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Abstract

The success of pretrain-finetune paradigm brings about the release of numerous
model weights. In this case, merging models finetuned on different tasks to enable
a single model with multi-task capabilities is gaining increasing attention for its
practicability. Existing model merging methods usually suffer from (1) significant
performance degradation or (2) requiring tuning by additional data or training.
In this paper, we rethink and analyze the existing model merging paradigm. We
discover that using a single model’s weights can hardly simulate all the models’
performance. To tackle this issue, we propose ELECT, MASK & RESCALE-
MERGING (EMR-MERGING). We first (a) elect a unified model from all the model
weights and then (b) generate extremely light-weight task-specific modulators,
including masks and rescalers, to align the direction and magnitude between
the unified model and each specific model, respectively. EMR-MERGING is
tuning-free, thus requiring no data availability or any additional training while
showing impressive performance. We find that EMR-MERGING shows outstanding
performance compared to existing merging methods under different classical and
newly-established settings, including merging different numbers of vision models
(up to 30), NLP models, PEFT models, and multi-modal models. 1

1 Introduction

With the rapid development of deep learning, different model architectures [36, 22, 71, 88] are
proposed, along with multiple training strategies [89, 86]. Pre-trained models’ capabilities are
enhanced, thus showing increasing significance [54, 22, 7, 19]. Finetuning models on downstream
tasks from a pre-trained model has become a standard paradigm in both NLP and vision fields [20,
51, 19, 22, 5, 87], which usually leads to improved performance with less labeled data. With the
development of open-source repositories such as Huggingface [79], timm [77], and torchvision [44],
the number of pre-trained and finetuned checkpoints exponentially rise. However, applying individual
models to different tasks results in high storage and deployment costs. Multi-task learning (MTL)
partially solves this problem by jointly training a model using multiple datasets [70, 93, 95], but it
suffers from (i) high computational costs and (ii) data unavailability due to privacy [33]. Recently,
model merging attempts to solve these drawbacks by combining weights instead of additional training,
thus showing vital significance and broad application prospects.

A simple strategy of model merging is averaging the model weights [80], but it usually causes obvious
performance degradation, as shown in Fig. 1. To this end, there are multiple model merging methods
proposed to improve the performance of the merged model, which can be roughly divided into three
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categories: (i) Weighted averaging of model weights include Fisher-Merging [46] and RegMean [33].
They use pre-computed Fisher information matrices [23] and inner-product matrices [33] to tune the
coefficients for weighted averaging. (ii) Task vector-based methods that add task vectors together
instead of model weights, include Task Arithmetic [30], Ties-Merging [84], and AdaMerging [85].
Ties-Merging handles the interference issue and AdaMerging adaptively tunes the merging coef-
ficients. (iii) Pre-processing techniques include DARE [90]. It reduces interference by dropping
most elements and rescaling the others in task vectors. Despite the promising results, there are two
unresolved problems with the existing model merging methods: (1) The performance gap between the
merged model and individual models or MTL is still obvious, as shown in Fig. 1. (2) The performance
improvement of existing methods depends on tuning by data or training, as shown in Tab. 1.

Figure 1: The average accuracy of the multi-task
performance of different model merging methods on
eight vision tasks. Among all the merging methods,
our EMR-MERGING is the only one comparable to
the performance of MTL and even individual models.

Table 1: Prerequisites for each method’s working.

Methods Training-Data Valid-Data Tuning Tuning by
Tuning inputs labels Training

Weight Averaging × × × ×
Traditional MTL ✓ × × ✓

Fisher-Merging [46] × ✓ × ×
RegMean [33] × ✓ × ×
Task Arithmetic [30] × ✓ ✓ ×
Ties-Merging [84] × ✓ ✓ ×
AdaMerging [85] × ✓ × ✓

EMR-Merging(Ours) × × × ×

To boost the performance of model merging,
we rethink and analyze the existing model
merging paradigm. We discover that the goal
of all the existing methods is to obtain a sin-
gle model applicable to all the N tasks, as
follows:

WM = M ([W1..WN ]) , (1)

where [W1..WN ] are the model weights to
be merged, M denotes the merging func-
tion, and WM is the merged model weight.
This paradigm may inevitably lead to a non-
negligible gap between the merged model and
each individual model, especially when there
are numerous models or models on challeng-
ing tasks. We argue that using a single model
weight to simulate all the model weights is
sub-optimal. To tackle this issue, we propose
a brand new merging paradigm: We first ex-
tract a unified model weight from all the mod-
els’ weights, and then we calculate and store
significant but lightweight task-specific parts
of each model weight. This process can be
written as:

Wuni, [E1..EN ] = M′ ([W1..WN ]) , (2)

where Wuni represents the common and
shared part of all model weights and [E1..EN ]
denote the task-specific parts of each model
weight. M′ is the revised merging function
following our paradigm.

Based on the above paradigm, we propose EMR-MERGING (ELECT, MASK & RESCALE-MERGING).
We first elect a unified model from all the model weights. The election strategy is choosing the
maximum absolute value of each parameter on the specified sign direction to minimize interference
and avoid additional tuning. Then we generate additional lightweight task-specific modulators,
including masks and rescalers. Their functions are respectively to align the direction and magnitude
of the unified model with the original task-specific model. We find that applying the task-specific
modulators to the unified model can better approximate the task-specific model, thus improving
performance. The detailed process, theoretical and empirical analysis of the proposed method are
illustrated in Section 3. By applying our method, the performance of model merging is significantly
enhanced and is comparable to MTL or individual models, as shown in Fig. 1. Meanwhile, EMR-
MERGING requires no data, tuning, or any additional training, as shown in Tab. 1.

We first demonstrate the effectiveness of the proposed EMR-MERGING under the existing setting of
(1) merging Vision Transformer (ViT) [22] models of different sizes on 8 vision tasks, (2) merging
parameter-efficient finetuning (PEFT) models on 11 language tasks, and (3) merging GPT-2 [55]
models on 7 language tasks. Our method shows significant performance improvement under these
settings, even when compared to the strongest baseline. We further validate the method’s effectiveness
under newly-established and more challenging settings including: (4) merging ViTs on 30 vision

2



Figure 2: Framework overview. In the (a) Merging Procedure, we merge task-specific vectors into
a unified task vector and lightweight task-specific modulators to modulate direction and amplitude.
During the (b) Inference Procedure, we apply the corresponding mask and rescaler to the unified
task vector to obtain a specific task vector. The process of (c)Task-specific Direction and Amplitude
Modulation includes obtaining task-specific masks and scalers.

tasks, (5) merging RoBERTa [43] models on 8 NLP tasks, and (6) merging BEiT3 [75] models on 5
multi-modal tasks.

Our contributions can be summarized as: (1) We propose a novel merging method called EMR-
MERGING, which merges task-specific models into a unified model and lightweight task-specific
modulators (i.e., masks and rescalers), requiring no data, tuning, or additional training. (2) The
proposed EMR-MERGING is simple-but-effective, and its effectiveness is validated on various
classical benchmarks and newly-established benchmarks under various vision, NLP, PEFT, and
multi-modal settings. (3) We show that the masks and rescalers of EMR-MERGING for aligning
task-specific direction and amplitude of task vectors are applicable to most kinds of merging methods.

2 Related Work

Model Merging obtains a model using the existing task-specific model weights instead of training [33,
30, 84, 85, 66, 90, 46]. Simply averaging [80] usually causes severe performance degradation. Various
methods are proposed to handle this problem. Fisher-Merging [46] and RegMean [33] use fisher
information matrices [23] and inner-product matrices [33] to calculate the merging coefficients
for weighted merging. However, they require additional matrices released by model owners or
manually computed. Task Arithmetic [30] merges models by adding together task vectors, which is
the difference between the finetuned and pre-trained models. Ties-Merging [84] and AdaMerging [85]
are based on task vectors. Ties-Merging resolves interference and AdaMerging adaptively learns
the merging coefficients. However, the performance of Task Arithmetic and Ties-Merging highly
depends on manually tuning the merging coefficients and AdaMerging needs additional training to
obtain them. DARE [90] reduces interference by randomly dropping most elements and rescaling
the remaining ones in each task vector before merging. However, DARE’s performance is only
validated under the setting of merging a limited number of tasks and the performance gain is also
limited. In addition, all the existing methods merge models into a single one, and have not been
verified under experimental settings of more models to merge, models on more difficult tasks, and
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multi-modal models. In this paper, we propose EMR-MERGING, which requires no tuning while
showing impressive performance under various settings.

Multi-Task Learning trains a single model using training data from multiple tasks together [70, 93,
95]. MTL typically necessitates access to the labeled data of multiple tasks for training the model
from scratch. Though enabling the model multi-task capabilities, MTL suffers from not only (i) the
expensive computational cost for training, especially for large models, but also (ii) the limited data
availability due to data privacy [85]. In comparison, model merging solves the mentioned problems
by combining the model weights without using training data or additional training, thus obtaining a
multi-task model while sharply reducing the costs.

Supervised Finetuning from pre-trained models on down-stream tasks is becoming a standard
paradigm in both NLP and vision fields [20, 51, 19, 22, 5]. Depending on whether all the parameters
of models are adjusted, SFT can be divided into conventional full finetuning (FFT) and parameter-
efficient finetuning (PEFT), which is proposed to reduce the number of trainable parameters for
downstream tasks by adjusting the inserted small modules called adapters while keeping the whole
model frozen [28, 29, 42]. PEFT is becoming the prevailing method to adapt pre-trained large models
because of its efficiency [94]. There are a large number of pre-trained, full finetuned model weights,
and PEFT module weights available on public repositories [79, 77, 44]. In this paper, the proposed
EMR-MERGING is based on the common pretrain-finetune paradigm and we show the applicability
of our method to both full finetuned models and PEFT modules.

3 Method

3.1 Motivation

Given N tasks [T1..TN ], the goal of model merging is to obtain a model applicable to all the tasks
using finetuned models [W1..WN ] from the same pre-trained model Wpre on each task. Existing
methods focus on merging the models into a single model WM . Please check Appendix C for detailed
information on the existing merging methods. However, a single model can hardly represent all the
model weights, thus causing severe performance drops. We discover that the combination of a unified
task vector and lightweight task-specific modulators can settle this issue to a significant extent by
approximating the task-specific vectors better without any additional tuning. The size of proposed
task-specific modulators is discussed in Section 4.4, which is much smaller than that of a model.

3.2 ELECT, MASK & RESCALE-MERGING

The overall framework of EMR-MERGING is shown in Fig. 2. We follow the setting of task vector-
based methods [30, 84, 85] and we merge models using task vectors. For task Ti, i ∈ [1..N ], the
corresponding task vector is defined as τi = Wi −Wpre, where τi ∈ Rd.

Electing a unified task vector We first create an aggregate elected sign vector γuni = sgn(
∑N

t=1 τt)
by choosing the sign with the higher total magnitude of each parameter across all relevant task vectors.
Then we choose the maximum absolute value of each parameter with the sign consistent with γuni
from all the task vectors and obtain absolute value vector ϵuni ∈ Rd. By combining γuni and ϵuni,
the unified task vector can be obtained by τuni = γuni⊙ ϵuni. The electing procedure can reserve the
maximum amplitude and sign information shared by the task vectors, thereby maximally reducing
interference. The unified task vector τuni corresponds the Wuni in Eq. 2. Before being applied to task
Ti, the τuni needs to be modulated in advance by task-specific modulators, which are corresponding
to Ei in Eq. 2. The generation of task-specific modulators is described below:

Task-specific masks. Next, we compare the unified task vector τuni with each task vector τi. The task-
specific mask Mi = (τi ⊙ τuni > 0) for task i sets the elements whose signs are not correspondent
with τuni to zero and the rest to one. The function of the masks is to align the direction of the unified
model with the task-specific model. The masks share the same structure with the task-specific models
but due to their 1-bit nature, the size of a mask is much smaller than that of a task vector.

Task-specific Rescalers Then, for each task, we compute a rescaler parameter to keep the average
absolute value of the elements in τt and Mt ⊙ τuni equal. The function of the rescalers λi =

sum(abs(τi))
sum(abs(Mi⊙τF )) is to align the parameter magnitude of the unified model with the task-specific
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Figure 3: Partial (a) t-SNE and (b) Grad-CAM visualization results of EMR-MERGING’s procedures.

model. The significance of rescaling is also reported by DARE [90], which claims that after dropping
most elements in a task vector, rescaling the rest leads to better results compared to not.

Before being applied to a task, a task-specific modulation is required to be conducted to the unified
task vector. After that, we add it to the pre-trained parameter values Wpre. The inference steps of
applying the merged model to task t are as follows: Ŵt = Wpre + τ̂t, where τ̂t = λt ·Mt ⊙ τuni. It
should be noted that during the whole process, no additional tuning is needed, thus requiring no data
or additional training. We summarize the algorithm flow in Appendix A.

3.3 Theoretical analysis

Our goal is to merge model weights by minimizing the distance between the merged model Wuni

and each individual model Wi, where the distance can be calculated by:

Dis =

∑N
i=1 ∥Wi −Wuni∥2

N
=

∑N
i=1 ∥τi − τuni∥2

N
(3)

where τi refers to the task vector for task Ti and τuni is the unified task vector.

Analysis 1: Effectiveness of Masks. After applying the masks Mi = (τi ⊙ τuni > 0) to the unified
model τuni, the distance DisM can be formulated as:

DisM =

∑N
i=1 ∥τi −Mi ⊙ τuni∥2

N
≤ Dis (4)

where Dis refers to the distance before applying the masks. Eq. 4 demonstrates that the distance
between the merged model and each individual model can be reduced after applying the masks.

Analysis 2: Effectiveness of Rescalers. After applying the rescalers λi =
sum(abs(τi))

sum(abs(Mi⊙τF )) to the
masked task vectors Mi · τuni, the distance DisM,λ is formulated as:

DisM,λ =

∑N
i=1 ∥τi − λi ·Mi ⊙ τuni∥2

N
≤ DisM (5)

Eq. 5 demonstrates that the distance between the merged model and each individual model can be
minimized after applying the rescalers. Please check Appendix B for detailed proof.

3.4 Empirical analysis

In Fig. 3, we visualize partial results of merging eight ViT-B/32 models on different tasks using
t-SNE [69] and Grad-CAM [61]. It can be seen that each procedure of EMR-MERGING can help
improve the performance of the merged model and perform closer to individual models. Specifically,
a more obvious distinction is shown in t-SNE and a more precise target is focused by Grad-CAM.
Please check Section 4.1.1 for experimental details and Appendix E for more visualization results.
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Table 2: Multi-task performance when merging ViT-B/32 models on eight tasks.

Methods SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8

Fisher Merging [46] 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean [33] 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8

Task Arithmetic [30] 63.8 62.1 72.0 77.6 74.4 65.1 94.0 52.2 70.1
Ties-Merging [84] 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2 73.6
AdaMerging [85] 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
AdaMerging++ [85] 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1

EMR-MERGING (Ours) 75.2 72.8 93.5 99.5 96.9 98.1 99.6 74.4 88.7

Table 3: Multi-task performance when merging ViT-L/14 models on eight tasks.

Methods SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Individual 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1 94.2
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5

Weight Averaging 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8 79.6

Fisher Merging [46] 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 82.2
RegMean [33] 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 83.7

Task Arithmetic [30] 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6 84.5
Ties-Merging [84] 76.5 85.0 89.3 95.7 90.3 83.3 99.0 68.8 86.0
AdaMerging [85] 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
AdaMerging++ [85] 79.4 90.3 91.6 97.4 93.4 97.5 99.0 79.2 91.0

EMR-MERGING (Ours) 83.2 90.7 96.8 99.7 97.9 99.1 99.7 82.7 93.7

Figure 4: Comparison of (a) sign conflicts, (b) L2 distance,
and (c) cosine similarity of model weights obtained by different
methods and task-specific model weights.

In Fig. 4, we compare sign con-
flicts, L2 distance, and cosine sim-
ilarity between the merged model
weights obtained by different merg-
ing methods and the task-specific
model weights. It can be seen that
EMR-MERGING significantly re-
duces sign conflicts and L2 dis-
tance and improves the cosine
similarity, indicating that EMR-
MERGING approximates each task-
specific model weight effectively.
The configuration of Fig. 4 can be
found in Appendix F.

4 Experiment Validation

Baseline methods. We compare the proposed EMR-MERGING with: (1) Individual Models, (2) Tra-
ditional MTL, (3) Weight Averaging, (4) Fisher Merging [46], (5) RegMean [33], (6) Task Arith-
metic [30], (7) Ties-Merging [84], (8) AdaMerging [85]. For more details about baseline methods,
please check Appendix C.

4.1 Merging vision models

4.1.1 Merging 8 ViTs.

Settings. We follow the setting from Task Arithmetic [30], Ties-Merging [84], and AdaMerging [85].
We employ ViT-B/32 and ViT-L/14, two variants of CLIP [54] models’ visual encoders, as the
pre-trained models. The performance of each method is evaluated by eight image classification
tasks, including SUN397 [83], Cars [35], RESISC45 [10], EuroSAT [27], SVHN [91], GTSRB [65],
MNIST [38], and DTD [11]. All the datasets are evaluated by accuracy.

Results. The experimental results of merging ViT-B/32 and ViT-L/14 on eight tasks are shown in
Tab. 2 and Tab. 3. We observe that EMR-MERGING shows significant performance improvement
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Figure 5: Partial visualization results of different merging methods, (a) t-SNE and (b) Grad-CAM.

Table 4: Task-specific and average performance when merging ViT-B/16 models on 30 tasks.

Task-specific Acc MNIST Cifar-10 Vegetables Food-101 Kvasir-v2 Intel-Images Cars EuroSAT Weather Cats and Dogs

Individual 99.22 97.88 100.00 87.93 94.31 94.63 85.96 99.04 98.22 99.05

Weight Averaging 27.63 42.91 83.20 68.02 25.27 82.40 7.74 24.37 61.06 91.28
RegMean [33] 90.71 89.65 99.10 76.14 71.00 93.60 16.28 74.13 86.62 98.54

Task Arithmetic [30] 30.81 59.86 91.97 73.06 31.05 89.03 9.34 31.25 74.56 93.61
Ties-Merging [84] 23.21 42.82 92.31 73.22 21.09 89.39 5.30 10.98 72.86 91.88
AdaMerging [85] 81.22 87.54 97.97 75.23 22.76 91.02 0.42 44.60 89.13 96.91

EMR-MERGING (Ours) 98.99 96.69 99.97 85.05 93.67 95.27 72.48 96.24 97.76 99.27

Dogs Fashion Pet LandScape Flowers STL-10 CUB-200-2011 EMNIST DTD RESISC45

Individual 85.16 93.26 92.23 86.83 98.19 99.07 84.79 94.67 71.76 98.90

Weight Averaging 47.80 20.46 31.26 73.14 68.97 37.74 37.66 7.73 14.63 13.56
RegMean [33] 42.89 83.42 34.62 83.64 95.26 78.94 49.78 48.67 30.53 34.66

Task Arithmetic [30] 47.65 37.11 33.24 79.59 80.68 39.66 41.86 11.05 14.73 15.50
Ties-Merging [84] 26.03 27.05 12.84 78.27 34.33 6.17 31.28 5.61 3.71 6.79
AdaMerging [85] 53.09 76.76 48.34 81.98 95.69 68.91 48.19 18.02 16.68 24.83

EMR-MERGING (Ours) 81.89 92.41 87.15 86.17 97.66 98.41 74.91 92.03 60.05 93.01

MangoLeafBD Beans Cifar-100 GTSRB SVHN SUN397 KenyanFood13 Animal-10N Garbage Fruits-360

Individual 100.00 97.73 89.85 95.74 96.22 78.98 85.53 92.52 93.36 99.63

Weight Averaging 68.58 70.98 77.98 15.00 10.88 57.42 33.55 46.00 22.89 5.38
RegMean [33] 98.10 92.58 82.59 56.96 66.13 58.58 57.11 68.74 65.31 19.79

Task Arithmetic [30] 87.02 84.62 80.20 37.01 17.41 55.88 36.32 51.14 25.23 6.15
Ties-Merging [84] 76.58 67.22 78.61 40.74 10.54 52.69 19.90 19.13 3.91 1.50
AdaMerging [85] 99.13 93.38 84.19 59.90 25.70 64.09 48.66 66.55 38.54 7.94

EMR-MERGING (Ours) 100.00 98.48 89.09 95.98 82.33 76.19 74.12 87.70 87.11 96.07

Average Acc Individual Weight Averaging RegMean [33] Task Arithmetic [30] Ties-Merging [84] AdaMerging [85] EMR-MERGING (Ours)
Acc 93.02 42.52 68.14 48.89 37.53 60.25 89.54

compared to existing merging methods, respectively 7.6% and 2.7%. Notably, EMR-MERGING
requires no additional training, tuning, or any dataset accessibility while outperforming AdaMerging
and Ties-Merging, which require additional training or careful hyper-parameter tuning using datasets.
Under this setting, EMR-MERGING performs very close to or even better than traditional MTL,
which is normally considered as a reference upper bound for model merging work [85]. For visualized
comparison, we provide some visualization results of different merging methods using t-SNE and
Grad-CAM in Fig. 5. It can be seen that among all the merging methods, the visualization results
of EMR-MERGING are the closest to individual models, which corresponds to quantitative results.
Please check Appendix E for more visualization results.

4.1.2 Merging 30 ViTs.

Settings. To further explore the performance of EMR-MERGING, we establish a new benchmark
on merging vision models, expanding the number of task-specific models from eight to 30. We
employ ViT-B/16 [22] pre-trained on ImageNet-21k [18] as the pre-trained model. The performance
is evaluated by image classification datasets including MNIST [38], CIFAR-10 [36], Vegetables [1],
Food-101 [6], Kvasir-v2 [53], Cars [35], Intel Images [4], EuroSAT [27], Weather [82], Cats and
dogs [15], MangoLeafBD [2], Beans [37], CIFAR-100 [36], GTSRB [65], SVHN [91], Dogs [34],
Fashion MNIST [81], Oxford-IIIT-Pet [50], Landscape Recognition [17], Flowers Recognition [45],
STL-10 [12], CUB-200-2011 [73], EMNIST [13], DTD [11], RESISC45 [10], SUN397 [83], Kenyan-
Food13 [32], Animal-10N [64], Garbage Classification [8], and Fruits-360 [47], covering tasks from
common food classification to disease detection. All of them are evaluated by accuracy.

Results. The experimental results are shown in Tab. 4. It can be clearly seen that under this
challenging setting of merging 30 models, all the existing methods show significant performance
drops compared to individual models. Even RegMean, which performs best among existing methods,
still exhibits a performance decay of nearly 25%. However, EMR-MERGING can reduce this value
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Table 5: Results of merging RoBERTa models on eight datasets from GLUE benchmark.

Methods Single-Sentence Tasks Similarity and Paraphrase Tasks Inference Tasks
CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

Individual 0.6018 0.9404 0.8922 0.9063 0.9141 0.8720 0.9271 0.7906

Weight Averaging 0.1396 0.6411 0.6936 0.3184 0.7536 0.4219 0.587 0.5523
RegMean [33] 0.3667 0.906 0.7574 0.6268 0.8355 0.7002 0.8235 0.5848
Task Arithmetic [30] 0.1878 0.8589 0.7990 0.7403 0.8378 0.5908 0.6967 0.6209
Ties-Merging [84] 0.2048 0.8440 0.8113 0.5819 0.8570 0.6465 0.7481 0.4296

EMR-MERGING (Ours) 0.3996 0.9335 0.8627 0.8277 0.8972 0.8545 0.8957 0.7437

Table 6: Multi-task performance when merging GPT-2 models on seven text classification tasks.
Method CoLA MNLI MRPC QNLI QQP RTE SST-2 Avg.

Indivudual 76.8 82.1 80.4 88.3 89.6 65.3 91.2 82.0

Weight Averaging 55.0 55.1 51.0 57.6 76.7 44.8 52.5 56.1
Fisher Merging [46] 54.8 58.0 39.5 63.3 81.5 49.1 64.7 58.7
RegMean [33] 61.7 70.4 65.4 69.7 78.8 56.0 79.7 68.8
Task Arithmetic [30] 68.7 68.6 69.6 70.5 81.8 47.3 83.6 70.0
Ties-Merging [84] 68.4 71.4 68.4 69.6 82.4 47.7 81.8 70.0

EMR-MERGING (Ours) 72.8 81.1 79.2 84.8 88.1 66.5 90.3 80.4

to 3.48%. This shows that the proposed method maintains the performance comparable to individual
models when merging vision models even if the number of tasks increases.

4.2 Merging language models

4.2.1 Merging fully finetuned RoBERTa models

Settings. We partially follow the setting from DARE [90]. However, instead of merging two or three
models at a time, we merge all eight models finetuned on each task. RoBERTa-base [43] model is
selected as the pre-trained model. The performance of each method is evaluated by eight tasks from
GLUE [74] benchmark, respectively CoLA [76], SST-2 [63], MRPC [21], STS-B [9], QQP [31],
MNLI [78], QNLI [56], and RTE [24]. Among them, CoLA is evaluated by the Matthews correlation
coefficient, STS-B is evaluated by the average value of Pearson and Spearman correlation coefficients,
and the rest tasks are evaluated by accuracy.

Results. The experimental results are shown in Tab. 5. It can be seen that EMR-MERGING
outperforms all the existing methods on every task, verifying the applicability of the proposed method
to language models. Note that the reported results of Ties-Merging, Task Arithmetic, and RegMean
are the best among multiple hyper-parameter settings. Please check Appendix D.4 for more detailed
information. It should also be noted that we find that under our setting of merging multiple models,
DARE may not help improve the performance. Similar results were also reported by [25]. This may
be due to DARE’s random dropping strategy can no longer resolve conflicts among task vectors under
the setting of merging multiple models. Please check Appendix D.3 for DARE’s experimental results.

4.2.2 Merging fully finetuned GPT-2 models

Settings. We follow the setting from FusionBench [68], a benchmark for model merging. We merge
GPT-2 [55] models on seven tasks from GLUE [74], each with a different head for classification.
Under this setting, each task is evaluated by accuracy.

Results. The experimental results are shown in Tab. 6. EMR-MERGING outperforms all the merging
methods by over 10% and decreases the performance degradation caused by model merging from
12% to 1.6%. This validates the applicability of EMR-MERGING to fully finetuned GPT2-scale
language models.

4.2.3 Merging PEFT models

Settings. We follow the setting from Ties-Merging [84]. (IA)3 [42] is a PEFT method that uses
learned vectors to scale the base model activations. We use T0-3B [60] as the base model and merge
(IA)3 modules. The performance is evaluated using eleven datasets, including RTE [24], CB [16],
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Table 7: Results of merging (IA)3 models on eleven NLP tasks.

Methods Validation RTE CB Winogrande WiC WSC COPA H-SWAG Story Cloze ANLI-R1 ANLI-R2 ANLI-R3 Avg Acc
Individual - 82.7 95.8 75.1 71.7 65.3 85.3 44.4 94.9 70.2 46.5 53 71.4
Traditional MTL - 88.6 95.8 75.5 61.1 80.6 94.1 42.3 97.6 70.5 49.8 47.7 73.1

Fisher Merging [46] ✓ 83.3 83.3 56.7 54.2 58.3 83.1 42.2 94.1 45.9 41.0 42.2 62.2
RegMean [33] ✓ 81.2 58.3 53.8 55.2 53.5 80.9 40.1 92.5 43.3 39.2 40.2 58
Task Arithmetic [30] ✓ 74.1 83.3 62.8 49.1 49.3 87.5 41.5 95.3 60.8 49.4 50.0 63.9
Ties-Merging [84] ✓ 78.0 83.3 67.9 57.6 59.7 81.7 42.8 90.3 66.9 51.3 51.1 66.4

Weight Averaging × 81.2 58.3 53.8 55.2 53.5 80.9 40.1 92.5 43.3 39.2 40.2 58
Task Arithmetic [30] × 76.5 79.2 57.7 51.6 51.4 66.2 31.4 81.5 59.8 47.5 48.2 59.2
Ties-Merging [84] × 81.2 87.5 60.8 59.9 58.3 80.2 42.6 91.1 58.1 46.5 47.4 64.9
EMR-MERGING (Ours) × 81.8 87.5 66.6 56.1 65.3 82.4 44.7 93.6 65.7 43.8 50.8 67.1

Table 8: Results of merging multi-modal BEiT3 models on five vision-language tasks.

Methods Task COCO-Retrieval COCO-Captioning ImageNet-1k Classification NLVR2 VQAv2
Metric Accuracy(↑) BLEU4(↑) CIDEr(↑) METEOR(↑) ROUGE-L(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑)

Individual 0.8456 0.394 1.337 0.311 0.601 0.8537 0.7765 0.8439

Weight Averaging 0.1893 0.031 0.001 0.115 0.159 0.6771 0.2800 0.6285

Task Arithmetic [30] 0.3177 0.033 0.000 0.118 0.176 0.7081 0.3809 0.6933
Ties-Merging [84] 0.3929 0.029 0.001 0.108 0.167 0.6978 0.3206 0.6717

EMR-MERGING(Ours) 0.7946 0.289 1.060 0.272 0.534 0.7742 0.7475 0.7211

Winogrande [59], WiC [52], WSC [39], COPA [58], H-SWAG [92], Story Cloze [62], and ANLI [48]
from R1 to R3. All the datasets are evaluated by accuracy.

Results. The experimental results are shown in Tab. 7. EMR-MERGING outperforms all the
merging methods. Compared to methods without validation, EMR-MERGING improves the average
accuracy on each task by 2.2%. When compared to methods that require validation data to tune
hyper-parameters or compute matrices for weighted merging, EMR-MERGING still improves the
average performance by 0.7%, validating the applicability of our method to PEFT models.

4.3 Merging multi-modal models

Settings. We merge BEiT3-base [75] models finetuned on five datasets from different kinds of
tasks, respectively ImageNet-1k [18] (Image Classification), VQAv2 [26] (Visual Question Answer-
ing), NLVR2 [67] (Visual Reasoning), COCO Captioning [41] (Image Captioning), and COCO
Retrieval [41] (Image-Text Retrieval). Among them, COCO Captioning is evaluated by BLEU4 [49],
CIDEr [72], METEOR [3], and ROUGE-L [40]. The other tasks are evaluated by accuracy.

Results. The experimental results are shown in Tab. 8. It can be seen that EMR-MERGING performs
best on all the vision-language tasks regardless of which evaluation metric is applied among all the
merging methods, validating the effectiveness of EMR-MERGING in merging multi-modal models.

4.4 Merging different number of models

Figure 6: Comparison of the (a) number of parameters
and (b) average normalized performance when using in-
dividual models, Ties-Merging, and EMR-MERGING.

In Fig. 6, we compare the number of
parameters and performance using indi-
vidual models, Ties-Merging, and EMR-
MERGING when merging different num-
bers of ViT-B/32 models under the setting
of no-validation.

Number of parameters. Compared to
other merging methods, EMR-MERGING
requires a little additional storage for task-
specific modulators. However, compared
to a single 32-bit model, the additional stor-
age caused by a task-specific 1-bit mask
equals a binarized network, whose size
is 32 times smaller than a single 32-bit
model [14]. Additionally, the storage required by a task-specific rescaler, which is a single pa-
rameter, is negligible. In Fig. 6(a), we compare the number of parameters when merging different
numbers of models, and we observe that EMR-MERGING’s parameter number is slightly more than
Ties-Merging but significantly fewer than individual models.
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Table 9: Ablation on the Electing procedure of EMR-MERGING.

Methods SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Task Arithmetic 63.8 62.1 72.0 77.6 74.4 65.1 94.0 52.2 70.1
Task Arithmetic w/ M&R 67.6 67.3 80.2 91.3 79.3 75.7 96.0 57.9 76.9 [↑ 6.8]

Ties-Merging 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2 73.6
Ties-Merging w/ M&R 68.8 68.9 82.2 91.6 81.4 80.0 96.6 59.3 78.6 [↑ 5.0]

AdaMerging++ 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1
AdaMerging++ w/ M&R 74.0 76.2 93.1 98.2 93.3 96.3 99.4 71.2 87.7[↑ 6.6]

EMR-MERGING (Ours) 75.2 72.8 93.5 99.5 96.9 98.1 99.6 74.4 88.7

Table 10: Ablation on the Masking and Rescaling procedures of EMR-MERGING.

Methods SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Ours (Elect) 31.7 34.7 51.8 65.9 85.7 64.0 98.2 42.2 59.3
Ours (Elect & Mask) 70.7 65.9 92.2 98.7 96.9 97.6 99.6 72.3 86.8 [↑ 27.5]
Ours (Elect & Rescale) 58.2 57.2 69.1 81.6 85.2 73.0 98.4 52.2 71.9 [↑ 12.6]
Ours (Elect, Mask & Rescale) 75.2 72.8 93.5 99.5 96.9 98.1 99.6 74.4 88.7 [↑ 29.4]

Performance. The performance comparison when merging different numbers of models is shown in
Fig. 6(b). Compared to Ties-Merging, the performance of EMR-MERGING is higher and decreases
more slowly as the task increases. Note that EMR-MERGING outperforms individual models
under the 2-task setting. Similar findings are reported by DARE [90]. More details are shown in
Appendix D.5.

4.5 Ablation Study

We perform ablations on all the components of EMR-MERGING as follows.

Ablation on Electing procedure. Tab. 9 shows the results of merging eight ViT-B/32 models when
the Electing procedure is replaced by other task vector-based merging methods. The effectiveness of
our Electing strategy is verified by outperforming the combination of other merging methods with
masking and rescaling. Another interesting finding is that as a post-processing procedure, masking
and rescaling can help improve the performance of task vector-based merging methods, respectively
6.8%, 5.0%, and 6.6% for Task Arithmetic, Ties-Merging, and AdaMerging++.

Ablation on Masking and Rescaling procedures. Then, we further validate the importance of
Masking and Rescaling procedures by disabling either or both of them. The results are shown
in Tab. 10. It can be seen that simply electing results in a severe performance drop while adding
Masking and Rescaling can improve the performance by 27.5% and 12.6%, respectively. Furthermore,
compared to separately applying either of these two procedures, jointly applying Masking and
Rescaling leads to greater improvement, up to 29.4%.

5 Conclusion

In this paper, we study on tuning-free and high-performance model merging. We first attribute
the severe performance degradation of existing merging methods to that a single model can hardly
simulate all the models’ performance. Then we propose ELECT, MASK & RESCALE-MERGING
(EMR-MERGING), which does not require any data access or additional training for tuning. The
effectiveness of EMR-MERGING is validated by comprehensive experiments on various classical
benchmarks and newly-established benchmarks under vision, NLP, PEFT, and multi-modal settings.
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Appendix for EMR-MERGING

A Algorithm flow of EMR-MERGING

We summarize the procedure of EMR-MERGING in Algorithm 1.

Algorithm 1 EMR-MERGING Procedure
Input: Finetuned models W1..N , pretrained model Wpre

Output: Unified task vector τuni, task-specific masks M1..N , task-specific rescalers λ1..N

for t in1, ..., N do
▷ Create task vectors.

τt = Wt −Wpre

end
▷ Step 1: Elect the unified task vector.

γuni = sgn(
∑n

t=1 τt)
ϵuni = zeros(d)
for t in1, ..., N do

for p in1, ..., d do
if γp

uni · τ
p
t > 0 then

ϵpuni = max (ϵpuni, abs (γ
p
uni))

end
end

end
τuni = γuni ⊙ ϵuni.
for t in1, ..., N do

▷ Step 2: Generate task-specific masks.

for p in1, ..., d do
Mp

t = bool(τpt ⊙ τpuni > 0)
end
▷ Step 3: Generate task-specific rescalers.

λt =
sum(abs(τt))

sum(abs(Mt·τuni))

end

B Theoretical analyses

In Section 3, we claimed that the task-specific modulators can lower the distance between the merged
model and task-specific models. Here we provide detailed theoretical analyses.

Our goal is to merge model weights W1..N by minimizing the distance between the merged model
Wuni and each individual models Wi, i ∈ [1..N ] without using any dataset [Xi, Yi], where the
distance can be calculated by:

Dis =

∑N
i=1 ∥Wi −Wuni∥2

N
(6)

The premise of merging is that all the models are fine-tuned from the same pre-trained model. Thus,
Eq. 6 can be re-written:

Dis =

∑N
i=1 ∥τi − τuni∥2

N
(7)

where τi refers to the task vector for Task i. τuni is the merged task vector. We demonstrate the
effectiveness of the task-specific modulators by step.

Analysis 1: Effectiveness of Masks. Suppose we apply a mask Mi to the unified model τuni to
disable elements in τuni that have the opposite sign of the corresponding elements in τuni, which can
be written as:
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Figure 7: Comparison of (a) sign conflicts, (b) L2 distance, and (c) cosine similarity of model weights
obtained by different methods (including AdaMerging++ and each procedure of EMR-MERGING)
and task-specific model weights. The detailed configuration is shown in Appendix F.

Table 11: Multi-task performance when merging ViT-B/16 models on eight tasks.

Methods SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Task Arithmetic [30] 61.1 65.9 74.0 76.2 88.0 73.9 98.4 53.0 73.8
Ties-Merging [84] 69.1 72.5 80.5 84.0 85.0 71.5 98.1 54.9 77.0
AdaMerging [85] 70.2 80.7 81.6 94.8 91.6 95.8 98.5 66.2 84.9
AdaMerging++ [85] 71.8 80.8 84.1 94.3 91.9 94.5 98.7 69.8 85.7

EMR-MERGING (Ours) 78.6 82.6 95.5 99.2 97.6 98.8 99.6 78.3 91.3

Mi = (τi ⊙ τuni > 0) (8)

By applying the masks Mi, i ∈ [1..N ], the distance becomes:

DisM =

∑N
i=1 ∥τi −Mi ⊙ τuni∥2

N
(9)

Furthermore, it can be written as:

DisM =

∑N
i=1 ∥Mi ⊙ τi −Mi ⊙ τuni∥2

N
+

∑N
i=1 ∥ (1−Mi)⊙ τi∥2

N

=

∑N
i=1 ∥Mi ⊙ (abs (τi)− abs (τuni)) ∥2

N
+

∑N
i=1 ∥ (1−Mi)⊙ abs (τi) ∥2

N

(10)

where abs(·) returns the absolute value of each element in the input. For ease of comparison, the
distance without applying Mi can be formulated as:

Dis =

∑N
i=1 ∥Mi ⊙ (abs (τi)− abs (τuni)) ∥2

N
+

∑N
i=1 ∥ (1−Mi)⊙ (abs (τi) + abs (τuni)) ∥2

N

= DisM +

∑N
i=1 ∥ (1−Mi)⊙ abs (τuni) ∥2

N

(11)

Thus, we demonstrate that DisM ≤ Dis, indicating applying task-specific masks can reduce the
distance between the merged model and individual models, thus showing effectiveness.

Analysis 2: Effectiveness of Rescalers. Suppose we apply a rescaler λi > 0 to the masked unified
task vector Mi · τuni, the distance becomes:

DisM,λ =

∑N
i=1 ∥τi − λi ·Mi ⊙ τuni∥2

N

=

∑N
i=1 ∥abs (τi)− λi · abs (Mi ⊙ τuni) ∥2

N

(12)
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Figure 8: t-SNE visualization results of different merging methods.

Table 12: Multi-task performance when merging ViT-B/32 models on 9 vision tasks (ImageNet-1K
added).

Methods SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD ImageNet-1K Avg Acc
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 82.0 89.6

Weight Averaging 61.8 56.4 65.9 66.2 62.7 44.5 81.8 49.0 61.5 61.1
Task Arithmetic [30] 51.8 30.9 55.8 64.3 69.0 42.2 92.7 46.8 66.6 57.8
Ties-Merging [84] 53.3 34.1 57.0 55.8 72.3 43.2 90.5 46.5 68.9 58.0

EMR-MERGING (Ours) 77.0 75.2 92.9 92.7 79.7 90.2 97.6 76.2 79.8 84.6

To minimize the distance in Eq. 12, we set the first derivative of Disλ with respect to λi to 0, thus λi

can be calculated by:

λi =
sum(abs(τi))

sum(abs(Mi ⊙ τuni))
(13)

which exactly matches our setting of λi. This indicates that our setting of rescalers λi can minimize
the distance between the merged model and individual models, which is: DisM,λ ≤ DisM , thus
showing effectiveness.

It is also reflected in Fig. 7 that after Masking and Rescaling, the sign conflicts and L2 distance
between the merged model and task-specific models are reduced and the cosine similarity can is
improved.
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Figure 9: Grad-CAM visualization results of different merging methods.

C Baseline Methods

• Individual Models refer to task-specific models before merging.

• Traditional MTL uses datasets from all the tasks to train a single model jointly.

• Weight Averaging element-wisely averages all the model weights. Its effectiveness when
applied to fine-tuned model weights from the same pre-training has been verified [80, 57, 33].

• Fisher Merging [46] uses Fisher information matrices [23] to calculate the importance of
each parameter and weighted merges them based on their importance.

• RegMean [33] weighted merges models based on a closed-form solution to the merging
problem. When merging K linear model weights Wi, where fi (x) = WT

i x, i = 1..K, the
merging problem can be formulated as: min

W

∑K
i=1∥WTXi −WT

i Xi∥2, where W is the

merged model weights, and Xi denotes the input of ith model. The closed-form solution to
the problem is: W = (

∑K
i=1 X

T
i Xi)

−1(
∑K

i=1 X
T
i XiWi). Inner-product matrices need to

be computed before merging.

• Task Arithmetic [30] defines task vectors as the difference between finetuned model weights
and the pre-trained model weights. Suppose a model θi is finetuned from a pre-trained
model θpre, the task vector is τi = θi − θpre. When merging θ1..K , the merged model is
θM = λ

∑K
i=1 τi + θpre, where λ is the merging coefficient.

• Ties-Merging [84] (Trim, Elect Sign & Merge) believes that the conflicts among the task
vectors severely effect the merged model’s performance. Ties-Merging solves this problem
by eliminating redundant parameters and resolving symbol conflicts.
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Table 13: Performance of RegMean and Task Arithmetic when pre-processed using DARE [90].

Methods Single-Sentence Tasks Similarity and Paraphrase Tasks Inference Tasks
CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

Individual 0.6018 0.9404 0.8922 0.9063 0.9141 0.8720 0.9271 0.7906
EMR-MERGING (Ours) 0.3996 0.9335 0.8627 0.8277 0.8972 0.8545 0.8957 0.7437

RegMean [33] 0.3667 0.906 0.7574 0.6268 0.8355 0.7002 0.8235 0.5848
w/ DARE (drop 10%) 0.5046 0.5298 0.3603 0.1533 0.4955 0.3245 0.4924 0.4477
w/ DARE (drop 30%) 0.4535 0.6135 0.3186 0.0471 0.4219 0.3325 0.505 0.5126
w/ DARE (drop 50%) 0.2758 0.5138 0.3211 -0.0965 0.3685 0.3338 0.508 0.5235
w/ DARE (drop 70%) 0 0.4908 0.3162 0.0021 0.3682 0.3184 0.5056 0.4838
w/ DARE (drop 90%) 0 0.4908 0.3162 -0.0776 0.3682 0.3187 0.5158 0.4910

Task Arithmetic [30] 0.1878 0.8589 0.7990 0.7403 0.8378 0.5908 0.6967 0.6209
w/ DARE (drop 10%) 0.2424 0.8509 0.7966 0.7234 0.8382 0.5869 0.7368 0.6101
w/ DARE (drop 30%) 0.3040 0.8452 0.7941 0.6311 0.8333 0.5515 0.786 0.6137
w/ DARE (drop 50%) 0.2451 0.8188 0.7990 0.4262 0.8099 0.4591 0.7269 0.6029
w/ DARE (drop 70%) 0 0.7225 0.6373 0.1353 0.7321 0.3453 0.6495 0.5162
w/ DARE (drop 90%) 0 0.4908 0.3162 0.0422 0.3682 0.3185 0.5114 0.4729

Ties-Merging [84] 0.2048 0.8440 0.8113 0.5819 0.8570 0.6465 0.7481 0.4296
w/ DARE (drop 30%) 0 0.5103 0.3382 -0.0024 0.3961 0.3238 0.5277 0.4838
w/ DARE (drop 50%) 0.0464 0.6021 0.5343 0.0192 0.6846 0.3410 0.5841 0.4982
w/ DARE (drop 70%) 0.1342 0.7833 0.7672 0.1667 0.8180 0.4172 0.691 0.5271
w/ DARE (drop 90%) 0.2618 0.8383 0.8039 0.6082 0.8336 0.5551 0.7692 0.5235

• AdaMerging [85] uses an unsupervised method to learn the merging coefficients for each
task vector (Task-wise AdaMerging) or each layer (Layer-wise AdaMerging). AdaMerg-
ing++ is realized by adopting Ties-Merging [84] before learning the merging coefficients.

• DARE [90] (Drop and Rescale) validates the extremely redundant properties of language
models. As a pre-processing technique, DARE randomly drops most (90% or even 99%)
delta parameters (task vectors) before merging to potentially mitigate the interference of
parameters among models.

D More experimental results

D.1 Merging ViT-B/16 models on 8 tasks

We follow the settings in Section 4.1.1 and merge ViT-B/16 models. Tab. 11 shows the accuracy of
merging ViT-B/16 models on eight vision tasks. The proposed EMR-MERGING brings about 5.6%
performance improvement compared to Adamerging++ [85], further demonstrating the effectiveness
of EMR-MERGING.

D.2 Merging ViT-B/32 models on 9 tasks (ImageNet-1K added)

To further explore the performance of EMR-MERGING, we follow the settings in Section 4.1.1
and add one more task, ImageNet-1K [18]. We merge models on these nine tasks using different
merging methods. The results are shown in Tab. 12 and EMR-Merging shows a much more significant
improvement compared to existing merging methods (up to 20%).

D.3 DARE’s experimental results and causes

DARE’s experimental results when combined with RegMean and Task Arithmetic are shown in
Tab. 13. It can be seen that when applied to merge eight models, DARE works on a few tasks under
low dropping rate settings but it generally fails. We attribute its failure to the random dropping
strategy’s unapplicability to merging multiple models. Under the setting of merging two or three
models, randomly dropping most parameters in task vectors can significantly reduce interference but
conflicts are a lot more difficult to avoid when merging multiple models.
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Table 14: Performance of Task Arithmetic [30], Ties-Merging [84], Ties-Merging [84] w/ DARE [90],
and RegMean [33] under different hyper-parameter settings. λ for task vector-based methods is the
merging coefficient. P is the drop rate for DARE. a is the non-diagonal multiplier for RegMean.

Methods Single-Sentence Tasks Similarity and Paraphrase Tasks Inference Tasks
CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

Individual 0.6018 0.9404 0.8922 0.9063 0.9141 0.872 0.9271 0.7906

EMR-MERGING (Ours)
0.3996 0.9335 0.8627 0.8277 0.8972 0.8545 0.8957 0.7437

Task Arithmetic
λ = 0.1 0.0464 0.742 0.6691 0.2344 0.771 0.3567 0.6919 0.556
λ = 0.3 0.1878 0.8589 0.799 0.7403 0.8378 0.5908 0.6967 0.6209
λ = 0.5 -0.0089 0.7913 0.7794 0.5686 0.8271 0.4631 0.5387 0.4693
λ = 0.7 -0.0079 0.6525 0.7819 0.1292 0.8146 0.3949 0.5279 0.5054
λ = 0.9 -0.0207 0.7202 0.4167 -0.1283 0.8012 0.2913 0.5294 0.5162
λ = 1.0 0 0.5619 0.3554 -0.2496 0.7939 0.259 0.5338 0.5162

Ties-Merging
λ = 0.1 0 0.4908 0.3162 0.0214 0.3682 0.3186 0.5105 0.4729
λ = 0.3 0 0.5631 0.5049 -0.0074 0.4696 0.35 0.5649 0.4621
λ = 0.5 0.2232 0.7592 0.7696 0.1149 0.827 0.4486 0.6939 0.4368
λ = 0.7 0.2507 0.8291 0.7917 0.3774 0.8488 0.5858 0.7507 0.4188
λ = 0.9 0.2048 0.844 0.8113 0.5819 0.857 0.6465 0.7481 0.4296
λ = 1.0 0.1712 0.8406 0.799 0.6444 0.859 0.6409 0.7069 0.426

Ties-Merging w/ DARE
λ = 0.2, P = 0.3 0 0.4920 0.3162 0.0053 0.3682 0.3186 0.5131 0.4477
λ = 0.2, P = 0.5 0 0.0043 0.3162 0.0036 0.3690 0.3202 0.5226 0.4946
λ = 0.2, P = 0.7 0.0464 0.6388 0.5735 0.0301 0.0047 0.3383 0.5984 0.5090
λ = 0.2, P = 0.9 0.2402 0.8165 0.7843 0.2696 0.8112 0.4384 0.7223 0.5415
λ = 0.3, P = 0.3 0 0.5103 0.3382 -0.0024 0.3961 0.3238 0.5277 0.4838
λ = 0.3, P = 0.5 0.0464 0.6021 0.5343 0.0192 0.6846 0.3410 0.5841 0.4982
λ = 0.3, P = 0.7 0.1342 0.7833 0.7672 0.1667 0.8180 0.4172 0.691 0.5271
λ = 0.3, P = 0.9 0.2618 0.8383 0.8039 0.6082 0.8336 0.5551 0.7692 0.5235
λ = 0.4, P = 0.3 0.0656 0.6216 0.5588 0.0192 0.7301 0.3461 0.5891 0.5162
λ = 0.4, P = 0.5 0.1172 0.7374 0.7451 0.1045 0.8157 0.3913 0.6667 0.5126
λ = 0.4, P = 0.7 0.2440 0.8234 0.7843 0.3955 0.8371 0.5496 0.7216 0.4838
λ = 0.4, P = 0.9 0.1380 0.8440 0.8064 0.7044 0.8365 0.5835 0.6529 0.5054

RegMean
a = 0.7 0.3005 0.9037 0.7525 0.6349 0.8322 0.6794 0.8157 0.5632
a = 0.8 0.3346 0.9014 0.7549 0.6375 0.8339 0.6841 0.8173 0.5704
a = 0.9 0.3445 0.9048 0.7525 0.6362 0.8361 0.6918 0.821 0.5632
a = 1.0 0.3667 0.906 0.7574 0.6268 0.8355 0.7002 0.8235 0.5848

D.4 Results under different hyper-paramerter settings

In Section 4.2.1, we presented the best performance of Ties-Merging, Task Arithmetic, and RegMean
among multiple hyper-parameter settings. Here we present more experimental results of Ties-Merging,
Task Arithmetic, and RegMean under different hyper-parameter settings in Tab. 14.

D.5 Detailed information for merging different number of models

In Section 4.4, we showed partial results of merging different number of ViT-B/32 models by Fig. 6.
Here we provide quantified and task-specific performance results in Tab. 15.
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Table 15: Merging different number of ViT-B/32 models.

Methods SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Individual
2 Tasks 75.3 77.7 - - - - - - 76.5
3 Tasks 75.3 77.7 96.1 - - - - - 83.0
4 Tasks 75.3 77.7 96.1 99.7 - - - - 87.2
5 Tasks 75.3 77.7 96.1 99.7 97.5 - - - 89.3
6 Tasks 75.3 77.7 96.1 99.7 97.5 98.7 - - 90.8
7 Tasks 75.3 77.7 96.1 99.7 97.5 98.7 99.7 - 92.1
8 Tasks 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5

Ties-Merging
2 Tasks 69.2 68.2 - - - - - - 68.7
3 Tasks 69.2 68.0 78.9 - - - - - 72.0
4 Tasks 68.9 67.9 79.4 86.0 - - - - 75.5
5 Tasks 68.6 67.1 79.0 83.5 66.6 - - - 73.0
6 Tasks 68.0 66.4 77.9 80.1 74.4 69.9 - - 72.8
7 Tasks 66.6 65.7 75.7 76.7 81.0 69.2 96.4 - 75.9
8 Tasks 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2 72.4

EMR-MERGING (Ours)
2 Tasks 78.9 76.1 - - - - - - 77.5
3 Tasks 77.9 75.2 95.3 - - - - - 82.8
4 Tasks 77.4 74.9 94.8 99.7 - - - - 86.7
5 Tasks 77.2 74.2 94.7 99.7 97.1 - - - 88.6
6 Tasks 76.4 73.4 94.2 99.7 97.0 98.5 - - 89.9
7 Tasks 75.8 73.3 93.6 99.6 96.9 98.2 99.6 - 91.0
8 Tasks 75.2 72.8 93.5 99.5 96.9 98.1 99.6 74.4 88.7

Table 16: Sparsity (ratio of non-zero items) of the masks and the values of the rescalers when merging
ViTs on 8 vision tasks and RoBERTa models on 8 language tasks.

Sparsity SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

ViT-B/32 0.7194 0.7121 0.7106 0.6994 0.7195 0.7062 0.7132 0.7058
ViT-L/14 0.6832 0.6699 0.6734 0.6579 0.6748 0.6444 0.6614 0.6620

Rescalers SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

ViT-B/32 0.7489 0.7635 0.7489 0.7476 0.7962 0.7652 0.7981 0.7624
ViT-L/14 0.7656 0.7652 0.7537 0.7384 0.7874 0.7313 0.7763 0.7638

Sparsity CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

RoBERTa 0.6264 0.6547 0.6498 0.6150 0.7620 0.7739 0.6243 0.5979

Rescalers CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

RoBERTa 0.2458 0.4698 0.5033 0.2078 0.8891 0.8987 0.4683 0.1466

D.6 Sparsity of masks and values of rescalers.

We show the sparsity of the masks and the values of the rescalers when merging eight ViTs and eight
RoBERTa models in Tab. 16.

E More visualization results

In Section 3, we showed some visualization results using t-SNE [69] and Grad-CAM [61]. Here we
provide more visualization results of both existing merging methods and EMR-MERGING. t-SNE
and Grad-CAM visualization results are shown in Fig. 8 and Fig. 9, respectively.

22



F Configuration of Fig. 4 and Fig. 7

In Fig. 4 and Fig. 7, we hope to compare the sign conflicts, L2 distance, and cosine similarity
of the merged model weights and individual model weights. To calculate the sign conflicts, we
element-wisely compare the merged model weights to each individual model weights and record the
ratio of the elements whose signs conflict. We report the average value of the sign conflicts between
the merged model and each individual model. To calculate the L2 distance or cosine similarity, we
first flatten the merged model weights and each individual model weights as 1-dimension vectors.
Then we calculate the L2 distance or cosine similarity between the merged model and each individual
model and report the average value.

G Limitations and future works

Despite the convincing results, the proposed method suffers from several limitations. On the one
hand, compared to existing methods, EMR-MERGING requires a little additional memory to store the
light-weight task-specific modulators. On the other hand, as a common limitation of task vector-based
methods, EMR-MERGING cannot be generalized to models trained from-scratch because the task
vector is based on the pretrain-finetune paradigm.

Further improving the performance of the merged model and generalizing model merging to models
trained from-scratch or even models with different structures are significant directions for future
work. Additionally, combining model merging with low bit-width quantization has broad application
prospects and is also a potential future work.
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Justification: The main claims made in both abstract and Section 1 accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please check Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The full set of assumptions and a complete (and correct) proof are detailed in
Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose the information in Section 4 and we provide the code and data for
the convenience of reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code for reproduction. Please check Abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify them in Section 4 and in our released code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The required computer resources are decided by the structure of the models to
be merged.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is conducted with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Not applicable to societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers or websites that produced the code package or
dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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