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ABSTRACT

Vision-Language Models (VLMs) have demonstrated strong performance in
single-image understanding, supported by many high-quality instruction datasets.
However, multi-image reasoning tasks remain under-explored in the open-source
community due to two major issues: (1) scaling up datasets with multiple cor-
related images and complex reasoning instructions is resource-intensive and dif-
ficult to maintain quality and (2) there is a shortage of robust multi-image eval-
uation benchmarks. To address these issues, we introduce SMIR, an efficient
synthetic data-generation pipeline for multi-image reasoning, and a high-quality
SMIR dataset generated using this pipeline. Our pipeline efficiently extracts
highly correlated images using multimodal embeddings, combining visual and
descriptive information and leverages open-source LLMs to generate quality in-
structions, offering a cost-effective alternative to expensive closed-source solu-
tions. Additionally, we present SMIR-BENCH, a novel multi-image reasoning
evaluation benchmark comprising 100 diverse examples across 7 complex multi-
image reasoning tasks. Unlike existing benchmarks, SMIR-BENCH is multi-turn
and allows for free-form responses, providing a more comprehensive evaluation
of model expressiveness and reasoning capability. We demonstrate the effective-
ness of SMIR dataset by fine-tuning several open-source VLMs and evaluating
their performance on SMIR-BENCH. Our results show that models trained on our
dataset outperform baseline models in multi-image reasoning tasks. Furthermore,
we observe enhanced model expressiveness and more nuanced reasoning in free-
form responses, highlighting the value of our approach for advancing open-source
VLM research. 1

1 INTRODUCTION

Vision-Language Models (VLMs) have shown impressive capabilities in tasks involving single im-
ages, particularly open-source models that have benefited from high-quality instruction datasets
(Laurençon et al., 2024b; Zhang et al., 2023; Xu et al., 2022). However, when it comes to multi-
image tasks, such as comparing or analyzing relationships between multiple images, the perfor-
mance of open-source VLMs (Liu et al., 2024b;a; Li et al., 2024a; Awadalla et al., 2023; Yao
et al., 2024; Wang et al., 2023b) lags significantly behind their closed-source counterparts in GPT-4
(Achiam et al., 2023), Claude 3.5 Sonnet (Anthropic, 2024a), Claude 3 (Anthropic, 2024b), and
Gemini 1.5 (Reid et al., 2024). One of the crucial problems is that constructing large-scale, compli-
cated multi-image reasoning datasets and evaluation benchmarks is challenging.

First, collecting and curating large-scale multiple images with high correlations is hard. Identify-
ing correlated semantic information or entities across images requires large-scale images and so-
phisticated algorithms. Thus, most existing multi-image instruction tuning datasets do not have
highly correlated images. For example, MANTIS (Jiang et al., 2024) often includes unrelated im-
ages within the same multi-image reasoning question, potentially undermining the complexity of
the task. MMDU-45K (Liu et al., 2024e) attempts to address this by clustering image captions.
MMInstruct (Liu et al., 2024d), on the other hand, only considers one image at a time, falling short

1Upon acceptance, we will open-source the synthetic data generation pipeline, our dataset, and evaluation
benchmark.
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of true multi-image reasoning. These shortcomings highlight the difficulties and needs for datasets
featuring related images within multi-image scenarios.

Second, scaling up the number of highly correlated images presents significant challenges. Existing
datasets such as MANTIS, MMDU-45K, and MultiInstruct require extensive human curation and
annotation, resulting in a labor-intensive and time-consuming process. To minimize human effort,
researchers have leveraged GPT-4 family models (Peng et al., 2023; Wang et al., 2023a) to gen-
erate synthetic datasets—including MMInstruct, Multimodal ArXiv (Li et al., 2024b), MIMIC-IT
(Li et al., 2023a), StableLLaVA-Instruct (Li et al., 2023c), and SVIT-Instruct (Zhao et al., 2023).
However, this method proves expensive and difficult to scale effectively.

Third, evaluating multi-image reasoning is complicated. Given the increased complexity of multi-
image reasoning tasks, using multi-turn free-response evaluation instead of the multiple-choice for-
mat employed by previous benchmarks such as (Fu et al., 2024; Ying et al., 2024; Wang et al.,
2024a; Yue et al., 2024; Singh et al., 2019; Hudson & Manning, 2019; Antol et al., 2015). Free-
response evaluations are more challenging, requiring models to articulate their thought processes,
providing insight into their reasoning abilities, and allowing for a more nuanced assessment of their
capabilities.

To address these challenges, we propose a synthetic data generation pipeline, SMIR, for multi-image
reasoning and a human-annotated evaluation benchmark for multi-image reasoning, SMIR-BENCH.
SMIR aims to generate correlated and challenging multi-image reasoning questions, while SMIR-
BENCH evaluates models on free-response, difficult multi-image scenarios.

To summarize, we address these issues with our contributions:

• Two novel sampling algorithms: Cluster Sampling for data quality robustness and Graph
Iteration Sampling for diversity. Both use multimodal embeddings (combining image and
caption) to group correlated images for challenging multi-image instruction tuning datasets.

• A scalable synthetic multimodal data generation pipeline utilizing open-source LLMs such
as Meta Llama 3.1 70B Instruct Turbo (Dubey et al., 2024), eliminating the need for expen-
sive closed-source models, reducing costs by up to 50 times (Kirkovska, 2024) and speeds
up to by 10 times (Kirkovska, 2024), while significantly minimizing human annotation
efforts.

• A new multimodal evaluation benchmark with free-form responses, assessing both final
answers and reasoning processes in complex multi-image tasks. Using GPT-4-Turbo and
other open-source models as reference, we see up to 11% improvement with the SMIR
dataset.

2 RELATED WORKS

Vision Language Models We focus on instruction tuning Vision-Language Models (VLMs) that
utilize a pretrained Large Language Model (LLM) backbone because this approach is cost-effective
and more accessible for the open-source community. Since the backbone responsible for language
understanding is already trained, the overall training process becomes simpler and requires fewer
resources. Our primary task involves aligning the vision encoder—typically architectures like Vi-
sion Transformer (ViT) (Dosovitskiy, 2020), SigLIP (Zhai et al., 2023), or CLIP (Radford et al.,
2021)—with the LLM backbone. This alignment is facilitated through linear layers that connect
the vision encoder to the backbone, enabling the integration of visual and textual information. For
instance, BLIP-2 (Li et al., 2023b) uses OPT (Zhang et al., 2022) and FLAN-T5 (Chung et al., 2022)
as backbones, MiniGPT-4 (Zhu et al., 2023) utilizes Vicuna (Chiang et al., 2023), and Qwen-2-VL
(Wang et al., 2024b) employs Qwen-2-1.5B (Yang et al., 2024) as the language backbone. In this pa-
per, we focus on creating a high-quality multi-image reasoning dataset for instruction tuning instead
of large-scale interleaved pretraining datasets like OBELICS (Laurençon et al., 2024a), MINT-1T
(Awadalla et al., 2024), and LAION-5B (Schuhmann et al., 2022).

Multi-Image Reasoning Data Recent advancements in multi-image reasoning instruction tuning
datasets include MANTIS (Jiang et al., 2024) and MMDU-45K (Liu et al., 2024e), both aiming
to improve reasoning capabilities in VLMs. However, these datasets have limitations in their ap-
proaches. MANTIS randomly concatenates single image pairs from LLaVA-665k (Liu et al., 2024a),
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Figure 1: Our end-to-end pipeline: from sampling and LLM prompting to conversation generation.
The example conversation is based on a sports scenario, demonstrating the pipeline’s ability to
generate contextually relevant multi-turn dialogues.

which often results in uncorrelated images within multi-image scenarios, potentially undermining
the complexity of reasoning tasks. MMDU-45K attempts to address this issue by utilizing sen-
tence transformers (Reimers, 2019) with description text and clustering techniques to group related
images, but does not consider visual components. The dataset is then further enhanced, assisted
by GPT-4 to generate comprehensive answers for the grouped images. Building upon these efforts,
SMIR introduces a novel approach that leverages both vital visual and caption information to ensure
highly correlated images within multi-image sets with the use of open-source LLMs. These scalable
methods leads to the generation of more challenging questions that require deeper analysis and un-
derstanding of visual relationships, pushing the boundaries of multi-image reasoning capabilities in
VLMs.

Datasets Multimodal Embedding Correlated Images Human-Annotation Open-Source LLM

Mantis No No Yes No
MMDU No Yes Yes No
SMiR Yes Yes No Yes

Table 1: Comparison of datasets highlighting key characteristics and methodologies.

Multi-Image Reasoning Benchmarks Recent VLM benchmarks (Chiang et al., 2024; Lin et al.,
2024; Liu et al., 2024c) have made strides by incorporating free-response evaluations, marking a
significant improvement over traditional multiple-choice formats. However, these benchmarks still
lack a comprehensive approach that combines automatic, multi-turn, and pairwise evaluation ca-
pabilities. Our benchmark addresses this gap, drawing inspiration from Auto-Hard-Auto v0.1 (Li
et al., 2024c). We have adapted and expanded this framework to enable robust multimodal eval-
uation, providing a more holistic assessment of VLM performance across complex, multi-image
reasoning tasks. This approach allows for a deeper analysis of both the final answers and the under-
lying reasoning processes employed by VLMs in real-world SMIR-BENCH scenarios.

3 SMIR: SYNTHETIC MULTI-IMAGE REASONING DATA PIPELINE

To generate complicated multi-image reasoning synthetic data efficiently, we introduce the SMIR
pipeline. Given a large-scale of image-caption dataset D with N pairs of image-captions in D as
(Ii, Ci)

N
i=1 ∈ D. SMIR constructs a multimodal embedding Ei for each pair of (Ii, Ci). Then,

we apply grouping algorithms to find the correlations between multimodal pairs based on the em-
beddings. Finally, open-sourced LLMs are prompted to generate complicated question-answering

3
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Figure 2: Cluster Matching from Different Embedding Spaces. Images are sampled only from the
union of clusters with the same color.

pairs for on multiple pairs sampled based on correlations. In this section, we first introduce how
we construct the multimodal embeddings, then we present the grouping algorithms, and finally we
show how we generate the synthetic data samples via open-source LLM.

3.1 MULTIMODAL EMBEDDING CONSTRUCTION

To identify correlated images effectively, we developed a method that incorporates both visual and
textual information from image-caption pairs. Our approach utilizes SigLIP and CLIP image em-
beddings alongside corresponding caption embeddings. We formulated a multimodal embedding by
combining these components with a small constant, c, as follows:

Emultimodal = Eimage + c · Ecaption (1)

where Emultimodal is the multimodal embedding, Eimage is the image embedding, and Ecaption

is the caption embedding. For the ShareGPT4V (Chen et al., 2023), a c = 0.2 worked well, but
this parameter may vary depending on the quality of individual image-caption pairs in other data
sources.

Importantly, relying solely on either image or caption information would limit our ability to
concurrently consider both visual and textual contexts, which is crucial for establishing a
comprehensive understanding of the images. This multimodal approach enables us to capture
the nuanced relationships between visual content and its associated descriptive text, thereby enhanc-
ing our capacity to identify and group correlated images effectively.

Following the generation of multimodal embeddings, we employed UMAP (McInnes et al., 2018) to
reduce the dimensionality of the vectors. This technique allowed us to project the high-dimensional
embeddings into a lower-dimensional space, facilitating more efficient analysis and visualization of
the data while preserving its essential structure.

3.2 GROUPING IMAGES

We present two novel algorithms designed to group correlated images prior to leveraging an open-
source Large Language Model (LLM) for synthetic data generation in multi-image reasoning tasks.
The emphasis on correlated images is crucial, as it facilitates challenging multi-image reasoning
scenarios. These scenarios require the model to identify intricate relationships and differentiate
between visually similar scenes, thus enhancing the complexity and realism of the reasoning process.

Clustering We employed HDBSCAN (Malzer & Baum, 2020), a density-based clustering algo-
rithm, to group the SigLIP and CLIP multimodal embeddings into coherent clusters. To establish
meaningful relationships between the two embedding spaces, we developed a greedy algorithm that
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Figure 3: Sampling based on embedding distance for increased diversity from initial image (orange).
All images are considered within a single question.

matched SigLIP and CLIP clusters in a one-to-one fashion. This matching process ensured that each
cluster from one embedding model corresponded to a semantically similar cluster from the other.
The detailed steps of this Greedy Cluster Matching Algorithm in Figure 2 are presented in Algo-
rithm 1 (Appendix A.1). Once clusters are matched, images are sampled from the cluster union until
the desired number of images is selected.

Vector Space Sampling We developed an iterative sampling method to select diverse yet related
images within each embedding space. The process begins by randomly selecting an initial image,
then iteratively sampling subsequent images based on their distance from previously selected points
in the embedding space. This approach continues until the desired number of images is reached,
ensuring a balance between diversity and semantic coherence in the selected image set. The detailed
steps of this Random Sample Iteration algorithm in Figure 3 are presented in Algorithm 2 (Appendix
A.2).

By assembling related images before prompting the LLM, we create a more coherent and con-
textually rich input, enabling the model to generate more nuanced and relevant synthetic data for
multi-image reasoning tasks.

3.3 GENERATE SYNTHETIC DATA

Once grouped image-caption pairs are sampled, we take the caption embeddings and incorporate
them into a system prompt for an open-source LLM, such as Meta Llama 3.1 70B Turbo, up to 50
times cheaper and 10 times faster compared to GPT-4 (Kirkovska, 2024). This process generates
complex multi-turn conversations between User and Assistant as seen in Table 2 and questions
tailored to the selected images, as shown in Figure 6 and Figure 7 (Appendix B).

4 DISCUSSION

Our approach involves several design choices, each with its own trade-offs. In this section, we
discuss the decisions behind sampling algorithms, prompts, and data sources.

4.1 SAMPLING ALGORITHMS

Cluster-based algorithms demonstrate high efficacy in producing quality image-caption pairs, lever-
aging both SIGLIP and CLIP embeddings to confirm spatial relationships and associated semantic
meanings. This dual-embedding validation ensures robust data quality, as images matched within
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Table 2: SMIR Dataset Statistics

Metric Value
Number of Samples 160,000
Maximum Number of Turns 24
Minimum Number of Turns 2
Average Number of Turns 9.65
Average Number of Images 4.65
Average User Tokens 25.51
Average Assistant Tokens 124.32
Open-Source LLM Meta Llama 3.1 70B Turbo

clusters are corroborated by two independent embedding models. However, this approach has a no-
table limitation: it can lead to overly specialized image subjects. This specialization occurs because
sampling is confined to a single matched cluster, which restricts the diversity of selected images by
excluding images from other clusters. A detailed example is presented in Figure 6 (Appendix B.1).

Vector sampling emerged as the preferred method due to its capacity to generate more generalized
image subjects and foster diverse question generation when coupled with a system prompt. This
approach allows for a wider range of image combinations, transcending the boundaries of individual
clusters. Consequently, it facilitates the creation of more varied and cognitively demanding reason-
ing tasks. The flexibility of vector sampling in drawing from a broader semantic space contributes to
a richer, more diverse dataset, potentially enhancing the complexity and applicability of subsequent
machine learning tasks. A detailed example is presented in Figure 7 (Appendix B.2).

4.2 PROMPTS

In our data generation approach, we focused on creating two distinct types of questions: shorter,
quick visual questions often involving OCR tasks, and longer reasoning questions that require in-
depth analysis. Drawing inspiration from CoT (Wei et al., 2022), we designed prompts to generate
multi-turn conversations, enhancing the complexity and depth of interactions. This dual approach
necessitated the development of separate, tailored prompts for each question type, allowing us to ef-
fectively capture both complex reasoning scenarios and straightforward visual comprehension tasks.
More details about the short prompt in Figure 8 (Appendix C.1 and long prompts Figure 9 (Appendix
C.2).

4.3 DATA SOURCE

Our study leveraged the ShareGPT4V (Chen et al., 2023) dataset as the primary source for generating
synthetic examples. This comprehensive dataset comprises of better image-caption pairs derived
from LLaVA-Instruct (Liu et al., 2024a) and COCO (Lin et al., 2014). To maintain diversity from the
data source, we synthetically generated 5,000 data points from each 20,000-image batch, resulting
in a total of 160,000 synthetic examples. SMIR pipeline can also be applied easily to other data
resources in the future.

5 MULTI-IMAGE BENCHMARK

SMIR-BENCH extends the Auto-Hard-Auto v0.1 (Li et al., 2024c) framework to the multimodal
domain. It employs a judge model for pairwise comparison against a baseline model, evaluating re-
sponses on helpfulness, relevance, and conciseness. This approach enables a multi-turn, automatic,
and challenging evaluation process.

5.1 MOTIVATIONS

We were motivated to create questions that more challenge VLMs to reason over multiple related
images, analyze relationships, and derive meaning from series of images. We developed a multi-
turn benchmark of 100 examples across seven diverse topics. This benchmark challenges models
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to analyze relationships, derive meaning from image series, and provide hard explanations for com-
plex visual tasks. Curated collaboratively by a human annotator and GPT-4, it uses images from
the internet and Shot2Story (Han et al., 2023), compelling VLMs to demonstrate advanced visual
reasoning capabilities beyond answering multiple choice.

Figure 4: Evaluation Benchmark Using GPT-4o as Judge

5.2 EXPERIMENTS

We fine-tuned Mantis-8B-siglip-llama3-pretrained and idefics-8b on the SMIR dataset, using sub-
stantially less data (160K samples compared to the original 721K). These fine-tuned models were
then evaluated on SMIR-BENCH. Remarkably, they outperformed both Mantis-8B-siglip-llama3
and Mantis-8B-Idefics2, despite the reduced training data. This improvement was evident when
benchmarking against the closed-source GPT-4-Turbo, as well as against Mantis-8B-siglip-llama3
and Mantis-8B-Idefics2 themselves. These results demonstrate the effectiveness of our fine-tuning
approach on the SMIR dataset, achieving superior performance with performance gains.

Table 3: Model Scores with GPT-4-Turbo Baseline

Model Name Score ∆ 95% CI Average Tokens
GPT-4o 68.1 (-5.3, 6.4) 442
Claude-3.5-Sonnet-20240620 54.7 (-4.6, 7.0) 374
GPT-4-Turbo 50.0 (0.0, 0.0) 377
Gemini-1.5-Pro 38.7 (-7.0, 5.6) 349
Claude-3-Opus-20240229 31.0 (-5.7, 7.6) 338

Mantis-8B-siglip-llama3-pretrained + SMiR-160k 9.5 +3.4% (-3.1, 3.1) 180
Mantis-8B-siglip-llama3 6.1 (-2.5, 2.6) 170
Idefics2-8B + SMiR-50k 6.0 +.6% (-2.3, 2.9) 173
Mantis-8B-Idefics2 5.4 (-2.4, 2.3) 195
Idefics2-8B 4.6 (-2.7, 2.0) 122
LLaVA-v1.6-mistral-7b-hf 2.5 (-1.2, 1.6) 361
Mantis-8B-siglip-llama3-pretrained 2.2 (-1.6, 1.8) 198
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Table 4: Model Scores with Mantis-8B-siglip-llama3 baseline

Model Name Score ∆ 95% CI Average Tokens
Claude-3-Opus-20240229 96.9 (-1.9, 2.0) 338
Claude-3-5-Sonnet-20240620 96.3 (-2.3, 1.4) 374
GPT-4-Turbo 95.0 (-2.1, 2.5) 377
Gemini-1.5-Pro 94.2 (-2.7, 2.1) 349
GPT-4o 91.8 (-3.4, 3.1) 442

Mantis-8B-siglip-llama3-pretrained + SMiR-160k 57.0 +7.0% (-7.9, 6.9) 180
Mantis-8B-siglip-llama3 50.0 (0.0, 0.0) 170
LLaVA-v1.6-Mistral-7B-HF 18.9 (-4.0, 4.4) 361
Mantis-8B-siglip-llama3-pretraind 11.7 (-4.2, 5.2) 198

Table 5: Model Scores with Mantis-8B-Idefics2 Baseline

Model Name Score ∆ 95% CI Average Tokens
Claude-3-Opus-20240229 97.6 (-2.0, 1.4) 338
Gemini-1.5-Pro 97.2 (-2.2, 1.4) 349
Claude-3-5-Sonnet-20240620 96.8 (-1.7, 1.5) 374
GPT-4-Turbo 94.3 (-2.6, 2.4) 377
GPT-4o 93.0 (-3.2, 2.8) 442

Idefics2-8B + SMiR-50k 61.0 +11.0% (-7.4, 7.7) 173
Mantis-8B-Idefics2 50.0 (0.0, 0.0) 195
Idefics2-8B 31.2 (-5.5, 5.9) 122
LLaAV-v1.6-mistral-7b-hf 20.1 (-5.0, 3.9) 361

Figure 5: SMIR Dataset Size vs. Benchmark Score

6 CONCLUSION

This paper introduces a synthetic data pipeline designed to enhance multi-image reasoning capabil-
ities on open-source VLMs. By leveraging multimodal embeddings and grouping algorithms, the
pipeline generates high-quality synthetic multi-image reasoning instruction tuning data. The ap-
proach yields up to 11% improvement on SMIR-BENCH for popular open-source models, demon-
strating the significant potential of synthetic data in advancing open-source VLM models.
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Limitations Our methods have several limitations. Random sampling with iteration is time-
intensive due to the need for recalculating distance embeddings for each new image sampled. Fur-
ther investigation is needed to determine the scalability of our synthetic data. Future research should
focus on developing more time-efficient algorithms and optimizing data mixtures.

Broader Impact This paper introduces a method for generating high-quality, cost-effective data
for VLMs, addressing the growing challenge of data scarcity. By advancing these open-source tech-
niques, we contribute to narrowing the performance gap between open and closed-source models,
promoting more accessible and powerful multimodal AI.

7 REPRODUCIBILITY STATEMENT

The data sources are available on ShareGPT4V (Chen et al., 2023). Grouping algorithm codes can be
found in (Appendix A, and prompts are provided in (Appendix C). All exact codes will be released
and open-source.
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Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
Thomas Wang, Siddharth Karamcheti, Alexander Rush, Douwe Kiela, et al. Obelics: An open
web-scale filtered dataset of interleaved image-text documents. Advances in Neural Information
Processing Systems, 36, 2024a.
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A ALGORITHM DETAILS

A.1 GREEDY CLUSTER MATCHING ALGORITHM

We present the pseudocode for the Greedy Cluster Matching in Algorithm 1.

Let CS = {S1, ..., Sm} and CC = {C1, ..., Cn} be cluster sets from SigLIP and CLIP embeddings
respectively. The algorithm proceeds as follows:

1. Select the largest cluster from either set: Xmax = argmaxX∈CS∪CC
|X|

2. If Xmax ∈ CS , find the best match in CC : Ybest = argmaxCj∈CC
score(Xmax, Cj)

3. If Xmax ∈ CC , find the best match in CS : Ybest = argmaxSi∈CS
score(Xmax, Si)

Where the score function is defined as:

score(A,B) =
|A ∩B|
|A|+|B|

2

This process is repeated, greedily selecting the largest remaining cluster and finding its best match,
until all clusters are matched or one set is exhausted.

Algorithm 1 Greedy Cluster Matching Algorithm

Require: Two lists of clusters c1 and c2
Ensure: List of matched cluster pairs

1: c1← sort(c1, key = len, reverse = True)
2: c2← sort(c2, key = len, reverse = True)
3: matched pairs← []
4: num samples← 0
5: while c1 is not empty and c2 is not empty do
6: if len(c1[0]) ≥ len(c2[0]) then
7: larger cluster← c1.pop(0)
8: smaller list← c2
9: else

10: larger cluster← c2.pop(0)
11: smaller list← c1
12: end if
13: best match← None
14: best score← −1
15: for i, cluster in enumerate(smaller list) do
16: overlap← len(set(larger cluster) ∩ set(cluster))
17: avg size← (len(larger cluster) + len(cluster))/2
18: score← overlap/avg size
19: if score > best score then
20: best score← score
21: best match← (i, cluster)
22: end if
23: end for
24: if best match is not None then
25: best index, best cluster← best match
26: union← list(set(larger cluster) ∪ set(best cluster))
27: matched pairs.append(union)
28: num samples← num samples + len(union)
29: smaller list.remove(best cluster)
30: end if
31: end while
32: return matched pairs, num samples
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A.2 RANDOM SAMPLING WITH ITERATION

We present the pseudocode for the Random Sampling with Iteration in Algorithm 2.

Let X = {x1, ..., xn} be the set of embeddings.

k is a parameter that determines the power of the distance calculation (default to 12), and K is the
desired number of selected embeddings.

1. Randomly select an initial embedding: s1 ∈ X

2. Initialize selected set S = {s1}
3. For k = 2 to K: sk = argmaxxj∈X\S

∑
u∈S ∥xj − xu∥k S = S ∪ {sk}

4. Return S

This formulation captures the process of iteratively selecting embeddings based on their cumulative
distance from all previously selected embeddings, raised to the power k.

Algorithm 2 Random Sampling with Iteration

Require:
1: X: Set of embeddings
2: num samples: Number of samples to select
3: k: Power factor for distance calculation (default: 12)

Ensure: Set of selected indices
4: selected← []
5: n← |X| ▷ Number of embeddings
6: for i = 1 to num samples do
7: distances← zeros(n)
8: if selected is empty then
9: sampled index← random integer(0, n− 1)

10: else
11: for j = 0 to n− 1 do
12: if j ∈ selected then
13: distances[j]←∞
14: else
15: distances[j]←

∑
u∈selected ∥∥X[j]−X[u]∥∥k

16: end if
17: end for
18: inverted distances← 1

distances+ϵ ▷ ϵ is a small constant
19: distribution← inverted distances∑

inverted distances

20: sampled index← random choice(range(n), p = distribution)
21: end if
22: selected.append(sampled index)
23: end for
24: return selected

B DATA SAMPLES

For the sake of brevity, we have included only two of the numerous multi-turn interactions present
in each data sample.

B.1 GREEDY CLUSTER MATCHING ALGORITHM

Samples obtained through Greedy Cluster Matching typically feature similar subjects and shot com-
positions, but when paired with carefully crafted prompts, these similarities can be leveraged to
generate more challenging and nuanced questions.
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Figure 6: Images sampled from the same matched cluster often feature similar subjects or scenes.

B.2 RANDOM SAMPLING WITH ITERATION

Random sampling tends to yield greater diversity in subjects compared to Greedy Clustering, strik-
ing a balance between variety and relatedness that can potentially lead to more robust and wide-
ranging question sets.

Figure 7: Images sampled using the iterative algorithm allow for different yet related subjects (e.g.,
various animal species)
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C PROMPT

While prompts play a crucial role in data generation, optimizing them remains a significant chal-
lenge. After numerous iterations, we identified two particularly effective prompts for multi-image
data generation.

C.1 LLAVA STYLE PROMPT

Inspired by LLaVA (Liu et al., 2024b), our approach utilizes a specialized prompt to address simpler
multi-image and single-image tasks, focusing on more straightforward visual comprehension and
analysis.

Figure 8: LLaVA-style prompt for OCR and smaller visual task data generation

C.2 LONGER PROMPT

Our approach aims to generate more complex, multi-turn questions that require in-depth reasoning
across multiple images.

Figure 9: SMIR prompt to generate more complex question and answers
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