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Abstract

We perform an empirical evaluation of Text-001
to-SQL capabilities of the Codex language002
model. We find that, without any finetuning,003
Codex is a strong baseline on the Spider004
benchmark; we also analyze the failure modes005
of Codex in this setting. Furthermore, we006
demonstrate on the GeoQuery and Scholar007
benchmarks that a small number of in-domain008
examples provided in the prompt enables009
Codex to perform better than state-of-the-art010
models finetuned on such few-shot examples.011
We provide anonymized code at https:012
//anonymous.4open.science/r/013
codex-text2sql-anonymized-DC6D.014

1 Introduction015

Translating natural language questions to SQL016

queries (Text-to-SQL) is an important business017

problem which has seen significant research in-018

terest. A common approach to this task involves019

training a model to produce a SQL query when020

given a question, a database schema, and possibly021

database content as inputs. A clear trend in this022

area is to finetune models pretrained on natural lan-023

guage; notably, performance significantly improves024

as larger pretrained models are used (Shaw et al.,025

2021; Scholak et al., 2021).026

Recent results from the broader field demon-027

strate that simply scaling training data and model028

size for generative language models brings ad-029

vanced capabilities, such as few-shot learning with-030

out finetuning (GPT-3, Brown et al., 2020) and031

code generation (Codex, Chen et al., 2021). In032

this work we study if such models are already com-033

petitive Text-to-SQL solutions without any further034

finetuning on task-specific training data, evaluating035

Codex and GPT-3 models of different sizes with036

varied prompts on Text-to-SQL benchmarks.037

We find that Codex achieves a competitive per-038

formance of up to 67% execution accuracy on the039

Spider development set. We analyze the predicted040

Model VA EX TS
Finetuned
T5-base 72.7 57.9 54.5
T5-large 84.1 67.2 61.4
T5-3B 87.6 71.4 65.7
T5-3B∗ 88.2 74.4 68.3
T5-3B + PICARD∗ 97.8 79.1 71.7
BRIDGE v2∗ – 68.0 –
Inference-only (OpenAI API)
GPT-3 ada 33.8 2.3 0.3
GPT-3 babbage 48.8 5.7 3.9
GPT-3 curie 70.9 12.6 8.3
GPT-3 davinci 65.0 26.3 21.7
Codex cushman∗ 86.3 63.7 53.0
Codex davinci∗ 91.6 67.0 55.1

Table 1: Best Spider development set performance
across models, as measured by percentage of predic-
tions which are valid SQL (VA), execution accuracy
(EX), test-suite accuracy (TS). Models marked with ∗

use database content. T5 results are from Scholak et al.
(2021), BRIDGE v2 results are from Lin et al. (2020).

queries that automatic evaluation judged as wrong 041

and find that many of them would be judged correct 042

by humans, whereas others could likely be fixed 043

within the no-finetuning paradigm. Lastly, using 044

GeoQuery and Scholar benchmarks we show that 045

adapting Codex to a specific domain by prompting 046

it with few examples can be more effective than 047

fine-tuning a smaller language model on the same 048

examples. 049

2 Experimental Setup 050

Models Our evaluation focuses on the models ac- 051

cessible via the OpenAI API: GPT-3 (in the as- 052

cending ada, babbage, curie and davinci sizes) 053

and Codex (in the ascending cushman-codex and 054

davinci-codex sizes)1. These are generative lan- 055

guage models which perform next-token prediction 056

during training and inference; GPT-3 is trained on a 057

diverse set of sources from the internet, and Codex 058

is further finetuned on code from GitHub. We 059

compare GPT-3 and Codex against methods from 060

1See Appendix A.2 for a discussion on parameter counts.
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Shaw et al. (2021) using the T5 encoder-decoder061

model. Starting from public checkpoints pretrained062

on Common Crawl, the T5 model is finetuned on063

Spider to predict the output SQL, conditioned on064

the question and schema. The 3B parameter T5065

model is currently the state-of-the-art on Spider066

when combined with constrained inference using067

the PICARD algorithm (Scholak et al., 2021). We068

also compare to BRIDGE v2 (Lin et al., 2020), a069

sequence-to-sequence model based on BERT.070

Zero-Shot Experiments We use the Spider071

benchmark (Yu et al., 2019) for cross-domain Text-072

to-SQL. We report performance using percentage073

of development set predictions which are valid (ex-074

ecutable) SQLite SQL, execution accuracy, and075

test-suite execution accuracy. The latter metric was076

proposed by Zhong et al. (2020) to measure seman-077

tic equivalence of SQL queries written in different078

styles, which is essential when comparing Codex079

to models trained on Spider.080

Few-Shot Experiments We re-purpose the081

question-splits of the GeoQuery and Scholar082

datasets (Zelle and Mooney, 1996; Iyer et al., 2017;083

Finegan-Dollak et al., 2018) to perform experi-084

ments in a few-shot setting. The examples in these085

datasets are grouped by query templates. Exam-086

ples corresponding to the same template have the087

same SQL query structure, but may have different088

English questions and SQL literals. To define the089

few-shot task, we first sort the templates by their090

frequency in the training set. In the n-shot setting091

we then use one random example for each of the n092

most frequent templates.093

Prompts We use six prompt structures in our094

experiments (examples provided in Appendix C).095

Question provides no database information and096

just includes the question as a SQL comment. API097

Docs follows the style of the Text-to-SQL example098

in Codex documentation and includes a schema099

in a comment style which does not conform to100

SQLite standards. Select X includes in comments101

the results of executing a SELECT * FROM T102

LIMIT X query on each table, including schemas103

via column headers. Create Table includes the104

CREATE TABLE commands for each table, in-105

cluding column type and foreign key declarations.106

Create Table + Select X2 is a combination of the107

2Only the davinci-codex model can evaluate Create Ta-
ble + Select X prompts with more than 1 row, due to it’s
expanded 4096-token prompt window compared to the 2048-
token window of all other models. In addition, GPT-3 models
preprocess whitespace tokens less efficiently than Codex mod-

Prompt VA EX TS
Question 14.0 8.3 8.2
API Docs 83.8 56.8 47.5
Select 1 86.3 60.9 52.0
Select 3 85.8 60.3 52.2
Select 5 85.2 60.5 51.5
Select 10 86.0 60.8 51.2
Create Table 89.8 59.9 50.0
+ Select 1 92.5 64.8 53.7
+ Select 3 91.6 67.0 55.1
+ Select 5 91.0 65.3 53.9
+ Select 10 91.2 63.3 52.4

Table 2: Spider development set performance across
prompt styles on the davinci-codex model, as measured
by percentage of predictions which are valid SQL (VA),
execution accuracy (EX), test-suite accuracy (TS).

preceding two prompt formats. Finally, Fewshot 108

additionally includes question-query pairs. 109

3 Zero-Shot Results 110

We present results for different model sizes in Ta- 111

ble 1 and for different prompt styles in Table 2. 112

Full results are available in Table 4 in Appendix B. 113

Codex provides a strong baseline for Text-to- 114

SQL tasks In Table 1 the best performing model 115

(davinci-codex, Create Table + Select 3) achieves 116

67% execution accuracy and 56.5% test suite execu- 117

tion accuracy on Spider. This is comparable to the 118

performance of the BRIDGE v2 (Lin et al., 2020) 119

model which achieved a (then) state-of-the-art 68% 120

execution accuracy in November 2020. 121

Prompt design is critical for performance As 122

seen in Table 2, providing the question alone re- 123

sults in a low 8.3% execution accuracy. There is 124

a progressive improvement to 56.8% as schema 125

information is introduced in API Docs, to 59.9% 126

when valid SQL and foreign key information is 127

used in Create Table, and to 67.0% when database 128

content is introduced with Create Table + Select 3. 129

More database content can harm perfor- 130

mance In Table 2 we observe that for the Select 131

Limit X prompts there is a negligible change in 132

performance when adding more rows. By contrast, 133

Create Table + Select Limit X prompt accuracy 134

peaks with 3 rows before significantly decreasing 135

in performance as more rows are added. 136

Diminishing returns for Codex model size 137

While GPT-3 performance significantly benefits 138

from increased model size, the davinci-codex 139

model does not perform drastically better than 140

els, and therefore cannot evaluate Create Table + Select X
prompts at all.
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14% Shortcuts
NL What is the number of car models created by the car maker American Motor Company?
Gold SELECT count(*) FROM CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON T1.Id =

T2.Maker WHERE T1.FullName = ’American Motor Company’;
Pred SELECT COUNT(Model) FROM model_list WHERE Maker = 1;
NL Give the city and country for the Alton airport.
Gold SELECT City , Country FROM AIRPORTS WHERE AirportName = "Alton"
Pred SELECT City, Country FROM airports WHERE AirportCode = ’ALN’;
8% SELECT Extra Columns
NL List names of conductors in descending order of years of work.
Gold SELECT Name FROM conductor ORDER BY Year_of_Work DESC
Pred SELECT Name, Year_of_Work FROM conductor ORDER BY Year_of_Work DESC;
5% SELECT Convention
NL What are all the makers and models?
Gold SELECT Maker , Model FROM MODEL_LIST;
Pred SELECT DISTINCT car_makers.Maker, model_list.Model FROM car_makers JOIN

model_list ON car_makers.Id = model_list.Maker;

Figure 1: Examples of error types, as made by the davinci-codex model with Create Table + Select 3 prompt. NL
stands for natural language question. Percentage indicates the percentage of errors which are of the given type.
Further examples are provided in Figure 3 in Appendix B.

cushman-codex. Full results in Table 4 in Ap-141

pendix B show cushman-codex generally being142

within 1 percentage point of davinci-codex for the143

same prompt style; it even performs 3 percentage144

points better for the Create Table prompt. These145

results suggest that davinci-codex’s longer context146

window may be a greater contributor to it’s peak147

performance than increased parameter count.148

3.1 Error Analysis149

We focus our error analysis on the davinci-codex150

model with Create Table + Select 3 prompt, and151

present a breakdown of prediction types in Table 3152

and examples of errors in Figure 1. Our error cate-153

gories were chosen to surface the most interesting154

Codex-specific behaviours we observed amongst155

the errors made. We randomly selected and anno-156

tated 100 predictions which were valid SQL yet157

were judged incorrect by test-suite evaluation.158

We first consider Semantic Incorrect be-159

haviours, which Spider evaluation and the hu-160

man annotator both view as incorrect predictions.161

Shortcut errors are where Codex made use of ei-162

ther specific table values or “world knowledge”163

from GPT-3 pretraining, while the ground-truth164

query contained the exact literals from the question.165

GROUP BY Convention errors are where Codex166

incorrectly groups on a non-primary-key column167

(such as a name or title column).168

We also consider Ambiguous Correct be-169

haviours which are semantically different from the170

gold query and are therefore judged as incorrect by171

Spider evaluation, but which the human annotator172

viewed as being an acceptable SQL translation of173

Annotation % E%
Test-Suite Correct 55.1 –
Semantic Incorrect 25.2 69
– Shortcuts 5.1 14
– GROUP BY Convention 1.5 4
– Other 18.6 51
Ambiguous Correct 11.3 31
– SELECT Extra Columns 2.9 8
– SELECT Convention 1.8 5
– Argmax 1.5 4
– Other 5.1 14
Invalid SQL 8.4 –
– Ambiguous column name 1.9 –
– No such column 4.5 –

Table 3: Breakdown of prediction annotations over Spi-
der development set for the davinci-codex model with
Create Table + Select 3 prompt. % is percentage of all
predictions, E% is percentage of manually annotated
erroneous queries (see Section Section 3.1 for details).

the given question. SELECT Convention errors 174

are where Codex selects a different column than the 175

per-database convention of the gold queries (such 176

as name instead of ID). SELECT Extra Columns 177

errors are where Codex includes additional useful 178

columns in its query beyond what the gold query 179

includes. Argmax errors are where Codex differs 180

from the gold query in how a min/max resolution 181

(such as “youngest singer”) is handled for ties. 182

We observe in Table 3 that a significant 31% 183

of valid yet erroneous predictions are penalized 184

by Spider evaluation as being incorrect though a 185

human annotator viewed them as acceptable solu- 186

tions. Future work could be to investigate to what 187

extent one can control the behaviour of Codex. This 188

could allow to fix these ambiguous errors, either by 189

prompt design or using a few examples. 190
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4 Few-Shot191

We investigate whether Codex can perform few-192

shot Text-to-SQL. As described in Section 2, we193

re-purpose the GeoQuery and Sholar datasets in194

a few-shot setting. It is well known that models195

trained on Spider transfer poorly to other single-196

database Text-to-SQL datasets (Suhr et al., 2020) in197

a zero-shot setting. Studying few-shot Text-to-SQL198

on GeoQuery and Scholar should show to what199

extent models are able to leverage a small amount200

of examples to effectively adapt to a new domain.201

Baseline The baseline is a T5-3B model that was202

finetuned on Spider, reaching 71% exact-match203

accuracy on Spider validation set. The model is204

then further finetuned on the new domain – Geo-205

Query or Scholar. The learning rate for domain-206

specific-finetuning was selected in the 20-shot set-207

ting among [0.1, 0.2, 0.5, 1, 2] · 10−5, based on the208

best validation set performance after 300 steps. We209

use batch-size 1024, such that all the few-shot ex-210

amples fit in the same batch.211

Codex Building on the Create Table + Select X212

prompt, we append n question-query examples to213

the input in an n-shot setting. An example of this214

prompt is provided in Figure 10. All samples are215

generated using greedy decoding, with temperature216

0. Note that for a given n-shot setting, the baseline217

and Codex use the same set of support examples.218

These examples are in the prompt for Codex, and219

used to finetune the baseline on the new domain.220

Given the limited window-size of API models, on221

GeoQuery we can feed up to 40 support exam-222

ples to davinci-codex, and up to 10 examples to223

cushman-codex and GPT-3 models. On Scholar the224

queries are longer and the schema more complex –225

we fit only 10 examples in the prompt of davinci-226

codex, 5 for cushman-codex, and none at all for227

GPT-3 models.228

4.1 Results229

Figure 2 shows test-suite accuracies on the Scholar230

and GeoQuery datasets. The baseline reaches231

85.7% test-set performance when trained on the232

complete GeoQuery training set (549 examples).233

Respectively, it reaches 87.2% test accuracy when234

trained on the whole Scholar training set (499 ex-235

amples). This simple baseline is a very compet-236

itive model when considering the entire datasets.237

However Figure 2 shows that it is largely beaten238

by Codex in few-shot settings. In a zero-shot set-239

ting, both davinci-codex and cushman-codex al-240

(a) GeoQuery. When trained on the whole GeoQuery training
set (549 examples), the finetuned T5 reaches 85.7% accuracy.

(b) Scholar. When trained on the whole Scholar training set
(499 examples), the finetuned T5 reaches 87.2% accuracy.

Figure 2: Test-suite accuracy with varying number of
support examples. The x-axis shows the number of few-
shot examples used.

ready beat the baseline on GeoQuery. We spec- 241

ulate that Codex performs well here because it 242

uses the same argmax convention as the GeoQuery 243

dataset, which is different than the convention used 244

in Spider. With up to 40 examples in the prompt, 245

davinci-codex outperforms a T5-3B model fine- 246

tuned on these same examples by a large margin, 247

whereas GPT-3 davinci performs quite poorly on 248

this task. On the other hand, the T5 model outper- 249

forms Codex in a zero-shot setting on Scholar. In 250

5 and 10-shot settings, Codex shows better adap- 251

tation from these few samples and beats the T5 252

baseline. 253

5 Conclusion 254

We demonstrated that generative language mod- 255

els trained on code provide a strong baseline for 256

Text-to-SQL. We also provided analysis of failure 257

modes for these models, which we hope guides fur- 258

ther prompt design (whether few-shot or through 259

natural language instructions) in this setting. Fi- 260

nally, we showed that prompt-based few-shot learn- 261

ing with these models performs competitively with 262

finetuning-based few-shot learning of smaller mod- 263

els. A clear direction for future work is to evaluate 264

the benefits of finetuning with Codex models. 265
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A API Details358

At time of writing, the OpenAI API was in beta and359

accessible at https://beta.openai.com.360

The example from which our API Docs361

prompt draws from can be found at362

https://beta.openai.com/examples/363

default-sql-translate.364

A.1 Hyperparameters365

We sample 200 tokens from GPT-3 and Codex with366

temperature 0, with the following strings used as367

stop tokens to halt generation: “--”, “\n\n”, “;”, “#”.368

A.2 Parameter Counts369

Parameter counts for OpenAI API models are not370

openly available. Gao (2021) evaluated API GPT-371

3 models across a variety of language modelling372

tasks to compare to published results in Brown373

et al. (2020), finding that “Ada, Babbage, Curie and374

Davinci line up closely with 350M, 1.3B, 6.7B, and375

175B respectively”. We presume that the davinci-376

codex model is the same size as the GPT-3 davinci377

model; cushman-codex is a new model name so378

we can only guess that it is of a similar (but not379

the same) size to GPT-3 curie. Nevertheless these380

remain guesses which should not be relied on.381

A.3 Model Versioning382

The exact models served through the OpenAI383

API may vary over time. We verified that for384

each model type, only a single model version385

was used to generate results. These versions are386

ada:2020-05-03, babbage:2020-05-03,387

curie:2020-05-03,388

davinci:2020-05-03,389

cushman-codex:2021-08-03,390

davinci-codex:2021-08-03.391

A.4 Memorization392

The Spider development set is available on GitHub,393

and is therefore possibly in the training set of394

Codex. However, it is in a different format (JSON)395

to our prompts, and Codex produces queries that396

are stylistically different to gold queries (see Fig-397

ures 1 and 3 for comparisons).398

We chose not to evaluate on the held-out test399

set of Spider, as this could not be done offline - it400

would instead require sending these held-out ex-401

amples through the API to OpenAI, which risks402

inadvertently leaking them for retraining of Codex.403
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B Additional Tables and Figures 404

Engine Prompt VA EX TS
GPT-3
ada Question 1.2 (1.0) 0.0 (0.0) 0.0 (0.0)
ada Docs 3.4 (2.2) 0.2 (0.2) 0.1 (0.0)
ada 1 Row 40.1 (34.6) 1.1 (0.6) 0.2 (0.0)
ada Schema 33.8 (33.9) 2.3 (3.5) 0.3 (0.0)
babbage Question 4.4 (2.0) 1.0 (0.2) 1.0 (0.2)
babbage Docs 22.5 (20.3) 1.0 (0.6) 0.7 (0.2)
babbage 1 Row 56.0 (49.8) 5.1 (1.6) 3.9 (0.0)
babbage Schema 48.8 (44.9) 5.7 (0.8) 3.9 (0.0)
curie Question 9.0 (6.7) 2.9 (2.4) 2.5 (1.8)
curie Docs 25.2 (25.0) 7.4 (5.5) 6.3 (3.3)
curie 1 Row 70.6 (67.3) 10.8 (7.3) 7.6 (1.4)
curie Schema 70.9 (72.2) 12.6 (11.0) 8.3 (4.1)
davinci Schema 65.0 (65.4) 26.3 (23.2) 21.7 (14.2)
Codex
cushman Question 11.3 (8.1) 8.5 (3.9) 8.3 (3.9)
cushman Docs 83.8 (80.5) 53.2 (45.1) 43.5 (32.3)
cushman 1 Row 84.7 (80.9) 59.6 (49.2) 48.5 (32.5)
cushman 3 Rows 82.9 (79.1) 60.3 (49.2) 49.4 (33.7)
cushman 5 Rows 83.6 (78.3) 61.5 (49.6) 50.4 (33.9)
cushman Schema 88.3 (83.1) 62.1 (49.6) 53.1 (36.2)
cushman + 1 Row 86.3 (85.0) 63.7 (54.9) 53.0 (39.6)
davinci Question 14.0 (8.9) 8.3 (4.5) 8.2 (4.1)
davinci Docs 83.8 (87.4) 56.8 (51.8) 47.5 (39.0)
davinci 1 Row 86.3 (83.5) 60.9 (54.7) 52.0 (41.3)
davinci 3 Rows 85.8 (82.7) 60.3 (53.3) 52.2 (40.0)
davinci 5 Rows 85.2 (80.9) 60.5 (51.4) 51.5 (38.4)
davinci 10 Rows 86.0 (80.7) 60.8 (53.3) 51.2 (39.2)
davinci Schema 89.8 (87.8) 59.9 (52.2) 50.0 (38.4)
davinci + 1 Row 92.5 (90.7) 64.8 (58.7) 53.7 (41.7)
davinci + 3 Rows 91.6 (90.6) 67.0 (60.2) 55.1 (42.9)
davinci + 5 Rows 91.0 (90.2) 65.3 (60.0) 53.9 (42.1)
davinci + 10 Rows 91.2 (90.6) 63.3 (58.3) 52.4 (40.2)

Table 4: Performance on Spider across all evaluated models and prompts, as measured by percentage of predictions
which are valid/executable SQL (VA), execution accuracy (EX), test-suite accuracy (TS). Main results are on the
Spider development set, results in parantheses are on Spider-Realistic (Deng et al., 2021), a modified subset of the
Spider development set with explicit references to column names removed from questions.
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14% Shortcuts
Q What are the template ids with template type description "Presentation".
Gold SELECT T2.template_id FROM Ref_template_types AS T1 JOIN Templates

AS T2 ON T1.template_type_code = T2.template_type_code WHERE
T1.template_type_description = "Presentation"

Pred SELECT Template_ID FROM Templates WHERE Template_Type_Code = ’PPT’;
8% SELECT Extra Columns
NL Which city has the most frequent destination airport?
Gold SELECT T1.City FROM AIRPORTS AS T1 JOIN FLIGHTS AS T2 ON T1.AirportCode =

T2.DestAirport GROUP BY T1.City ORDER BY count(*) DESC LIMIT 1
Pred SELECT City, COUNT(*) AS ’Number of Destinations’ FROM airports JOIN flights

ON airports.AirportCode = flights.DestAirport GROUP BY City ORDER BY COUNT(*)
DESC LIMIT 1;

5% SELECT Convention
NL Which airlines have a flight with source airport AHD?
Gold SELECT T1.Airline FROM AIRLINES AS T1 JOIN FLIGHTS AS T2 ON T1.uid =

T2.Airline WHERE T2.SourceAirport = "AHD"
Pred SELECT Airline FROM flights WHERE SourceAirport = ’AHD’;
4% GROUP BY Convention
NL Which makers designed more than 3 car models? List full name and the id.
Gold SELECT T1.FullName , T1.Id FROM CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON

T1.Id = T2.Maker GROUP BY T1.Id HAVING count(*) > 3;
Pred SELECT car_makers.FullName, car_makers.Id FROM car_makers JOIN model_list

ON car_makers.Id = model_list.Maker GROUP BY car_makers.FullName HAVING
COUNT(model_list.Model) > 3;

4% Argmax
NL Give the name, year of independence, and surface area of the country that has the lowest population.
Gold SELECT Name, SurfaceArea, IndepYear FROM country ORDER BY Population LIMIT 1
Pred SELECT Name, IndepYear, SurfaceArea FROM country WHERE Population = (SELECT

MIN(Population) FROM country);
51% Other - Semantic Incorrect
NL Which countries have either English or Dutch as an official language?
Gold SELECT * FROM country AS T1 JOIN countrylanguage AS T2 ON T1.Code =

T2.CountryCode WHERE T2.Language = "English" AND IsOfficial = "T" UNION
SELECT * FROM country AS T1 JOIN countrylanguage AS T2 ON T1.Code =
T2.CountryCode WHERE T2.Language = "Dutch" AND IsOfficial = "T"

Pred SELECT * FROM countrylanguage WHERE IsOfficial = ’T’ OR IsOfficial = ’F’;
NL Show the name and the release year of the song by the youngest singer.
Gold SELECT song_name , song_release_year FROM singer ORDER BY age LIMIT 1
Pred SELECT Name, Song_release_year FROM singer WHERE Age = (SELECT MIN(Age) FROM

singer);
NL What is the maximum miles per gallon of the car with 8 cylinders or produced before 1980 ?
Gold select max(mpg) from cars_data where cylinders = 8 or year < 1980
Pred SSELECT MAX(MPG) FROM cars_data WHERE Cylinders = 8 AND Year < 1980;
14% Other - Ambiguous Correct
NL Find the first name and age of students who have a pet.
Gold SELECT DISTINCT T1.fname , T1.age FROM student AS T1 JOIN has_pet AS T2 ON

T1.stuid = T2.stuid
Pred SELECT Fname, Age FROM Student WHERE StuID IN (SELECT StuID FROM Has_Pet);
NL How many countries speak both English and Dutch?
Gold SELECT COUNT(*) FROM (SELECT T1.Name FROM country AS T1 JOIN countrylanguage

AS T2 ON T1.Code = T2.CountryCode WHERE T2.Language = "English" INTERSECT
SELECT T1.Name FROM country AS T1 JOIN countrylanguage AS T2 ON T1.Code =
T2.CountryCode WHERE T2.Language = "Dutch")

Pred SELECT COUNT(*) FROM countrylanguage WHERE Language = ’Dutch’ AND CountryCode
IN (SELECT CountryCode FROM countrylanguage WHERE Language = ’English’);

NL What are the Asian countries which have a population larger than that of any country in Africa?
Gold SELECT Name FROM country WHERE Continent = "Asia" AND population > (SELECT

min(population) FROM country WHERE Continent = "Africa")
Pred SELECT Name FROM country WHERE Continent = ’Asia’ AND Population > (SELECT

MAX(Population) FROM country WHERE Continent = ’Africa’);

Figure 3: Additional examples of error types, as made by davinci-codex model with Create Table + Select 3 prompt.
NL stands for natural language question. Percentage indicates the percentage of errors which are of the given type.
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C Example Prompts 405

What is Kyle’s id? | network_1 | highschooler : id, name ( Kyle ), grade | friend :
student_id, friend_id | likes : student_id, liked_id

Figure 4: Example input for baseline T5 models.

-- Using valid SQLite, answer the following questions.

-- What is Kyle’s id?
SELECT

Figure 5: Example prompt for Question.

### SQLite SQL tables, with their properties:
#
# Highschooler(ID, name, grade)
# Friend(student_id, friend_id)
# Likes(student_id, liked_id)
#
### What is Kyle’s id?
SELECT

Figure 6: Example prompt for API Docs.
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/*
3 example rows from table Highschooler:
SELECT * FROM Highschooler LIMIT 3;
Table: Highschooler

ID name grade
1510 Jordan 9
1689 Gabriel 9
1381 Tiffany 9
*/

/*
3 example rows from table Friend:
SELECT * FROM Friend LIMIT 3;
Table: Friend
student_id friend_id

1510 1381
1510 1689
1689 1709

*/

/*
3 example rows from table Likes:
SELECT * FROM Likes LIMIT 3;
Table: Likes
student_id liked_id

1689 1709
1709 1689
1782 1709

*/

-- Using valid SQLite, answer the following questions for the tables provided above.

-- What is Kyle’s id?
SELECT

Figure 7: Example prompt for Select 3.

CREATE TABLE Highschooler(
ID int primary key,
name text,
grade int)

CREATE TABLE Friend(
student_id int,
friend_id int,
primary key (student_id,friend_id),
foreign key(student_id) references Highschooler(ID),
foreign key (friend_id) references Highschooler(ID)

)

CREATE TABLE Likes(
student_id int,
liked_id int,
primary key (student_id, liked_id),
foreign key (liked_id) references Highschooler(ID),
foreign key (student_id) references Highschooler(ID)

)

-- Using valid SQLite, answer the following questions for the tables provided above.

-- What is Kyle’s id?
SELECT

Figure 8: Example prompt for Create Table.
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CREATE TABLE Highschooler(
ID int primary key,
name text,
grade int)

/*
3 example rows:
SELECT * FROM Highschooler LIMIT 3;
ID name grade

1510 Jordan 9
1689 Gabriel 9
1381 Tiffany 9
*/

CREATE TABLE Friend(
student_id int,
friend_id int,
primary key (student_id,friend_id),
foreign key(student_id) references Highschooler(ID),
foreign key (friend_id) references Highschooler(ID)

)
/*
3 example rows:
SELECT * FROM Friend LIMIT 3;
student_id friend_id

1510 1381
1510 1689
1689 1709

*/

CREATE TABLE Likes(
student_id int,
liked_id int,
primary key (student_id, liked_id),
foreign key (liked_id) references Highschooler(ID),
foreign key (student_id) references Highschooler(ID)

)
/*
3 example rows:
SELECT * FROM Likes LIMIT 3;
student_id liked_id

1689 1709
1709 1689
1782 1709

*/

-- Using valid SQLite, answer the following questions for the tables provided above.

-- What is Kyle’s id?
SELECT

Figure 9: Example prompt for Create Table + Select 3.
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CREATE TABLE "border_info" ("state_name" text, "border" text)
/*
state_name border

alabama tennessee
alabama georgia
alabama florida

*/

CREATE TABLE "city" ("city_name" text, "population" int DEFAULT NULL, "country_name" varchar(3) NOT NULL DEFAULT ’’, "
state_name" text)

/*
city_name population country_name state_name

birmingham 284413 usa alabama
mobile 200452 usa alabama

montgomery 177857 usa alabama

*/

CREATE TABLE "highlow" ("state_name" text, "highest_elevation" text, "lowest_point" text, "highest_point" text, "
lowest_elevation" text)

/*
state_name highest_elevation lowest_point highest_point lowest_elevation

alabama 734 gulf of mexico cheaha mountain 0
alaska 6194 pacific ocean mount mckinley 0
arizona 3851 colorado river humphreys peak 21

*/

CREATE TABLE "lake" ("lake_name" text, "area" double DEFAULT NULL, "country_name" varchar(3) NOT NULL DEFAULT ’’, "state_name"
text)

/*
lake_name area country_name state_name
iliamna 2675.0 usa alaska
becharof 1186.0 usa alaska

teshekpuk 816.0 usa alaska

*/

CREATE TABLE "mountain" ("mountain_name" text, "mountain_altitude" int DEFAULT NULL, "country_name" varchar(3) NOT NULL
DEFAULT ’’, "state_name" text)

/*
mountain_name mountain_altitude country_name state_name

mckinley 6194 usa alaska
st. elias 5489 usa alaska
foraker 5304 usa alaska

*/

CREATE TABLE "river" ("river_name" text, "length" int DEFAULT NULL, "country_name" varchar(3) NOT NULL DEFAULT ’’, "traverse"
text)

/*
river_name length country_name traverse

mississippi 3778 usa minnesota
mississippi 3778 usa wisconsin
mississippi 3778 usa iowa

*/

CREATE TABLE "state" ("state_name" text, "population" int DEFAULT NULL, "area" double DEFAULT NULL, "country_name" varchar(3)
NOT NULL DEFAULT ’’, "capital" text, "density" double DEFAULT NULL)

/*
state_name population area country_name capital density

alabama 3894000 51700.0 usa montgomery 75.319149
alaska 401800 591000.0 usa juneau 0.679865
arizona 2718000 114000.0 usa phoenix 23.842105

*/

-- Using valid SQLite, answer the following questions for the tables provided above.
-- what is the population of austin
SELECT CITYalias0.POPULATION FROM CITY AS CITYalias0 WHERE CITYalias0.CITY_NAME = "austin" ;

-- which state is kalamazoo in
SELECT CITYalias0.STATE_NAME FROM CITY AS CITYalias0 WHERE CITYalias0.CITY_NAME = "kalamazoo" ;

-- name all the rivers in colorado
SELECT RIVERalias0.RIVER_NAME FROM RIVER AS RIVERalias0 WHERE RIVERalias0.TRAVERSE = "colorado" ;

-- how many people live in new mexico
SELECT STATEalias0.POPULATION FROM STATE AS STATEalias0 WHERE STATEalias0.STATE_NAME = "new mexico" ;

-- what states border missouri
SELECT BORDER_INFOalias0.BORDER FROM BORDER_INFO AS BORDER_INFOalias0 WHERE BORDER_INFOalias0.STATE_NAME = "missouri" ;

-- what is the biggest city in arizona
SELECT

Figure 10: Example prompt for 5-shot. It starts with the schema and 3 rows per database (exactly as in Figure 9),
followed by 5 few-shot examples, and finally the target question.
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