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ABSTRACT

This work studies the optimization and generalization consequences of a seemingly
innocuous design choice in many modern architectures: they end with a compo-
sition of affine parameters belonging to a normalization layer and a linear layer,
resulting in a fundamentally 2-homogeneous architecture. The first set of results are
abstract, showing how any architecture satisfying this type of 2-homogeneity and a
few regularity conditions on the gradients of the inner layers obtain large margins
and low test error. As technical byproducts, this part of the story provides an
implicitly biased gradient flow guarantee and also a nondecreasing margin lemma
for inhomogeneous networks. The second set of results instantiate this framework
for shallow normalized ReLU networks, establishing large margin and low test
error via feature selection purely from random initialization and standard gradient
flow. As a corollary, the paper obtains good test error for k-bit parity problems, in
particular passing below sample complexity lower bounds from linearized analyses
such as the Neural Tangent Kernel.

1 INTRODUCTION

The surprising beneficial properties of first-order optimization methods remain one of the main great
mysteries of deep learning: while a vast body of literature arose trying to understand how optimization
seems to find parameters which seemingly overfit but still generalize well (Neyshabur et al., 2014;
Zhang et al., 2016), practice has continued apace. For instance, recent work identifies even more
sophisticated variants of the phenomenon in modern settings such as LLMs, where optimization
automatically yields low-dimensional structures with many beneficial properties (Li et al., 2018;
Aghajanyan et al., 2020; Hu et al., 2021).

For classification tasks where near-perfect test accuracy is possible, such as image classification
(Krizhevsky, 2009), a classical mathematical analysis comes via the concept of prediction margins,
where the differences between carefully normalized output logits directly yields an upper bound on
generalization error (Bartlett, 1996; Schapire et al., 1997). While this classical theory is rooted in
linear predictors and dates back to the original Perceptron analysis (Novikoff, 1962), it nevertheless
has predictive power within modern deep learning; for example, it gives an explanation for test
accuracy continuing to drop after perfect training accuracy is reached, a phenomenon which resurfaced
as part of the grokking story (Power et al., 2022).

Closer to the present work, a sensitive margin-based analysis can illuminate feature learning and its
consequences on generalization error. One concrete approach of this flavor was nicely laid out by
Bach (2017), who gave two function classes implicitly searched during deep network optimization:
the simpler class is F2, which roughly speaking corresponds to a lack of feature learning, such as
exhibited by the Neural Tangent Kernel (NTK) (Jacot et al., 2018), and a more complex class F1,
which allows for feature learning, but seems generally computationally intractable to search over.
Concordantly, while it is reasonably easy to show that gradient descent can compete with the best
function in F2 (Ji & Telgarsky, 2020b; Chen et al., 2019), competing with the best functions in F1

has only been shown under a combination of modified algorithms and stringent assumptions which
are either hard-to-establish or even potentially false (Wei et al., 2018; Chizat & Bach, 2020). Even so,
probing how far gradient descent can venture into F1 \ F2 remains an effective way to study feature
learning and the generalization benefits of first-order methods.
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The goal of the present work is to show how the normalization structure present in modern archi-
tectures can aid in feature learning and good test error, first presenting an abstract mathematical
framework in Section 3, and then specializing this framework to shallow normalized ReLU networks
in Section 4. A summary of the high-level contributions is as follows.

1. The first contribution is an elementary observation: Section 3.1 outlines how the aforementioned
product structure of modern normalized architectures aids in searching over F1. Section 1.1
will also provide a teaser, but the phenomenon is simple enough: optimizing F1 corresponds to
identifying good but rare features, thus has a sparsity flavor, and meanwhile the product structure
causes gradient descent to instead follow an `1 geometry, which is classically understood as
sparsity-preferring.

2. The first substantial technical contribution comes in the remainder of Section 3 (also teased
in Section 1.1), showing two consequences of this product structure for abstract architectures:
(a) how the implicit bias of gradient descent, combined with the product structure and a few
conditions on the gradients of inner layers, gives rise to optimization over F1, which previously
was only establish with modified algorithms and extensive assumptions (Wei et al., 2018; Chizat
& Bach, 2020); and (b) how the search over F1 does not degrade over time, extending the
seminal work of Lyu & Li (2019) to inhomogeneous networks such as transformers.

3. The second contribution, appearing in full in Section 4 but again teased in Section 1.1, is a
concrete instantiation of the previous framework for shallow normalized ReLU networks, in
particular using an idealization of BatchNorm (Ioffe & Szegedy, 2015), extremely large width,
but no other assumptions or modifications. As shallow ReLU networks have been the subject of
great study, this analysis gives explicit test error bounds which are shown to beat test error lower
bounds for well-studied problems such as the k-parity problems; by contrast, prior work needs
a combination of algorithmic assumptions and distributional assumptions (Barak et al., 2022;
Glasgow, 2023).

The remainder of this introduction teases the results; Sections 3 and 4 contained the details and proof
sketches; the appendices contain full details.

1.1 MAIN RESULT TEASER

This subsection provides a slightly more formal teaser of the main results, detailed in Sections 3
and 4. Throughout this work, the prediction problem will be binary classification with binary labels
y ∈ {±1}, gradient descent will be idealized as the gradient flow, and the loss will be the logistic
loss `(z) := ln(1 + exp(−z)) (with corresponding average L(w) := 1

n

∑
i `(yih(xi;w))). While

the ReLU and various other architectural choices are not differentiable, this work uses the standard
choice of replacing the gradient by the minimum norm element of the Clarke differential (Lyu & Li,
2019; Ji & Telgarsky, 2020a), as detailed further in Section 3.1.

Normalization and 2-homogeneity. The following trivial observation gives the basis for the
present work. Standard normalization layers (e.g., BatchNorm, LayerNorm, and RMSNorm (Ioffe &
Szegedy, 2015; Ba et al., 2016; Zhang & Sennrich, 2019)) all come with a multiplicative parameter
which is enabled by default in modern deep learning toolkits (Paszke et al., 2019). Moreover, modern
architectures, such as the transformers used in LLMs (Touvron et al., 2023), conclude with such a
normalization layer followed by a linear layer, with no intermediate activation. This effect is idealized
in this work as a product of two linear layers, treating the whole network mapping as

x 7→
m∑
j=1

ajbjFj(x;V ) =
〈
a� b, F (x;V )

〉
,

where outer parameters ((aj , bj))
m
j=1 correspond to the final linear layer and adjacent multiplicative

normalization parameters, and the mappings (Fj)
m
j=1 with shared parameters V ∈ Rp correspond to

the behavior of the inner layers, such as an MLP and attention stack in a transformer. The second form
introduces some convenient notation, where now (a, b) ∈ Rm × Rm and a� b is their coordinate-
wise product, and F : Rd × Rp → Rm collects the individual internal functions (Fj)

m
j=1 into a big

multivariate mapping, which after all better captures the behavior of a modern architecture with inner
parameters V ∈ Rp.

1/1

(add olmo architecture)
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As will be detailed in Section 3.1, gradient flow on these parameters is equivalent to a mirror flow
(an infinitesimal variant of mirror descent, just as gradient flow is infinitesimal gradient descent), in
particular a mirror flow on a new set of parameters which firstly obeys an `1 geometry, and secondly
is convex in the new single outer parameter after this reparameterization. This reparameterization
therefore solves two problems: the `1 geometry leads to optimization over F1, and the convexity
gives some hope of tractability. By contrast, the problem before reparameterization is a second degree
polynomial in (a, b) and not convex.

Abstract mathematical framework. The 2-homogeneity alone is hopeful but does not yield any
concrete results; these come via additional structural assumptions and beneficial implicit biases of
gradient flow and the reparameterized mirror flow.

As mentioned before, the approach here to feature learning and good test error is through the
lens of margins, summarized as follows. Let h(x;w) denote a binary classifier with input ex-
ample x and parameters w; for example, the main 2-homogeneous setup here has the form
h(x; (a, b, V )) =

〈
a� b, F (x;V )

〉
. The unnormalized margin is simply yh(x), and it is clear

that predictions are correct when this quantity is positive, but how to meaningfully interpret its
magnitude and a corresponding notion of confidence? In particular, one must adjust for the fact that
scaling up (a, b) would amplify this unnormalized margin. Mathematically, classical margin theory
establishes good generalization but only after a careful choice of normalization by some function of
the model parameters: for classical coordinate-descent based boosting methods such as AdaBoost,
`1, namely yh(x;w)/‖w‖1, was the appropriate normalization (Schapire et al., 1997); for gradient
descent, ‖w‖2 in the denominator makes sense (Soudry et al., 2017; Ji & Telgarsky, 2018); for ReLU
networks of depth L, the correct normalization seems to be ‖w‖L2 (Lyu & Li, 2019).

A ReLU network with L layers is an example of an L-homogeneous architecture; the full definition
will come in Section 3, but a key point is that standard modern choices such as transformers violate
homogeneity in a vast assortment of ways. The present work provides a way out and a corresponding
baseline: essentially all the mathematical tools of homogeneity go through if one restricts attention to
a subset of the parameters which obey homogeneity, even while the study is of gradient descent on
the original full set of parameters.

Writing intuitively until the formal development in Section 3, consider a network which is L-
homogeneous in a subset ŵ of the full parameters w; for instance, the above framework is 2-
homogeneous in parameters (a, b). The corresponding margin definition simply ignores the other
parameters:

margin(ŵ) :=
mini yih(xi;w)

‖ŵ‖L
.

Of course, this definition is only meaningful if the numerator can not grow arbitrarily with the norm
of the ignored parameters w \ ŵ; that will also be a property of this mathematical treatment and
critically affect the generalization properties of 2-layer ReLU networks discussed shortly and in
Section 4.

The result will require a few more explanations: of the initial good features, slow-growing derivatives,
and the smooth margin; these will come after the statement, and in detail in Section 3.
Theorem 1.1 (Informal simplification of Lemma 3.2 and theorems 3.1 and 3.6). 1. (Early good

margins.) Suppose there exist initial good features with margin γ and the gradient flow exhibits
slow-growing derivatives; then there exists a time t such that

yih(xi;w(t))

‖a(t)‖22 + ‖b(t)‖22
≥ γ

16
.

2. (Asymptotic nondecreasing margins.) Suppose h is L-homogeneous in a subset ŵ of the full
parameter set w, and w is updated with gradient flow on L. If there exists a time t with
L(w(t)) < `(0)/n, then L(w(s)) → 0 and the smooth margin `−1(nL(w(s)))/‖ŵ(s)‖L is
nondecreasing.

In particular, in the 2-homogeneous framework above, `−1(nL(w(s)))
‖a(s)‖2+‖b(s)‖2 is nondecreasing.

Summarizing the results, part 1 of theorem 1.1. covers the initial phase of GF, namely GF achieves
a large margin, and part 2 covers the late regime of GF (large margin is maintained thereafter). Of
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note, part 1 only applies to architectures with a specific outer layer structure (eq. (2)) whereas part 2
handles more general partially homogeneous architectures.

Before discussing the concrete instantiation of Theorem 1.1 to shallow normalized ReLU networks,
the various confusing pieces can be sketched with appropriate pointers Section 3. Firstly, the
worrisome slow-growing derivatives property is easilyto satisfy with architecture choices such as
BatchNorm, though a more extensive study (beyond Section 4) is needed and pushed to future work.
The initial good features assumption may sound as though this analysis performs no feature learning,
and indeed it is better described as feature selection or a reweighting of good initial features; the
mathematical analysis here establishes a sanity check that no matter what, enough feature stay still
so that one can still choose good outer weights, though it also allows for widely-changing features.
Lastly, the smooth margin `−1(nL(w)) may seem quite complicated, but is a standard object in the
analysis of margins (Lyu & Li, 2019; Schapire et al., 1997; Telgarsky, 2013), and becomes the hard
margin in this setting as t→∞. While these various conditions may seem stringent, they are easily
satisfied as below for shallow normalized ReLU networks, and moreover are enough to exit F2 (and
thus the Neural Tangent Kernel) and optimize over F1.

Concrete instantiation: normalized shallow ReLU networks. Theorem 1.1 was ultimately hope-
lessly abstract; this next teaser gives a completely concrete instantiation which removes all the
nebulous assumptions.

The architecture in this case will be an idealization of BatchNorm (Ioffe & Szegedy, 2015): it suffices
to carve V ∈ Rp into m vectors (vj)

m
j=1 with vj ∈ Rd and define Fj(x;V ) := σ(

〈
vj/‖vj‖, x

〉
),

giving an overall predictor

x 7→
〈
a� b, F (x;V )

〉
=
∑
j

ajbjσ
(〈 vj
‖vj‖

, x
〉)

. (1)

The notion of optimal F1 margin in this setting is well-studied (Bach, 2017; Chizat & Bach, 2020),
and while it will appear in detail in Section 4, the point here is that it is strong enough to yield test
error guarantees, indeed ones beating F2 in many interesting cases.
Theorem 1.2 (See Section 4 for setting details.). Let h correspond to the shallow normalized
architecture in eq. (1), Suppose the data distribution has margin γ (cf. Section 4). Then for all t ≥ t0
and m ≥ m0 (where t0 depends on γ and m0 depends on γ and ln(t)), with probability at least 1− δ
over the draw of random initial parameters w(0) := (a(0), b(0), V (0)) and data ((xi, yi))

n
i=1, both

the empirical margins and test error are good:

min
i

yih(xi;w(t))

‖a(t)‖22 + ‖b(t)‖22
≥ γ

32
, Pr

[
yh(x;w(t))

]
≤ Õ

(
1

nγ2

)
.

In particular, for the support-only k-parity problems (cf. Section 4), the test error is . dk2

n whereas
for the NTK (one perspective on F2) it is & dk

n .

To conclude this teaser subsection, a few explanations are in order. Firstly, the abstract assumptions of
Theorem 1.1 have been translated into the lower bounds (m0, t0); unfortunately, these lower bounds
are prohibitively large and should be taken as essentially infinite (they are double exponential). On
the other hand, the closest result in the literature has both quantities as truly infinite, and makes
additional hard-to-verify assumptions which are circumvented in this work (Chizat & Bach, 2020).

Secondly, to demonstrate a concrete separation between F1 and F2, the statement concludes with test
error rates for k-parity problems, which have received tremendous study (Barak et al., 2022; Glasgow,
2023). The strongest result for an unmodified network is due to Glasgow (2023), and obtains a strong
result in the sense of allowing a narrow network and small number of training iterations, but on the
other hand the distributional assumption is much more strict, requiring only the 2-parity problem and
not allowing the more difficult “support-only” variant of Section 4.

2 PRELIMINARIES

Architecture Given a, b ∈ Rm and V ∈ Rp and F : Rd × Rp → Rm, Section 3.1 considers
general models h of the form

h(x;w = (a, b, V )) =
〈
a� b, F (x;V )

〉
, (2)

4
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where F satisfies the following assumption.
Assumption 2.1. The feature map F : Rd × Rp → Rm is bounded,

sup
x

sup
V

∥∥F (x;V )
∥∥
∞ <∞.

The bounded assumption is rather mild as all features maps that end with a normalization layer such
as Layer Normalization or Root Mean Square Normalization satisfy this property. For initialization,
let weights be initially distributed with aj , bj ∼ Unif(±1/

√
m), and V be drawn from an arbitary

distribution. Section 4 considers shallow ReLU networks and hence the feature map F take the form

Fj(x;V ) := σ

(〈
vj/
∥∥vj∥∥ , x〉) which certainly satisfies assumption 2.1.

Gradient Flow. As mentioned, this work uses the gradient flow on all parameters, namely w(t) is
the solution to the differential equation

d

dt
w(t) = ẇ(t) = −∇wL(w(t)).

Since the networks in general will not be differentiable, formally the flow is a solution to the Clarke
differential inclusion ẇ(t) ∈ −∂wL(w(t)), where ∂w denotes the Clarke differential Lyu & Li
(2019). This differential has many intricacies, but this work tacitly assumes all networks are locally
Lipschitz and o-minimal definable, which suffices to guarantee chain rules and remove the main
difficulties (Lyu & Li, 2019; Ji & Telgarsky, 2020a); due to this and the well-established nature of the
Clarke differential in deep learning theory, this work will simply write ∇ in place of ∂ to aid readers
unfamiliar with the Clarke differential, who are directed for more background to (Lyu & Li, 2019; Ji
& Telgarsky, 2020a).

Vector Operations. Given any scalar valued univariate function f and vector v, the value f(v) is
defined to be the vector where f is applied elementwise. In a similar fashion, for any scalar r ∈ R
and vector v, inequalities v ≥ r is taken to be understood as each entry of v being at least r.

3 ABSTRACT, ARCHITECTURE-INDEPENDENT ANALYSIS

This section first formally restates Theorem 1.1 while providing proof sketches along the way.

3.1 RESTATEMENT OF THEOREM 1.1

Theorem 3.1 (Formal restatement of part 1 of Theorem 1.1). Let t be given, define

C1 := sup
s<t

sup
i,r,j

∣∣∣〈∇V Fj(xi;V (s)),∇V Fj(xr;V (s))
〉∣∣∣ ,

C2 := sup
s<t

sup
i,r,j 6=k

∣∣∣〈∇V Fj(xi;V (s)),∇V Fk(xr;V (s))
〉∣∣∣ ,

and let p̄ and γ be given with ‖p̄‖1 = 1 and mini
〈
p̄, yiF (xi;V (0))

〉
≥ γ, and lastly define

u(0) := a(0)� b(0) and R := KL(p̄, u(0)). If these various quantities satisfy

‖p̄‖∞ ≤
γ3

4C1

[
ln(tn)(8R+ 2) + 32

]2 , C2 ≤
γ

4
[
ln(tn)(8R+ 2) + 32

]2 ,
then if t ≥

(
20R
γ

)4

,

min
i

yih(xi;w)

‖a(t)‖2 + ‖b(t)‖2
≥ γ

4(1 +R)
.

If additionally t ≥ e+ exp(exp(4nR/γ)), then

min
i

yih(xi;w)

‖a(t)‖2 + ‖b(t)‖2
≥ γ

32
.
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Hence, given any concrete instantiation of the model h, Theorem 3.1 reduces the problem of obtaining
large margins to checking growth of the gradient of the feature maps and existence of initial good
features which is embodied by (p̄, γ).

Looking back to Theorem 1.1, here (p̄, γ) capture the “initial good features” property, and C1 and C2

capture the “slow-growing derivatives” property. As will be seen in Section 4, (p̄, γ) are well-studied
for shallow ReLU networks, and meanwhile C1 can be made arbitrarily small with large width, and
C2 is simply 0. With more sophisticated architectures, C2 becomes interesting; arguably one of the
main byproducts of the NTK theory is that a quantity similar to C2 goes to 0 as width goes to infinity
(Jacot et al., 2018), which would be interesting and valuable to establish in the present setting.

The quantity R can be quite bad; e.g., in Section 4, in the worst case it seems to scale as d ln(1/γ),
whereas the best possible results truly require just a constant such as γ/16. On the other hand,
pushing R doubly-exponentially into t is also unsavory. This time lower bound is mostly likely a
technical artifact which will be discussed in the material to come. Before delving into the proof sketch
of theorem 3.1, some preliminaries, concerning the reparameterized flow mentioned in Section 1 and
general implicitly-biased mirror descent guarantees, must be established.

3.2 REPARAMETERIZED FLOW AND IMPLICITLY-BIASED MIRROR FLOW GUARANTEES

As it stands, the current gradient flow is not easy to analyze with respect to the outer layers (a, b),
since even if there is some beneficial 2-homogeneous structure, the objective is not jointly convex in
this pair. To make the analysis more tractable, consider the following reparameterization: given a
model h with corresponding weights w = (a, b, V ), let the reparameterized weights be (u, V ) where

u := |a� b| .

The following lemma shows that the reparameterized weights are updated via an appropriate mirror
flow along with other useful identities.
Lemma 3.2. Let h(x;w = (a, b, V )) correspond to the architecture described by eq. (2) and h is
trained via gradient flow. At initialization, suppose |aj(0)| = |bj(0)| for all j ∈ [m]. Abbreviate
βj := sgn(aj(0)bj(0)). Then, for all time t,

uj(t) = aj(t)
2 = bj(t)

2 = βjaj(t)bj(t),

and additionally,

d

ds
lnu(s) = −∇u2L

(〈
u� β, F (·;V )

〉)
= −2∇uL(w(s)). (3)

This is the reparameterized flow, and many remarks are in order. Firstly, this is called mirror flow
because the time derivative is not on u(s) directly, but on lnu(s). Here, ln(·) is a mirror map,
and induces a different geometry. This geometry is well-studied and quite special, it induces a
sparsity structure (Shalev-Shwartz et al., 2011). The lemma establishes a correspondence between
the update on (a, b, V ) and on (u,Q) and show that (a, b) inherits the beneficial sparsity-inducing
structure enforced directly on u via the mirror map, which leads to optimization over F1 rather
than F2. The uniqueness of 2 homogeneity becomes apparent when analyzing a more general L
homogeneous model of the form h(x;w = (a1, . . . aL, V )) =

〈
a1 � · · · � aL, F (x;V )

〉
. Defining

the reparamterized weights as uj(t) :=
∏L
`=1 a

`
j(t), one can quickly determine that eq. (3) fails for

L 6= 2. Hence, only 2-homogeneous models explicitly optimize over F1.

Note that versions of this connection have been made before when a � b is replaced by a � a (cf.
(Chizat & Bach, 2020, Section 4), and (Woodworth et al., 2020)), the difference here will be an
explicit connection with a � b, the remark that this arises from normalized structure, and all the
upcoming optimization consequences of this setup; in particular, prior work only obtained F1 results
when freezing the inner layers and their corresponding parameters V , whereas this work allows them
to be updated with standard gradient flow (Chizat & Bach, 2020, Section 4).

The key observation is that the function u 7→ 2L
(〈
u� β, F (·;Q)

〉)
is convex in u. This convexifi-

cation allows an immediate invocation of mirror descent tools; these tools are strengthened here (in
Lemma 3.3) to identify an implicit bias, which powers all the results of this section.
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Thanks to the exact equivalence given in Lemma 3.2, the remainder of this section will be stated
entirely in the re-parameterized flow, which shortly will be shown to fit very nicely within the
framework of online convex optimization, with an added upcoming twist of implicit bias. Specifically,
as a final pieces of notation, define

zi(s) := yiβ � F (xi;V (s)), Ls(u) :=
1

n

∑
i

`(
〈
u, zi(s)

〉
); (4)

by this choice, the prediction problem begins to look like a standard online convex optimization
problem with time-varying objective Ls, but convex in the relevant parameter u(s); indeed, it appears
to be a simple linear prediction problem with examples (zi(s))

n
i=1 varying over time. The remainder

of this subsection details implicitly-biased mirror flow bound for a generic mirror flow setup. Let
φ denote a Legendre map — basically the corresponding mirror map ∇φ and its inverse ∇φ∗ are
guaranteed to always be well-defined, for details see for instance (Lattimore & Szepesvári, 2020) —
and let Dφ denote the corresponding Bregman divergence

Dφ(u, v) = φ(u)−
[
φ(v) +

〈
∇φ(v), u− v

〉]
.

Given a time-varying potential (fs)s≥0, the general mirror flow is defined as the solution to the
differential equation

d

ds
∇φ(u(s)) = −∇fs(u(s)).

The general implicitly-biased guarantee and its specialization to the setup sparsity (entropy) here are
as follows.
Lemma 3.3. 1. Suppose the general mirror flow setup and that each fs is convex. For any t ≥ 0

and any u(0) and any ū,

min
s<t

[
fs(us)− fs(ū)

]
≤ Dφ(ū, u(0))−Dφ(ū, u(t))

t
.

2. Suppose φ(u) =
〈
u, ln(u)− 1

〉
=
∑
j

(
uj lnuj − uj

)
. Then for any u, v ∈ dom(φ) = Rm>0,

∇φ(u) = lnu,

Dφ(v, u) =

〈
v, ln

v

u

〉
+ 〈1, u− v〉 =: KL(v, u),

and moreover for any t ≥ 0, any ū, u(0) ∈ dom(φ) = Rm>0, then

‖u(t)‖1
8

1
[
‖u(t)‖1 ≥ 2‖ū‖1

]
+

∫ t

0

fs(u(s)) ds ≤ KL(ū, u(0)) +

∫ t

0

fs(ū) ds.

To recover the reparameterized flow, by lemma 3.2 and recalling the notation described by eq. (4), it
suffices to set the mirror map and time varying potential as

∇φ(u) = ln(u), and fs(u) = −2Ls(u).

With the mirror flow tools at hand, a proof sketch of Theorem 3.1 can be given.

3.3 PROOF SKETCH OF THEOREM 3.1

Using the implicitly-biased mirror flow guarantees, one can establish simultaneous control over the
norms of the predictors u(t) as well as their loss Ls(us). Such guarantees are sufficient to guarantee
that the predictor u(t) has positive but potentially small margin. In order to obtain a large margin
guarantee, more fine grained analysis is needed by splitting the proof into two regimes: the early
phase where the norms of the predictors u(t) are small and the asymptotic phase where the norms
of the predictors u(t) are large (i.e. O( ln(tn)

γ )). For the remainder of the section, fix the reference

solution ū as ū := ln(tn)
γ p̄ and denote

G(s) := − 1

n

n∑
i=1

`′(
〈
u(s), zi(s)

〉
),

7
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which will appear in many places in the analysis. An interesting and critical property of the logistic
loss is the self-bounding property G(s) ≤ Ls(u(s)).

Under the theorem constraints on time t and widthm, one can argue that the `1 unit reference solution
p̄ remains a good linear predictor over the feature maps even across time.

inf
s∈[0,t]

min
i∈[n]

〈
p̄, zi(s)

〉
≥ γ

2
. (5)

The proof of the preceding fact is rather technical but at a high level involves arguing that simulta-
neously

∫ t
0
G(s) ds and

∥∥V (t)− V (s)
∥∥ is small. Instantiating Lemma 3.3 for the logistic and our

entropy-based mirror flow by setting

∇φ(u) = ln(u), and fs(u) = −2Ls(u),

and applying the self-bounding property G(s) ≤ Ls(u(s)) results in the following lemma.
Lemma 3.4. Let t be given, and suppose there exists p̄ ≥ 0 and γ > 0 with ‖p̄‖1 = 1 and
infs∈[0,t] mini

〈
p̄, zi(s)

〉
≥ γ. Define ū := ln(tn)

γ p̄, and R := Dφ(ū, u(0))/‖ū‖1. Then

‖u(t)‖1
8

1
[
‖u(t)‖1 ≥ 2‖ū‖1

]
+ 2

∫ t

0

Gs ds ≤ Dφ(ū, u(0)) + 2

∫ t

0

Ls(ū) ds

and moreover ‖u(t)‖1 ≤ ‖u(0)‖ exp
(

2
∫ t

0
Gs ds

)
, and

sup
s≤t
‖u(s)‖1 ≤ (8R+ 2)‖ū‖1 + 32, 2

∫ s

0

Gr dr ≤ 2

∫ s

0

Lr(u(r)) dr ≤ R‖ū‖1 + 2.

The following further guarantees hold under additional assumptions.

1. If t ≥ t1 :=
(

20R
γ

)4

, then

min
i

〈
zi(t), u(t)

〉
‖u(t)‖1

≥ γ

2(1 +R)
.

2. If t ≥ t1 and ‖ut‖1 ≤ C‖ū‖1 with C ≤ 4 +R, then

min
i

〈
zi(t), u(t)

〉
‖u(t)‖1

≥ γ

2C
.

To establish the first margin guarantee in theorem 3.1, by eq. (5), part a of lemma 3.4 can be applied
to get the desired margin bound. Now for the large margin guarantee, as mentioned in the opening,
consider the following two cases.

1. Early Phase. Suppose
∥∥u(t)

∥∥ ≤ 8‖ū‖. By case assumption, part b of Lemma 3.4 can be
applied with C = 8; hence, MF guarantees tailored to logistic loss and entropy-based mirror
flow immediately gives the desired hard margin result in the early phase,

min
i

〈
zi(t), u(t)

〉
‖u(t)‖1

= 2 min
i

yih(xi;w)

‖a(t)‖2 + ‖b(t)‖2
≥ γ

16
.

The factor 2 stems from the fact 2‖u(t)‖1 = ‖a(t)‖2 + ‖b(t)‖2.
2. Asymptotic Phase. On the other hand, suppose ‖u(t)‖ > 8‖ū‖. To tackle this case, the

following lemma is needed.
Lemma 3.5. Suppose t ≥ t1 as defined in Lemma 3.4. assume ‖u(0)‖1 = 1 and let p̄ be given
as before.

ψt(ut)

‖ut‖1
≥ γ − 1 + 2 ln(n)

‖ut‖1
− KL(p̄, u(0))

ξt
, (6)

where

ξt =

∫ t

0

`′(ψs(us)) ds ≥ 1

n

∫ t

0

G(s) ds ≥ 1

n
ln ‖ut‖1.

8
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By case assumption, ‖u(t)‖ > 8‖ū‖ = 8 ln(tn)
γ . By hypothesis, t ≥ e + exp(exp(4nR/γ)).

Applying the lower bound for t and the lower bound ξt ≥ 1
n ln ‖ut‖1 to eq. (18) grants the

desired margin guarantee. The lower bound ξt ≥ 1
n ln ‖ut‖1 indicates the dominant term in

the margin maximization rate is KL(p̄,u(0))
ξt

. Indeed, it is this term that forces time t to be
doubly exponential. The proof of Lemma A.3 involves expanding the standard mirror flow
potential function Dφ(ū, u(t)) − Dφ(ū, u(0)), substituting the gradient of the loss with the
scaled gradient of the smoothed margin, applying convexity, and some algebra. The proof
additionally makes use of nondecreasing margin theorem theorem 3.6 which shall described in
detail in the following section.

3.4 NONDECREASING MARGINS FOR PARTIALLY-HOMOGENEOUS MODELS

This section provides a rigorous restatement of the second part of Theorem 1.1 and provides proof
sketches. Before doing so, formally define smooth margin as

ψ(w) := `−1(nL(w)), ψs(u) := `−1(nLs(u)).

This quantity indeed appears quite daunting and technical to start, so consider the simplifying case of
`(r) = exp(−r), the exponential loss. In this case, ψs(u) = − ln

∑
i exp(−

〈
u, zi(s)

〉
), and thus by

usual properties of ln
∑

exp it is related to the hard margin mini
〈
u, zi(s)

〉
.

To restate the second part of Theorem 1.1, all that remains is homogeneity. A function is L-
homogeneous if f(cx) = cLf(x) for any c ≥ 0; thus our original parameterization is clearly
2-homogenous over (a, b), a single ReLU is 1-homogeneous, and an L-layer ReLU network is
L-homogenous over the full set of parameters. In this work, if some coordinate-wise subset of
the parameters ŵ ⊆ w induces homogeneity, meaning f(cŵ;w \ ŵ) = cLf(ŵ;w \ ŵ) for c ≥ 0,
then simply say f is L-homogeneous with respect to parameters ŵ. Of course, gradient flow is still
performed over all variables, even though the homogeneity definition ignores w \ ŵ. Even so, the
seminal claim of nondecreasing margins from (Lyu & Li, 2019) goes through despite the potentially
severe inhomogeneity of w \ ŵ.
Theorem 3.6 (Restatement of part 2 of Theorem 1.1). Suppose h is L-homogeneous with respect to
parameters ŵ ⊆ w, and that there exists a time τ with L(w(τ)) < `(0)/n. Then, for all t ≥ τ ,

d

dt

ψ(w(t))

‖ŵ(t)‖L
≥ 0,

d

dt
‖ŵ(t)‖ > 0.

Abbreviate the potentially inhomogenous parameters as θ := w \ ŵ. Additionally, if
supθ sup‖ŵ‖≤1

∥∥∇ŵh(x; (ŵ, θ))
∥∥ <∞, then

L(w(t))→ 0, ‖ŵ(t)‖ → ∞.

In particular, if h(x;w) :=
〈
a� b, F (x;V )

〉
where F is a bounded function, and also letting (u, V )

denote the corresponding reparameterized mirror flow, then similarly L → 0 and
d

dt

ψ(w(t))

‖a(t)‖2 + ‖b(t)‖2
=

d

dt

ψ(w(t))

2‖u(t)‖1
≥ 0,

d

dt
‖a(t)‖ =

d

dt
‖b(t)‖ > 0,

d

dt
‖us‖1 > 0.

Several remarks are in order. Firstly, the theorem holds for any model h that has a subset of
homogeneous parameters and not just models of the form h(x;w = (a, b, V )) =

〈
a� b, F (x;V )

〉
.

Additionally, the nondecreasing normalized margin and norm guarantees do not require boundedness
of partial derivatives with respect to the homogeneous parameter ŵ. Of course, the notion of margin
only makes sense when |h| does not grow arbitarily large as the norm of the potential inhomogeneous
parameters go to infinity. Compared to Lyu et al. (2021, lemma 5.2), theorem 3.6 applies to various
classes of inhomogeneous functions including ResNet and transformer models.

Comparing proof techniques, Lyu et al. (2021) analyzes the logarithm of the smoothed margin by
decomposing into its radial and tangential components. It is not clear how to use the radial and
tangential decomposition argument when there exists inhomogeneous parameters. To avoid using
this decomposition, the proof of theorem 3.6 deals directly with the smoothed margin. In detail, the
proof starts by brute-force expanding d

ds
ψ(w(s))
‖ŵ(s)‖L . Various terms arise of the form〈

∇ψ(w(s)), ẇ(s)
〉

=
∥∥∇ψ(w(s))

∥∥ ·∥∥ẇ(s)
∥∥ ≥∥∥∇ŵψ(w(s))

∥∥ ·∥∥∥ ˙̂w(s)
∥∥∥ ,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

where the equality followed from colinearity of ∇ψ(w(s)) and ∇L(w(s)) and ẇ(s) and the lower
bound followed simply by dropping coordinates which necessarily shrinks the norm; applying this in
a few places converts w to ŵ and allows the application of homogeneity. Miraculously, homogeneity
with respect to the entire w is never needed. Details are in the appendices.

4 SHALLOW RELU NETWORKS

This section will provide sufficient detail to complete the setting of Theorem 1.2, sketch its proof, and
provide additional context. As mentioned, this section will feature a distributional margin assumption.
Namely, let D denote a distribution over (x, y) pairs and supp(D) its support. Let Pd denote the set
of signed measures on {v ∈ Rd : ‖v‖ = 1} with unit mass (for details on this standard setup, see
(Bach, 2017; Chizat & Bach, 2020)); this setup can be taken as an infinite-dimensional abstraction of
`1 bounded outer weight vectors. Define the appropriate distributional F1 margin (matching (Chizat
& Bach, 2020)) as

γD := sup
µ∈Pd

inf
(x,y)∈supp(D)

y

∫
σ(vTx) dµ(v).

which implies
∫
σ(vTx) dµ(v) ≥ γ̄D/2 for D-almost-every (x, y).

In order to apply the tools of Theorem 3.1 in the present finite-width setting of eq. (1), this definition
must be subsampled to produce a good candidate p̄ at initialization. In particular, let weights be
initially distributed with aj , bj ∼ Unif(±1/

√
m), and vj uniform on the surface of the sphere (this

is a mean-field initialization as it gives u(0) = (1/m, . . . , 1/m)). The details of this sampling are
standard, and can be found in the appendices. All that remains is to check the various constants in
Theorem 3.1; by calculus, C1 ≤ 1 and C2 = 0. Thus, with the candidate p̄ and constants C1, C2 in
hand, the following theorem can be established.
Theorem 4.1. Let h correspond to the shallow normalized architecture in eq. (1). Suppose data
((xi, yi))

n
i=1 is drawn from a given distribution D and the F1 margin of shallow networks on D

is γ > 0. If t ≥
(

20R
γ

)
and width m ≥ max

{
210 ln2(tn)d2

γ8 , 210 ln(2n/(δγ))2
(

8
γ

)2d−2
}

with

probability at least 1− δ over the draw of the random initial parameters w(0) := (a(0), b(0), V (0))
and data ((xi, yi))

n
i=1, the empirical margin and test error satisfy,

min
i

yih(xi;wt)∥∥(a(t), b(t))
∥∥2 ≥

γ

32d ln( 1
γ )
, Pr

[
yh(x;w(t))

]
≤ Õ(

d2

nγ2
).

Additionally, there exists a time t0 > 0 and width m0 > 0 such that for all t ≥ t0 and m ≥ m0, with
probability at least 1− δ over the draw of the random initial parameters w(0) := (a(0), b(0), V (0))
and data ((xi, yi))

n
i=1, the empirical margin and test error satisfy,

min
i

yih(xi;wt)∥∥(a(t), b(t))
∥∥2 ≥

γ

32
, Pr

[
yh(x;w(t))

]
≤ Õ(

1

nγ2
).

To make the theorem results more concrete consider the support-only k-parity problem is as follows.
Example 4.1 (Support-only k-parity problem). Consider any distribution whose input margin is
supported on the corners of the normalized hypercube, meaning x ∈ {−1/

√
d,+1/

√
d}d, and the

label y is given by the product of someone unknown set S of k = |S| bits: y = dk/2
∏
j∈S xj . This

is a classical problem in machine learning theory which has re-awoken to study feature learning in
deep networks (Wei et al., 2018; Barak et al., 2022; Glasgow, 2023). The F1 margin of this problem
is known to be at least 1

k
√
d

(Telgarsky, 2022), whereas the F2 margin is 1
dk/2 , with corresponding

sample complexity lower bounds (Barak et al., 2022); plugging these claims into the general setup of
Theorem 1.2 gives the stated sample complexities. While it is true that some works manage a much
stronger result than the one here, for instance Glasgow (2023) is able to show that with width and
time just poly-logarithmic in d, gradient descent can learn the 2-bit parity problem, all mentioned
prior works require the margin distribution on the corners of the normalized hypercube to be uniform
(Wei et al., 2018; Barak et al., 2022; Glasgow, 2023), hence motivating the “support-only” name
here. On the one hand, it makes the results here more general, but on the other, this potentially leads
to the blow-up in width and time; indeed, it is an interesting question if it is possible to do better
without restricting the marginal distribution.
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A DEFERRED PROOFS FROM SECTION 3

First comes an extremely technical lemma establishing basic properties of the losses; the final
property is partly to blame for the explosively high bound on t. Let `log(z) := ln(1 + exp(−z)) and
`exp = exp(−z) denote logistic and exponential loss respectively.

Lemma A.1. Let (zi)
n
i=1 with zi ∈ Rd be given, and define Z ∈ Rn×d with ith row zT

i . Denote
Lexp(u) := 1

n

∑n
i=1 `exp(〈u, zi〉) and L`log(u) := 1

n

∑n
i=1 `log(〈u, zi〉).

1. If loss ` is nonincreasing and nonnegative, then

min
i
〈ū, zi〉 ≥ ψ(Zū).

2. For ` ∈ {`log, `exp}, if mini 〈ū, zi〉 ≥ 0, then

min
i
〈ū, zi〉 ≤ ψ(Zū) + c1 lnn+ c2,

where (c1, c2) = (2, 1) for `log and (c1, c2) = (1, 0) for `exp.

3. For ` ∈ {`log, `exp}, defining γ := mini
〈ū,zi〉
‖ū‖1 , then

L(ū) ≤ exp(−γ‖ū‖1).

4. Fix u ∈ Rm. Suppose there exists constants C2, C3, C5 > 0 such that ‖u‖1 ≤ C2‖ū‖1, and
Lexp(u) ≤ C5 exp(−γC2‖ū‖1/C3) and ‖ū‖1 ≥ 2C3

γC2
ln(2nC5). Then

min
i

〈u, zi〉
‖u‖1

≥ γ

2C3
.

5. For any v ∈ Rn, defining G(v) := 1
n

∑
i |`′(〈v, zi〉)|,

G(v) ≤ −`′(ψ(v)) ≤ min
{

1, en2G(v)
}
.

Proof. 1. Since ` is nonincreasing, so is `−1, and by nonnegativity of `,

min
i
〈ū, zi〉 = min

i
`−1

[
`(〈ū, zi〉)

]
= `−1

[
max
i
`(〈ū, zi〉)

]
≥ `−1

∑
i

`(〈ū, zi〉)

 = ψ(Zū).

2. Starting from the same inequalities as before, but using the nonincreasing property in the other
direction,

min
i
〈ū, zi〉 = `−1

[
max
i
`(〈ū, zi〉)

]
≤ `−1

 1

n

∑
i

`(〈ū, zi〉)

 .
To proceed further, for the exponential loss, `−1(z) = − ln(z), so

`−1

 1

n

∑
i

`(〈ū, zi〉)

 = − ln
1

n

∑
i

`(〈ū, zi〉) = ψ(Zū) + lnn.

On the other hand, for the logistic loss, combining (Ji & Telgarsky, 2019, Lemma 5.4) and (Ji &
Telgarsky, 2020a, Lemma C.5), letting qi denote the dual variables, since mini 〈zi, ū〉 ≥ 0,

min
i
〈ū, zi〉 ≤

1

‖q‖1

∑
j

qj min
i
〈ū, zi〉 ≤

1

‖q‖1

∑
i

qi 〈ū, zi〉 ≤
ψ(Zū) + 2 lnn+ 1

‖q‖1

≤ ψ(Zū) + 2 lnn+ 1.
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3. The two cases can be proved simultaneously, noting

Llog(ū) =
1

n

∑
i

ln(1 + exp(−〈ū, zi〉))

≤ 1

n

∑
i

exp(−〈ū, zi〉)

= Lexp(ū)

≤ 1

n

∑
i

exp(−min
j

〈
ū, zj

〉
)

≤ exp(−γ‖ū‖1).

4. Abbreviate Xi := 〈u, zi〉 and let X be the random variable drawn uniformly over values
{Xi}ni=1. By Markov’s inequality, and since norm ‖u‖1 ≤ C2‖ū‖1 and also that `exp is
nonincreasing,∑

i

1

[
〈u, zi〉
‖u‖1

≤ γ

2C3

]
=
∑
i

1

[
〈u, zi〉 ≤

γ‖ū‖1
2C3

]
≤
∑
i

1

[
〈u, zi〉 ≤

γC2‖ū‖1
2C3

]

=
∑
i

1

[
exp(−〈u, zi〉) ≥ exp

(
−γC2‖ū‖1

2C3

)]

= nPr

(
exp(−X) ≥ exp

(
−γC2‖ū‖1

2C3

))

≤ n
E
[
exp(−X)

]
exp

(
−γC2‖ū‖1

2C3

)
= n

Lexp(u)

exp
(
−γC2‖ū‖1

2C3

) . (7)

By hypothesis, Lexp(u) ≤ C5 exp(−γC2‖ū‖1/C3) and ‖ū‖1 ≥ 2C3

γC2
ln(2nC5). Applying the

preceding inequalities to eq. (7),∑
i

1

[
〈u, zi〉
‖u‖1

≤ γ

2C3

]
≤ nLexp(ū)

exp(−γC2‖ū‖1/(2C3))

= nLexp(ū) exp
(
γC2‖ū‖1/C3 − γC2‖ū‖1/(2C3)

)
≤ 1

2C5
Lexp(ū) exp

(
−γC2‖ū‖1/(2C3)

)
< 1,

which implies
∑
i 1
[
〈u,zi〉
‖u‖1 ≤

γ
2C2

]
= 0.

5. Furthermore, since `(r) = ln(1 + exp(−r)), then `−1(s) = − ln(exp(s) − 1), and `′(r) =
−(1 + exp(r))−1, abbreviating pi := 〈v, xi〉,

`−1
(∑

i

`i(pi)
)

= − ln

(
exp

[∑
i

ln(1 + exp(−pi))
]
− 1

)
= − ln

(∏
i

(1 + exp(−pi))− 1

)
= − ln

( ∑
S⊆[n]
|S|≥1

∏
i∈S

exp(−pi)
)
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=: − lnM,

`′(ψ(v)) =
−1

1 + exp(− ln(M))

=
−M

1 +M

∈ (−1, 0).

Take index j ∈ arg mini∈[n] pi. Then

−`′(ψ(v)) =
1

1 + 1
M

≥ 1

1 + 1
exp(−pj)

= −`′(pj)

≥ − 1

n

∑
i

`′(pi).

For the upper bound, consider two cases. If pj ≥ ln(n), then

−`′(ψ(v)) =
∑
i

exp(−pi)
∑
S⊆[n]\{i}
|S|≥0

∏
j∈S exp(−pj)

1 +M

≤
∑
i

exp(−pi)
∑
S⊆[n]\{i}
|S|≥0

n−|S|

1 +M

≤
∑
i

exp(−pi)
∑
j≥0

(
n
j

)
n−j

1 +M

≤
∑
i

exp(−pi)
∑
j≥0

1
j!

1 + exp(−pi)

= e
∑
i

−`′(pi).

On the other hand, if there exists pj < ln(n), then

−`′(ψ(v)) ≤ 1

≤ 2n

1 + exp(ln(n))

≤ 2n

1 + exp(pj)

≤ −2n
∑
i

`′(pi).

Next, some bounds on the unbounded Kullback-Leibler divergence KL used throughout; recall the
definition

KL(p, q) :=

〈
p, ln

p

q

〉
+ 〈1, q − p〉 ,

which agrees with the standard KL over the simplex, but handles the entire orthant.

Lemma A.2. Fix Legendre potential φ(p) :=
〈
p, ln(p)− 1

〉
.
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1. Note ∇φ(v) = ln(v), and Dφ(a, b) = KL(a, b) =
〈
a, ln(a/b)

〉
− 〈1, a− b〉, and

minv∈∆m D(v, b) = − ln ‖b‖1, which is attained uniquely by the choice b/‖b‖1 (whereby
in the notation of the two-stage mirror descent, wi+1 = vi+1/‖vi+1‖1).

2. Given any r and q,

KL(r, q) ≥ ‖r‖1
2

KL(r̃, q̃) + 1
[
‖q‖1 ≥ ‖r‖1

] ‖r‖1
2

√‖r‖1
‖q‖1

−

√
‖q‖1
‖r‖1

2

.

≥ ‖r‖1
2

KL(r̃, q̃) + 1
[
‖q‖1 ≥ 2‖r‖1

] ‖q‖1
8

,

where KL(r̃, q̃) ≥ 1
2‖r̃ − q̃‖

2
1.

Proof. 1. With φ(v) :=
∑
s (vs ln vs − vs) =

〈
v, ln(v)− 1

〉
, have

∇φ(v) = ln(v), (∇φ)−1(r) = exp(r) = ∇φ∗(r),

and thus

Dφ(a, b) =
〈
a, ln(a)− 1

〉
−
〈
b, ln(b)− 1

〉
−
〈
ln(b), a− b

〉
=

〈
a, ln

(
a

b

)〉
− 〈1, a− b〉 .

By the equality case of Fenchel-Young inequality,

φ∗(r) =
〈
r,∇φ∗(r)

〉
− φ(∇φ∗(r))

=
〈
r, exp(r)

〉
−
〈
exp(r), ln(exp(r))− 1

〉
=
〈
1, exp(r)

〉
=
∑
s

exp(rs).

Lastly, for any v ≥ 0, by Jensen’s inequality,

min
p∈∆m

D(p, v) = min
p∈∆m

∑
s

(
ps ln(ps/vs)− ps + vs

)
= ‖v‖1 + ‖v‖1 min

p∈∆m

∑
s

vs
‖v‖1

φ

(
ps
vs

)

≥ ‖v‖1 + ‖v‖1 min
p∈∆m

φ

(∑
s

ps
‖v‖1

)
= ln

1

‖v‖1
,

which is attained uniquely with the choice p = v/‖v‖1.

2. Define the scalar function Q over R>0 as

Q(x) := ln(x) +
1

x
− 1,

and rewrite KL with Q as

KL(r, q) =

〈
r, ln

r

q

〉
+ 〈1, q − r〉

= ‖r‖1
〈
r̃, ln

r̃

q̃

〉
+ ‖r‖1 ln

‖r‖1
‖q‖1

+ 〈1, q − r〉

= ‖r‖1KL(r̃, q̃) + ‖r‖1Q(
‖r‖1
‖q‖1

).

The first term is in the desired form, thus the remainder of the proof controls Q.

To start, here are some basic properties of Q. Since

Q′(x) =
1

x
− 1

x2
=

1

x

(
1− 1

x

)
,
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then Q is decreasing along (0, 1), attains a global minimum at 1, and increasing along (1,∞),
specifically Q(1) = 0, meaning Q ≥ 0 everywhere. Next,

Q′′(x) = − 1

x2
+

2

x3
=

1

x2

(
2

x
− 1

)
,

whereby Q is convex over (0, 2) and concave over [2,∞); consequently, the remainder of the
proof focuses on lower bounded Q along (0, 1], where it is convex, decreasing, and attains its
global minimum at the right endpoint. To this end, for any x ∈ (0, 1], note that

Q′(x) = −
∫ 1

x

Q′′(r) dr ≤ −
∫ 1

x

1

r3
dr =

1

2r2

∣∣∣∣1
x

=
1

2x2
− 1

2
,

Q(x) = −
∫ 1

x

Q′(r) dr ≥ −1

2

∫ 1

x

(
1

r2
− 1

)
dr =

1

2

(
1

r
+ r

)∣∣∣∣∣
1

x

=
1

2

(
x+

1

x
− 2

)
=

1

2

(√
x− 1√

x

)2

,

which by plugging in x = ‖r‖1/‖q‖1 gives

Q

(
‖r‖1
‖q‖1

)
≥ 1

2
1
[
‖q‖1 ≥ ‖r‖1

]√‖r‖1
‖q‖1

−

√
‖q‖1
‖r‖1

2

=
‖q‖1
2‖r‖1

1
[
‖q‖1 ≥ ‖r‖1

](‖r‖1
‖q‖1

− 1

)2

≥ ‖q‖1
8‖r‖1

1
[
‖q‖1 ≥ 2‖r‖1

]
.

Next, the reparameterization proof.

Proof of Lemma 3.2. First note that |aj(s)| = |bj(s)| and sgn(aj(s)bj(s)) = sgn(aj(0)bj(0)) = βj
for all s. Intuitively this follows from symmetry, but in detail, let t > 0 denote the earliest time when
this claim fails, and notice

aj(t)− aj(0) =

∫ t

0

1

n

∑
i

`′(
〈
a(s)� b(s), Fi(s)

〉
)bj(s)Fi(s)j ds

= βj

∫ t

0

1

n

∑
i

`′(
〈
a(s)� b(s), Fi(s)

〉
)aj(s)Fi(s)j ds

= βj(bj(t)− bj(0)),

which means
aj(t)− βjbj(t) = aj(0)− βjbj(0) = 0

as desired; since t was the assumed earliest violation, there is no violation and this equality holds for
all t. These calculations also imply aj(t)2 = bj(t)

2 = βjaj(t)bj(t) for all t.

For the second claim, again let t denote the earliest violation, and it suffices to note that

d

ds
ln
(
βjaj(s)bj(s)

)
=
βj

[
aj(s)ḃj(s) + ȧj(s)bj(s)

]
βjaj(s)bj(s)

= −
βj

1
n

∑
i `
′(〈a� b, Fi〉)

[
a2
j + b2j

]
βjaj(s)bj(s)

= −2∇uL(〈u� β, zi〉) =
d

ds
lnu,

and the proof completes by following the same steps as before, via the fundamental theorem of
calculus.
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Next, the basic implicitly-biased mirror flow guarantee.

Proof of Lemma 3.3. 1. Note

d

ds
Dφ(ū, u(s)) =

d

ds

[
φ(ū)− φ(u(s))−

〈
∇φ(u(s)), ū− u(s)

〉]
= −

〈
∇φ(u(s)),

d

ds
u(s)

〉
−
〈

d

ds
∇φ(u(s)), ū− u(s)

〉
+

〈
∇φ(u(s)),

d

ds
u(s)

〉
=
〈
∇fs(u(s)), ū− u(s)

〉
≤ fs(ū)− fs(u(s)).

By the fundamental theorem of calculus,

Dφ(ū, u(t))−Dφ(ū, u(0)) =

∫ t

0

d

ds
Dφ(ū, u(s)) ds ≤

∫ t

0

(
fs(ū)− fs(u(s))

)
ds. (8)

2. By eq. (8) and rearranging terms ,∫ t

0

fs(u(s)) ds ≤ Dφ(ū, u(0))−Dφ(ū, u(t)) +

∫ t

0

fs(ū) ds. (9)

In addition, by part 2 of Lemma A.2 with q = ut and r = ū,

1
[
‖ut‖1 ≥ 2‖ū‖1

] ‖ut‖1
8
≤ DKL(ū, ut)−

‖ū‖1
2

KL

(
ū

‖ū‖1
,
ut
‖ut‖1

)
≤ DKL(ū, ut).

Adding the preceding inequality to the eq. (9) and using the identity Dφ(u, v) = KL(u, v) and
nonnegativity of Dφ,

1
[
‖ut‖1 ≥ 2‖ū‖1

] ‖ut‖1
8

+

∫ t

0

fs(u(s)) ds ≤ Dφ(ū, u(0))−Dφ(ū, u(t)) +

∫ t

0

fs(ū) ds

≤ Dφ(ū, u(0)) +

∫ t

0

fs(ū) ds

= KL(ū, u(0)) +

∫ t

0

fs(ū) ds. (10)

Next comes the proof of the specialization to the logistic loss.

Proof of Lemma 3.4. Most of the bound is from the eq. (10); all that remains is the appearance of G
in the left hand side, and the appearance of 2 in the right hand side.

For the left hand side, note since ` ≥ −`′ ≥ 0 that

Ls(u) =
1

n

∑
i

`(
〈
u, zi(s)

〉
) ≥ − 1

n

∑
i

`′(
〈
u, zi(s)

〉
) = G(s)

For the right hand side,

Ls(ū) =
1

n

∑
i

ln(1 + exp(−
〈
ū, zi(s)

〉
))

≤ 1

n

∑
i

exp(−
〈
ū, zi(s)

〉
)

≤ 1

n

∑
i

exp(− ln(tn))
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≤ 1

tn

and the bound follows by applying the preceding two inequalities on the left hand side and right hand
side of eq. (10) respectively.

Instantiating the bound for every s ≤ t and using

1
[
‖ut‖1 ≥ 2‖ū‖1

] ‖ut‖1
8
≥ ‖ut‖1 − 2‖ū‖1

8

gives

sup
s≤t

[
‖ut‖1 − 2‖ū‖1

8
+ 2

∫ t

0

Gs ds

]
≤ R‖ū‖1 +

2

n
.

In other words

sup
s≤t
‖us‖1 ≤ (8R+ 2)‖ū‖1 +

16

n
, 2

∫ s

0

Gr dr ≤ 2

∫ s

0

Lr(ur) dr ≤ R‖ū‖1 +
2

n
.

Additionally, since exp(−γ‖ū‖1) = 1
tn and Ls(ut) = infs≤t Ls(us) as loss is monotonically

decreasing, then

L(ut) ≤
1

t

∫ t

0

Ls(us) ds ≤ R‖ū‖1
2t

+ exp(−γ‖ū‖1) = exp(−γ‖ū‖1)

[
nR‖ū‖1

2
+ 1

]
.

Since

The remaining items of the statement are established as follows.

1. If t ≥ t1 :=
(

20R
γ

)4

, then

R‖ū‖1 + 2 =
(
R ln(tn)

)
γ + 2 ≤ 10R(tn)1/4

γ
+ 2 ≤ 20R(tn)1/4

γ
≤
√
tn,

and therefore, defining C5 := R‖ū‖1
4 + 1, then ‖ū‖1 ≥ 2

γ ln 4
nC5, and thus, by Lemma A.1,

min
i

〈
zi(t), u(t)

〉
‖u‖1

≥ γ

2(1 +R)
.

2. Since t ≥ t1 and ‖ut‖1 ≤ C‖ū‖1 with C ≤ 4 + R, and by Lemma A.1 and using similar
reasoning to the preceding,

min
i

〈
zi(t), u(t)

〉
‖u‖1

≥ γ

2C
.

Lastly, since u(s) > 0 for all s and j, assuming ‖zi(s)‖2 ≤ 1,

lnu(t)j − lnu(0)j =

∫ t

0

d

ds
lnu(s)j ds =

∫ t

0

1

n

∑
i

`′(
〈
u(s), zi(s)

〉
)zi(s)j ≤

∫ t

0

G(s) ds,

and thus

‖u(t)‖1 =
∑
j

u(t)j ≤
∑
j

u(0)j exp

(∫ t

0

G(s) ds

)
= ‖u(0)‖1 exp

(∫ t

0

G(s) ds

)
.

To achieve only a constant-factor degradation in the margin requires a lot more chicanery, unfortu-
nately. Firstly, these steps will in fact need the non-decreasing margin property, so it is a good time to
prove it.
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Proof of Theorem 3.6. It suffices to consider general h as the special case of h = 〈a� b, F 〉 follows
since it is 2-homogeneous in (a, b) ⊆ ws and ∇(a,b)h = F is bounded, which in turn implies the
bounds with us via the reparameterization in Lemma 3.3.

For the general h, let θs := ws \ ŵs denote the denote potentially inhomogeneous parameters and
define

Ls(ŵ) :=
1

n

∑
i

`(yihi(xi; ŵ, θs)),

ψs(ŵ) := `−1
(
nLs(ŵ)

)
.

To see that ψs(ŵs)/‖ŵs‖L is nondecreasing, note ẇs = −∇Ls and ∇ψs are colinear. Further, ψ
satisfies a homogeneity-like property even for the logistic loss:

〈
∂ŵψs(ŵs), ŵs

〉
≥ Lψs(ws) (Ji &

Telgarsky, 2020a, Lemma C.5). Abbreviating Ψs := ψs(ŵs),

Ψ̇s :=
〈
∂wψs(ŵs), ẇs

〉
= ‖ẇs‖‖∂wψs(ŵs)‖
≥ ‖ ˙̂ws‖‖∂ŵψs(ŵs)‖

≥ ‖ ˙̂ws‖
〈
∂ŵψs(ŵs),

ŵs
‖ŵs‖

〉
≥ ‖

˙̂ws‖
‖ŵs‖

LΨs. (11)

Denoting rs :=‖ŵs‖L,

ṙs =
L

2
〈ŵs, ŵs〉L/2−1

2
〈
ws, ˙̂ws

〉
(12)

= L
‖ŵs‖L

‖ŵs‖

〈
ŵs
‖ŵs‖

, ˙̂ws

〉
≤ Lrs

‖ ˙̂ws‖
‖ŵs‖

. (13)

The second equality in eq. (11) implies Ψ̇s ≥ 0 and hence the unnormalized smoothed margins are
nondecreasing. In particular, Ψs ≥ Ψ0 > 0. Therefore, by quotient rule and eqs. (11) and (12),

d

dt

Ψs

‖ŵs‖L
=

d

ds

Ψs

rs
=

Ψ̇srs −Ψsṙs
r2
s

≥ 0.

To see that norms are increasing, first recall from above Ψs > 0. Since −`′ ∈ (0, 1),

d

ds
ln ‖ŵs‖22 =

2

‖ŵs‖2
〈
ŵs, ˙̂ws

〉
(14)

=
2

‖ŵs‖2
〈
ŵs, ∂ŵψs(ŵs)

〉
·
(
−`′(Ψs)

)
(15)

≥ 2L

‖ŵs‖2
Ψs ·

(
−`′(Ψs)

)
(16)

> 0. (17)

This is sufficient to show that‖ŵs‖ → ∞. Suppose otherwise. It suffices to show that d
ds ln ‖ŵs‖22

is bounded below by a positive constant since that implies ‖ŵs‖ → ∞ which is a contradiction.
First note that loss Ls(ŵs) can be bounded from below by positive constant. To see this, since
‖ŵs‖ 9 ∞ but d

ds ln ‖ŵs‖22 > 0 by eq. (14), it follows that B := sups‖ŵs‖ < ∞. Recall
C := supθ sup‖ŵ‖≤1 ‖∂ŵh(xi; ŵ, θ)‖ < ∞ by hypothesis. Hence, by homogeneity of h and ∂ŵh,
and since ` is nonincreasing,

nLs(ŵs) =
∑
i

`(yih(xi; ŵs, θs))

=
∑
i

`(
yi
L

〈
∂ŵh(xi; ŵs, θs), ŵs

〉
)
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≥
∑
i

`(
yi
L

∥∥∂ŵh(xi; ŵs, θs)
∥∥‖ŵs‖)

=
∑
i

`(
1

L

∥∥∥∥∂ŵh(xi;
ŵs
‖ŵs‖

, θs)

∥∥∥∥‖ŵs‖L)

≥
∑
i

`(
1

L
CBL)

= n`(
CBL

L
)

This in turn implies Ψs := `−1(nLs(ŵs)) and −`′(Ψs) are bounded below by positive constants.
Hence, eq. (14) implies d

ds ln ‖ŵs‖22 is bounded below by a positive constant.

With that out of the way, now comes a messier lemma: consider the time-rescaled flow on the smooth
margin directly. Controlling for the time-rescaling leads to the doubly-exponential sufficient condition
on t. This proof invokes Theorem 3.6.

Lemma A.3. Suppose t ≥ t1 as defined in Lemma 3.4 and there exists p̄ ≥ 0 and γ > 0 with
‖p̄‖1 = 1 and infs∈[0,t] mini

〈
p̄, zi(s)

〉
≥ γ. Then the smoothed margin satisfies,

ψt(u(t))

‖u(t)‖1
≥ γ − 1 + 2 lnn

‖ut‖1
− Dφ(ū, u(0))

‖ut‖1ξt
.

Proof. By the second equality in eq. (11), it follows that the unnormalized smoothed margin ψs(u(s))
is nondecreasing. Hence, ψ(u(t)) = sups∈[0,t] ψ(u(s)). By the equality case of the MF bound in
Lemma 3.3 applied to Ls and defining ū = ‖ut‖1p̄,

Dφ(ū, u(t))−Dφ(ū, u(0)) =

∫ t

0

〈
∇fs(u(s)), ū− u(s)

〉
ds

= 2

∫ t

0

〈
∇Ls(u(s)), ū− u(s)

〉
ds

= 2

∫ t

0

〈
−∇ψs(u(s)), ū− u(s)

〉(−`′(ψs(us))
n

)
ds

≤ 2

∫ t

0

[
−ψs(ū) + ψs(us)

](−`′(ψs(us))
n

)
ds

≤ 2
[
ψt(u(t))− γ‖ū‖1 + 2 lnn+ 1

] ∫ t

0

−`′(ψs(us))
n

ds.

Defining ξt := − 1
n

∫ t
t1
`′(ψs(us)) ds and dividing both sides by 2‖ut‖1ξt, rearranging terms, and

recalling that Dφ ≥ 0,

ψt(ut)

‖ut‖1
≥ γ − 1 + 2 lnn

‖ut‖1
+
Dφ(ū, u(t))−Dφ(ū, u(0))

‖ut‖1ξt

≥ γ − 1 + 2 lnn

‖ut‖1
− Dφ(ū, u(0))

‖ut‖1ξt
. (18)

Combining these pieces leads to the general (slow) margin guarantee.

Lemma A.4. If t ≥ e+ exp(exp(4nK(p̄, u(0)))/γ)) and mins≤t mini p̄
Tzi(s) ≥ γ, then

min
i

〈
u(t), zi(t)

〉
‖u(t)‖1

≥ γ

16
.
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Proof. Define ū := ln(tn)p̄/γ as in Lemma 3.4, and consider two cases.

• If ‖ut‖1 ≤ 8‖ū‖1, then by the second part of Lemma 3.4,

min
i

〈
u(t), zi(t)

〉
‖u(t)‖1

≥ γ

16
.

• Otherwise, ‖ut‖1 > 8‖ū‖1 ≥ 8 ln(tn)/γ, and so by Lemma A.3 and Lemma A.1,

min
i

〈
u(t), zi(t)

〉
‖u(t)‖1

≥ ψt(ut)

‖ut‖1
≥ γ − γ(1 + 2 lnn)

8 ln(tn)

In particular, if t ≥ max{e, exp(exp(4nK(p̄, u(0))/γ))}, then this simplifies to

ψt(ut)

‖ut‖1
≥ γ − γ

4
− γ

4
≥ γ

2
.

Proof of Theorem 3.1. The proof is a combination of the preceding pieces and the following chain
rule calculation. Recalling the definition of C1 and C2 and and making use of the final bounds in the
unconditional part of Lemma 3.4,∣∣∣〈p̄, zi(τ)− zi(0)

〉∣∣∣ ≤∑
j

p̄j

∫ τ

0

∣∣żi,j(s)∣∣ds
=
∑
j

p̄j

∫ τ

0

∣∣∣∇V zi,j(s)V̇ ∣∣∣ds
=
∑
j

p̄j

∫ τ

0

∣∣∣∣∣∣∇V zi,j(s)
∑
r

`′r
∑
k

uk∇V zr,k

∣∣∣∣∣∣ ds
≤
∑
j

p̄j

∫ τ

0

∑
r

|`′r|

ujC1 + C2

∑
k

uk

ds

≤
(
C1‖p̄‖∞ + C2‖p̄‖1

) [∫ τ

0

G(s) ds

](
sup
s≤τ
‖u(s)‖1

)
≤
(
C1‖p̄‖∞ + C2

) [
‖ū‖1(8R+ 2) + 32

]2
.

Then if

‖p̄‖∞ ≤
γ

4C1

[
‖ū‖1(8R+ 2) + 32

]2 , C2 ≤
γ

4
[
‖ū‖1(8R+ 2) + 32

]2 ,
for any s ≤ t, 〈

p̄, zi(s)
〉
≥
〈
p̄, zi(0)

〉
−
∣∣∣〈p̄, zi(s)− zi(0)

〉∣∣∣ ≥ γ

2
.

Thus, applying first part of lemma 3.4 and lemma A.4 gives the desired margin lower bounds.

Proof of Theorem 1.1. It suffices to combine Lemma 3.2 and Theorem 3.1 and Theorem 3.6.

B DEFERRED PROOFS FROM SECTION 4

To start, the sampling guarantee.
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Lemma B.1. Let examples ((xi, yi))
n
i=1 be given, and suppose γD > 0. Let width m be given with

m ≥ m0 := 210 ln(2n/(δγ))2

(
8

γ

)2d−2

,

and let (vj)
m
j=1 be uniformly IID over the surface of the sphere and (βj)

m
j=1 uniformly from {±1}m,

and define zi,j := yiβjσ(vT
jxi). With probability at least 1− δ, there exists a discrete unnormalized

nonnegative measure (uj)
m
j=1 with

min
i
〈u, zi〉 ≥

γ̄

4
,

Dφ

(
u, (1/m, . . . , 1/m)

)
≤ (d− 1) ln

48

γ
,∣∣∣(a2

1, . . . , a
2
m)
∣∣∣
∞
≤ 1√

m
.

Proof. Take any measure µ which achieves margin 3γ̄/4 in the definition of γ̄; the proof first
discretizes this measure, and then produces a final measure which uses random weights on the sphere.

By the Maurey sampling method (Telgarsky, 2024, Lemma 3.2), there exists a discrete unnormalized
measure µ(1) with k atoms there exist ((µ

(1)
j , β

(1)
j , v

(1)
j ))kj=1 with µ(1)

j = 1/
√
k, β(1)

j ∈ {±1}, and

‖v(1)
j ‖2 = 1, and a corresponding z(1)

i,j := yiβ
(1)
j σ(xT

iv
(1)
j ) such that

1

n
max
i

(〈
µ(1), z

(1)
i

〉
− yi

∫
σ(vTxi) dµ(v)

)2

≤ 1

n

∑
i

(〈
µ(1), z

(1)
i

〉
− yi

∫
σ(vTxi) dµ(v)

)2

≤ 1

k
;

in other words, to ensure µ(1) has margin at least γ/2, it suffices to take k = 16n/γ2. The remainder
of the proof adjusts for the fact that (β

(1)
j , v

(1)
j ) are not distributed uniformly.

To finish, produce a final measure (uj)
m
j=1 as follows. For each of the k atoms forming µ(1), sample

m/k pairs (β, v) from the product distribution which is uniform on β ∈ {±1} and has v uniform
on the sphere. By standard results about sampling on the sphere (Ball, 1997, Lemma 2.3), the
probability that a sampled v satisfies ‖v − vj‖ ≤ ε is at least 1

2 (ε/2)d−1, thus the probability of
this event occurring and that the corresponding sign βj matches β(1)

j is at least τ := 1
4 (ε/2)d−1.

By Hoeffding’s inequality, with probability at least 1− δ1, the exact number mτ̂j of sampled pairs
satisfying this condition across all j satisfies

max
j

∣∣mτ̂j −mτ ∣∣ ≤√m ln(2k/δ1)

2k
.

As such, by choosing δ1 = δ/(2k) and the choice m ≥ m0 and ε = γ/4, it follows that the measure
(uj)

m
j=1 obtained by assigning uj = 1/(mτ̂j) to the mτ̂j triples satisfying the corresponding event

above (where v(j) is the weight in µ(1) associated with vj , and letting µ0 denote the uniform measure
(1/m, . . . , 1/m))

max
i

∣∣∣∣〈u, zi〉 − 〈µ(1), z
(1)
i

〉∣∣∣∣ ≤ max
j
‖σ(vT

jx)− σ(vT

(j)x)‖ ≤ max
j
‖vj − v(j)‖ ≤

γ

4
,

max
j

∣∣mτ̂j −mτ ∣∣ ≤√m ln(2k/δ1)

2k
= m

√
ln(2k/δ1)

2mk
≤ mτ

2
,

Dφ(u, µ0) =
∑
j

uj ln
uj

(µ0)j
=
∑
j

mτ̂j
mτ̂j

ln
1/(mτ̂j)

1/m
≤ ln

3

2τ
≤ (d− 1) ln

48

γ
,

‖u‖∞ ≤
3

2mτ
≤ 1√

m
,

since

m ≥
(

2 ln(2k/δ)

τ

)2

≥ 210 ln(2n/(δγ))2

(
8

γ

)2d−2

.
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Proof of Theorem 4.1. The proof follows by combining the preceding sampling guarantee in
Lemma B.1 with Theorem 3.1. Furthermore, the margin guarantees are converted into test er-
ror guarantees via a margin based Rademacher complexity generalization bound. Recall the definition
of C1, C2.

C1 := sup
s<t

sup
i,r,j

∣∣∣〈∇V Fj(xi;V (s)),∇V Fj(xr;V (s))
〉∣∣∣ ,

C2 := sup
s<t

sup
i,r,j 6=k

∣∣∣〈∇V Fj(xi;V (s)),∇V Fk(xr;V (s))
〉∣∣∣ ,

To bound C1 note that for any inputs x, x′ ∈ Rd, index j ∈ [m], and V ∈ Rm×d,∣∣∣〈∇V Fj(x;V ),∇V Fj(x′, V )
〉∣∣∣ =

∣∣∣∣∣
〈
σ′(ṽjx)ejx

ᵀ
(
I − ṽj ṽᵀj

)
, σ′(ṽjx

′)ejx
′ᵀ
(
I − ṽj ṽᵀj

)〉∣∣∣∣∣
≤
∥∥∥∥(I − ṽj ṽᵀj )x∥∥∥∥∥∥∥∥(I − ṽj ṽᵀj )x′∥∥∥∥
≤‖x‖

∥∥x′∥∥
≤ 1.

Hence, C1 ≤ 1. By similar calculations and noting that ej ᵀ ek = 0 for j 6= k implies C2 = 0.

Now by lemma B.1 and theorem 3.1 and above calculations for C1, C2, grants the following margin
bounds.

If t ≥
(

20R
γ

)4

,

min
i

yih(xi;w)

‖a(t)‖2 + ‖b(t)‖2
≥ γ

4(1 +R)
.

If additionally t ≥ e+ exp(exp(4nR/γ)), then

min
i

yih(xi;w)

‖a(t)‖2 + ‖b(t)‖2
≥ γ

32
.

Let us now establish the test error guarantee. Take margin γ The following argument uses the same
proof scheme in Telgarsky (2022, proof of lemma 2.5). Denote the symmetric convex hull of a set S
as

sconv(S) :=

∑
j∈[m]

pjsj : m ≥ 0, p ∈ Rm, ‖p‖1 ≤ 1, sj ∈ S

 .

Now consider the hypothesis class,

F :=

x→ 1

‖u‖1

m∑
j=1

ujβjσ
(〈
vj/‖vj‖, x

〉)
: m ≥ 0u ≥ 0, u ∈ Rm, βj ∈ {±1}, vj ∈ Rd


⊂

x→
m∑
j=1

pjσ
(〈
sj , x

〉)
: m ≥ 0 p ∈ Rm, ‖p‖1 ≤ 1, ‖sj‖ = 1βj ∈ {±1}, vj ∈ Rd


= sconv

({
x→ σ(〈v, x〉)

}
: ‖v‖2 = 1

)
.

By standard Rademacher calculus (Shalev-Shwartz & Ben-David, 2014),

Rad(F) ≤ Rad(sconv
({
x→ σ(〈v, x〉)

}
: ‖v‖2 = 1

)
) ≤ 1√

n
,

and thus, by the margin bound for Rademacher complexity (Srebro et al., 2010, Theorem 5), with
probability at least 1− δ, simultaneously for all γ > 0 and all width m, every w = (a, b, V ) with

min
i∈[n]

yih(xi;w)

‖a‖2 +‖b‖2
≥ γ
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satisfies

Pr
[
yh(x;w) ≤ 0

]
= O

(
ln(n)3

γ2
Rad(F)2 +

ln ln 1
γ + ln 1

δ

n

)
= O

(
ln(n)3

nγ2
+

ln 1
δ

n

)
.

Applying the margin based Rademacher generalization bound for margin obtained for t ≥ t1 and
margin obtained for t ≥ e+ exp(exp(4nR/γ)) gives the corresponding test error bounds.
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