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ABSTRACT

Efficient inference in high-dimensional models is a central challenge in machine
learning. We introduce the Gaussian Ensemble Belief Propagation (GEnBP) al-
gorithm, which combines the strengths of the Ensemble Kalman Filter (EnKF) and
Gaussian Belief Propagation (GaBP) to address this challenge. GEnBP updates en-
sembles of prior samples into posterior samples by passing low-rank local messages
over the edges of a graphical model, enabling efficient handling of high-dimensional
states, parameters, and complex, noisy, black-box generation processes. By utiliz-
ing local message passing within a graphical model structure, GEnBP effectively
manages complex dependency structures and remains computationally efficient
even when the ensemble size is much smaller than the inference dimension–a
::::::::
dimension

:::
—

:
a
:
common scenario in spatiotemporal modeling, image processing,

and physical model inversion. We demonstrate that GEnBP can be applied to
various problem structures, including data assimilation, system identification, and
hierarchical models, and show through experiments that it outperforms existing
:::::
belief

::::::::::
propagation methods in terms of accuracy and computational efficiency.
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(a) GaBP M̂SE=1.93, l̂og p(q|E )=− 228
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(b) GEnBP M̂SE=0.167, l̂og p(q|E )=− 49.6

Figure 1: Prior and posterior samples for latent q in the 1d system identification problem (Section 4.1).
The GEnBP ensemble has size N=64, and N=64 samples are drawn from the GaBP posterior. The
GEnBP prior comprises samples; the GaBP is drawn from a Gaussian density with the same moments.

1 INTRODUCTION

We combine the Ensemble Kalman Filter (EnKF) and Gaussian Belief Propagation (GaBP) to perform
inference in high-dimensional hierarchical systems. While both methods are well-established, their
combination seems novel and empirically outperforms existing approaches in key problems.

The EnKF (Evensen, 2003) is widely used for inference in state-space models. It constructs
a posterior sample of a hidden state from prior samples by moment-matching the
observation-conditional distribution. Although the state update relies on a Gaussian approximation,
EnKF never explicitly evaluates the Gaussian density. This approach works well in high-dimensional

1
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settings, such as climate models (Houtekamer & Zhang, 2016), where computing densities can be
prohibitively expensive. However, the standard EnKF is limited to state filtering and doesn’t extend
to more general inference tasks.

GaBP (Yedidia et al., 2005) is a specific Gaussian message-passing algorithm designed for inference
in graphical models. It performs density-based inference by leveraging a joint density over the
model’s state space. This density is approximated as a product of Gaussian factors, defining a
graphical model (Koller & Friedman, 2009) over the graph G. Sum-product messages passed along
G’s edges help infer target marginals (Pearl, 2008). Message-passing methods shine in various
applications, including Bayesian hierarchical models (Wand, 2017), error-correcting codes (Forney,
2001; Kschischang et al., 2001), and Simultaneous Localization and Mapping (SLAM) tasks (Dellaert
& Kaess, 2017; Ortiz et al., 2021), and

:
.

::::::::
Graphical

:::::::
models

:::::::
possess

:::::::
various

::::::
useful

:::::::::
properties,

:::::
such

:::
as

:::::::::
permitting

:
inference distributed

over many computational nodes Vehtari et al. (2019)
:::::::::::::::::
(Vehtari et al., 2019),

::::::::
domain

:::::::::
adaptation

::::::::::::::::::::::
(Bareinboim & Pearl, 2013)

:
,
::
a
::::::
natural

::::::
means

:::
for

:::::::::
estimating

:::::::::
treatment

::::::
effects

::::::::::::::::
(Pearl et al., 2016)

:
,
::::
and

::::::
online,

:::::::::
streaming

:::::::
updates

::::::::::::::::::::::::::::::::::::::
(Dellaert & Kaess, 2017; Eustice et al., 2006). They perform

exceptionally well with low-dimensional variables but become computationally expensive in high-
dimensional scenarios.

:::
The

::::::
EnKF

::::::::::::::
(Evensen, 2003)

::
is

::::::
widely

:::::
used

:::
for

:::::::::
inference

::
in

::::::::::
state-space

:::::::
models.

:::
It
:::::::::

constructs
:
a
:::::::::

posterior
:::::::

sample
::::

of
::

a
:::::::

hidden
::::::

state
:::::

from
::::::

prior
::::::::

samples
::::

by
::::::::::::::::

moment-matching
::::

the
:::::::::::::::::::
observation-conditional

::::::::::
distribution.

::::::::
Although

:::
the

:::::
state

:::::
update

:::::
relies

:::
on

:
a
::::::::
Gaussian

:::::::::::::
approximation,

:::::
EnKF

:::::
never

:::::::
explicitly

::::::::
evaluates

:::
the

::::::::
Gaussian

::::::
density.

::::
This

::::::::
approach

:::::
works

::::
well

::
in

::::::::::::::
high-dimensional

:::::::
settings,

::::
such

:::
as

:::::::
climate

::::::
models

:::::::::::::::::::::::::
(Houtekamer & Zhang, 2016)

:
,
:::::
where

::::::::::
computing

::::::::
densities

:::
can

::
be

:::::::::::
prohibitively

:::::::::
expensive.

:::::::::
However,

:::
the

::::::::
standard

:::::
EnKF

::
is
:::::::
limited

::
to

::::
state

:::::::
filtering

::::
and

::::::
doesn’t

:::::
extend

:::
to

::::
more

:::::::
general

::::::::
inference

:::::
tasks.

:::
In

::::::
recent

:::::
times,

:::::::
various

:::::::::
techniques

::::
have

::::::::
extended

::::::
EnKF

::
to

:::
the

:::::::::::::::::
system-identification

:::::::
setting,

::::::
where

:::
not

::::
only

:::::
states

::::
but

:::::
latent

:::::::::
parameters

:::
of

::::::::
dynamics

:::
are

:::::
jointly

:::::::
inferred

::::::::::::::::::::::::::::::::::::::::::
(e.g. Fearnhead & Künsch, 2018; Chen et al., 2023)

:
.
::::::
EnKF

::
is

:::::
prized

:::
for

:::
its

::::::
ability

::
to

::::::
handle

::::::::
correlated

::::::
spatial

:::::
fields

:::::::::
efficiently,

:::
as

::::
with

:::::
other

::::::
spatial

::::::::
Gaussian

:::::::::::::
approximations

::::
such

::
as

:::
the

::::::::
Integrated

::::::
Nested

:::::::
Laplace

:::::::::::::::::::::::::::
Approximation(Rue et al., 2009)

:::
and

:::
the

::::::
related

:::::::::
Stochastic

:::::
Partial

:::::::::
Differential

::::::::
Equation

::::::::
approach

::::::::::::::::::
(Lindgren et al., 2011)

:
.
::::::
Unlike

:::::
those

::::::::
methods,

:
it
::::
can

:::::
handle

::::::
exploit

::::::
existing

::::::::::
simulators

::
to

:::::::
encode

::::::::
complex

:::::::
physical

:::::::::
dynamics,

::::
and

:::::
does

::::
not

::::::
require

::::
the

:::::::
jacobian

::
of

:::
the

:::::::::
simulator.

:::::
Thus

::::
far,

:::::
there

:::
are

::::
few

:::::::
methods

::::::
which

::::::
extend

:::
the

:::::::::
attractive

::::::::::::::
simulator-based,

::::::::::::::
high-dimensional

::::::::
inference

::
of

:::
the

:::::
EnKF

::
to
:::
the

:::::
more

::::::
general

::::::
setting

::
of

::::::::
graphical

:::::::
models.

:

GEnBP borrows strength from both EnKF and GaBP, achieving the EnKF’s efficiency in high-
dimensional data processing and GaBP’s capability to handle complex graphical model structures
(Table 1). GEnBP is capable of managing

:::::::
inference models with noisy and moderately non-linear

observation processes, unknown process parameters, and deeply nested dependencies among latent
variables, scaling to millions of dimensions in variables and observations. The key insight is that,
despite the name, Gaussian Belief Propagation

::
as

:::::::::
commonly

::::
used is not truly generic

::
in

:::
the

::::
class

::
of

:::::::
possible

::::::::
Gaussian

::::::::::::
approximations

:
(Section 2.2.3). Like GaBP and EnKF, GEnBP uses Gaussian

approximations
:
.
:
However, it relies on empirical samples for statistics over non-linear nodes, similar

to EnKF, rather than the linearisations
::::::::::
linearisation

::
at

:::
the

:::::
mode,

:
used in GaBP.

By using ensembles to represent Gaussian distributions, GEnBP avoids the computational burden of
full covariance matrices, enabling efficient belief propagation with potentially superior accuracy.

This approach is highly relevant for many practical problems, including physical and geospatial
systems like computational fluid dynamics, geophysical model inversion, and weather prediction.
Such systems typically feature high-dimensional representations with spatial correlations

::::::
induced

:::
by

:::::
known

::::::::
physical

::::::::
dynamics that create a low-rank structure, which empirical covariance approxima-

tions can effectively capture
::::::
exploit.

Main Contributions

1. We introduce
:::::::
Gaussian

::::::::
Ensemble

::::::
Belief

::::::::::
Propagation

:::::::::
(GEnBP),

:
a
:::::
novel

::::::::::::::
message-passing

::::::
method

::::
for

::::::::
inference

::
in

::::::::::::::
high-dimensional

::::::::
graphical

:::::::
models

2.
::::::
GEnBP

::::::::
leverages

:::::::::
EnKF-like

::::::::
ensemble

:::::::
statistics

::::::
instead

::
of

:::
the

:::::::::
traditional

::::::::::
linearization

::::
used

::
in

:::::
GaBP,

:::::::::
improving

:::
the

::::::::
handling

::
of

:::::::::
non-linear

:::::::::::
relationships

::::
and

:::::::
reducing

::::::::::::
computational

:::::::::
complexity.

:

2
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3.
:::
We

::::::::::
demonstrate

::::
that

:::::::
GEnBP

::::::
scales

::
to

::::::
higher

::::::::::
dimensions

::::
than

:::::::::
traditional

::::::
GaBP

:::::
while

::::::::
achieving

::::::::::
comparable

::
or

:::::
better

::::::::
accuracy

::
in

:::::::::
practically

::::::::
important

:::::::
physical

:::::::::
problems,

::::
such

::
as

::::::::::::
spatiotemporal

::::::::
modeling

:::
and

::::::::
physical

:::::
model

::::::::
inversion.

:

4.
::::::
GEnBP

::
is

:::::::
enabled

::
by

:::
our

:::::::::::
development

:::
of:

(a)
:::::::::::
rank-efficient

::::::::::
techniques

::::
for

:::::::::::
propagating

::::::::::::::::
high-dimensional

:::::::::
Gaussian

:::::::
beliefs

::::::::
efficiently,

::::
and

(b)
::::::::::::::
compute-efficient

::::::::
methods

:::
for

:::::::::
converting

::::::::
between

::::::::
Gaussian

::::::
beliefs

::::
and

::::::::
ensemble

::::::::::::
approximations

:::::::
without

:::::::::::::::
high-dimensional

:::::
matrix

::::::::::
operations,

:::::
which

:::
are,

::
to
::::
our

:::::::::
knowledge,

:::::
novel

:::::::::::
contributions

::
in

::::
this

::::::
context.

:

2 PRELIMINARIES

We introduce the essential notation and
:::
will

::::
now

::::::::
introduce

::::
our

:::::::
notation

::::
and

:::::::
essential

:
concepts.

Deeper background on belief propagation may be found in Appendix C and on the Ensemble Kalman
filter in Appendix D.

2.1 MODELS AS GENERATIVE PROCESSES AND DENSITIES

We denote random variables in sans-serif font (e.g., x), their corresponding values in boldface (e.g.,
x), and assume all variables have densities, writing x ∼ p(x).
The overall model state vector is divided into variables connected through a structural equation model
M (Wright, 1934). Specifically,M consists of J generating equations {Pj}1≤j≤J , where each Pj

is defined as1

Pj : R
DIj → RDOj , xIj

7→ xOj
. (1)

Each Pj establishes a relationship between input Ij and output Oj sets.2 The ancestral variables
A :=

⋃
Ij=∅ Oj are those without any inputs. We categorize variables into three types:

• Evidence E : Variables that are observed.
• Latent L : Unobserved or ‘nuisance’ variables.
• Query Q: Variables whose evidence-conditional distribution is of primary interest.

We focus on ancestral variablesas our queries (
:::
will

::::::
assume

:::
that

::::::
queries

:::
are

::::::
always

::::::::
ancestral

::::::::
variables,

::
i.e.

::::
that

:
Q = A ).

Each generating equation Pj defines how the outputs Oj are produced from the inputs Ij . This
structure allows us to represent the joint density of all variables as a product of conditional densities,

p(x) =

J∏
j=1

p(xOj
| xIj

).

Our main objective is to compute the posterior distribution

p(xQ|xE=x∗
E ) =

∫
p(xQ,xL ,xE=x∗

E )dxL∫
p(xQ,xL ,xE=x∗

E )dxQdxL
. (2)

i.e. to update our beliefs about the ancestral variables by assimilating observations of the evidence
variables while accounting for the latent variables.

2.2 BELIEF PROPAGATION IN GRAPHICAL MODELS

In graphical models, we associate a graph structure G with the factorization of the model density to
compute the target distribution Equation 2. In this work, we use Belief Propagation (BP) to mean
specifically loopy belief propagation in factor graphs (Kschischang et al., 2001). Additional details
are in Appendix C.

1Each Pj can be a stochastic function, meaning that it is a deterministic function xOj = Pj(xIj , nj) with
an unobservable noise term nj . For brevity, we omit the noise terms in the notation.

2These sets can be empty.

3
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The factor graph is constructed by representing each conditional probability p(xOj
| xIj

) as a factor
potential fj , defining Nj := Oj ∪Ij , such that

p(x) =
∏
j

p
(
xOj |xIj

)
=
∏
j

fj
(
xNj

)
. (3)

The factor graph G is bipartite, consisting of

• Factor nodes: One for each factor potential fj(xNj
).

• Variable nodes: One for each variable xk.

Edges connect each factor node j
::::
with each variable node in its neighborhood Nj .

Belief Propagation (BP) estimates the belief over a query node bG(xk) by integrating out all other
variables,

bG (xk) ≈
∫
p(x) dx\k. (4)

Proposition 1 (Belief Propagation on Factor Graphs). By iteratively and synchronously propagating
the following messages between all nodes in the factor graph,

mfj→xk =

∫ (
fj
(
xNj

)∏
i∈Nj\k

mxi→fj

)
dxNj\k, (5)

mxk→fj =
∏

s∈Nk\j
mfs→xk . (6)

BP approximates the marginals for each variable by the product of incoming messages,

bG (xk) =
∏

s∈Nk

mfs→xk ≈
∫
p(x) dx\k. (7)

Proof: See Yedidia et al. (2000) for proof.

While theoretical analysis of BP’s approximation is complex (Yedidia et al., 2005; Weiss & Freeman,
2001), it delivers state-of-the-art results in important applications (Davison & Ortiz, 2019).

2.2.1 THE POSTERIOR GRAPH

So far, we ’ve
:::
have

:
discussed the prior graph G associated with the generative model. However, in

practice, we ’re
:::
are more interested in the evidence-conditional posterior graph G∗, which incorporates

the conditioning on xE = x∗
E as described in Equation 2.

To construct G∗, we modify the factors fj for all j ∈ NE in the prior graph. Specifically, each
affected factor fj is replaced with a conditioned factor f∗j defined as:

fj(xj)← f∗j (xNj\E ) := p(xNj\E |xE=x∗
E ). (8)

We delete variables that are obseved
:::::::
observed

:
and their associated edges. The target marginal

distribution we aim to compute is then
p (xQ | xE = x∗

E ) ≈ bG∗ (xA ) ,

where bG∗(xA ) is the belief over the ancestral variables in the posterior graph G∗. For a visual
representation, refer to Figure 11 in the Appendix.

2.2.2 NECESSARY OPERATIONS FOR BELIEF PROPAGATION

To compute the target marginal bG∗(xA ), we perform conditioning, marginalization, and multiplica-
tion operations on factor and variable densities:
Definition 1. Consider a concatenated state space x⊤ =

[
x⊤
k x⊤

ℓ

]
at a node in a factor graph,

with a parametric density f(x;θ)
:
. The following operations are sufficient for finding marginals by

BP in an observation-conditional factor graph (Eq. 8):

Conditioning: f (x;θ) ,x∗
k 7→ f∗ (xℓ;θ

∗
ℓ ) := f (xℓ | xk = x∗

k) ; (9)
Marginalisation: f (x;θ) 7→ f (xk;θk) :=

∫
f (x;θ) dxℓ; (10)

Multiplication: f (x;θ) , f (xk;θk) 7→ f (x;θ′) := f (x;θ) f (xk;θk) . (11)

4
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2.2.3 GAUSSIAN DISTRIBUTIONS IN BELIEF PROPAGATION

When the relationships between variables in the model are linear with additive Gaussian noise, and the
ancestral distributions are Gaussian, the density over each factor is also Gaussian. In such cases, all
the necessary operations outlined in Definition 1 have closed-form solutions (Bickson, 2009; Yedidia
et al., 2000). This property is leveraged in classic Gaussian Belief Propagation (GaBP) (Dellaert &
Kaess, 2017), which we briefly review here.

We represent Gaussian densities in two forms:
Definition 2 (Gaussian Density Forms).

Moments Form: ϕM (x;m,K) = |2πK|−1/2 exp

(
−1

2
(x−m)⊤K−1(x−m)

)
, (12)

Canonical Form: ϕC(x;n,P) =

∣∣∣∣ P2π
∣∣∣∣1/2 exp(−1

2
x⊤Px+ n⊤x− 1

2
n⊤P−1n

)
. (13)

Here, m and K represent the mean and covariance, respectively, while P = K−1 and n = Pm
denote the precision and information vectors, assuming the necessary inverses exist. Further details
can be found in Appendix C.3.

Among the operations defined earlier, multiplication is the most challenging. In the canonical form,
multiplication is straightforward:

ϕC(x;n,P)ϕC(xk;n
′,P′) ∝ ϕC (x;n+ n′,P + P′) . (14)

When factor potentials arise from a nonlinear simulator P , the joint covariance is no longer Gaussian.
In such cases, standard GaBP practices (e.g., Eustice et al., 2006; Ranganathan et al., 2007; Dellaert
& Kaess, 2017) employ the δ-method (Dorfman, 1938) to find approximating Gaussian densities.
The δ-method, or propagation of error, (see Appendix C.4) estimates the covariance of g(θ̂) with a
first-order Taylor expansion

Cov(g(θ̂)) ≈ Jg(θ) Cov(θ̂)Jg(θ)
⊤,

where Jg is the Jacobian of g at θ. .

The accuracy of the δ-method is challenging to analyze for nonlinear P . Additionally, GaBP scales
unfavorably with the dimensionality of nodes, incurring a memory cost of O(D2) and a time cost of
O(D3) whenever a D ×D covariance matrix is inverted.

2.3 ENSEMBLE KALMAN FILTERING

The Ensemble Kalman Filter (EnKF) mitigates the high computational costs associated with large D
by representing prior distributions through ensembles of samples.

An ensemble is a matrix of N samples X = [x(1), . . . ,x(N)], where x(n) ∼ ϕM (m,K). We define
the ensemble mean X = XA and deviation X̆ = X−XB, where A = 1

N 1 and B = 1⊤.

By overloading the mean and variance operations to describe the empirical moments of ensembles,
we define:

ÊX = X, V̂arVX = 1
N−1 X̆X̆⊤ +V, Ĉov(X,Y) = 1

N−1 X̆Y̆⊤ (15)

Here, V is a diagonal matrix known as the nugget term, typically set to σ2I. Setting σ > 0 is useful
for numerical stability and to encode model uncertainty. These diagonal terms are usually treated as
algorithm hyperparameters and also appear in GaBP.

The statistics of ensemble X define an implied Gaussian density:

x ∼ ϕM (x; X, V̂arV[X]).

Prior model ensembles are sampled via ancestral sampling using the generative model described in
Equation 28.

Two of the Belief Propagation (BP) operations from Definition 1 are applicable to the EnKF.

5
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Proposition 2. Partition x⊤ =
[
x⊤k x⊤ℓ

]
such that X⊤ =

[
X⊤

k X⊤
ℓ

]
. Assume the ensemble X

follows the Gaussian distribution:

X ∼ ϕM

([
xk

xℓ

]
;

[
Xk

Xℓ

]
,

[
V̂arVXk Ĉov(Xℓ,Xk)

Ĉov(Xk,Xℓ) V̂arV(Xℓ)

])
. (16)

In ensemble form, conditioning (Eq. 9) is performed as:

X,x∗
k 7→ Xℓ + Ĉov(Xℓ,Xk)V̂ar

−1

V (Xk)(x
∗
kB−Xk) (17)

The computational cost of solving Equation 17 is O(N3 + N2Dxk).:Marginalization (Eq. 10) is
simply truncation, i.e., X 7→ Xk.

Proof: See Appendix D.

While the EnKF reduces computational costs and potentially improves approximation accuracy
over GaBP for nonlinear relationships, it does not generalise to other model structures without the
multiplication operation (Eq. 11) needed for BP.

In the following sections, we extend the EnKF-like approach to the BP setting by defining the
necessary operations to handle general graphical models.

Table 1: Relations in Gaussian Ensemble Belief Propagation

Generative Density-based

Operations • Sample
• Condition

• Propagate

Graph type

Directed

x1

x2

x3

Factor

fx1

x2

x3

Decomposition x3 = P(x1, x2) f(x1, x2, x3)

Node Parameters Empirical moments
m,K

Canonical parameters
n,P

Empirical statistics

Ensemble recovery

3 GAUSSIAN ENSEMBLE BELIEF PROPAGATION

GEnBP proceeds by: (1) sampling from the generative prior to obtain an ensemble; (2) convert-
ing ensemble statistics to canonical form; (3) performing BP using low-rank representations; and
(4) recovering ensemble samples matching the updated beliefs. This is diagrammed in Figure 1.
Throughout it exploits efficient matrix representations and operations to handle high-dimensional
problems. Although this is conceptually simple, there are delicate details in the implementation; we
discuss these in overview in this section, and in depth in Appendix H.

Throughout this section, we consider an approximation ϕM (m̂, K̂) to a target Gaussian ϕM (m,K) to
be optimal if m̂ = m and the Frobenius norm ∥K̂−K∥F of the covariance difference is minimized.
This corresponds to minimizing the Maximum Mean Discrepancy (MMD) with a second-order
polynomial kernel between these distributions (Sriperumbudur et al., 2010, Example 3).

3.1 RANK-EFFICIENT GAUSSIAN PARAMETERISATIONS

A key component of GEnBP is the use of Diagonal Matrix with Low-rank perturbation (DLR) rep-
resentations of Gaussian distributions. These representations are derived from ensemble samples and

6
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enable efficient computation and transformation between different parameterizations (e.g., moments
and canonical forms) without explicitly forming high-dimensional covariance matrices.

We use Diagonal Matrix with Low-rank perturbation (DLR) representations, where a symmetric
positive-definite matrix K ∈ RD×D is expressed as K = V+ sLL⊤, with L ∈ RD×N , V diagonal
and the sign s ∈ {−1,+1}. We exploit many computationally expedient properties of such matrices
(see in Appendix F.)

::
). Here we outline the ones that are not standard in Belief Propagation.

In the context of the EnKF, the empirical covariance matrix computed from ensemble samples is natur-
ally DLR (Eq. 15). Throughout this section N is the size fo the ensemble or equiavlently

::::::::::
equivalently,

the rank of the DLR factors, and D is the dimension of the factor.

To initialize the BP stage of GEnBP, we set the distribution for each factor f∗j to the empirical
distribution of the ensemble at that factor, Xj :

f∗j ∼ ϕM (x; Xj , V̂arγ2IXj). (18)

We note that of the many possible ways that DLR approximations might be used in a BP, the
one arising from the ensemble representation is most favourable. See for a comparison with a naive
attempt to do without the Appendix I

::::::::
compares

:::
the

::::::::::::
computational

:::
cost

::
of

:::
the

:::::::
GEnBP

::::
with

::
an

::::::
attempt

::
to

::::::
exploit

::::
DLR

:::::::::::
factorisations

:::::::
without

:::::
using

::
an

:
ensemble.

Proposition 3. Suppose x ∼ ϕM (x;m,K) has a DLR covariance K = LL⊤ +V, with L ∈ RD×N

and V diagonal.
:
Then, we can find the canonical form parameters n and P efficiently:

n = Pm, P = K−1 = U− RR⊤,

where U is diagonal and R ∈ RD×N . Both the conversion to canonical form and the recovery of
moments from the canonical form can be performed with time complexity O(N3 +N2D).

Proof: Standard application of the Woodbury identity. See Appendix F.3.

3.2 BELIEF PROPAGATION WITH DLR REPRESENTATIONS

In standard GaBP, multiplying Gaussian densities (as required in message updates) involves operations
with full covariance or precision matrices, which is computationally expensive in high dimensions

:
.

However, in GEnBP, we exploit the DLR structure to perform these operations efficiently.

Let K and K′ be two DLR matrices,

K = V+ sLL⊤, K′ = V′ + sL′L′⊤.

Then, their sum is also DLR,

K+K′ = (V + V′) + s [L L′] [L L′]
⊤
. (19)

Thus we can efficiently perform density multiplication of Gaussian (as required in BP message
updates) by adding DLR precision matrices as per Equation 14, maintaining the DLR moment
representation. Other useful operations such as vector products, rank reduction and marginalisation
are also efficient – see details in Appendix F.

The most computationally intensive step in BP is the factor-to-variable message (Eq. 5). Suppose we
have a factor node fj connected to K variable nodes, and we wish to compute the message from fj
to variable node xk. We find the product density of the incoming messages (in canonical form) from
the other K − 1 variable nodes using the additive property of DLR precision matrices, and repeated
application of Equation 14. This can be performed with time complexity O(DN2K2 +N3K3) by
exploiting the DLR structure – see Algorithm 3 in Appendix H.

3.3 ENSEMBLE CONFORMATION

After propagating messages, we need to update the ensemble samples to reflect the new beliefs at
the query nodes. This step, called ensemble conformation, finds an affine transformation of the prior
ensemble that matches the posterior mean and covariance as closely as possible.

7
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We seek an affine transformation Tµ,T : X 7→ µB + X̆T, where µ ∈ RD is set to the posterior
mean m, and T ∈ RN×N is chosen to minimize the difference between the transformed ensemble
covariance and the DLR target covariance, LL⊤ +V,

T := argmin
T∗

∥∥∥V̂arη2I(µB+ X̆T∗)− (LL⊤ +V)
∥∥∥2
F
. (20)

Noting that T is identifiable only up to a unitary transform, we use the following result:
Proposition 4. Any symmetric positive semi-definite matrix G = TT⊤ satisfying

X̆⊤X̆G X̆⊤X̆ = (N−1)
(
X̆⊤L(X̆⊤L)⊤ − X̆⊤(V − η2I)X̆

)
defines an affine transformation that minimizes the Frobenius loss in Equation 20. Such a G can be
found with memory complexity O(M2 +N2) and time complexity O(N3 +DN2 +DM2).

Proof: See Appendix H.3.

For a variable with K neighbors, in the worst case M = KN , when
:::
and

:
the cost becomes O(N3 +

DN2K2).
:

The cost of finding the target covariance from the belief precision is O(M3 +DM2) =

O(K3N3 +DK2N2), leading to a total cost for ensemble recovery of O(K3N3 +DN2K2).

3.4 COMPUTATIONAL COMPLEXITY

The total computational cost of GEnBP depends on the graph structure and the choice of ensemble
size N . In many practical applications , (N ≪ D),

:
it
:::::
holds

::::
that

:::::::
N ≪ D,

:
resulting in significant

computational savings compared to GaBP , which scales poorly with D.

::
D.

:
Table 2 summarizes the computational costs of GaBP and GEnBP for various operations. Notably,

GEnBP avoids the O(D3) costs associated with full covariance matrix operations in GaBP, making it
more suitable

:::::
better

:::::
suited

:
for high-dimensional problems.

Table 2: Computational complexities for Gaussian Belief Propagation (GaBP) and Gaussian Ensemble
Belief Propagation (GEnBP), where D is the node dimension, K is the node degree, and N is the
ensemble size. All variables are assumed to have the same dimension for simplicity. Time complexity
measures floating-point multiplications.

Operation GaBP GEnBP
Time Complexity
Simulation O(1) O(N)
Error propagation O(D3) —
Jacobian calculation O(D) —
Covariance matrix O(D2) O(ND)
Factor-to-node message O(D3) O(K3N3 +DN2K2)
Node-to-factor message O(D2) O(1)
Ensemble recovery — O(K3N3 +DN2K2)
Canonical-Moments conversion O(D3) O(N3 +N2D)
Space Complexity
Covariance matrix O(D2) O(ND)
Precision matrix O(D2) O(NDK)

While GEnBP scales favorably
::::::
GEnBP

::::::::::
operations

::::
scale

::::::::::
favourably with D, but

:
at
::::::

worst
::::::
O(D),

::::::::
compared

::
to

:::
the

:::::
worst

::::::
O(D3)

:::
for

::::::
GaBP.

::::
They

:::::
scale unfavourably with respect to the node degreeK,

scaling as ,
:::

at
:::::
worst O(K3)for some operations. However, in

:
,
::::::::
compared

:::
to

:::::
O(1).

:::
In

:
practice,

large factor nodes can be decomposed into chains of smaller nodes using techniques like Forney
factorization (Forney, 2001), which reducesK without altering the model’s marginal distributions (de
Vries & Friston, 2017). This helps manage computational costs even in graphs with high node
degrees. In our experiments, despite

:::
We

::::
note

:::::::
however

::::
that

::::::
should

:::
the

::
K

:::::::
scaling

:::::
prove

::::::::::
prohibitive,

:::
we

:::
are

::::
still

::::
only

:::::::::
marginally

:::::
worse

::
off

::::
than

::
in

::::::
GaBP,

:::::
since

::
we

::::
can

::::::
always

::::::
convert

::
to

::
a

:::
full

:::::::::
covariance

::::::
matrix

:::
and

:::
use

:::
the

::::::
GaBP

:::::
update

8
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:
(Appendix I

:
).
:::
We

:::::
have

:::
not

:::::
found

:::
this

:::::::::
necessary

::
in

:::
our

:::::::::::
experiments.

:::::::
Despite the potential increase

in the number of messages due to decomposition, the overall computational cost is reduced because
the messages themselves become less expensive to compute.

4 EXPERIMENTS

We
::
In

:::
this

:::::::
section,

::
we

:
compare GEnBP against alternative methods

::::
belief

::::::::::
propagation

:::::::
method, GaBP

and
::
for

:::::::::
reference,

:
a
::::::

global
:
Laplace approximation (Mackay, 1992), in two

:
.
::::

We
:::
use

:
synthetic

benchmarks designed to compare the methods’ performance in high-dimensional, nonlinear dy-
namical systems. In both, the graph structure is a random

:::::::::
randomised

:
system identification task

(Appendix A.1), where a static parameter of interest influences a noisily observed, nonlinear dynam-
ical system.

:::::::
Although

:::::::
GEnBP

::
is

::::::::
applicable

:::::::
beyond

:::
the

::::::
system

:::::::::::
identification

::::::
setting,

:::
this

::::::::::
benchmark

:
is
:::::::
chosen

:::
for

::
its

:::::::::
simplicity

:::::::::
popularity.

:::::
More

:::::::::::
sophisticated

::::::::
graphical

::::::
model

::::::::
problems

:::
are

:::::::
outlined

::
in Appendix C

:
,
:::
and

:::
in Appendix B.3

:::
we

::::::::::
demonstrate

:::
the

::::::
utility

::
of

:::::::
GEnBP

::::::
applied

::
to
::

a
:::::::
different

:::::::
graphical

::::::::
structure,

::::
few

:::
shot

:::::::
domain

:::::::::
adaptation

::
of

:
a
::::::
system

::::::::
dynamics

::::::::
emulator

::
on

:::::::::
unobserved

::::::
states.

For t = 1, 2, · · · , T we define

xt = Px(xt-1,q), yt = Py(xt) (21)

where evidence is E = {yt = y∗
t }1≤t≤T and the query is Q = q.3

The GaBP implementation is modified from Ortiz et al. (2021) to allow arbitrary prior covariance.
Hyperparameters are not directly comparable between the methods. We ameliorate this by choosing
favourable values for each algorithm. We measure performance by mean squared error (MSE) of the
posterior mean estimate EbG∗(q)− q0 and the log-likelihood log bG∗(q0;q) at ground truth q0.

:::
The

::::::::
estimated

:::::::
posterior

:::::::::
covariance

::
is

:::
not

:::::::::
necessarily

:::::::
positive

:::::::
definite

::
in

::::::::::::
gradient-based

:::::::
methods

::::
such

::
as

::::::
Laplace

:::
or

:::::
GaBP,

::::
and

::::
thus

:::
the

:::::::
posterior

::::::::::::
log-likelihood

::::
may

::::
fail

::
to

::
be

:::::::
defined;

:::
we

:::
do

:::
not

::::
plot

:
it
::
in

:::
that

::::
case.

:
Additional experiments and details are in Appendix B.

4.1 1D TRANSPORT MODEL

The transport problem (Appendix A.2
:
) is a simple , 1d nonlinear dynamical system

::::::
defined

::::
over

:
a

:::::::::::
1-dimensional

::::::
spatial

::::::
extend,

:
chosen for ease of visualisation(). States are subject to both transport

and diffusion, where the transport term introduces nonlinearity. Observations are subsampled
state vectors perturbed by additive Gaussian noise. Figure 1 shows

:::::::::
exemplary samples from the

prior and posterior distributions . GEnBP estimates are substantially more accurate than GaBP , in
terms of both posterior likelihood and MSE, as can be seen in the tighter clustering of the posterior
samples about ground-truth. In this relatively low-dimensional problem, the Laplace approximation
is also available for comparison; We see that the Laplace approximationis superior to both GaBP and
GEnBP in terms of execution time. Its MSE performance is intermediate in quality, but its posterior
likelihood, while similar to GaBP, is even less stable, and both are inferior to GEnBP. Influence
of dimension DQ in the transport example. Error bars are empirical 90% intervals from n = 40
runs.

::::::
induced

:::
by

:::::
GaBP

::::
and

::::::
GEnBP

::::::::
methods,

::::
and

::::::::::
demonstrate

:
a
:::::::::::
substantially

::::::::
improved

::::::
ability

:::
for

::::::
GEnBP

::
to

:::::::
recover

:::
the

:::::::
posterior

::
in
::::

this
::::::
setting.

::::::::
Analysis

::
of

::::
this

::::::::
contrived

::::::::
exampled

::
is

::::::::
continued

::
in

Appendix A.2.1
:::::
where

::
it

::
is

::::::::
compared

::::
also

::::::
against

:
a
::::::
global

:::::::
Laplace

::::::::::::
approximation.

:

4.2 2D FLUID DYNAMICS MODEL

In the computational fluid dynamics (CFD) problem (Appendix A.3), states are governed by discret-
ised Navier-Stokes equations over a 2d spatial domain. The parameter of interest is a static, latent
forcing field q. In this setting, the GaBP algorithm is unable to complete the problem forDQ > 1024,
and the Laplace approximation is not available, since estimated posterior covariance is far from
positive definite. In our 2d incompressible equations the state field and forcing fields are scalar fields
over a d × d spatial domain; we stack them into vectors so that DQ = Dxt = d2. Influence of
dimension DQ. Error bars are empirical 50% intervals from n = 10 runs. In grey-shaded regions,
GaBP ran out of memory.

3If q were known, estimating {xt}t from {yt}t would be a filtering problem, soluble by EnKF.
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Mean-Squared Error ↓
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Figure 2:
:::::::
Influence

::
of

:::::::::
dimension

::::
DQ ::

in
:::
the

:::
2D

::::
fluid

::::::::
dynamics

::::::
model.

:::::
Error

::::
bars

::
are

::::::::
empirical

:::::
50%

:::::::
intervals

::::
from

:::::::
n = 10

::::
runs.

::
In

:::::::::::
grey-shaded

::::::
regions,

::::::
GaBP

:::
ran

:::
out

::
of

::::::::
memory.

10−3 10−1

ν

1e+01

1e+02

a)

Execution Time (s) ↓

GaBP
GEnBP
Langevin

10−3 10−1

ν

1e-03

1e-02

b)

Mean-Squared Error ↓

10−3 10−1

ν

−1

0

1

2

×103

c)

Log Likelihood ↑

Figure 3: Influence of viscosity ν
::
on

:
a
:::::::
32× 32

:::
2D

::::
fluid

::::::::
dynamics

::::::
model. Error bars show empirical

50% intervals from n = 40 simulations.

To provide a comparison to a classic sampler
:::::
which

::::
does

:::
not

::::::
exploit

:::::
belief

::::::::::
propagation, we implement

a Langevin Monte Carlo (LMC) (Roberts & Tweedie, 1996) algorithm as a baseline. We run this
until it produces comparable MSE to GEnBP (5000

::::
2000 iterations after a 1000 iteration burn-in).

Results
::::::
Results

::
in

:::::::::
increasing

:::::::::
dimension are shown in Figure 2. We note that the Langevin Monte

Carlo algorithm, attains the best posterior likelihood
::::::
RMSE, but at a cost of approximately 103 times

the compute cost of GEnBP. We observe the GEnBP attains superior mean-squared error and posterior
likelihood to GaBP, while scaling to a far higher DQ. Note the GaBP experiments are truncated
because experiments with DQ > 1024 failed to complete due to resource exhaustion.

We caution against interpreting the absolute run time of the algorithm too literally. Notably, the
high-dimensional Jacobian calculation in the GaBP algorithm is not parallelised effectively by the
Pytorch library, which penalises that algorithm by a constant multiplicative factor. The asymptotic
O(D) scaling rate of such Jacobian calculations (Margossian, 2019) will ensure eventual dominance
of GEnBP, however.

Figure 3 shows the influence of the viscosity parameter ν as it varies from laminar to turbulent flow
regimes, producing diverse nonlinear behaviours (See Figure 6). GEnBP still strictly dominates
GaBP in speed. It generally dominates in MSE, although there are ranges

:::::
around

::::::
η ≈ 1

:
where

the performance is indistinguishable or slightly worse.
:::
Log

:
Regarding posterior log-likelihood of

the ground-truth, GEnBP is superior in the low-ν (turbulent) regime, whereas GaBP is dominant
in the high-ν (laminar) regime.

:::::::
Langevin

::::::
Monte

:::::
Carlo

::
is

:::
not

::::::::::
competitive

::
in

::::
this

:::
the

:::::::
posterior

:::
log

:::::::::
likelihood,

:::::::
although

:::
this

:::::
could

:::::
likely

:::
be

::::::::
improved

::
by

::::::::
adjusting

:::
the

::::::::::
algorithm’s

::::::::::::::
hyperparameters.

:

10
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5 CONCLUSIONS

Gaussian Ensemble Belief Propagation (GEnBP) advances feasible inference in probabilistic graph-
ical models by combining the strengths of the Ensemble Kalman Filter (EnKF) and Gaussian Belief
Propagation (GaBP). It scales to higher factor dimensions than GaBP and achieves superior accuracy
in complex, high-dimensional problems. By employing ensemble approximations, GEnBP accom-
modates larger and

:::
the

:::::
larger,

:
more intricate factors common in real-world applications. Unlike

EnKF, GEnBP handles complex dependencies without requiring gradients and often surpasses the
performance of GaBP

::
in

::::
both

:::::::
accuracy

::::
and

:::::
speed.

While GEnBP introduces additional tuning parameters and requires more model executions during
sampling, these costs are often offset by avoiding high-dimensional Jacobian calculations needed
in GaBP. Its effectiveness is best in systems where the dynamics are well-approximated in a low-
dimensional subspace (DLR). Like GaBP and EnKF, GEnBP relies on Gaussian approximations and
is constrained to unimodal distributions; convergence analysis remains an open question.

:::::::::
Comparing

:::::
overall

:::::::::::::
computational

:::
cost

:::
of

:::
the

:::::::::
algorithms

::
is

::::::::::
complicated

::::
and

:::::::
depends

:::::
upon

:::
the

:::::
graph

::::::::
structure.

:::
Our

::::::::
empirical

::::::
results

::::::::::
demonstrate

:::
the

::::::::
existence

:::
of

::::::::
problems

:::::
where

:::::::
GEnBP

::
is

:::::
much

::::
more

:::::::
efficient

:::
than

::::::
GaBP,

::::
but

:::
we

::::
have

:::
not

:::::::::::
characterised

:::
the

:::
full

:::::
range

::
of
::::::::
problems

::::::
where

:::
this

::
is

:::
the

::::
case.

:

Despite these limitations, GEnBP’s scalability, flexibility, and ease of use make it a promising
tool for a broad range of applications, notably in geospatial predictions and high-dimensional data
assimilation. Future work includes integrating improvements from

:::
the

::::::
diverse

::::::
tweaks

::::
used

::
in

::::::
practice

::
in

::::::
applied GaBP and EnKF literature, such as graph pruning for computational efficiency and robust

distributions to handle outliers.
::::::::
methods.

::::
We

::::::
suspect

::::
that

:::
the

:::::
same

:::::
tricks

:::
that

::::
are

::::
used

::
in

::::::
EnKF

:::::
would

::
be

::::::
useful

::
in

:::::::
GEnBP,

:::
and

::::::::
moreover

:::::
many

:::
of

:::
the

::::
same

:::::
tricks

::::
that

:::
are

::::
used

::
in

::::::
GaBP

:::::
would

::
be

:::::
useful

::
in

:::::::
GEnBP.

::::::::
Ensemble

::
or

:::::
DLR

:::::::::
equivalents

:::
of

:::::::::
covariance

::::::::::
localisation,

:::::::::
covariance

:::::::
inflation

:::
and

:::::::
adaptive

::::::::
ensemble

:::::::
selection

::::
from

::::::
EnKF

::::
seem

::::::::
relatively

::::::
simple

::
to

::::::
transfer

::
to

:::::::
GEnBP,

:::
and

:::
we

::::::
suspect

:::
that

::::::
further

::::::::::::
hybridizations

::::::
would

::
be

::::::
useful

::
in

:::::::
practice.

:::::::::
Similarly,

:::::
from

:::::
GaBP,

::::
the

:::
use

::
of

:::::::
message

::::::::
damping,

:::::::::::
incremental

::::::::
updating,

::::::
robust

:::::::::
covariance

:::::::
scaling

:::
and

:::::::::
truncation

::
of

:::::::
graphs

:::::
would

::::::
likely

:::::
extend

:::
the

:::::
range

::
of

:::::::::::
applicability

::
of

:::
the

:::::::
method

::
by

:::::::::
providing

::::::::
increased

:::::::
stability

:::
and

:::::::::::
convergence

:
at

:::::
lower

:::
cost

::
if

:::::::::
adequately

::::::
tuned. Exploring connections with other message-passing algorithms, like

particle-based or Stein variational methods, may further enhance GEnBP’s capabilities.
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A BENCHMARK PROBLEMS

To demonstrate the utility of our method, we select example problems of system identification type,
where a latent parameter of interest must be inferred from its effects upon the dynamics of a hidden
Markov model. As such it is closely related to, but more challenging than, state filtering.

Throughout, unless otherwise specified, the hyper parameters of the algorithms are γ2 = 0.01
and σ2 = 0.001 for both GaBP and GEnBP. GEnBP has additional hyperparameters η2 = 0.1 and
N = 64.We cap the number of iterations of message-propagation descent steps at 150. We relinearise
or re-simulate after 10 message-propagation steps.

A.1 SYSTEM IDENTIFICATION

In the system identification problem our goal is to estimate the time-invariant latent system parameter
q. This parameter influences all states in the Hidden Markov Model, where x0 represents the
unobserved initial state, and subsequent states x1, x2, . . . evolve over time. Each state xi is associated
with an observed state yi, as depicted in Figure 4.

q

x1x0 x2

y1 y2

. . .

Figure 4: Generative model for the system identification problem, with latent system parameter q,
where all states depend on q and the previous state. Observed states are shaded.

A.2 ONE-DIMENSIONAL TRANSPORT PROBLEM

We consider a one-dimensional state-space model where the state at time t, xt ∈ Rd, evolves
according to

Px
t : xt → xt+1 (22)

= Sk (C ∗ (γxt + (1− γ)q)) + ϵt, (23)

Py
t : xt → yt (24)

= Dℓ (xt) + ηt, s (25)

where

• xt is the state vector at time t.
• q ∈ Rd is a fixed parameter vector to be estimated.
• γ ∈ [0, 1] is a decay parameter.
• C ∗ z denotes the convolution of z with kernel C.
• Sk is a circular shift operator that shifts the vector by k positions to the right.
• ϵt ∼ N (0, τ2Id) is process noise.
• yt is the observation vector at time t.
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• Dℓ is a downsampling operator that selects every ℓ-th element of its input vector.
• ηt ∼ N (0, σ2Im) is observation noise.

The parameter q is drawn from a prior distribution that generates smooth periodic functions. Specific-
ally, each element of q is defined as

qk = A · eκ cos( 2πk
d −µ), k = 0, 1, . . . , d− 1, (26)

where

• µ ∼ Uniform[0, 2π] is a random phase.
• κ ∼ χ2(

√
2π) controls the concentration (smoothness) of the function.

• A is a scaling constant.

Operator Definitions

• Convolution (C ∗ z): The convolution operator applies a blur kernel C to the vector z,
modeling diffusion.

• Circular Shift (Sk): The operator shifts the vector z by k positions to the right in a circular
manner (elements shifted beyond the last position re-enter at the first position), modeling
advection.

• Downsampling (Dℓ): The operator selects every ℓ-th element from the input vector z,
reducing spatial resolution.

Intuitive Interpretation The state update (Eq. 23) models a transport process where the state xt
evolves through

1. Decay towards a background field: The term γxt + (1− γ)q represents a weighted combin-
ation of the current state and the background field q.

2. Diffusion: Convolution with kernel C introduces spatial smoothing, simulating diffusion.

3. Advection: The circular shift Sk models the transport of the field in a particular direction.

4. Process Noise: ϵt accounts for uncertainties in the evolution.

The observation equation (Eq. 25) represents measurements of the state at reduced spatial resolution
due to downsampling, with additive observation noise ηt.

Inference Problem Our goal is to estimate the parameter q given the sequence of observations
{yt} and the initial state x0. This involves recovering the underlying background field influencing
the state evolution from noisy, downsampled observations over time.

The number of timesteps is T = 10.

Although this problem is not realistic, it is useful for visualisation and understanding the behaviour
of the algorithms, since the dynamics remain well-defined as the resolution is lowered.

A.2.1
::::::::
RESULTS

Figure 5
::::
plots

:::
the

::::::::
influence

:::
of

:::::::::
dimension

:::::
upon

::::::
various

::::::::
measures

:::
of

::::::::
inference

:::::::
quality.

:::::::
GEnBP

:::::::
estimates

:::
are

:::::::::::
substantially

:::::
more

:::::::
accurate

::::
than

:::::
GaBP,

::
in

:::::
terms

::
of

::::
both

::::::::
posterior

::::::::
likelihood

::::
and

:::::
MSE,

::
as

:::
can

::
be

::::
seen

::
in
:::
the

::::::
tighter

::::::::
clustering

:::
of

::
the

::::::::
posterior

:::::::
samples

:::::
about

:::::::::::
ground-truth.

::
In

::::
this

::::::::
relatively

:::::::::::::
low-dimensional

::::::::
problem,

:::
the

:::::::
Laplace

::::::::::::
approximation

::
is

::::
also

:::::::
available

:::
for

:::::::::::
comparison;

:::
We

:::
see

:::
that

::
the

:::::::
Laplace

:::::::::::::
approximation

::
is

:::::::
superior

::
to

:::::
both

:::::
GaBP

::::
and

::::::
GEnBP

:::
in

:::::
terms

::
of

:::::::::
execution

::::
time.

:::
Its

::::
MSE

:::::::::::
performance

::
is

::::::::::
intermediate

::
in
:::::::

quality,
:::
but

:::
its

:::::::
posterior

::::::::::
likelihood,

:::::
while

::::::
similar

::
to

::::::
GaBP,

:
is

::::
even

:::
less

::::::
stable,

::::
and

::::
both

::::
are

::::::
inferior

:::
to

:::::::
GEnBP.

::
At

::::::
small

:::::::::
dimension

::::
both

:::::::
Laplace

::::
and

::::::
GEnBP

::::::
produce

::::::
similar

::::
log

::::::::
likelihood

:::::::::
estimates,

::::
with

:::::
GaBP

::::::::
somewhat

::::::
worse

::::
than

:::::
either.

:::
As

:::
the

::::::::
dimension

:::::::
increases

:::::::
beyond

::::
100,

:::::::
however,

:::
the

:::::::::::::
gradient-based

::::::::::
covariances

::
in

::::
both

:::::
GaBP

:::
and

:::::::
Laplace

:::::::
methods

::
are

:::::::::::
increasingly

:::::
likely

:::
not

::
to

:::
be

::::::::::::::
positive-definite,

:::
and

::::
thus

:::
the

::::::::
posterior

::::::::::::
log-likelihood

::::
may

:::
fail

::
to

::
be

:::::::
defined.

:::::::
GEnBP

::
by

:::::::
contrast

::::::
decays

::::
more

::::::
slowly

::
in

:::
log

:::::::::
likelihood,

::::
and

::
is

::::::
always

:::::::
defined.
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Figure 5:
:::::::
Influence

:::
of

:::::::::
dimension

::::
DQ::

in
::::

the
::::::::
transport

::::::::
example.

:::::
Error

::::
bars

::::
are

::::::::
empirical

:::::
90%

:::::::
intervals

::::
from

:::::::
n = 40

:::::
runs.

:::::::
Missing

::::
log

:::::::::
likelihood

:::::
values

::::::
denote

:::::::::
undefined

::::::
values

::::::
arising

::::
from

::::::::::
non-positive

::::::
definite

::::::::::
covariance

::::::::
estimates.

:

x0 x1 x2 x3 x4

q y1 y2 y3 y4

(a) ν = 10−4

x0 x1 x2 x3 x4

q y1 y2 y3 y4

(b) ν = 10−1

x0 x1 x2 x3 x4

q y1 y2 y3 y4

(c) ν = 102

Figure 6: Three different Navier-Stokes simulations, with ∆t = 0.2 and varying value of viscosity ν.
The simulation is run on a 64 × 64 grid; observations are 8 × 8 and corrupted by white Gaussian
noise with sd σ = 0.1 relative to a normalized unit scale.
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A.3 NAVIER-STOKES SYSTEM

The Navier-Stokes equation defines a classic problem in fluid modeling, whose solution is of interest
in many engineering applications. A full introduction to the Navier-Stokes equation is beyond the
scope of this paper; see Ferziger et al. (2019) or one of the many other introductions.

Our implementation here is a 2D incompressible flow, solved using a spectral method with pytorch
implementation from a simulator Li et al. (2020). Defining vorticity ω = ∂v

∂x −
∂u
∂y and streamfunction

ψ which generates the velocity field by

u =
∂ψ

∂y

v = −∂ψ
∂x

the Navier Stokes equations are

1. Poisson equation∇2ψ = −ω
2. Vorticity equation ∂ω

∂t + u∂ω
∂x + v ∂ω

∂y = ν∇2ω

The discretisation of the equation is onto an d× d finite element basis for the domain, where each
point summarises the vorticity field at at hat point. At each discretised time-step we inject additive
mean-zero (d2)-dimensional Gaussian white noise νt ∼ N (0, σ2

ηI) and static forcing term q to the
velocity term before solving the equation.

2d matrices are represented as 2d vectors by stacking and unstacking as needed, so xt = vec(ψ).
y = downsampleℓ(xt) + η, where η ∼ N (0, σ2

ηI) is the observation noise.

Initial state and forcings are sampled from a discrete periodic Gaussian random field with

PSD(k) = σ2
(
4π2∥k∥2 + τ2

)−α
. (27)

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 HARDWARE CONFIGURATION

Timings are on conducted on Dell PowerEdge C6525 Server AMD EPYC 7543 32-Core Processors
running at 2.8GHz (3.7GHz turbo) with 256MB cache. Float precision is set to 64 bits for all
calculations. Memory limit is capped to 32GB. Execution time is capped to 119 minutes.

B.2 ENSEMBLE SIZE

In the main text, we have left the matter of ensemble size N open. On one hand, ensembles of order
N ≈ 102 seem to be ample for the problems we have considered. We might be concerned that
the trade-off of increasing ensemble size is unclear; on one hand many computational costs scale
relatively simply as O(DN2 +N3) (Section 3.4). On the other, we do not know how much extra
precision we gain in general by increasing N . In Figure 7 we show a small experiment to examine
this trade-off, where the ensemble size is increased from N = 16 to N = 512 in steps of size 16.
The problem shows a rapid improvement as the ensemble increases to N = 64, but diminishing
marginal returns. There is no clear cut-off as such, but we specify N = 64 as a default value for the
experiments in the main text.

B.3
:::::::::::
EMULATION

:::::
USING

::::::::
GENBP

::
In

:
Section 4

:::
we

:::::::::::
demonstrated

::::
the

:::::
utility

:::
of

:::::::
GEnBP

::
in

:::::::
system

:::::::::::
identification

:::::::::
problems.

::::::
These

::
are

::::::::::::
pedagogically

:::::::
useful,

:::::
since

::::
they

:::
are

::::
well

::::::::::
understood

::::
and

::::::
require

::::::::
relatively

:::::
little

::::::::::
complexity

::
in

:::::::::::::
implementation.

:::::
By

:::
the

:::::
same

::::::
token,

::::::::
however,

::::
they

:::::
may

:::
fail

:::
to

::::::::::
demonstrate

::::
the

:::
full

:::::
range

::
of

::::::::::
capabilities

::
of

:::::
belief

:::::::::::
propagation

::::::::
methods,

::
in

::::
that

:::::
belief

::::::::::
propagation

::
is
::

a
:::::::
general

::::::
method

::::
for

:::::::
inference

:::
in

::::::::
graphical

:::::::
models,

::::
and

:::
not

::::::
limited

:::
to

::::::
system

:::::::::::
identification

:::::::::
problems.

::::
We

:::
can

::::::
apply

::::::
GEnBP

::
to

::
a

::::
wide

:::::
range

::
of

::::::::
problems.

:::::::::
However,

:
a
:::::::
method

:::::
which

::::::
claims

::
to

::::
scale

::
to

::::
high

::::::::::
dimensional

18
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Figure 7: Performance of GEnBP with varying ensemble size N for the 1d transport system identific-
ation problem (Appendix A.2). Confidence intervals are empirical 95% intervals based on n = 80
independent runs.

:::::::
problems

::::::::
naturally

::::::
entails

:::::
many

:::::::::::
complexities

::
in

::::::::
practice;

:::::
Large

:::::
scale

::::
data

:::::::::
simulation

:::::::
methods

::
in

::::::
climate,

::::
for

::::::::
example,

:::
are

:::::::::
understood

:::
to

::::::
require

::::::::::
specialized

:::::::
clusters,

:::::::
custom

::::::::
software,

:::
and

::::::
many

:::::::
intricate

::::::
tweaks

::
to

:::
the

::::
basic

::::::::::
algorithms

::
to

::::::
achieve

::::::::
practical

::::::::::
performance

:::::::::::::::::::::
(e.g. O’Kane et al., 2021)

:
,

:::::
which

:::::
means

::::
that

::
in

:::::::
practice

::::
they

:::
are

::::::
neither

:::::::::
pedagogic,

:::
not

:::::::
practical

:::
for

::
a

:::::::::
conference

:::::
paper.

:

::::::::
However,

::
by

::::::
setting

:::
up

:
a
:::::::::
reasonably

::::::::
tractable

:::::::
problem,

:::
we

::::
can

::::::::::
demonstrate

::
a

::::::::::::::
proof-of-concept

:::
for

::
the

::::::
utility

::
of

:::::::
GEnBP

::
in

::
a
:::::
more

:::::::
complex

:::::::
setting.

:::::::
Noting

:::
that

:::
the

:::::::::
Ensemble

:::::::
Kalman

::::
filter

::::
can

::
be

::::
used

:::
for

:::::::
training

:::::::
Bayesian

::::::
neural

::::::::
networks

::::::::::::::::::::::::
(?Schillings & Stuart, 2017)

:
it
::::::
seems

:::
that

::::
our

::::::
chances

::
of

::::::
training

::
a
::::::::
Bayesian

:::::
neural

:::::::
network

:::::
using

:::::::
GEnBP

:::
are

:::::
good.

:::
We

::::::
devise

:::
an

::::::::::
experiment

::::::
which

::::::::
exploits

::::
this

::::::::::
connection

::
in

::::
the

::::::::
Gaussian

:::::::::
Ensemble

::::::
Belief

::::::::::
propagation

:::::::::
framework,

::::
and

:::
use

:::
the

:::::::
GEnBP

:::::::::
algorithm

::
to

:::::::
perform

::::::::
few-shot

::::::
domain

:::::::::
adaptation

::
of

:
a
::::::
neural

:::::::
network

::::::::
emulator

::
on

::::::::::
unobserved

::::::
states.

::::
The

::::::::
graphical

::::::
model

::::::::
structure

::
is

:::::
shown

:::
in Fig-

ure 10
:
.

:::
The

::::::::::::
interpretation

::
is

::
as

:::::::
follows:

::::
We

::::
have

::
a
:::::::
forward

:::::
model

:::::::::::::::
P : xt−1,u 7→ xt::::::

which
::
is

:
a
:::::::
physical

::::::::
simulator,

:::::
which

:::::
could

:::::::::
reproduce

:::
the

::::
state

::
of

:::
the

::::::
system

::::::
exactly

::
if

:::
we

::::
knew

:::
the

::::::::
unknown

:::::::::
parameter

::
u,

:::::
which

::
is
:::::::::
unknown.

:::
We

:::::
have

:::::
noisy

::::::::::
observations

:::::::::::
H : xt 7→ yt::

of
:::
the

:::::
state

::
of

:::
the

::::::
system

::::::
subject

::
to

:
a
::::::
known

::::::::::
observation

:::::::
operator,

::::
and

:::
we

::::
have

::
a

:::::
neural

:::::::
network

:::::::
Q : x|u

:::::
which

::
is

::::::
trained

::
to
::::::
predict

::
the

:::::
state

::
of

:::
the

::::::
system

::::::
given

:::
the

::::::::
unknown

::::::::
parameter

:::
u.

:::
In

:::
the

::::::
system

:::::::::::
identification

:::::::
problem

:::
we

:::::
would

::::
stop

:::::
there;

::::::::
However,

::
in

:::
the

::::
few

:::
shot

:::::::
domain

:::::::::
adaptation

::::::::
problem,

::
we

:::::
have

:
a
::::::::
Bayesian

:::::
neural

:::::::
network

:::::::::::::::
N : x̂t−1,w 7→ xt :::::

which
:::
can

::
to

::::::
predict

:::::::
forward

:::
the

::::
state

::
of

:::
the

::::::
system

:::::
given

:::::::
previous

::::
state

::::
x̂t−1 :::

and
:::::::
weights

:::
w.

:::
We

::::::
assume

::::
that

:::
the

:::::::
weights

::
of

:::
the

:::::
neural

:::::::
network

:::::
have

::::
been

::::::
trained

:::
on

::::
some

:::::::
possibly

:::::::
synthetic

::::
data

:::
on

:
a
::::::
related

::::::::
problem;

:::
we

:::
are

:::::::::
interested

::
in

:::::
seeing

:::::::
whether

:::
we

::::
can

::::
adapt

:::
the

:::::
neural

:::::::
network

::
to

:::
the

::::
new,

:::::
target

:::::::
problem

:::
by

::::::
training

::
it

::
on

:::
our

:::::
noisy

:::::::::::
observations,

:::::::
without

:::::
access

::
to

::
the

:::::::
ground

::::
truth.

:::::
This

:::::::
problem

::::::
reduces

::
to

:::
the

:::::::
problem

:::
of

::::::::
estimating

::
a
:::::::
posterior

::::::::::
distribution

:::::::
p(w|y),

:::::
which

::
is

:::::::::
intractable

::
in

:::::::
general,

:::
but

:::
can

::
be

::::::::::::
approximated

::
by

:::::::
GEnBP.

:

:::::
Fixing

::::
this

:::::::
structure,

:::
we

:::::
select

:::::::::::
architecture.

:::
For

:::
the

::::::
ground

::::
truth

::::::
model

::
we

::::
use

::
the

:::::
CFD

:::::
model

::::
from

Section 4,
::::
and

:::
for

:::
the

:::::
neural

:::::::
network

:::
we

::::
use

:::
the

::::::
Fourier

::::::
Neural

::::::::
Operator

::::::
(FNO)

:::::::::::::
(Li et al., 2020)

::::::::::
architecture,

::::::
which

:::
is

:
a
:::::::

neural
:::::::
network

:::::::::::
architecture

::::::::
designed

:::
for

:::::::
solving

:::::::
partial

:::::::::
differential

::::::::
equations,

:::::
with

:::
the

:::::
useful

::::::::
property

::::
that

::
it

:::
can

:::::::
produce

:::::
high

::::::
fidelity

::::::
results

::::
with

::::::
fewer

::::
than

::::
106

:::::::::
parameters,

:::::::
putting

::
it
::::::
within

:::
the

:::::
reach

:::
of

:::::::
GEnBP

:::::::
without

:::::::
intricate

:::::::::
additional

::::::::::::
mathematical

:::
or

:::::::::::
computational

::::::::::
machinery.

:::
The

::::
final

::::
task

:::
is,

::::
with

:
a
:::::
small

:::::::
number

::
of

:::::
steps,

:::::
train

:
a
::::::
model

::
to

:::::::
estimate

:::
the

:::::::
random

:::::::
weights

::
in

:
a

:::::::
Bayesian

::::::
neural

:::::::
network

::::::
which

:::
can

:::::::
predict

:::
the

::::
state

:::
of

:::
the

::::::
system

:::::
given

:::
the

:::::::
previous

:::::
state,

:::::
which

:
it
::::::::
observes

::::
only

:::::::
through

::
a

:::::
noisy

::::::::::
observation

:::::::
operator.

:::::
This

:::::
class

::
of

::::::::
problems

:::::::::
represents

::
a
::::
class

:::::::
immense

::::::::
practical

:::::::
interest,

::::::
which

::
is

::::::
training

:::::::::
emulators

::
of

::::
real

::::::::
physical

:::::::
systems

::::
from

::::
data

::::::
rather

:::
than

:::::
from

::::::
ground

::::
truth

:::::::::::
observations

:::::
which

:::
are

::
in

:::::::
practice

:::::::::::
unobtainable

:::
for

::::
most

:::::::
systems

::
of

:::::::
interest.

::
In

:::
this

::::::::::::
demonstration

:::
we

:::::
have

:::::::
selected

::::::::::::::
hyperparameters

:::
for

::::
ease

:::::
rather

::::
than

::::::::::
stringency,

::::::::
however,

:::
and

:::
we

:::::
make

::
no

::::::
claims

:::::
about

:::
the

::::::
general

::::::::::
application.

:
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:::
We

:::::::
simulate

::
10

::::
time

:::::
steps

::
of

:
a
:::::
32x32

::::
grid

::
of

:::
the

::::
CFD

::::::
model,

:::
and

:::::
apply

:::::::
GEnBP

::
to

:::
the

:::
data

::::::::
generated

::
by

:::
the

::::
first

::
5
:::::::::
timesteps,

::::
then

::::::
seeing

::::
how

::::
well

:::
we

::::
are

::::
able

::
to

:::::::::
propagate

:::
the

:::::
FNO

:::::
model

:::
on

:::
the

:::
next

::
5
:::::::::
timesteps,

::
to

:::
see

::
if
:::
we

:::::
have

::::::::::
successfully

:::::::
capture

:::
the

::::::::
influence

::
of

:::
the

::::::::::
unobserved

::
q
::
in

::::
our

::::::
updated

::::::::
operator.

::::
The

::::
prior

:::::::::
distribution

:::
of

::
the

:::::::
weights

::
is

:
a
::::::::
Gaussian

::::
with

:::::
mean

:::::
given

::
by

:::
the

::::::
optimal

:::::::::
distribution

:::
of

:::
the

:::::::
network

::::::
trained

:::::
upon

:::::::::::
Navier-stokes

:::::::::
simulation

:::::::::
problems

::::
with

::
no

:::::::
forcing

:::::
term,

:::
and

:
a
::::::::
posterior

:::::::::
covariance

::::::::
estimated

:::
by

:::
the

:::::
Adam

::::::::
optimizer

::::
2nd

:::::::
moment

:::::::
estimate.

:

:::
The

::::::::::
experiment

:
is
:::::::::
configured

:::
on

:
a
:::::::
32× 32

::::
grid

:::::::
(d = 32)

::::
with

::
a
:::::::
viscosity

:::::::::
coefficient

:::::::::
ν = 0.001

:::
and

:
a
:::::::
temporal

:::::::::
resolution

::
of

:::::::::
∆t = 0.01.

::::
We

:::::::
simulate

:
a
::::
total

::
of

::
10

::::
time

:::::
steps,

::::::::
applying

::::::
GEnBP

::
to

:::
the

:::
first

:
5
::::
time

:::::
steps

::
to

:::::::
perform

:::::::
few-shot

:::::::
domain

:::::::::
adaptation.

::::::::::::
Observations

:::
are

:::::::
recorded

:::::
every

:::
10

::::::::
intervals,

:::::::
resulting

::
in

:
a
:::::::::::::
downsampling

:::::
factor

::
of

:
5
::::::::::::::::::
(downsample = 5),

::::
and

:::
the

::::::::::
observation

::::
noise

::
is

:::::::
modeled

::
as

:::::::
Gaussian

:::::
with

:::::::
variance

::::::::::
σ2

obs = 0.01.
:

::
In

:::
the

::::::::
inference

::::::::
process,

:::
we

::::::
utilize

:::
an

:::::::::
ensemble

::::
size

::
of

::::::::
N = 30.

:::::
The

:::::::
GEnBP

:::::::::
algorithm

::
is

:::::::::
constrained

::
to

::
a

::::::::
maximum

::
of

::::
150

:::::
steps.

:

:::
For

:::
the

:::::
neural

::::::::
network

::::::::::
architecture,

:::
we

:::::::
employ

:
a
:::::::
Fourier

::::::
Neural

:::::::
Operator

::::::
(FNO)

::::
with

:::
12

:::::::
Fourier

:::::
modes

:::::::::::::::::::
(fno n modes = 12),

:::
32

::::::
hidden

:::::::
channels

:::::::::::::::::::::::::::::
(fno hidden channels = 32),

::::
and

:
4
:::::
layers

:::::::::::::::::::
(fno n layers = 4),

:::::::
utilizing

:::
the

::::::
Tensor

:::::::
Fourier

::::::
Neural

:::::::
Operator

:::::::
variant

::::::::::::::::::
(fno typ = TFNO),

::
for

::
a
::::
total

::
of

:::::::
1590030

::::::::
weights.

::::::
Results

:::
are

::::::
shown

::
in Figure 8

:
.

Figure 8:
::::::::::
Performance

::
of

:::::::
GEnBP

::
in

:::
the

::::::::
emulator

:::::::
domain

:::::::::
adaptation

::::::::
problem.

::::::
Graph

:::::
shows

:::
the

::::::::
maximum

:::::
mean

::::::::::
discrepancy

:::::::
between

:::
the

::::::::::::::::::::
observation-conditional

::::
state

::::::::::
distribution,

:::
the

:::::::::
un-adapted

::::::::
emulator,

:::
and

::::
the

:::::::
domain

:::::::
adapted

::::::::
emulator

::
in

:::::
terms

:::
of

:::::::::
Maximum

:::::
Mean

:::::::::::
Discrepancy

:::::
with

::
an

:::::::
isotropic

::::::::
Gaussian

:::::
kernel

::
of
::::::
width

:::
0.1.

:
.
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X1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

r3 r4 r6

t1 t3 t5 t7

Oceanic physics model

Atmospheric physics model

Phased radar observations

Thermal IR satellite imagery

Figure 9: A complicated graphical model structure arising from a weather prediction problem.
The model includes an oceanic physics simulator, an atmospheric physics simulator, phased radar
observations, and thermal IR satellite imagery. The model is high-dimensional, noisy, and governed
by nonlinear partial differential equations.

C MINIMUM VIABLE INTRODUCTION TO PROBABILISTIC GRAPHICAL MODELS

x̂0 x̂1 x̂2 . . . x̂t

x0 x1 x2 . . . xt

y1 y2 . . . yt

w

u

Figure 10:
:::::::
Directed

::::::
graph

::
of

::::
the

:::::::::
generative

::::::
model

:::::
Memu:::

in
:::
an

:::::::::
emulation

::::::::
problem,

:::::::
showing

:::::::::::
dependencies

::::
over

::::
time

:::::
steps

::::::::::::::::
t = 0, 1, 2, . . . , T .

:::::::::
Observed

::::::::
variables

::
yt:::

are
:::::::

shaded.
:::::

The
:::::
global

::::::::
parameter

::
w

::
is

:::
the

:::::::
marginal

:::
of

::::::
interest.

The field of probabilistic graphical models is mature and vast. We refer the reader to (e.g. Koller &
Friedman, 2009; Wainwright & Jordan, 2008) for a thorough introduction. A miniature introduction
sufficient for this paper may be found here.

For the purposes of the current paper, it is sufficient to understand that this is the framework that we
use to enable inference in complicated hierarchical systems with partial observations. Consider, for
example, the hierarchical process in Figure 9, which is a simplified representation of a weather model.
An oceanic physics simulator and an atmospheric physics simulator provide forward predictions of
the state of the ocean and atmosphere, and influence each other through physical coupling. Each of
these dynamic systems is observed on a different time schedule by some form of telemetry (thermal
satellite imagery for the oceans, phase radar for the atmosphere). All observations and state are
high-dimensional, noisy and governed by nonlinear partial differential equations, including the
observation models. Our primary target of inference is the 1-step ahead forward prediction for the
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atmosphere model. We could imagine many extensions of this, for example, to simultaneously learn
the parameters of the observation or physics models as we learn their states.

Figure 10
::
by

:::::::
contrast

::::::
shows

:
a
::::::
model

:::::
closer

::
to

:::
the

::::::
system

:::::::::::
identification

:::::::
problem

:::
we

:::::::
consider

:::
in

::
the

::::::::::
experiments

::
of Section 4

:
.
::
In

::::
this

:::::
model

:::
we

::::
have

:::::::::
supplement

:::
the

::::::
system

:::::::::::
identification

:::::::
problem

:::::
which

::::
tried

::
to

::::::
recover

::
u
::::
with

:::
an

:::::::::
additional

:::::::
problem

:::
that

::::::::
attempts

::
to

:::::::
recover

::
an

::::::::
emulator

::::
(for

:::::::
example

:
a

:::::
neural

::::::::
network)

:::::
which

::::
can

::::::
predict

:::
an

::::::::::::
approximation

::̂
xt::

of
::::

the
::::::
system

::
at

::::
time

:
t
:::::

from
:::
the

:::::::
previous

:::::::
emulated

::::
state

:::::
x̂t−1.

::::
That

:::
is,

:::
we

:::
aim

::
to

::::::
predict

::
a

:::
map

:::::
from

::::::::
uncertain

:::::
latent

:::::
states

::
to

::::::::
uncertain

::::
states

::
by

:::::::::
recovering

:
a
::::::::

posterior
::::::::::
distribution

:::
for

:::::
neural

:::::::
network

:::::::
weights

::
w

::
to
:::::::::
maximise

:::
the

::::::
quality

::
of

:::
this

:::::::::
prediction,

::::::
without

::::::
access

::
to

:::
the

:::
true

:::::
states

:::
xt :::::

except
:::::::
through

:::::
noisy

::::::::::
observations

:::
yt.:

Graphical model formalisms provide a means of estimating states and parameters in these systems;
the essential idea is that if we can find a set of rules that work for inference for arbitrary models,
then we can apply them to complicated models like this. This paper introduces such a generic set of
rules, which in-principle applies ot arbitrarily complex graphical models, although scaling up to the
complexity of the model in Figure 9 is out of scope for a short methodological paper such as this.

C.1 DIRECTED GRAPHS AND FACTOR GRAPHS

We begin with the structural equations defining the model. By sampling from the distribution over
these ancestral variables then iteratively applying the generative model (Eq. 28), we obtain samples
from the joint prior distribution of all random variates from the model. The state is jointly

x =

xO1

...
xOJ

 =

P1(xI1)
...

PJ(xIJ
)

 . (28)

The following conditions must hold for this to define a valid structural equation model

1. ∀j,Oj ∩Ij = ∅ (no self-loop in a step).
2. If v ∈ Oj , then for k > j, v appears only in Ik.

This defines a directed acyclic graph (DAG) over the variables, where the nodes are the variables
and the edges are the generating equations. Each generating equation j induces an associated density
p(xOj |xIj ). The associated joint density is

p(x) =
∏
j

p
(
xOj
|xIj

)
. (29)

Under some mild technical conditions (the local Markov condition, faithfulness and consistence -
see Koller & Friedman (2009)), the representation given by the graph and the structural equations is
equivalent to the joint distribution over the variables. We assume these conditions throughout.

Hereafter we use the following specific generative model as a running example:
x1
x2
x3
x4
x5
x6

 =


P1()
P12(x1)
P13(x1)
P234(x2, x3)
P25(x2)
P456(x4, x5)

 . (30)

It is diagrammed in Figure 11 as a running example of the formalism. Its associated density can be
factorised as

p(x) = p1(x1)p12(x2|x1)p13(x3|x1)p234(x4|x2,x3)p25(x5|x2)p456(x6|x4,x5) (31)

The directed generative modelM, and equivalently, conditional density, corresponds to Figure 11a.

The directed graphical model has the advantage of being intuitive, but it is not the most convenient
for inference.
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Q

L

E

x1 x2

x3 x4 x6

x5

(a) Prior directed graph of generative model M,
p(x) = p1(x1)p12(x2|x1)p13(x3|x1)p25(x5|x2)p234(x4|x2,x3)p456(x6|x4,x5).

Q

L

E

x1 x2

x3 x4 x6

x5

f1

f12

f13

f25

f234 f456

(b) Prior factor graph G for generative model M,
p(x) = f1(x1)f12(x1,x2)f13(x1,x3)f234(x2,x3,x4)f25(x2,x5)f456(x4,x5,x6).

Q

L

x1 x2

x3 x4

f1

f12

f13
f234 f∗456

f∗25

(c) Posterior factor graph G∗ of generative model M after observing x5 and x6,
p(x1,x2,x3,x4|x5,x6) ∝
f1(x1)f12(x1,x2)f13(x1,x3)f234(x2,x3,x4)f

∗
25(x2)f

∗
456(x4)

Figure 11: The graphical model variants used in this paper for example model Figure 11: (a) prior
generative graph, (b) prior factor graph, and (c) posterior factor graph; each with query nodes
Q = {1}, latent nodes L = {2, 3, 4}, and observed nodes E = {5, 6}.

The factor graph form (Frey et al., 1997; Kschischang et al., 2001) discards the directions of the
arrows induced by the generative models and works only with generic factors, transforming

p(x1|x2)→ f(x1,x2). (32)

Our running example density (Eq. 31) becomes

p(x) = f1(x1)f12(x1,x2)f13(x1,x3)f234(x2,x3,x4)f25(x2,x5)f456(x4,x5,x6). (33)

The corresponding factor graph is shown in Figure 11b. The factor graph is a bipartite graph with
nodes corresponding to both variables and factors. This representation has the advantage that the
associated approximate belief-updating message-passing rules are simple and local. These rules we
introduce in Section C.2.

We introduce one final graph transformation of use in this paper, which produces the conditional
graph. We recall that in practice we are interested in the evidence-conditional, posterior distribution,

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

xQ given the evidence variables xE = x∗
E , (Eq. 2) i.e.

p(xQ|xE=x∗
E ) =

p(xQ,xE=x∗
E )

p(xE=x∗
E )

(34)

=

∫
p(xQ,xL ,xE=x∗

E )dxL∫
p(xQ,xL ,xE=x∗

E )dxQdxL
. (35)

This can also be represented as a factor graph, as shown in Figure 11c. The rule in this case is
simply to use the factor graph corresponding to the factorisation induced by the posterior, which has
a slightly different set of factors, since the observed nodes are no longer random, e.g.

p(xQ|xE=x∗
E ) ∝ p1(x1)p12(x2|x1)p13(x3|x1)p234(x4|x2,x3)p25(x2|x5=x∗

5)p456(x4|x5=x∗
5,x6=x∗

6)
(36)

∝ f1(x1)f12(x1,x2)f13(x1,x3)f234(x2,x3,x4)f
∗
25(x2)f

∗
456(x4). (37)

C.2 FACTOR GRAPH GAUSSIAN BELIEF PROPAGATION

Basic loopy belief propagation (Murphy et al., 1999) is a simple and efficient algorithm for approx-
imate inference of marginals over certain variables in factor graphs. There is a rich literature on when
and how this algorithm converges to the true marginal, (Wainwright & Jordan, 2008; Yedidia et al.,
2005). We do not concern ourselves with those details in this work, but simply follow industrial
practice (e.g. Dellaert & Kaess, 2017) in treating it as a good enough approximation for our purposes.
Following the terminology of Ortiz et al. (2021).
Proposition 1 (Belief Propagation on Factor Graphs). By iteratively and synchronously propagating
the following messages between all nodes in the factor graph,

mfj→xk =

∫ (
fj
(
xNj

)∏
i∈Nj\k

mxi→fj

)
dxNj\k, (5)

mxk→fj =
∏

s∈Nk\j
mfs→xk . (6)

BP approximates the marginals for each variable by the product of incoming messages,

bG (xk) =
∏

s∈Nk

mfs→xk ≈
∫
p(x) dx\k. (7)

The factor graph belief propagation algorithm for generic factor graphs using these messages is
presented in Algorithm 1.

Algorithm 1 Loopy Low-rank Belief Propagation over Factor Graph G
Require: Factor graph G with variable nodes {xk}k and factor nodes {fj}j
Require: Initial messages xk → fj and fj → xk
Ensure: Approximate marginal beliefs b(xk) for all xk ∈ G

1: Initialize message queues Qxk→fj and Qfj→xk to be empty
2: while not converged do
3: for each factor fj ∈ G do
4: for each variable xk ∈ Nfj do
5: Send factor to variable message (Eq. 5) to each neighbour
6: end for
7: end for
8: for each variable xk ∈ G do
9: for each factor fj ∈ Nxk do

10: Send variable to factor message (Eq. 6) to each neighbour
11: end for
12: Update belief b(xk) (Eq. 7)
13: end for
14: Check for convergence criteria
15: end while
16: Return b(xk) for all xk ∈ G
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C.3 GAUSSIAN FACTOR UPDATES

Finally we note that the factor graph formalism is particularly convenient for Gaussian models, as the
Gaussian density is closed under multiplication, conditioning and marginalisation. We introduced
this in Section 2.2.3, but write it out in full here.

As an exponential family distribution (Wainwright & Jordan, 2008), it become convenient to work
with Gaussians in canonical form (Eustice et al., 2006). We write ϕM (x;m,K) for ϕM the Gaussian
density with moment parameters mean m and covariance K.
Proposition 5. As in Definition 1, we partition the random vector

xj ∼ ϕM
([

xk

xℓ

]
;

[
mk

mℓ

]
,

[
Kkk Kkℓ

Kℓk Kℓℓ

])
. (38)

We define K̂ := (K−1
jj + K′

jj
−1)−1. Where the node and factors are Gaussian, the operations of

Definition 1 have the following form,

Conditioning: ϕM (xj ;mj ,Kjj) ,x
∗
k 7→ ϕM (xℓ;mℓ +KℓkK

−1
kk (x

∗
k −mk),Kℓℓ −KℓkK

−1
kkKkℓ);

(39)
Marginalisation:ϕM (xj ;mj ,Kjj) 7→ ϕM (xk;mk,Kkk) ; (40)

Multiplication: ϕ′M
(
xj ;m

′
j ,K

′
jj

)
, ϕM (xk;mk,Kkk) 7→ ϕM

(
xj ; K̂(K−1

jj mj +K′
kk

−1m′
j), K̂

)
;

(41)

ϕ′C
(
xj ;n

′
j ,P

′
jj

)
, ϕC (xk;nk,Pkk) 7→ ϕC

(
xj ;n

′
j + nj ,P

′ + P
)

Proof: Bickson (2009).

The classic GaBP algorithm includes many more details not captured in these minimal rules. Most
importantly, since GaBP is frequently applied to factors that are not truly Gaussian, it needs a rule for
finding a Gaussian distribution which approximates some factor potential.

C.4 GAUSSIAN APPROXIMATION OF NON-GAUSSIAN FACTOR POTENTIALS

Throughout this section we assume without loss of generality that all factor potentials are bivariate
with x2 = P(x1). If this is not the case, we can stack and relabel the variates to make it bivariate.

The classic choice for approximating the factor potential generated by a nonlinear process is
propagation-of-errors a.k.a. the δ-method (Dorfman, 1938). The δ-method relies upon the ap-
proximation, justified by Taylor expansion, that for a function f and a random variable x1,

Ef(x1) ≈ f(Ex1). (42)

When we estimate, e.g. the joint covariance of the factor potential, we choose

f : [x] 7→
[

x
P(x)

] [
x
P(x)

]⊤
− E

[
x
P(x)

]
E

[
x
P(x)

]⊤
(43)

The difference

EJensen(x1, f) := Ef(x1)− f(Ex1) (44)

is called the Jensen Gap and is one source of error in the linearisation. The Jensen gap may sometimes
be bounded, e.g. in terms of the coefficient of Hölder continuity of f and the moments of x1 (Gao
et al., 2020). In practice, this seems to be rarely done.

Further, P and thus f , for problems of interest is still intractable in even this simplified calculation,
and thus the δ-method further approximates it using a surrogate given by first-order Taylor expansion
about the mean,

f̂(x) ≈ f(Ex1) + ∇x′f(x′)|x′=Ex1
(x− Ex1) (45)

The error for evaluating the expectation of some Taylor approximation f̂ of f is

ETaylor(x1, f, f̂) := Ef(x1)− Ef̂(x1). (46)
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The ultimate approximation of the covariance by the δ method will include both the Jensen gap and
the Taylor error, and additionally the inputs may not even be Gaussian. We can say little generally
about the contribution of all such errors; there do not seem to be any results justifying its optimality in
terms of e.g. a variational bound. In practice we may choose alternative methods based on practical
effectiveness on the problem of interest.

While the δ-method is simple and easy, it is not the only choice, and is empirically not necessarily
favourable in either compute or accuracy, which deficiency we address in the sequel.

D MINIMUM VIABLE INTRODUCTION TO THE ENSEMBLE KALMAN FILTER

The field of Ensemble Kalman methods is mature and vast. We refer the reader to e.g. Evensen (2009)
for a thorough introduction. A miniature introduction sufficient for this paper may be found here.

x1x0 x2

y1 y2

. . .

Figure 12: Generative model for state filtering problem, hidden states xt and observation yt for
t = 1, 2, . . . .

The central idea is the following: given the state-space model (Figure 12) with hidden states xt and
observations yt, we wish to estimate the hidden states given the observations. The joint prior density
of the state and observations is

p(x1,x2, . . . ,xT ,y1,y2, . . . ,yT ) =: p(x0:T ,y1:T ) (47)

=

T∏
t=1

p(xt|xt−1)p(yt|xt). (48)

Filtering leverages the fact that

p(x0:T ,y1:T ) = p(yT |xT )p(xT |xT−1)p(x1:T−1,y1:T ) (49)

so we can solve the problem by induction,

p(x0:T |y1:T ) ∝ p(yT |xT )p(xT |xT−1)p(x1:T−1,y1:T−1) (50)
∝ p(yT |xT )p(xT |xT−1)p(xT−1|y1:T−1). (51)

If we know p(x1:T−1|y1:T−1), to update to a new estimate of p(xT |y1:T ) we only need to be able
to multiply its density by p(xT |xT−1)p(yT |xT ) and normalize; thus we can always calculate an
estimate of the new state given the previous state estimate and the current observations.

Under Gaussianity of all distributions and linearity of all processes (e.g. Petersen & Pedersen (2012))
we can represent this density update in terms of the distribution parameters. For some mT−1,KT−1,

p(xT−1|y1:T−1) = ϕM (xT−1;mT−1,KT−1) (52)

Linearity implies that there exist dT−1, FT−1,QT the forward propagation operator xT =
PT−1(xT−1) of xT is

xT |xT−1 = P(xT−1) (53)
= FT−1xT−1 + dT−1 + ϵT (54)
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where ϵ ∼ N (0,QT ) so that

p

([
xT−1

xT

]∣∣∣∣y1:T−1

)
(55)

= ϕM

([
xT−1

xT

]
;

[
mT−1

dT−1 + FT−1mT−1,

]
,

[
KT−1 KT−1F

⊤
T−1

FT−1KT−1 FT−1KT−1F
⊤
T−1 +QT

])
. (56)

The xT marginal is again Gaussian,

p(xT |xT−1,y1:T−1) = ϕM (xT ; m̃T , K̃T ) (57)

for m̃T = FT−1mT−1 + dT−1 and K̃T = FT−1KT−1F
⊤
T−1 +QT .

It remains to condition on the observation yT . We suppose that the measurement model yT =
HT (xT ) is linear and Gaussian, so that

yT |xT = H(xT ) (58)
= HTxT + eT + εT (59)

where εT ∼ N (0,RT ). The joint density of xT and yT is

p

([
xT

yT

]∣∣∣∣y1:T−1

)
= ϕM

([
xT

yT

]
;

[
m̃T

HT m̃T + eT

]
,

[
K̃T K̃TH

⊤
T

HT K̃T HT K̃TH
⊤
T +RT

])
. (60)

but we can use the standard formula for conditional Gaussian distributions to write
p(xT |y1:T ) = ϕM (xT ;mT ,KT ) (61)

where
KT = K̃T − K̃THT (HT K̃TH

⊤
T +RT )

−1H⊤
T K̃

⊤
T (62)

mT = m̃T +KTH
⊤
T (HT K̃TH

⊤
T +RT )

−1 (yT −HT m̃T − eT ) . (63)
i.e. there is a closed-form update.

In practice, we may want to apply this method where at least one of the the state transition and
observation models is nonlinear. The Extended Kalman Filter (EKF), uses a linearization of the state
transition and observation models to approximate the update. We instead find a linear approximation
to the state transition (Eq. 54) and observation (Eq. 59) models, by propagation of errors, setting

dT−1 ≈ E[PT−1(mT−1)] (64)
FT−1 ≈ ∇xT−1

E[PT−1(mT−1)] (65)
eT ≈ E[HT (m̃T )] (66)
HT ≈ ∇xT

E[HT (m̃T )]. (67)

and QT = σ2I, RT = γ2I are set to some diagonal covariance matrices. This type of linearised
approximation is also used in the GaBP algorithm.

The EnKF takes a different approach to approximate inference, finding sample-based alternatives
to the forward-propagation (Eq. 57) and the observation update (Eq. 61) Where the GaBP and
EKF method summarises inference in terms of the parameters of a Gaussian distribution, the EnKF
summarises the joint distribution in terms of an ensemble of Monte Carlo samples, i.e. a matrix
of N samples, X :=

[
x(n)

]
1≤n≤N

drawn i.i.d. from the prior distribution, x(n) ∼ ϕM (x;m,K).
We reprise the definitions introduced in Section 2.3 by which the statistics of ensemble X define an
implied Gaussian density, x ∼ ϕM (x; X, V̂arVX).

AN :=
[
1
N · · · 1

N

]⊤
, (68)

BN := [1 · · · 1] (69)
CN := IN −ANBN (70)

X := XAN Ensemble mean (71)

X̆ := X−XANBN = XCN . Ensemble deviation (15)

ÊX = X (72)

V̂arVX = 1
N−1 X̆X̆⊤ +V (73)

Ĉov(X,Y) = 1
N−1 X̆Y̆⊤ (74)
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V is a diagonal matrix nugget term, typically set to σ2I.

The EnKF equivalent of the Kalman filter forward joint distribution (Eq. 56) is then[
XT−1

XT

]∣∣∣∣y1:T−1 =

[
XT−1|y1:T−1

P(XT−1|y1:T−1)

]
. (75)

By assumption this means that if we wished to calculate the density of the joint state, it would be

p(xT−1,xT |y1:T−1) = ϕM

([
xT−1

xT

]
;

[
ÊXT

Ê[P(XT )]

]
,

[
V̂arVXT Ĉov(XT ,P(XT ))

Ĉov(P(XT ),XT ) V̂arUP(XT )

])
.

(76)
The marginal (Eq. 57) is simply the truncation of the above.

It turns out that we never need to explicitly evaluate such a density, because of the following result:
Proposition 2. Partition x⊤ =

[
x⊤k x⊤ℓ

]
such that X⊤ =

[
X⊤

k X⊤
ℓ

]
. Assume the ensemble X

follows the Gaussian distribution:

X ∼ ϕM

([
xk

xℓ

]
;

[
Xk

Xℓ

]
,

[
V̂arVXk Ĉov(Xℓ,Xk)

Ĉov(Xk,Xℓ) V̂arV(Xℓ)

])
. (16)

In ensemble form, conditioning (Eq. 9) is performed as:

X,x∗
k 7→ Xℓ + Ĉov(Xℓ,Xk)V̂ar

−1

V (Xk)(x
∗
kB−Xk) (17)

The computational cost of solving Equation 17 is O(N3 + N2Dxk).:Marginalization (Eq. 10) is
simply truncation, i.e., X 7→ Xk.

Proof: The equality Equation 17 follows from 6 with the substitution of Equation 16.

Notably we do not need to construct V̂arV(Xℓ), and can use Woodbury formula to efficiently solve

the linear system involving V̂ar
−1

V (Xk).

We can use this to calculate an observation-conditional update, since[
XT

YT

]∣∣∣∣y1:T−1 =

[
XT |y1:T−1

H(XT |y1:T−1)

]
. (77)

We can use Equation 17 to calculate XT |y1:T by using yT as the observations x∗
k in the update. We

have thus obtained sampled from the filtered distribution without ever evaluating its density.

D.1 GAUSSIAN APPROXIMATION OF NON-GAUSSIAN FACTOR POTENTIALS

As with the the GaBP, the EnKF is frequently applied to non-Gaussian distributions. Unlike the
GaBP, we never use the δ-method. Instead, the empirical joint (Eq. 77) already finds the moments
of an approximating distribution. The price we pay that as a stochastic approximation, we have
now introduced aleatoric noise to the estimate. Despite this, the EnKF approximation is often more
accurate than the GaBP, a fact intensely studied in the literature (Furrer & Bengtsson, 2007, e.g.),
although once again few actionable analytic results are available Le Gland et al. (2009); Kelly et al.
(2014). Empirically, EnKF is nonetheless frequently SOTA.

Heuristically, we argue that this is because the EnKF samples from the full joint distribution. This
avoids accruing error via the Jensen gap (Eq. 43) or the Taylor expansion approximation (Eq. 45) used
in the GaBP, which samples only the mean. Explicitly, the propagation of errors in GaBP produces
approximations like the following

V̂ar
GaBP

[
x1
x2

]
≃
[

Var x1 J(m1)Var x1
Var x1J(m1)

⊤ J(m1)Var x1J⊤(m1)

]
(78)

where J(x) is the Jacobian matrix of P at x. In the EnKF, the joint variance is modeled by empirical
samples,

V̂ar
EnKF

[
x1
x2

]
≃ V̂arσ2I

[
x(1) · · · x(N)

P(x(1)) · · · P
(
x(N)

)] (79)

= σ2I +

[
x(1) · · · x(N)

P(x(1)) · · · P
(
x(N)

)] [ x(1) · · · x(N)

P(x(1)) · · · P
(
x(N)

)]⊤ . (80)
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The relative quality of each of these updates is nontrivial to discover. Noting, however, that the
EnKF estimates are frequently better in practice, and, as demonstrated at length in this paper, can be
made computationally more efficient in high dimensions, we find out motivation for exploring the
generallisation

:::::::::::
generalisation

:
of the EnKF that drives the GEnBP algorithm.

E MATHERON UPDATES FOR GAUSSIAN VARIATES

The pathwise Gaussian process update (Matheron update), credited to Matheron by Wilson et al.
(2021); Doucet (2010) is a method of simulating from a conditional of some jointly Gaussian variate.
If [

y
w

]
∼ N

([
my

mw

]
,

[
Kyy Kyw

Kwy Kww

])
(81)

then the moment of the w-conditional distribution are

E[y | w=w∗] = my +KwyK
−1
ww(w

∗ −mw) first moment (82)

Var[y | w=w∗] = Kyy −KwyK
−1
wwKyw. second moment (83)

Proposition 6. For
[
y
w

]
as in Equation 81, the variates in the following mapping

y,w,w∗ 7→ y +KwyK
−1
ww(w

∗ −w) (84)

satisfy the moment conditions (Eq. 82) and (Eq. 83) and thus (y+KwyK
−1
ww(w

∗−w))
d
= (y | w=w∗).

Proof: Taking moments of Equation 84

E
[
y +KwyK

−1
ww(w

∗ −w)
]
= my +KwyK

−1
ww(w

∗ −mw)

Var
[
y +KwyK

−1
ww(w

∗ −w)
]

= Var[y] + Var[KwyK
−1
ww(w

∗ −w)] + Var(y,KwyK
−1
ww(w

∗ −w)) + Var(y,KwyK
−1
ww(w

∗ −w))⊤

= Kyy +KwyK
−1
wwKwwK

−1
wwKyw − 2KywK

−1
wwKwy

= Kyy −KwyK
−1
wwKyw

we see that both first and second moment conditions are satisfied.

Note that this update does not require us to calculate Kyy and further, may be conducted without
needing to evaluate the density of the observation.

F DIAGONAL MATRICES WITH LOW-RANK PERTURBATION

Suppose the K = V + sLL⊤ where L is a D × N matrix, I is D × D and V = diag(v and
s ∈ {−1, 1}) is the sign of the matrix. We are primarily interested in such matrices in the case
that N ≪ D, which case we have called Diagonal Matrix with Low-rank perturbation, when their
computational properties are favourable for our purposes. This is in contrast to matrices with no
particular exploitable structure, which we refer to as dense.

Throughout this section we assume that the matrices in question are positive definite; and that all
operations are between conformable operations. We refer to the matrix L as the component of the
DLR matrix, and the diagonal matrix V

::
as

:::
the

::::::
nugget

::::
term,

:::
by

:::::::
analogy

::::
with

::::::
classic

::::::
kriging.

If N ≥ D the name is misleading since they are not truly low-rank; the identities we write here still
hold, but are not computationally expedient.

F.1 MULTIPLICATION BY A DENSE MATRIX

The matrix product of an arbitrary matrix with a DLR matrix may be calculated efficiently by grouping
operations, since KX = VX ± U(U⊤X), which has a time cost of O(ND2) and which may be
calculated without forming the full matrix K. The result is not in general also a DLR matrix.
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F.2 ADDITION

The matrix sum of two DLR matrices with the same sign is also a DLR matrix. Suppose K =
V+ sLL⊤,K′ = V′ + sL′L′⊤,

K+K′ = V+V′ + sLL⊤ + sL′L′⊤ (85)

= V+V′ + s [L L′] [L L′]
⊤
. (86)

The new matrix, is also DLR with has nugget term V+V and component [L L′].

F.3 DLR INVERSES OF DLR MATRICES

Inverses of DLR matrices are once again DLR matrices, and may be found efficiently.
Proposition 7. Choose DLR K = V+ LL⊤, i.e. with sign s positive. Then its inverse

K−1 = V−1 − RR⊤ (87)
is also DLR, of the same component dimension, but with a negative sign, with

R = V−1L chol
((

I + L⊤V−1L
)−1
)
. (88)

where chol(A) denotes a decomposition chol(A) chol(A)⊤ = A.

Proof: Using the Woodbury identity,

K−1 = V−1 −V−1L
(
I + L⊤V−1L

)−1
L⊤V−1

= V−1 − RR⊤.

Proposition 8. Choose DLR P = U− RR⊤, i.e. with sign s negative. Then its inverse

P−1 = U−1 − LL⊤ (89)
is also DLR, of the same component dimension, but with a positive sign, with

L = U−1Rchol
((
−I + R⊤U−1R

)−1
)
. (90)

Proof: Using the Woodbury identity,

P−1 = U−1 −U−1R
(
−I + R⊤U−1R

)−1
R⊤U−1 (91)

= U−1 + LL⊤ (92)

We have introduced chol(A) to construct Cholesky factors. The cost of the inversion is the same for
both, O

(
N2D +N3

)
— O(N3) for the construction of the Cholesky factor, and O(DN2) for the

requisite matrix multiplies. The space cost is O (ND).

For a given K = V+ sLL⊤, the term
(
sI + L⊤V−1L

)
is referred to as the capacitance of the matrix

by convention.

F.4 EXACT INVERSION WHEN THE COMPONENT IS HIGH-RANK

Suppose P = U− RR⊤ where the D ×N components high rank, in the sense that N > D. Then
the low rank inversion to calculate P−1 is no longer cheap, since the O(ND) cost is greater than
naive inversion of the dense matrix, at O(D3). In this case, it is cheaper to recover a DLR inverse
by an alternate method. Note that (U − P)−1 = U−1 − U−1(U−1 − P−1)−1U−1. We find the
eigendecomposition

P−1 = U−1 + LL⊤ (93)

for some L. Such an L is given by L = QΛ1/2 for QΛQ⊤ = P−1 −U−1 a spectral decomposition.
In the case that the diagonal U is constant this may be found more efficiently.

If, instead, we wish to invert K = V+ LL⊤ we need to find (−V+K)−1 = −V−1 −V−1(K−1 −
V−1)−1V−1, so we decompose instead QΛQ = V−1(K−1 −V−1)−1V−1 and define R = QΛ−1/2.
Then the DLR form of the inverse is −V−1 − RR⊤.
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F.5 REDUCING COMPONENT RANK

We use the SVD to efficiently reduce the rank of the components in the DLR matrix in the sense of
finding a Frobenius-distance-minimising approximation.

Suppose K = V+ LL⊤ where L is a D ×M matrix, I is D ×D and V = diag(v). Let YSZ⊤ be
the “thin” SVD of L, i.e. Y ∈ RD×M ,S ∈ RM×M ,Z ∈ RM×M with Y⊤Y = IN ,Z

⊤Z = IN , and
S diagonal with non-negative entries. Then

LL⊤ = YSZ⊤ZSY⊤ = YS2Y⊤.

First we note that should any singular values in S be zero, we may remove the corresponding columns
of Y and Z without changing the product, so their exclusion is exact. Next, we note that if we choose
the largest S singular values of S, setting the rest to zero, we obtain a Frobenius approximation of
LL⊤ of rank S.

An SVD that captures the top N singular values may be found by randomised methods (Halko et al.,
2010, 6.1) at a cost of O(ND logN +N2(D +N)).

G GAUSSIANS WITH DLR PARAMETERS

We recall the forms of the Gaussian density introduced in section Section 2.2.3, in moments form
using the mean m and covariance matrix K,

x ∼ N (m,K) = N (E[x],Var(x)).

and the canonical form,

x ∼ NC(n,P) = NC(Var
−1(x)E[x],Var−1(x)).

which uses the information vector n and the precision matrix, P with n = K−1m, P = K−1. The
(equivalent) densities induced by these parameterisations are

f(x) ∝ 1

2
(x−m)⊤K−1(x−m) =

1

2
x⊤Px− n⊤x

We associate a given Gaussian ensemble with a moments-form Gaussian in the natural way,

Xσ2 ∼ N (m,K) = N (Ê[X], V̂arσ2(X))

introducing a parameter σ2 which we use to ensure invertibility of the covariance if needed.

We associate with each moments-form Gaussian a canonical form which may be cheaply calculated
by using the by using the low-rank representation of the covariance by Proposition 7,

Xσ2 ∼ N (m,K)

m = Ê(X) = X

K = V̂arσ2(X) = σ2 + X̆X̆⊤

⇔
Xσ2 ∼ NC(n,P)

n = V̂ar
−1

σ2 (X)Ê(X) = PX

P = V̂ar
−1

σ2 (X) = σ−2I− RR⊤.

where we introduced R = X̆ chol

((
I + σ−2X̆⊤X̆

)−1
)

.

We may recover m and K from n and P by

K = P−1

m = P−1n.

this time using the alternative low rank inverse formula, Equation 8.
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H GENBP DETAILS

H.1 GENBP ALGORITHM

Here we expand the steps of the GEnBP algorithm, itemising the matrix operations needed to conduct
the Gaussian updates while mataining the DLR forms for the matrix parameters.

Algorithm 2: GEnBP

Require: Graph G, set of generative processes {Pj}j , observations xE , ancestral sample XA .
Ensure: Observation-conditional sample X∗

Q.
1: while not converged do
2: Sample ensemble from the generative processes Pj on G using (Eq. 3)
3: Convert G into the conditional graph G∗ by conditioning observed factors (Eq. 8) using

(Eq. 17)
4: Convert variables and factors to DLR canonical form {Section 3.1}
5: Propagate DLR messages on G∗ {Section H.2/Algorithm 3}
6: Conform ancestral nodes to belief T (X∗

Q) ∼ bG∗(xA ) {Section 3.3}
7: end while
8: Return Approximate posterior sample X∗

Q.

H.2 GENBP FACTOR-TO-VARIABLE MESSAGE

We outline the steps in a GEnBP fj → xk factor-to-variable message with a single incoming message
xℓ → fj . The message is Gaussian with canonical parameters n,P and the incoming message is
Gaussian with canonical parameters n′,P′. The message is updated to n′′,P′′ and passed to the
variable node. Extending this to multiple incoming messages is straightforward by iteration.

Algorithm 3: GEnBP fj → xℓ factor-to-variable message with a single incoming xk → fj

Require: Factor fj canonical parameters:

• Information vector: n =

[
nℓ

nk

]
• Precision matrix in DLR form: P = U− RR⊤, where:

– U = diag

([
uℓ

uk

])
– R =

[
Rℓ

Rk

]
– Rℓ ∈ RDℓ×N , Rk ∈ RDk×N

Require: Incoming message xk → fj canonical parameters:
• Information vector: n′

k ∈ RDk

• Precision matrix in DLR form: P′
k = U′

k − R′
kR

′
k
⊤, where:

– U′
k = diag (u′

k)

– R′
k ∈ RDk×N ′

Ensure: Outgoing message fj → xℓ canonical parameters:
• Information vector: n′

ℓ

• Precision matrix in DLR form: P′
ℓ = U′

ℓ − R′
ℓR

′
ℓ
⊤

1: Combine information vectors: ñk ← nk + n′
k

2: Combine precision diagonals: ũk ← uk + u′
k

3: Concatenate low-rank components: R̃k ← [Rk R′
k]
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4: Form joint information vector: nΠ ←
[
nℓ

ñk

]
5: Form joint precision diagonal: UΠ ← diag

([
uℓ

ũk

])
6: Form joint low-rank component: RΠ ←

[
Rℓ 0
Rk R′

k

]
7: Form joint precision matrix: PΠ ← UΠ − RΠR

⊤
Π

8: Compute joint covariance: KΠ ← P−1
Π = VΠ + LΠL

⊤
Π

9: Compute joint mean: mΠ ← KΠnΠ

10: Extract marginal mean for xℓ: mℓ ←mΠ[1:Dℓ]
11: Extract marginal covariance for xℓ:

• Diagonal component: Vℓ ← VΠ[1:Dℓ, 1:Dℓ]
• Low-rank component: Lℓ ← LΠ[1:Dℓ, :]
• Marginal covariance: Kℓ ← Vℓ + LℓL

⊤
ℓ

12: Reduce rank of Kℓ to N :
• SVD: Lℓ = ASB⊤

• Top N components L′
ℓ = A[:,1:N ]S[1:N,1:N ]

• Updated covariance: Kℓ ← Vℓ + L′
ℓL

′
ℓ
⊤

13: Compute marginal precision: P′
ℓ ← K−1

ℓ = U′
ℓ − R′

ℓR
′
ℓ
⊤

14: Compute marginal information vector: n′
ℓ ← P′

ℓmℓ

15: return n′
ℓ, P

′
ℓ

H.3 ENSEMBLE RECOVERY

Suppose that after belief propagation we update our belief about a given query variable node to
b(xQ) ∼ NM (xQ;m,KQ). In the Ensemble message passing setting we have DLR KQ = VQ +
LQL⊤

Q. In order to convert this belief into ensemble samples, we choose the transformation T which
maps prior ensemble XQ from the previous iterate to an updated ensemble X′

Q = T (XQ) such that
the (empirical) ensemble distribution is as similar as possible, in some metric d toNM (xQ;m,KQ),
Hereafter we suppress the subscript Q for compactness, and because what follows is generic for
ensemble moment matching. This amounts to choosing

T = argmin
T∗

d(NM (·, ÊT (X), V̂arσ2T (X)),NM (·;m,K)), (94)

We wish to do this without forming K ∈ RD×D, which may be prohibitively memory expensive,
by exploiting its DLR decomposition. We restrict ourselves to the family of affine transformations
Tµ,T : X 7→ µB+ X̆T where the parameters µ ∈ RD,T ∈ RN×N must be chosen. If we minimise
between the belief and ensemble distributions empirical covariances, the solution is

µ = ÊX (95)

T = argmin
T

∥∥∥V̂arσ2(X̆T)−K
∥∥∥2
F

(96)

= argmin
T

∥∥∥V̂arσ2(T (X))− LL⊤ −V
∥∥∥2
F

(97)

= argmin
T

∥∥∥∥∥ X̆TT⊤X̆⊤

N − 1
−V−σ2 − LL⊤

∥∥∥∥∥
2

F

, (98)

Here we have introduced V−σ2 := V − σ2I. Note that minimisers of L with respect to T are not
unique, because L depends only on TT⊤. For example, we may take any orthogonal transformation
U of T and obtain the same (TU)(TU)⊤ = TUU⊤T⊤ = TT⊤. We instead optimise M = TT⊤

over the space of N × N PSD matrices MN
+ = {M ∈ RN×N | M = M⊤,M ⪰ 0}. That is, we

consider the problem

M∗ = argmin
M∈MN

+

L(M) (99)
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where

L(M) := argmin
M

∥∥∥ 1

N − 1
X̆MX̆⊤ − LL⊤ −V−σ2

∥∥∥2
F
. (100)

This is a convex problem in M. The derivatives are given by (Laue et al., 2018; 2020)

∇ML =
2

N − 1
X̆⊤

(
X̆MX̆⊤

N − 1
− LL⊤ −V−σ2

)
X̆

=
2

N − 1

(
X̆⊤X̆MX̆⊤X̆

N − 1
− (X̆⊤L)(X̆⊤L)⊤ − X̆⊤V−σ2X̆

)
An unconstrained solution in M′ may be found by setting the gradient to zero,

X̆⊤X̆M′X̆⊤X̆ = (N − 1)
(
X̆⊤L(X̆⊤L)⊤ + X̆⊤V−σ2X̆

)
.

This linear system may be solved at O(N3) cost for the ensemble size N . As X̆⊤X̆ is Hermitian we
also economise by using specialised methods such as pivoted LDL decomposition. Using the same
decomposition we also find the required M∗ = TT⊤, choosing T = U(S+)1/2. By careful ordering
of operations we may calculate the RHS with costO(DM2) for a total cost ofO(N3+DN2+DM2).

I ALTERNATIVE LINEARISATIONS AND LOW RANK DECOMPOSITIONS

In response to a reader question, we investigate whether GEnBP is “just” a low-rank decomposition of
the GaBP algorithm. We argue that it is not. Rather the relationship is that diagrammed by Figure 13.
Although the GEnBP and GaBP algorithms both use Gaussian approximations, they do not use the

Linear Gaussian
Kalman Filter

Extended
Kalman Filter

Ensemble
Kalman Filter

δ-
meth

od

En
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mbl
in

g

Linear Gaussian
Belief Propagation

Nonlinear
Gaussian Belief

Propagation
(GaBP)

Gaussian Ensemble
Belief Propagation

(GEnBP)

δ-
meth

od

Ens
em

bli
ng

Belief propagation

Belief propagation

Belief propagation

Figure 13: Relationship between GEnBP and GaBP.

same Gaussian approximations. This is why we observe in Section 4 that GEnBP is able to surpass
GaBP in accuracy and not just speed. We noted in Appendix C.3 that GaBP include not only a choice
of Gaussian density family, which it shares with GEnBP, but also a particular means of approximating
nonlinear factors which it does not. That apparently minor difference has large implications. We
expand upon some of the differences and implications in this section.
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Consider how the joint density of a factor x2 = P(x1) to make the differences explicit. For the
sake of simplicity, suppose D1 = D2 = D. Two alternatives for covariance estimation have been
discussed in this work: GaBP uses propagation of errors,

Var

[
x1
x2

]
≃
[

Var x1 J(m1)Var x1
Var x1J(m1)

⊤ J(m1)Var x1J⊤(m1)

]
(101)

where J(x) is the Jacobian matrix of P at x. GEnBP, by contrast, uses the empirical estimate

Var

[
x1
x2

]
≃ V̂arσ2I

[
x(1) · · · x(N)

P(x(1)) · · · P
(
x(N)

)] . (102)

As noted in Section 3.4, the costs of Equation 102 is greater than Equation 101 both in time and
space. There are two components to this cost:

Firstly, the cost of generating the ensemble (in GenBP) and the Jacobians (in GaBP). In GEnBP, we
need to generate N samples from the prior distribution, so the cost here scales as N in general. The
cost of calculating the Jacobian for the GaBP depends on the function but in general is O(D).

Secondly, taking the matrix products in each of these covariance matrices. The matrix multiplication
in Equation 101 is O(D3), since it involved the product of three D ×D matrices. The empirical
covariance calculation in Equation 102 is O(DN). We note that it would be O(D2N) if we were to
calculate the full covariance matrix in GEnBP, but the central lesson of this paper is that we never
need to calculate that product, and it suffices to calculate the deviance matrices.

It seems that at this stage, GEnBP dominates when N < D. We note that in the subsequent belief
propagation the story is more complicated but that GEnBP has generally cheaper belief propagation
steps (except where node degree is high). We might ask if GaBP can also benefit from these low-rank
belief updates.

Suppose we wished to construct a 3rd option, a low rank GaPB (LRGaBP) which used a low-rank
decomposition of the covariance matrix to conduct approximate GaBP. First, we would find rank N
decomposition of the prior covariance Var x1 ≈ LL⊤, with L ∈ RD×N , say by eigendecomposition,
which is naively a D3 operation, orO(D2 logN +N2D+N3) by the method of (Halko et al., 2010,
6.1). The joint variance arising from the propagation-of-errors/δ-method (Dorfman, 1938) is

Var

[
x1
x2

]
≃
[

Var x1 J(m1)Var x1
Var x1J(m1)

⊤ J(m1)Var x1J⊤(m1)

]
(103)

=

[
LL⊤ J(m1)LL

⊤

LL⊤J(m1)
⊤ J(m1)LL

⊤J⊤(m1)

]
(104)

=

[
L

J(m1)L

] [
L

J(m1)L

]⊤
(105)

This is indeed a low-rank decomposition, amenable to similar tricks as the other low-rank tricks
outlined in Appendix F. However, it is not computationally competitive. J is D ×D so the product
costs O(D2N), plus the O(D) cost of calculating the Jacobian. We summarise the costs of this
hypothetical LRGaBP step in Table 3. Notably, while the precise relationship between the algorithms
depends upon the exact problem structure, we should generally expect GEnBP to be more efficient
than LRGaBP for high dimensional problems for a fixed N , since GEnBP is never worse than
LRGaBP, and in many cases has a lower exponent in D.

Further, since LRGaBP is an approximation to GaBP, the accuracy of LRGaBP to be bounded above
by the accuracy of GaBP. GEnBP, as a different approximation to the target estimand, has no such
restriction.
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Table 3: Computational Costs for Gaussian Belief Propagation, Ensemble Belief propagation, and the
hypothetical Low Rank Gaussian Belief Propagation for node dimensionD, ensemble size/component
rank N .

Operation GaBP GEnBP LRGaBP

Time

Simulation O(1) O(N) O(1)
Error propagation O(D3) — O(D2N)

Jacobian calculation O(D) — O(D)
Covariance SVD — O(N3 +N2D) O(D2 logN +N3 +N2D)

Space Covariance Matrix O(D2) O(ND) O(ND +D3)
Precision Matrix O(D2) O(ND) O(ND)
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