
EDML for Learning Parameters in Directed and Undirected
Graphical Models

Khaled S. Refaat krefaat@cs.ucla.edu
Arthur Choi aychoi@cs.ucla.edu
Adnan Darwiche darwiche@cs.ucla.edu

Computer Science Department, University of California, Los Angeles, CA 90095 USA

Abstract

EDML is a recently proposed algorithm for
learning parameters in Bayesian networks. It
was originally derived in terms of approxi-
mate inference on a meta-network which un-
derlies the Bayesian approach to parame-
ter estimation. While this initial derivation
helped discover EDML in the first place and
provided a concrete context for identifying
some of its properties (e.g., in contrast to
EM), the formal setting was somewhat te-
dious in the number of concepts it drew on.
In this paper, we propose a greatly simpli-
fied perspective on EDML which casts it as
a general approach to continuous optimiza-
tion. The new perspective has several advan-
tages. First, it makes immediate some re-
sults that were non-trivial to prove initially.
Second, it facilitates the design of EDML al-
gorithms for new graphical models, leading
to a new algorithm for learning parameters
in Markov networks. We derive this algo-
rithm in this paper, and provide an empirical
comparison with a commonly used gradient
method, showing that EDML can find better
estimates several times faster.

1. Introduction

EDML is a recently proposed algorithm for learning
MAP parameters of a Bayesian network from incom-
plete data (Choi et al., 2011; Refaat et al., 2012).
EDML is procedurally very similar to Expectation
Maximization (EM) (Dempster et al., 1977; Lauritzen,
1995), yet EDML was shown to have certain advan-
tages, both theoretically and practically. Theoreti-
cally, EDML can in certain specialized cases prov-
ably converge in one iteration, whereas EM may re-
quire many iterations to solve the same learning prob-

lem. Some empirical evaluations further suggested
that EDML and hybrid EDML/EM algorithms could
find better parameter estimates than vanilla EM, in
fewer iterations and less time.

EDML was originally derived in terms of approximate
inference on a meta-network used for Bayesian ap-
proaches to parameter estimation; see, for example,
Figure 2. This graphical representation of the esti-
mation problem lent itself to the initial derivation of
EDML, as well to the identification of certain key the-
oretical properties, such as the one we just described.
The formal details, however, can be somewhat tedious
as EDML draws on a number of different concepts. We
review EDML in such terms in Appendix B.

In this paper, we propose a much simpler perspective
on EDML, which views it more abstractly in terms of a
simple method for continuous optimization, which we
describe. This new perspective has a number of ad-
vantages. First, it makes immediate some results that
were previously obtained for EDML, but through some
effort. Second, it facilitates the design of new EDML
algorithms for new classes of models, where graphical
formulations of parameter estimation, such as meta-
networks, are lacking. Here, we derive in particu-
lar a new parameter estimation algorithm for Markov
networks, which is in many ways a more challenging
task, compared to the case of say Bayesian networks.
Empirically, we find that EDML is capable of finding
better parameter estimates, under complete data, sev-
eral times faster than more popular approaches like
conjugate-gradient methods.

This paper is structured as follows. In Section 2,
we highlight a simple iterative method for (approxi-
mately) solving continuous optimization problems. In
Section 3, we formulate the EDML algorithm for pa-
rameter estimation in Bayesian network, as an instance
of this optimization method. In Section 4, we derive a
new EDML algorithm for Markov networks, based on

EDML for Learning Parameters in Directed and Undirected Graphical Models

the same perspective. In Section 5, we contrast the two
EDML algorithms for directed and undirected graphi-
cal models, in the complete data case. We empirically
evaluate our new algorithm for parameter estimation
in Markov networks, in Section 6, review related work
in Section 7, and conclude in Section 8. Proofs of the-
orems appear in Appendix A.

2. An Approximate Optimization of
Real-Valued Functions

Consider a real-valued objective function f(x) whose
input x is a vector of components:

x = (x1, . . . , xi, . . . , xn),

where each component xi is a vector in Rki for some
ki. Suppose further that we have a constraint on the
domain of function f(x) with a corresponding function
g that maps an arbitrary point x to a feasible one g(x).

Our goal here is to find a feasible input vector x =
(x1, . . . , xi, . . . , xn) that optimizes the function f(x).
Given the difficulty of this optimization problem in
general, we will settle for finding stationary points x
in the constrained domain of function f(x).

One approach for finding such stationary points is as
follows. Let x? = (x?1, . . . , x

?
i , . . . , x

?
n) be a feasible

point in the domain of function f(x). For each com-
ponent xi, we define a sub-function

fx?(xi) = f(x?1, . . . , x
?
i−1, xi, x

?
i+1, . . . , x

?
n).

That is, we use the n-ary function f(x) to generate n
sub-functions fx?(xi). Each of these sub-functions is
obtained by fixing all inputs xj of f(x), for j 6= i, to
their values in x?, while keeping the input xi free. We
further assume that these sub-functions are subject to
the same constraints that the function f(x) is subject
to.

We can now characterize all feasible points x? that are
stationary with respect to the function f(x), in terms
of local conditions on sub-functions fx?(xi).

Claim 1 A feasible point x? = (x?1, . . . , x
?
i , . . . , x

?
n) is

stationary for function f(x) iff for all i, component x?i
is stationary for sub-function fx?(xi).

This is immediate from the definition of a stationary
point. Assuming no constraints, a stationary point has
gradient ∇f = 0, i.e., ∇xif(x?) = ∇fx?(xi) = 0 for
all xi, where ∇xif denotes the sub-vector of gradient
∇f with respect to component xi.

1

1Under constraints, we consider points that are station-
ary with respect to the corresponding Lagrangian.

With these observations, we can now search for fea-
sible stationary points x? of the constrained function
f(x) using an iterative method that searches instead
for stationary points of the sub-functions fx?(xi). The
method works as follows:

1. Start with some feasible point xt of function
f(x) for t = 0

2. While some xti is not a stationary point for
constrained sub-function fxt(xi)

(a) Find a stationary point yt+1
i for each

constrained sub-function fxt(xi)

(b) xt+1 = g(yt+1)

(c) Increment t

Note that the real computational work of this iter-
ative procedure is in Steps 2(a) and 2(b), although
we shall see later that such steps can sometime be
performed efficiently. With an appropriate feasibility
function g(y),2 one can guarantee that a fixed-point
of this procedure yields a stationary point of the con-
strained function f(x), by Claim 1. Further, any sta-
tionary point is trivially a fixed-point of this procedure
(one can seed this procedure with such a point).

As we shall show in the next section, the EDML
algorithm—which has been proposed for parameter es-
timation in Bayesian networks—is an instance of the
above procedure with some notable observations: (1)
the sub-functions fxt(xi) are convex and have a unique
optimum; (2) these sub-functions have an interesting
semantics, as they correspond to posterior distribu-
tions that are induced by Naive Bayes networks with
soft evidence asserted on them; (3) defining these sub-
functions requires inference in a Bayesian network pa-
rameterized by the current feasible point xt; (4) there
are already several convergent, fixed-point iterative
methods for finding the unique optimum of these sub-
functions; and (5) these convergent methods produce
solutions that are always feasible and, hence, the fea-
sibility function g(y) corresponds to the identity func-
tion g(y) = y in this case.

We next show this connection to EDML as proposed
for parameter estimation in Bayesian networks. We
follow by deriving an EDML algorithm (another in-
stance of the above procedure), but for parameter es-
timation in undirected graphical models. We will also
study the impact of having complete data on both ver-
sions of the EDML algorithm, and finally evaluate the
new instance of EDML by comparing it to a conjugate
gradient method when applied to complete datasets.

2See Theorem 5 in Appendix A

EDML for Learning Parameters in Directed and Undirected Graphical Models

3. EDML for Bayesian Networks

From here on, we use upper case letters (X) to de-
note variables and lower case letters (x) to denote their
values. Variable sets are denoted by bold-face upper
case letters (X) and their instantiations by bold-face
lower case letters (x). Generally, we will use X to
denote a variable in a Bayesian network and U to de-
note its parents. A network parameter will therefore
have the general form θx|u, representing the probabil-
ity Pr(X=x|U=u).

Consider a (possibly incomplete) dataset D with ex-
amples d1, . . . ,dN . Consider also a Bayesian network
with parameters θ. Our goal here is to find parameter
estimates θ that minimize the negative log-likelihood:

f(θ) = −``(θ|D) = −
N∑
i=1

log Prθ(di). (1)

Here, θ = (. . . , θX|u, . . .) is a vector over the network
parameters. Moreover, Prθ is the distribution induced
by the Bayesian network structure under parameters
θ. As such, Prθ(di) is the probability of observing
example di in dataset D under parameters θ.

Each component of θ is a parameter set θX|u, which
defines a parameter θx|u for each value x of variable X
and instantiation u of its parents U. The feasibility
constraint here is that each component θX|u satisfies
the convex sum-to-one constraint:

∑
x θx|u = 1.

The above parameter estimation problem is clearly in
the form of the constrained optimization problem that
we phrased in the previous section and, hence, admits
the same iterative procedure proposed in that section
for finding stationary points. The relevant questions
now are: What form do the sub-functions fθ?(θX|u)
take in this context? What are their semantics? What
properties do they have? How do we find their station-
ary points? Finally, what is the feasibility function
g(y) in this case? We address these questions next.

3.1. Form

We start by characterizing the sub-functions of the
negative log-likelihood given in Equation 1.

Theorem 1 For a given parameter set θX|u, the neg-
ative log-likelihood of Equation 1 has sub-functions:

fθ?(θX|u) = −
N∑
i=1

log
(
Ciu +

∑
x

Cix|u · θx|u
)

(2)

where Ciu and Cix|u are constants that are independent

x

X1 X2 XN …

Figure 1. Estimation given independent observations.

of parameter set θX|u, given by

Ciu = Prθ?(di)− Prθ?(u,di)

Cix|u = Prθ?(x,u,di)/θ
?
x|u

Note that computing the constants Ci requires infer-
ence on the Bayesian network under parameters θ?.3

3.2. Semantics

Equation 2 has an interesting semantics, as it corre-
sponds to the negative log-likelihood of a root variable
in a naive Bayes structure, on which soft, not neces-
sarily hard, evidence is asserted (Choi et al., 2011).4

This model is illustrated in Figure 1. Let P denote
the distribution of this model and let η = (η1, . . . , ηN)
denote soft observations on variable X, with strengths
P(ηi|x). We then have

logP(η|θX) =

N∑
i=1

log
∑
x

P(ηi|x) · θx (3)

The following result connects Equation 2 to the above
likelihood of a soft dataset.

Theorem 2 Consider Equations 2 and 3, and assume
that each soft evidence ηi has the strength

P(ηi|x) = Ciu + Cix|u

It then follows that

fθ?(θX|u) = − logP(η|θX|u) (4)

This theorem yields the following interesting semantics
for EDML sub-functions. Consider a parameter set

3Theorem 1 assumes tacitly that θ?x|u 6= 0. More gener-

ally, however, Cix|u = ∂Prθ?(di)/∂θx|u, which can also be

computed using some standard inference algorithms (Dar-
wiche, 2003; Park & Darwiche, 2004).

4Soft evidence is an observation that increases or de-
creases ones belief in an event, but not to the point of
certainty. The strength of soft evidence can be specified
using weights on a set of mutually exclusive and exhaus-
tive events. For more, see (Chan & Darwiche, 2005).

EDML for Learning Parameters in Directed and Undirected Graphical Models

θX|u and example di in our dataset. The example
can then be viewed as providing “votes” on what this
parameter set should be. In particular, the vote of
example di for value x takes the form of a soft evidence
ηi whose strength is given by

P(ηi|x) = Prθ?(di)−Prθ?(u,di) + Prθ?(x,u,di)/θ
?
x|u

The sub-function is then aggregating these votes from
different examples and producing a corresponding ob-
jective function on parameter set θX|u. EDML opti-
mizes this objective function to produce the next esti-
mate for parameter set θX|u.

3.3. Properties

Equation 2 is a convex function, and thus has a unique
optimum.5 In particular, we have logs of a linear func-
tion, which are each concave. The sum of two con-
cave functions is also concave, thus our sub-function
fθ?(θX|u) is convex, and is subject to a convex sum-
to-one constraint (Refaat et al., 2012).

Convex functions are relatively well understood, and
there are a variety of methods and systems that can be
used to optimize Equation 2 (Boyd & Vandenberghe,
2004). We describe one such approach, next.

3.4. Finding the Unique Optimum

In the estimation problem of Equation 3, we want to
learn the parameters θX|u given a soft dataset η. We
have previously proposed a fixed-point algorithm that
is convergent, and monotonically improves the objec-
tive (Refaat et al., 2012). Moreover, the solutions it
produces already satisfy the convex sum-to-one con-
straint and, hence, the feasibility function g ends up
being the identity function g(θ) = θ.

In particular, we start with some initial feasible es-
timates θtX|u at iteration t = 0, and then apply the
following update equation until convergence:

θt+1
x|u =

1

N

N∑
i=1

(Ciu + Cix|u) · θtx|u
Ciu +

∑
x′ Cix′|u · θ

t
x′|u

Note here that constants Ci are computed by inference
on a Bayesian network structure under parameters θt

(see Theorem 1 for the definitions of these constants).

4. EDML for Undirected Models

In this section, we show how parameter estimation for
undirected graphical models, such as Markov networks

5More specifically, strict convexity implies a unique op-
timum, although under certain assumption, we can guar-
antee that Equation 2 is indeed strictly convex.

and pairwise Markov random fields, can also be posed
as an optimization problem, as described in Section 2.

For Markov networks, θ = (. . . , θXa
, . . .) is a vector

over the network parameters. Each component θXa

is a parameter set (or potential), assigning a number
θxa ≥ 0 for each instantiation xa of variables Xa.6

The negative log-likelihood, for a Markov network is:

−``(θ|D) = N logZθ −
N∑
i=1

logZθ(di) (5)

where Zθ is the partition function, and where Zθ(di)
is the partition function after conditioning on example
di, under parameterization θ.

Sub-functions with respect to Equation 5 may not be
convex, as was the case in Bayesian networks. Con-
sider instead the following objective function, which we
shall subsequently relate to the negative log-likelihood:

f(θ) = −
N∑
i=1

logZθ(di), (6)

with a feasibility constraint that the partition function
Zθ equals some constant α. The following theorem
tells us that it suffices to optimize Equation 6 under
the given constraint in order to optimize Equation 5.

Theorem 3 Let α be a positive constant, and let g(θ)
be a feasibility function defined such that g(θxa) ∝ θxa
for all θxa , and Zg(θ) = α.7 Point θ is stationary for
the function of Equation 5 iff point g(θ) is feasible and
stationary for the function of Equation 6.

With Equation 6 as the new objective function for es-
timating the parameters of a Markov network, we can
now cast its optimization in the terms of Section 2.
We start by characterizing its sub-functions.

Theorem 4 For a given parameter set θXa
, the ob-

jective function of Equation 6 has sub-functions:

fθ?(θXa
) = −

N∑
i=1

log
∑
xa

Cixa · θxa (7)

6One typically assumes an exponential representation
θxa = exp{τxa} with meta-parameters τxa . One can also
use a feature-based representation, but for our purposes, a
tabular representation suffices.

7Here, g(θxa) denotes the component of g(θ) corre-
sponding to θxa . Moreover, the feasibility function g(θ)
can be constructed, for example, by simply multiplying all
entries of one parameter set by α/Zθ. In our experiments,
we normalize each parameter set to sum-to-one, but then
update the constant α = Zθt for the subsequent iteration.

EDML for Learning Parameters in Directed and Undirected Graphical Models

where Cixa is a constant that is independent of the pa-
rameter set θXa :

Cixa = Zθ?(xa,di)/θ
?
xa

Note that computing this constant requires inference
on the Markov network under parameters θ?.8

Interestingly, this sub-function is convex and has a
unique optimum, as in Bayesian networks. However,
even when θ? is a feasible point, the unique optima of
these sub-functions may not produce a feasible point
when combined. Hence, the feasibility function g(θ)
defined in Theorem 3 must be utilized in this case.

We now have another instance of the iterative algo-
rithm proposed in Section 2, but for undirected graph-
ical models. That is, we have just derived an EDML
algorithm for such models.

5. EDML under Complete Data

We will now consider how EDML simplifies under com-
plete data for both Bayesian and Markov networks.
The key here is to identify the forms of corresponding
sub-functions under complete data.

We start with Bayesian networks. Consider a variable
X and a parent instantiation u in such a network.
Let D#(xu) represent the number of examples that
contain xu in the complete dataset D. Equation 2 of
Theorem 1 then reduces to:

fθ?(θX|u) = −
∑
x

D#(xu) log θx|u + C,

where C is a constant that is independent of parameter
set θX|u. Assuming that θ? is feasible (i.e., satisfies the
sum-to-one constraints), the unique optimum of this

sub-function is θx|u = D#(xu)
D#(u) , which is guaranteed to

yield a feasible point θ, globally. Hence, EDML pro-
duces the unique optimal estimates in its first iteration
and terminates immediately thereafter.

The situation is different, however, for Markov Net-
works. In this case, and under a complete dataset D,
Equation 7 of Theorem 4 reduces to:

fθ?(θXa
) = −

∑
xa

D#(xa) log θxa + C,

where C is a constant that is independent of parameter
set θXa

. Assuming that θ? is feasible (i.e., satisfies
Zθ? = α), the unique optimum of this sub-function

8Theorem 4 assumes tacitly that θ?xa 6= 0. More gener-

ally, however, Cixa = ∂Zθ?(di)/∂θxa . See also Footnote 3.

has the closed form9

θxa =
α

N

D#(xa)

Zθ?(xa)/θ?xa

which is equivalent to the unique optimum one would
obtain in a sub-function for Equation 5 (Pietra et al.,
1997; Murphy, 2012). Contrary to Bayesian networks,
the collection of these optima for different parameter
sets do not necessarily yield a feasible point θ. Hence,
the feasibility function g of Theorem 3 must be ap-
plied here. The resulting feasible point, however, may
no longer be a stationary point for the correspond-
ing sub-functions, leading EDML to iterate further.
Hence, under complete data, EDML for Bayesian net-
works converges immediately, while EDML for Markov
networks may have to make multiple iterations.

Both results are consistent with what is already known
in the literature on parameter estimation for Bayesian
and Markov networks. The result on Bayesian net-
works is useful in confirming that EDML performs op-
timally in this case. The result for Markov networks,
however, gives rise to a new algorithm for parameter
estimation under complete data. We compare the per-
formance of this new EDML algorithm to conjugate
gradient descent in the next section.

6. Experimental Results

In this section, we illustrate the practical advantages
of EDML, in comparison to popular general-purpose
approaches such as the conjugate gradient method
(CG), for the purposes of estimating parameters in
Markov networks. We evaluated the EDML and CG
algorithms by learning grid-structured pairwise MRFs
from the CEDAR dataset of handwritten digits. This
complete dataset consisted of 16x16 binary images, one
for each digit from zero to nine. Experiments were run
on a 3.6GHz Intel i5 CPU with access to 8GB RAM.

For CG, we made use of an open-source implementa-
tion provided by the Apache Commons Mathematics
library,10 which is a Java library. Our EDML imple-
mentation is also in Java, but more importantly, both
CG and EDML rely on the same underlying engine for
exact inference in Markov networks.11

For EDML, we damped our parameter estimates at
each iteration, which is typical for algorithms like
loopy belief propagation, which EDML was originally
inspired by (Choi et al., 2011). In particular, we start

9More generally, θxa = α
N

D#(xa)
∂Zθ?/∂θxa

(covers θ?xa = 0).
10Available at http://commons.apache.org/.
11We used the inference engine in the SamIam system,

available at http://reasoning.cs.ucla.edu/samiam/.

http://commons.apache.org/
http://reasoning.cs.ucla.edu/samiam/

EDML for Learning Parameters in Directed and Undirected Graphical Models

Table 1. Speedup results Digits 8x8

digit #iters CG #iters EDML iter S time S
zero 897 1863 0.48 0.31
one 897 137 6.55 7.85
two 561 129 4.35 3.06

three 465 102 4.56 4.52
four 577 123 4.69 4.90
five 563 63 8.94 9.85
six 578 133 4.35 4.30

seven 568 118 4.81 5.30
eight 556 146 3.81 4.45
nine 567 122 4.65 5.01

average 622.9 293.6 4.72 4.95

Table 2. Speedup results Digits 16x16

digit #iters CG #iters EDML iter S time S
zero 45 165 0.27 3.87
one 104 99 1.05 15.22
two 46 177 0.26 3.63

three 43 115 0.37 5.20
four 56 179 0.31 4.38
five 43 150 0.29 4.18
six 48 101 0.48 6.76

seven 57 181 0.31 4.61
eight 48 193 0.25 3.77
nine 56 184 0.30 4.55

average 54.6 154.4 0.39 5.62

with an initial factor of 0.5, and adapt the factor
dynamically, by halving it after each iteration when
EDML does not improve its objective (adaptation is
not started until after the first 5 iterations).

In our experiments, for each digit from zero to nine,
we run CG until convergence to obtain parameter esti-
mates of some quality q (i.e., in log likelihood), record-
ing the number of iterations icg and time tcg required
by CG. EDML is then run, subsequently, until it ob-
tains an estimate of the same quality q, or better,
recording also the number of iterations iedml and time
tedml. The iteration and time speed-ups S of EDML
are computed as

icg
iedml

, and
tcg
tedml

, respectively.

Tables 1 and 2 show the iteration and time speed-ups
obtained for two datasets: 16 × 16 and 8 × 8 (down-
sampled) images of digits, respectively.12 On average,
we see that EDML was roughly 5× faster in both sets,
and was up to an order-of-magnitude faster in at least
one case. In the 16 × 16 set, EDML required more
iterations but was still 5.6× faster in time. This is due
in part by the number of times inference is invoked
by CG (in line search), whereas EDML only needs to
invoke inference once per iteration.

12For the 8×8 digits, we used a convergence threshold of
10−4 w.r.t. the absolute change in the parameter estimates.
For the 16 × 16 digits, we used a more relaxed threshold
based on relative change in the likelihood, also at 10−4.

7. Related Work

As an iterative fixed-point algorithm, we can view
EDML as a Jacobi-type method, where updates are
performed in parallel (Bertsekas & Tsitsiklis, 1989).
Correspondingly, a version of EDML, using Gauss-
Seidel iterations, would update each parameter set in
sequence using the most recently computed updates,
which would lead to an algorithm that monotonically
improves the log likelihood at each update. In this
case, we obtain a coordinate descent algorithm, Iter-
ative Proportional Fitting (IPF) (Jirousek & Preucil,
1995), as a special case of EDML, in the case where
updates are performed in sequence.

The notion of fixing all parameters, except for one, has
been exploited before for the purposes of optimizing
the log likelihood of a Markov network, as a heuristic
for structure learning (Pietra et al., 1997). This notion
also underlies the IPF algorithm; see, e.g., (Murphy,
2012), Section 19.5.7. In the case of complete data,
the resulting sub-function is convex, yet for incomplete
data, it is not necessarily convex. In contrast, the sub-
functions implied by Equation 6 are in fact convex, but
yield equivalent stationary points in the case of both
complete and incomplete data.

Optimization methods such as conjugate gradient, and
L-BFGS (Liu & Nocedal, 1989), are more commonly
used to optimize the parameters of a Markov network.
For relational Markov networks or Markov networks
that otherwise assume a feature-based representation
(Domingos & Lowd, 2009), evaluating the likelihood is
typically intractable, in which case one typically opti-
mizes instead the pseudo-log-likelihood (Besag, 1975).
For more on parameter estimation in Markov net-
works, see (Koller & Friedman, 2009; Murphy, 2012).

8. Conclusion

In this paper, we provided an abstract and simple view
of the EDML algorithm, originally proposed for pa-
rameter estimation in Bayesian networks, as a partic-
ular method for continuous optimization. One con-
sequence of this view is that it is immediate that
fixed-points of EDML are stationary points of the log-
likelihood, and vice-versa (Refaat et al., 2012). A more
interesting consequence, is that it allows us to propose
an EDML algorithm for a new class of models, Markov
networks. Empirically, we find that EDML can find
better parameter estimates for Markov networks un-
der complete data, several times faster, compared to
the conjugate gradient method. Empirical evaluation
under incomplete data is left as future work.

EDML for Learning Parameters in Directed and Undirected Graphical Models

References

Bertsekas, Dimitri P. and Tsitsiklis, John N. Parallel
and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

Besag, J. Statistical Analysis of Non-Lattice Data.
The Statistician, 24:179–195, 1975.

Boyd, Stephen and Vandenberghe, Lieven. Convex Op-
timization. Cambridge University Press, 2004.

Chan, Hei and Darwiche, Adnan. On the revision of
probabilistic beliefs using uncertain evidence. AIJ,
163:67–90, 2005.

Choi, Arthur and Darwiche, Adnan. An edge dele-
tion semantics for belief propagation and its practi-
cal impact on approximation quality. In AAAI, pp.
1107–1114, 2006.

Choi, Arthur, Refaat, Khaled S., and Darwiche, Ad-
nan. EDML: A method for learning parameters in
Bayesian networks. In UAI, 2011.

Darwiche, Adnan. A differential approach to inference
in Bayesian networks. JACM, 50(3):280–305, 2003.

Darwiche, Adnan. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press,
2009.

Dempster, A.P., Laird, N.M., and Rubin, D.B. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society
B, 39:1–38, 1977.

Domingos, Pedro and Lowd, Daniel. Markov Logic: An
Interface Layer for Artificial Intelligence. Synthe-
sis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2009.

Jirousek, Radim and Preucil, Stanislav. On the ef-
fective implementation of the iterative proportional
fitting procedure. Computational Statistics & Data
Analysis, 19(2):177–189, 1995.

Koller, Daphne and Friedman, Nir. Probabilistic
Graphical Models: Principles and Techniques. MIT
Press, 2009.

Lauritzen, S. L. The EM algorithm for graphical as-
sociation models with missing data. Computational
Statistics and Data Analysis, 19:191–201, 1995.

Liu, D. C. and Nocedal, J. On the Limited Memory
BFGS Method for Large Scale Optimization. Math-
ematical Programming, 45(3):503–528, 1989.

Murphy, Kevin Patrick. Machine Learning: A Proba-
bilistic Perspective. MIT Press, 2012.

Park, James and Darwiche, Adnan. A differential se-
mantics for jointree algorithms. AIJ, 156:197–216,
2004.

Pietra, Stephen Della, Pietra, Vincent J. Della, and
Lafferty, John D. Inducing features of random fields.
IEEE Trans. Pattern Anal. Mach. Intell., 19(4):
380–393, 1997.

Refaat, Khaled S., Choi, Arthur, and Darwiche, Ad-
nan. New advances and theoretical insights into
EDML. In UAI, pp. 705–714, 2012.

EDML for Learning Parameters in Directed and Undirected Graphical Models

A. Proofs

Proof of Theorem 1 First, the probability of an ex-
ample di ∈ D is: Prθ(di) =

∑
x∼di

∏
x|u∼x θx|u where

operator ∼ denotes compatibility between two instan-
tiations (they set the same value to common variables).
For a fixed parameter set θX|u, the probability Prθ(di)
is a linear function with respect to the parameters of
θX|u:

Prθ(di) = Prθ(¬u,di) +
∑
x

Prθ(xu,di)

= Prθ(¬u,di) +
∑
x

∂Prθ(di)

∂θx|u
θx|u

= Ciu[θ] +
∑
x

Cix|u[θ] · θx|u

where Ciu[θ] and Cix|u[θ] are constants with respect to

θX|u. Moreover Prθ(¬u,di) = Prθ(di) − Prθ(u,di).
Thus our sub-function, the negative log-likelihood with
respect to parameter set θX|u, has the form:

fθ?(θX|u) = −
∑N
i=1 log

(
Ciu[θ?] +

∑
x C

i
x|u[θ?] · θx|u

)
.

�

Proof of Theorem 2 The log-likelihood of soft evi-
dence in this model is:

logP(η|θX|u) =

N∑
i=1

logP(ηi|θX|u)

=

N∑
i=1

log
∑
x

P(ηi|x, θX|u)P(x|θX|u)

=

N∑
i=1

log
∑
x

P(ηi|x) · θx|u.

If we substitute P(ηi|x) = Ciu[θ?] + Cix|u[θ?], we have

logP(η|θX|u) =

N∑
i=1

log
∑
x

(
Ciu[θ?] + Cix|u[θ?]

)
· θx|u

=

N∑
i=1

log
(
Ciu[θ?] +

∑
x

Cix|u[θ?]θx|u

)
which is Equation 2, negated. �

Proof of Theorem 3 The partial derivative of the
log likelihood ``(θ|D) w.r.t. parameter θxa is:

∂``

∂θxa
= −N

Zθ

∂Zθ
∂θxa

+

N∑
i=1

1

Zθ(di)

∂Zθ(di)

∂θxa
.

First, note that:

1
Zθ

∂Zθ
∂θxa

θxa = Pr(xa), 1
Zθ(di)

∂Zθ(di)
∂θxa

θxa = Prθ(xa|di)

Thus, with some re-arranging, we obtain:

Prθ(xa) =
1

N

N∑
i=1

Prθ(xa|di) (8)

which is the “moment matching” condition for param-
eter estimation in Markov networks. Second, consider
the simplified objective: f(θ) = −

∑N
i=1 logZθ(di)

which is subject to the constraint Z = α. We con-
struct the Lagrangian L(θ, ν) = f(θ) + ν(Z − α). Set-
ting to zero the partial derivative w.r.t. ν, we obtain
our constraint Z = α. The partial derivative w.r.t.
parameter θxa is:

−
N∑
i=1

1

Zθ(di)

∂Zθ(di)

∂θxa
+ ν

∂Zθ
∂θxa

.

We set the partial derivative to zero, multiply the sec-
ond term by α

Z = 1, and re-arrange, giving us:

ναPrθ(xa) =

N∑
i=1

Prθ(xa | di).

Summing each equation for all instantiations xa, we
identify ν = N

α , which after substituting, gives us a
condition equivalent to Equation 8.

Note that the stationary condition given by Equation 8
depends only on marginals, not the absolute value of
the partition function. Moreover, applying a proper
feasibility function g(θ) will not change the marginals
implied by θ, as the multiplicative factors cancel out in
each pair of terms, logZθ− logZθ(di). Thus if a point
θ satisfies Equation 8, then g(θ) must also satisfy it.
Similarly, if g(θ) satisfies Equation 8, the original point
θ must also satisfy it. �

Proof of Theorem 4 First, the partition function
conditioned on an example di ∈ D is:

Zθ(di) =
∑
x∼di

∏
xa∼x

θxa

where operator ∼ denotes compatibility between two
instantiations (they set the same value to common
variables). For a fixed parameter set θXa

, the par-
tition function Zθ(di) is a linear function with respect
to the parameters θXa :

Zθ(di) =
∑
xa

Zθ(xa,di) =
∑
xa

∂Zθ(di)

∂θxa
θxa

=
∑
xa

Cixa [θ] · θxa

where Cixa [θ] is a constant with respect to θXa
. Thus,

our sub-function, has the form:

fθ?(θXa) = −
∑N
i=1 log

∑
xa
Cixa [θ?] · θxa . �

EDML for Learning Parameters in Directed and Undirected Graphical Models

θH	

θS|h	 θE|h	

H1	 H2	 H3	

S1	 S2	 S3	 E1	 E2	 E3	

θS|h	 θE|h	

Figure 2. A meta network induced from a base network
S←−H−→E. The CPTs here are based on standard se-
mantics; see, e.g., (Darwiche, 2009), Ch. 18.

Theorem 5 Suppose we have a feasibility function

g(y1, . . . , yn) = (x1, . . . , xn)

where xi 6= yi implies that the point (x1, . . . , yi, . . . , xn)
is infeasible (e.g., Euclidean projection satisfies this
condition). Suppose now that the algorithm produces
a sequence xt, yt+1, xt+1 = xt. Then xt must be a
feasible and stationary point.

Proof By the statement of the iterative procedure, xt

is guaranteed to be feasible. Suppose that g(yt+1) =
xt+1 = xt. First, it must be that yt+1 = xt. Sup-
pose instead that yt+1 6= xt, and thus for some
component, yt+1

i 6= xti. By our feasibility function,
(xt1, . . . , y

t+1
i , . . . , xtn) must be infeasible. However,

Step 2(a) ensures that (xt1, . . . , y
t+1
i , . . . , xtn) is feasi-

ble. Hence, it must be that yt+1 = xt. Further, by
Step 2(a) and Claim 1, xt must also be stationary. �

B. A Review of EDML

EDML is a recent method for learning Bayesian net-
work parameters from incomplete data (Choi et al.,
2011; Refaat et al., 2012). It is based on Bayesian
learning in which one formulates estimation in terms of
computing posterior distributions on network parame-
ters. That is, given a Bayesian network, one constructs
a corresponding meta network in which parameters are
explicated as variables, and on which the given dataset
D can be asserted as evidence; see Figure 2. One then
estimates parameters by considering the posterior dis-
tribution obtained from conditioning the meta network
on the given dataset D. Suppose for example that the
meta network induces distribution P and let θ denote
an instantiation of variables that represent parameters
in the meta network. One can then obtain MAP pa-

H2	

S2	 E2	

H:	 H2	

H1	 H3	

S1	 E1	 E3	 S3	

θH	

θS|h	 θE|h	

Sh	 S
2	 Sh	 S

3	 Sh	 S
1	 Sh:	 S2	 Eh:	 E2	 Sh:	 S2	 Eh:	 E2	

θE|h	 θS|h	

Figure 3. An edge-deleted network obtained from the meta
network in Figure 2. Highlighted are the island for example
d2 and the island for parameter set θS|h.

rameter estimates by computing argmaxθ P(θ|D) us-
ing inference on the meta network.

It is known that meta networks tend to be too com-
plex for exact inference algorithms, especially when
the dataset is large enough. The basic insight behind
EDML was to adapt a specific approximate inference
scheme to meta networks with the goal of computing
MAP parameter estimates. In particular, the original
derivation of EDML adapted the approximate infer-
ence algorithm proposed by (Choi & Darwiche, 2006),
in which edges are deleted from a Bayesian network
to make it sparse enough for exact inference, followed
by a compensation scheme that attempts to improve
the quality of the approximations obtained from the
edge-deleted network. The adaptation of this infer-
ence method to meta networks is shown in Figure 3.
The two specific techniques employed here were to aug-
ment each edge θX|u−→Xi by an auxiliary variable
Xi

u, leading to θX|u−→Xi
u−→Xi, where Xi

u−→Xi is
an equivalence edge. This is followed by deleting the
equivalence edge. This technique yielded a discon-
nected meta network with two classes of subnetworks,
called parameter islands and network islands.

Deleting edges, as proposed by (Choi & Darwiche,
2006), leads to introducing two auxiliary nodes in the
Bayesian network for each deleted edge. Moreover, ap-
proximate inference by edge deletion follows the dele-
tion process by a compensation scheme that searches
for appropriate CPTs of these auxiliary nodes. As it
turns out, the search for these CPTs, which is done
iteratively, was amenable to a very intuitive interpre-
tation as shown in (Choi et al., 2011).

EDML for Learning Parameters in Directed and Undirected Graphical Models

Algorithm 1 EDML

input:
G: A Bayesian network structure
D: An incomplete dataset d1, . . . ,dN
θ: An initial parameterization of structure G
αX|u, βX|u: Beta prior for each random variable X|u
1: while not converged do
2: Pr← distribution induced by θ and G
3: Compute Bayes factors:

κix|u←
Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1

Pr(x̄u|di)/Pr(x̄|u)− Pr(u|di) + 1

for each family instantiation xu and example di
4: Update parameters:

θx|u← argmax
p

[p]αX|u−1[1−p]βX|u−1
N∏
i=1

[κix|u ·p−p+1]

5: return parameterization θ

In particular, one set of CPTs corresponded to soft
evidence on network parameters, where each network
island contributes one piece of soft evidence for each
network parameter. The second set of CPTs corre-
sponded to updated parameter estimates, where each
parameter island contributes an estimate of its under-
lying parameter set. This interpretation was the basis
for the form of EDML shown in Algorithm 1.13 EDML
iterates just like EM does, producing new estimates af-
ter each iteration. However, EDML iterations can be
viewed as having two phases. In the first phase, each
example in the data set is used to compute a piece
of soft evidence on each parameter set (Line 3 of Al-
gorithm 1). In the second phase, the pieces of soft
evidence pertaining to each parameter set are used to
compute a new estimate of that set (by solving the
convex optimization problem on Line 4 of Algorithm
1). The process repeats until some convergence crite-
ria is met. Aside from this optimization task, EM and
EDML have the same computational complexity.

13This form is specific to binary variables; a multi-valued
generalization was provided in (Refaat et al., 2012).

