via reinforcement learning: at each reference model training step, the
scoring model picks a batch of training data and observes a reward signal for the chosen data.

A fifth direction for future work is closing the data selection / pretraining loop by iteratively re-training
the scoring model to select the next data to pretrain our model on. FLYT is particularly well-suited to
this form of active learning, as it allows us to use the pretraining model as the reference model at
each scoring iteration, ensuring each selected batch is optimal for the model’s current state.

Finally, FLYT should be useful past DataComp and vision-language data filtering. In particular, it
will be exciting to extend it to data filtering and mixing for language models.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our claims are supported by experimental results.
Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations and future work are discussed in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:
» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the codebase needed to reproduce all of our results.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
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the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the codebase needed to reproduce all of our results, along with
instructions on how to execute it.

Guidelines:
» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are discussed in Section 4, and provided in more
detail in Appendix C.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experiments are too computationally expensive to repeat using multiple
seeds, but we see the metrics vary smoothly across different hyperparameters (e.g., in
Figure 3) indicating that the results are statistically significant.

Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computational cost is discussed in Appendix C.2
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and believe that the
research conducted in the paper conforms to it.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The resources used in the paper are properly credited and used exactly follow-
ing the DataComp benchmark, which respects their license.

Guidelines:
» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We carefully documented all the assets we release
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementing data-parallel distribution

CLIP training benefits from a large batch size [35, 7]. FLYT trains a CLIP model while weighting
each example compared to others in the batch, which also requires a sufficiently large batch size.
However, training FLYT requires more memory than training a standard CLIP model since we have
to keep the computational graph from ¢ to ﬁdown in order to calculate V¢f1down. This means that in
order to train FLYT on a large scale, we need to implement data-parallel distributed training.

Our goal is to compute V¢ﬁdown using data parallelism across multiple GPUs, which is not trivial
considering FLYT introduces different dependencies between examples in the batch. We start by
using the chain rule to write:

a’LU1:B

d¢

vqbfidown == |: :| Vwl:BIA/downa

and focus the second factor

le:B Laown = le:BgDS (f9+ (w1:B) (2113’))7
where
0+ (w1:p) = update(g(w1.5))
with
g(w1.5) = Volwer(fo(21:8), w1.B)
and update(+) is an optimizer update function. We then use the chain rule again to write:

dg
Owi.B

V’U)1;Bi/down = |: :l vgéDS(fupdate(g) (21:B/))7

We may further apply the chain rule (and the fact the partial derivatives commute) to write

ot 1B :
g= Z WCL(g}Z_B i B)Vafa(z¢)
1€[B]

where f; is shorthand for the embedding fy(z;) that implicitly says we only need to store the value of
the embedding and not the computational graph behind it. This way each GPU calculates g for its
own sub-batch, and we can then gather and sum their result to get g for the full batch using the CLIP
gradient accumulation technique from Cherti, Mehdi et al. [7]. Using this, we define

v £ vgeDS(fupda»te(g) (élzB’)),

which we can again compute using gradient accumulation. Treating v as a constant vector independent
of wi.p, the gradient we would like to calculate is

Vons Ldown = ?fj;j = 8w81:3 igﬂ WWCL(g;f’wLB) (Vo fo(zi),v).
If we define the function
e e
Then our gradient is simply Z
Vs Ldown = | aw‘?Bh;(O).
1€[B]

Which is amenable to gradient accumulation.

The first factor

a%m _ %softmax<q¢<<m>>

can be calculated separately using gradient accumulation, and we get

a'LUl:B

2]

qui/down = |: :| vwl;BIA/down-
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Table 5: DFN-Base reproduction experiments.

Initialization ~ Num. samples  Notes Training dataset ImageNet  Average
Random 10M CC12M 0.230 0.300
Random 50M CC12M 0.274 0.324
Random 128M CC12M 0.281 0.328
OpenAl 128M DFN-Base CC12M 0.297 0.333
OpenAl 128M CCI2M+CC3M+SS15M 0.286 0.334
OpenAl 512M 2x Batch Size (8192) CCI12M 0.296 0.338

Table 6: DFN-FT reproduction experiments

Initialization =~ Num. samples  Notes Training dataset ImageNet  Average
DFN-Base 400K DEN-FT IN1K+MS COCO+Flickr30k 0.342 0.348
DFN-Base 1.6M IN1K+MS COCO+Flickr30k 0.340 0.348
DFN-Base 3M IN1K+MS COCO+Flickr30k 0.335 0.338
DFN-Base 400K I/I0LR (5e-5) IN1K+MS COCO+Flickr30k 0.321 0.344
DFN-Base IM 1/10LR (5e-5) IN1K+MS COCO+Flickr30k 0.324 0.342
DFN-Base 12M 1/10 LR (5e-5) IN1K+MS COCO+Flickr30k 0.319 0.340
DFN-Base 800K INIK 0.333 0.343

B M-FLYT input details

In order to experiment with M-FLYT, we reproduce some existing scoring methods and create some
new ones:

1.

6.

CLIP scores. We use the CLIP scores calculated using OpenAl ViT-B/32 and ViT-L/14
CLIP models [35].

. DFN. The results of Fang et al. [16] are proprietary and we do not have access to their

best DFN model or the scores created by it. The authors provided a version that uses only
publicly available resources, but it was not trained using all the improved techniques they
discovered. Thus, we reproduced their work using only publicly available resources. We
use the CLIP score of 2 DFN networks: one before fine-tuning on ImageNet, and one after.
Appendix B.1 provides the details of our reproduction.

. HYPE. Kim et al. [22] provided a PyTorch implementation which includes their hyperbolic

CLIP weights, and the functionality required to reproduce the image specificity ¢;, text
specificity €;, and negative Lorentzian distance —d;,. We used these three values as inputs.

. s-CLIPLoss. Wang et al. [49] also provided a PyTorch implementation. We used OpenAl

ViT-B/32 embeddings to calculate s-CLIPLoss and NormSim, (IN1K).

. Binary classifiers. We trained two linear binary models that classify between a “high quality”

dataset and the DataComp medium scale dataset. We describe them in Appendix B.2 below.

E-FLYT. We use our E-FLYT-Base scoring model, as detailed in Appendix C.7.

B.1 DFN reproduction

Since M-FLYT requires good inputs to perform well, we made effort to train a high performing DFN.
In the paper, Fang et al. [16] trained a ViT-B/32 CLIP model initialized with OpenAI’s checkpoint on
the high-quality private dataset HQITP-350M. Since we do not have access to this dataset, we trained
our DFN on CCI12M [41]. Similar to Fang et al. [16], we then fine-tune on the combined training
sets of IN1K with sampled OpenAl templates as texts, MS COCO, and Flickr30k. Unless otherwise
specified, we use the same hyper-parameters as DataComp medium scale training. Tables 5 and 6
show results we obtained with different hyperparameter choices when our reproductions DFN-Base
and DFN-FT, respectively.
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Table 7: Detailed hyper parameters of the different configurations used for training and ablations of
M-FLYT and E-FLYT. x* Initialization “DataComp medium” means we train a model from scratch
on the unfiltered DataComp medium scale dataset using the DataComp medium scale training
configuration.

Parameter E-FLYT-Base E-FLYT-22 E-FLYT-LR M-FLYT-Base
Optimizer AdamW AdamW AdamW AdamW

Weight decay 0.2 0.2 0.2 0.2

(B1,B2) (0.9,0.98) (0.9,0.98) (0.9,0.98) (0.9,0.98)
Scheduler cosine cosine cosine cosine

Reference model LR Se-5 Se-5 Variable 5e-5

Scoring model LR le-3 le-3 Variable le-3

Feature extractor init OpenAl OpenAl OpenAl None

Reference model init OpenAl OpenAl OpenAl DataComp medium*
Downstream loss CE + temperature CLIP CE CE

Downstream batch size B’ 3072 768 1536 3072

Upstream batch size B 4096 4096 4096 4096

Num. downstream samples 15.4M 3.8M 7.7M 15.4M

Num. upstream samples 20.5M 20.5M 20.5M 20.5M

Num. steps 5000 5000 5000 5000

Num. warmup steps 100 100 100 100

Downstream dataset ImageNet 22 tasks ImageNet ImageNet
Upstream dataset DataComp medium  DataComp medium  DataComp medium  DataComp medium
Trainable reference parameters  all all all all

Trainable scoring parameters all all all all

B.2 Binary classifiers input

When training our top performing M-FLYT, we use two binary linear classifiers. These models take
as input embeddings generated by OpenAI’s ViT-B/32 model and predict which of two datasets these
embeddings come from. IN1K-Classifier classifies between the ImageNet training set and the Data-
Comp medium scale dataset image embeddings. CC2M-Classifier classifies between concatenated
image and text embeddings of the DataComp medium scale dataset and CC2M. CC2M is a dataset
of 2M examples we created by running our IN1K-Classifier on the CC12M dataset [41] and taking
the top 2M examples that the model classified as ImageNet examples. As shown in Table 2, while
IN1K-Classifier underperforms compared to CLIP score filtering, it still demonstrates improvement
over no filtering and receives substantial weighting from M-FLYT. In contrast, CC2M-Classifier
achieves performance similar to CLIP score filtering but receives a lower M-FLYT weighting. We
trained them for 40K steps with a batch size of 256, a cosine learning rate with a maximal value of
0.01 and 500 warm-up steps.

C Experimental setup

C.1 Experiment configurations

When training M-FLYT and E-FLYT, we optimize the mixing model, the embeddings scoring model,
and the reference models using AdamW [26] with a weight decay of 0.2, (51, 52) = (0.9,0.98),
and a cosine scheduler [25]. Due to computational constraints, some experiments compare against
different model configurations. We list their full hyper parameters in Table 7 and describe their main
differences here. We refer to the configuration from Section 4.2 as M-FLYT-Base, and to the E-FLYT
configuration used in the experiments described in Appendix C.7 as E-FLYT-Base. E-FLYT-22
maintains the same parameters as E-FLYT-Base, with three key differences: it employs the standard
CLIP loss as the downstream loss, uses a downstream batch size B’ of 768, and trains with 22
downstream tasks. E-FLYT-LR uses the same configuration as E-FLYT-Base, except it employs the
CE loss without temperature and uses a downstream batch size B’ of 1536; this configuration was
used exclusively for learning rate experiments.

C.2 Computational cost

In terms of FLOPs, M-FLYT requires slightly more than 2x the FLOPs of regular CLIP model
training per example, while E-FLYT requires slightly more than 3. Since we only train our models
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Table 8: Experiments using the M-FLY T-Base configuration (Table 7).

Experiment Baseline Variation ImageNet  Average
M-FLYT — — 0.359 0.371
Downstream loss CE CE + temperature 0.352 0.366
Reference model initialization = Trained on DC medium Random initialization 0.341 0.354
OpenAl 0.342 0.355
Input standardization Yes No 0.323 0.337

Table 9: Comparison of training M-FLYT with all input methods vs leaving one method out. Numbers
in parentheses show performance degradation compared to using all inputs. We highlight values with
the largest degradation, indicating which methods provide the most benefit when included.

ImageNet

Inputs ImageNet dist. shifts VTAB Retrieval Average
All Inputs 0.359 0.294 0.383 0.310 0.371

No ViT-B/32, ViT-L/14 0.355(0.004)  0.288 (0.006)  0.367 (0.016)  0.307 (0.003)  0.360 (0.011)
No DFN-Base, DFN-FT 0.341 (0.018)  0.280(0.014)  0.375(0.008)  0.281(0.029)  0.358 (0.013)
No —dr, €, €t 0.351 (0.008)  0.291(0.003)  0.366 (0.017)  0.308 (0.002)  0.364 (0.007)

No s-CLIPLoss, NormSimoo (IN1K) 0354 (0.005) 0292 (0.002)  0.377 (0.006)  0.307 (0.003)  0.364 (0.007)
No IN1K-Classifier, CC2M-Classifier 0.352(0.007)  0.288(0.006)  0.368 (0.015)  0.301 (0.009)  0.355 (0.016)
No E-FLYT 0.352(0.007)  0.292(0.002)  0.376 (0.007)  0.309 (0.001)  0.366 (0.005)

for 20M examples (compared to DataComp’s 128M), M-FLYT uses approximately 3 x fewer FLOPs
than training a DataComp medium scale model, and E-FLYT uses approximately 2x fewer.

With our implementation, M-FLYT takes 40 A100 hours to train, and E-FLYT takes 45 A100 hours,
roughly equivalent to running a DataComp medium scale experiment. For SCS with a batch size G =
100K, it takes about 100 minutes to sample 128M examples using a naive Python implementation
on a single CPU. For larger scales (DataComp large or Xlarge), the filtering computation becomes
negligible relative to the overall training cost.

Comparing to other filtering methods:

* Fang et al. [16] reported (in Table 2) training their ViT-B/32 DFN for 5.12B samples seen,
which requires approximately 80-120x more FLOPs than our method

* Kim et al. [22] trained a ViT-L/14 CLIP model on 8 V100 GPUs for 256M samples, taking
488 GPU hours (61 hours x 8 GPUs)

* Wang et al. [49], which doesn’t require additional model training beyond the pretrained
OpenAl CLIP model, reported 5 hours of preprocessing on an L40 machine

C.3 M-FLYT ablations

Table 8 shows experiments using M-FLYT. The standard CE loss slightly outperforms CE with
temperature (Appendix C.8), and reference model initialized with “DataComp medium” (explained
in Appendix C.7) outperforms OpenAl initialization. We also find that input standardization greatly
increases performance.

Table 9 shows the result of training M-FLYT while excluding groups of related inputs. Removing
any input group degrades performance, with several notable results: DFN reproduction scores have
the strongest impact on ImageNet, ImageNet distribution shifts, and retrieval scores (degrading
performance by 1.8%, 1.4%, and 2.9% respectively). For VTAB tasks, excluding HYPE scores
causes the largest drop (1.7%), while unexpectedly, removing the linear classifiers—despite being the
weakest standalone filtering methods—Ileads to the largest decline in average performance (1.6%).

24



Table 10: Comparing M-FLYT to the original mixing method of HYPE [22] and s-CLIPLoss [49].
HYPE combines scores by summing their three components (—dy, + €; + €;), while s-CLIPLoss
applies a two-stage filtering process: selecting the top 30% based on s-CLIPLoss scores, then selecting
the top 20% according to their NormSim scores from this filtered subset.

Input method Mixing method ImageNet  Average

HYPE Original (sum scores) 0.309 0.341
M-FLYT 0.322 0.347

- CLIPLoss and NormSim Original (two stage) 0.331 0.363
M-FLYT 0.334 0.357

C.4 Comparing M-FLYT to aggregation methods in prior work

Table 10 compares M-FLYT against the original mixing strategies of HYPE and s-CLIPLoss. For
HYPE’s components, M-FLYT outperforms the simple summation approach on both ImageNet
(+1.3%) and average (+0.6%) metrics. When mixing s-CLIPLoss scores, M-FLYT performs similarly
to the original two-stage filtering method, showing marginal improvement on ImageNet (0.3%) but
slightly lower average performance (0.6%).

C.5 M-FLYT baseline - ImageNet-weighted standardized sum

Here we explain the ImageNet-weighted standardized sum baseline we compare against in Section 4.2.
For K ImageNet accuracies IN;.x corresponding to K scoring methods, we first standardize the
per-example scores produced by these methods individually across all training examples to have zero
mean and unit standard deviation. We denote by s/ the standardized score that method i € 1, ..., K
gave example z;.

We then normalized the ImageNet accuracies IN1, i between zero and one, and add a scalar to achieve
our desired ratio r:

- INl — mln(INlK)
- max(INy.x) — min(INy.x)’

wi =i+ —,
where min(INy. g ) is the lowest ImageNet score, and max(IN;.x ) is the highest. This ensures that
the ratio between the maximum and minimum weights equals 7:
max(w1.x)

min(wy.g)

J

i

The final score for example z; is then Zfil w;s

In Table 2 we experiment with max-to-min ratios r € {2, 4,8, 16}.

C.6 E-FLYT learning rate tuning

Table 11 compares different scoring model and reference model learning rates using the E-FLYT-LR
configuration. We notice that E-FLYT is not very sensitive to the scoring model LR (with reference
LR fixed at le-4) and select 1e-3 based on slightly better results. E-FLYT is somewhat sensitive to
reference model LR, and with scoring model LR fixed at 1e-3, 5e-5 gives the best results. These
values are used for subsequent experiments.

C.7 E-FLYT results

For E-FLYT, we use a CLIP ViT-B/32 [35] as the feature extractor and an FFNgp,uy [42] scoring
model. We initialize both the feature extractor and the reference model with OpenAI’s checkpoint.

In Table 12 we show experiments using E-FLYT-Base. We evaluate three alternatives for the
downstream loss function: The CLIP loss, as defined in Equation (1) £c(fs, (w,.5)(%1:5')), standard
cross entropy (CE) loss, and CE with a temperature parameter (see definitions in Appendix C.8).
Our experiments show that CLIP loss and CE with temperature demonstrate similar performance,
both outperforming the standard CE loss. For subsequent experiments, we use CE with temperature
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Table 11: Learning rate tuning using the E-FLYT-LR configuration (Table 7). We first optimize the
scoring model LR with reference model LR fixed at 1e-4, then optimize reference model LR with
scoring LR fixed at le-3.

Scoring model LR Reference model LR  ImageNet  Average

Se-4 le-4 0.286 0.300
le-3 le-4 0.286 0.306
Se-3 le-4 0.280 0.310
le-2 le-4 0.277 0.300
le-3 le-5 0.158 0.238
le-3 Se-5 0.292 0.319
le-3 le-4 0.286 0.306
le-3 Se-4 0.267 0.296

because it better resembles the accuracy metric used to evaluate most DataComp tasks. We found
it essential to use separate learned temperature parameter for the upstream and downstream loss
functions when using either the CLIP or CE with temperature loss. We initialize the downstream
temperature parameter Tpg to 1/0.07, as is the default when training a CLIP model from scratch,
while the initial value for the upstream temperature is set to 100 as part of the pretrained reference

model weights. The downstream temperature is updated during training using V¢ Ldown-

Table 12 also compares reference model and feature extractor initializations, where initializing with
stronger models outperform weaker ones. We evaluate four initializations in ascending order of
performance: Random initialization, “DataComp medium”, where we train a model from scratch
on the unfiltered DataComp medium scale dataset using the DataComp medium scale training
configuration, OpenAl checkpoint, and “DataComp-13B”, which is a model trained by Gadre et al.
[17] on the DC-1B dataset for 13B samples seen. Further results in the table show that training the
reference model is much better than freezing it, and that fine-tuning the feature extractor prevents
the training from succeeding. Our ablation studies show that performance remains stable with
downstream batch sizes ranging from 1024 to 4096. Similarly, performance is consistent when
training for 1250 to 12500 steps, suggesting that E-FLYT could be optimized using less compute.

As discussed in Section 5, we believe that our E-FLYT training stack has significant room for
improvement.

C.8 Downstream loss

We now explain how construct the downstream loss from a downstream batch 2.5/ containing labeled
data of the form 2; = (x, ¢;), where x; is an image and ¢; € {1,..., K} is a class label. First, we
uniformly sample templates for each of the classes following DataComp’s class-specific template
definitions t1. = sample(1 : K). Then, the CE loss is given by

B’ .
eTDS<f9(mz)7f9(tCi)>
z . ’ = _1
(ps(21.p) = D —log (ZK (Fo(zo) fo(ty)) |

TDS
i=1 j=1¢

where Tpg is a learnable temperature parameter we only use in the CE+temperature variation for
the downstream data. Using the standard CE loss, mpg is set to 1. Using this notation, we define the
downstream CLIP loss mentioned in Appendix C.7 with a separate temperature parameter Tpg as

B’ B’
. emos(fo(@i), fo(tc;)) e™0s(fo(te;) fo(w:))
le(f1p) =) —log (ZB’I EESTACARACE N I > —log S o Untte) daer) )
Jj= Jj=

i=1

C.9 E-FLYT with diverse downstream data

Instead of using the ImageNet training set alone for the downstream data, we experiment with using
22 training sets from the DataComp benchmark. We now detail the training configuration, and then
discuss the results of experiments using E-FLYT-22. First, we list the datasets used:
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Table 12: Experiments using the E-FLYT-Base configuration (Table 7). * Initialization “Trained on
DC-1B” means using the ViT-B-32 model trained by Gadre et al. [17] on DC-1B for 13B samples
seen (Hugging Face model card).

Experiment Baseline Variation ImageNet  Average
E-FLYT-Base — — 0.316 0.323
Downstream loss CE + temperature CE (no temperature) 0.287 0.305
CLIP 0.313 0.330
Ref del Random initialization 0.270 0.312
feterence mode OpenAl Trained on DC medium  0.290 0.308
initialization
Trained on DC-1B* 0.314 0.320
F Random initialization 0.157 0.234
Feature extractor OpenAl Trained on DC medium  0.287 0.302
initialization
Trained on DC-1B* 0.325 0.329
Reference model + feature oy Trained on DC-1B* 0326 0331
extractor initialization
Trainable parameters Scoring + reference model Only scoring model 0.251 0.298
+ Feature extractor 0.135 0.227
12500 0.306 0.320
Num. training st 5000
. HAIng sieps 1250 0311 0329
Downstream Batch Size 3072 1024 0.315 0.313
4096 0.311 0.316

* ImageNet [12]

e MNIST [11]

e SVHN [31]

* CIFARI10 [24]

* CIFAR100 [24]

* Food-101 [4]

* Oxford Flowers-102 [32]
e Oxford-IIIT Pet [33]

* iWildCam [3]

» SUN-397 [50]

e EuroSAT [20]

e Stanford Cars [23]

* DTD [9]

» RESISC45 [6]

* GTSRB [46]

* FGVC Aircraft [30]

e Pascal VOC 2007 [15]
* Country211 [35, 48]

e Rendered SST2 [54]

* FMoW [8]
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Table 13: Different downstream tasks experiments using the E-FLYT-22 configuration (Table 7).

Downstream tasks variation  ImageNet  Average

Imbalanced 22 tasks 0.315 0.330
Balanced 22 tasks 0.274 0.311
Only ImageNet 0.313 0.330

Table 14: SCS parameter ablations: Effects of repetition penalties and batch sizes.

Repetition penalty «  Batch size G ImageNet Average

0.10 100K 0.395 0.369
0.15 100K 0.401 0.377
0.20 100K 0.399 0.377
0.25 100K 0.395 0.378
0.30 100K 0.396 0.374
0.40 100K 0.387 0.373
0.50 100K 0.388 0.376
0.60 100K 0.377 0.369
0.15 10K 0.399 0.373
0.15 M 0.398 0.371

e Dollar Street [38]
e STL-10[10]

When preparing our datasets, we split them into tar files of 100 examples each in webdataset format.
During training, we use a shuffle buffer of 50,000 examples. Since the webdataset loader reads entire
tar files at once, small shards and a large shuffle buffer help ensure diverse tasks within each training
batch. The combined dataset contains 2M examples, with ImageNet making up the majority. In
Table 13, we compare different dataset configurations. Using the combined dataset without balancing
classes yields performance very similar to using only the ImageNet dataset. When we balance the
datasets to ensure equal representation (where the model sees samples from each downstream dataset
the same number of times), performance deteriorates. This performance drop might be due to some
tasks containing as few as 1020 total training samples, potentially causing overrepresentation of these
smaller datasets during training.

C.10 SCS ablations

With SCS, we evaluate different repetition penalties and find that performance varies smoothly with
«a, reaching optimal results around o« = 0.15 (Table 14). For sampling efficiency, we introduce the
batch size G, setting it to 100K. This value is large enough for efficient medium scale sampling yet
sufficiently small based on our empirical observation that while each sample had 1280 (128 M /100K)
opportunities to be selected, our most frequently sampled example appears only 56 times. To more
directly validate our choice of G, Table 14 shows that using values of G of different order of
magnitude has little effect on performance.

C.11 DataComp small scale results

For the small scale DataComp benchmark, we reuse the mixing model from the medium scale without
retraining E-FLYT or M-FLYT. The only changes were re-tuning the repetition penalty « for the
smaller dataset and reducing the sampling batch size G by a factor of 10 to 10K, aligning with the
dataset size reduction. Figure 4 shows that the smaller scale performs best with a higher repetition
penalty, around a = 0.5, compared to the medium scale which performs better with values between
0.15 to 0.25. A higher repetition penalty reduces the number of repetitions per example, which
becomes more important for smaller datasets.
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Figure 4: Comparing SCS to hard threshold filtering on the small scale DataComp benchmark. SCS
was tested with o values from 0.15 to 1, and standard threshold with values from 10% to 30%

Table 15: Comparison between the results reported in the original papers and our reproduction
using their provided UIDs. Some experiments were run using the complete DataComp medium scale
dataset (128M) while our reproduction used the 119M examples we were able to download. Results
marked with * were performed by Wang et al. [49] on their 110M downloaded dataset; they also
report partial results using the full 128M data pool. Our best results are listed below.

ImageNet
Filtering Method Pool Size ImageNet dist. VTAB  Retrieval Average
shifts
- CLIPLoss 110M 0.324 0.274 0.359 0.263 0.352
119M (Reprod.) 0.333 0.273 0.361 0.251 0.352
DEN 128M 0.371 0.298 0.388 0.288 0.373
119M (Reprod.) 0.367 0.303 0.371 0.280 0.364
HYPE+DEN 116M 0.382 0.303 0.393 0.306 0.379
119M (Reprod.) 0.372 0.304 0.374 0.287 0.368
DEN+s-CLIPLosS 128M, 110M 0.375 0.309 0.386 0.281 0.386
119M (Reprod.) 0.371 0.304 0.390 0.285 0.378
HYPE+DEN+s-CLIPLosS 128M, 110M 0.382 0.314 0.385 0.276 0.388
119M (Reprod.) 0.381 0.310 0.392 0.284 0.378
M-FLYT+SCS (o = 0.15) 119M 0.401 0.311 0.396 0.292 0.377

D Reproduction comparison

Table 15 compares model we train using publicly available DataComp subsets to the numbers reported
in the papers that published them. The results are generally similar, but not identical, with accuracy
difference of up to 1%. The main driver of the difference appears to be the size of the actual pool used
to train the model: we were able to download only 119M of the 128M examples in the DataComp
medium scale pool, while the authors of the other papers had access to a more complete subset of the
examples.

E Qualitative analysis

Figures 5 to 7 show the top-scoring examples for M-FLYT, standard CLIP score, and DFN-FT. We
observe that M-FLYT prioritizes examples containing multiple ImageNet classes. For instance, the
highest-scoring example features the caption "Honey the Golden Retriever stands in a tent," where
both "Golden Retriever" and "tent" correspond to ImageNet classes. In contrast, the CLIP score
filtering method using OpenAI’s ViT-B/32 model favors images with visible text that matches the
caption text.
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Framed Photographic Print Frame:
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carousel at Van Andel Museum Center
in Grand Rapids, Michigan, have
real antlers. (© Jean Bennett, via

basket photo
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)

christmas hat: Pug puppy in red
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the border with a fence and a dog
at sunset Stock Photo

Figure 5: M-FLYT top scoring examples.
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Figure 6: CLIP ViT-B/32 top scoring examples.
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Figure 7: DFN-FT top scoring examples.
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