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ABSTRACT

Transformers have revolutionized performance in Natural Language Processing
and Vision, paving the way for their integration with Graph Neural Networks
(GNNs). One key challenge in enhancing graph transformers is strengthening the
discriminative power of distinguishing isomorphisms of graphs, which plays a cru-
cial role in boosting their predictive performances. To address this challenge, we
introduce ’Topology-Informed Graph Transformer (TIGT)’, a novel transformer
enhancing both discriminative power in detecting graph isomorphisms and the
overall performance of Graph Transformers. TIGT consists of four components:
A topological positional embedding layer using non-isomorphic universal cov-
ers based on cyclic subgraphs of graphs to ensure unique graph representation:
A dual-path message-passing layer to explicitly encode topological characteris-
tics throughout the encoder layers: A global attention mechanism: And a graph
information layer to recalibrate channel-wise graph features for better feature rep-
resentation. TIGT outperforms previous Graph Transformers in classifying syn-
thetic dataset aimed at distinguishing isomorphism classes of graphs. Addition-
ally, mathematical analysis and empirical evaluations highlight our model’s com-
petitive edge over state-of-the-art Graph Transformers across various benchmark
datasets.

1 INTRODUCTION

Transformers have achieved remarkable success in domains such as Natural Language Process-
ing (Vaswani et al., 2023) and Computer Vision (Dosovitskiy et al., 2021). Motivated by their
prowess, researchers have applied them to the field of Graph Neural Networks (GNNs). They aimed
to surmount the limitations of Message-Passing Neural Networks (MPNNs), which are a subset of
GNNs, facing challenges such as over-smoothing (Oono & Suzuki, 2021), over-squashing (Alon
& Yahav, 2021), and restricted expressive power (Xu et al., 2019; Morris et al., 2021). An exem-
plary application of the integration of Transformers into the GNNs field is the Graph Transformer.
Multi-head attention mechanism of Transformers is applied to each node in the graph treating the
entire set of nodes as if they are fully connected or treating the set of nodes if they are connected by
edges. These approaches often come with a low inductive bias, making them prone to over-fitting.
Consequently, several implementations blend Graph Transformers with or without MPNNs, yield-
ing promising outcomes (Yang et al., 2021; Ying et al., 2021; Dwivedi & Bresson, 2021; Chen et al.,
2022; Hussain et al., 2022; Zhang et al., 2023; Ma et al., 2023; Rampášek et al., 2023; Kong et al.,
2023; Zhang et al., 2022).

While Graph Transformers have marked considerable advancements, enhancing Graph Transform-
ers through strengthening the discriminative power of distinguishing isomorphisms of graphs is re-
maining challenge, which plays a crucial role in boosting their graph-level predictive performances.
Previous research has explored various techniques to address the limitations of discriminative power.
For instance, studies based on MPNN have enhanced node attributes using high-dimensional com-
plexes, persistent homological techniques, and recurring subgraph structures (Carrière et al., 2020;
Bodnar et al., 2021b; Bouritsas et al., 2021; Wijesinghe & Wang, 2021; Bevilacqua et al., 2022;
Horn et al., 2022; Choi et al., 2023). Similarly, recent research on Graph Transformers has investi-
gated the use of positional encoding grounded in random walk strategies, Laplacian PE, node degree
centrality, and shortest path distance to address these limitations. Furthermore, structure encoding
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based on substructure similarity has been introduced to amplify the inductive biases inherent in the
Transformer.

This paper introduces a Topology-Informed Graph Transformer(TIGT), which embeds sophisticated
topological inductive biases to augment the model’s expressive power and predictive efficacy. Be-
fore the Transformer layer, each node attribute is integrated with a topological positional embedding
layer based on the differences of universal covers obtained from the original graph structure and
collections of unions of cyclic subgraphs, the topological invariants of which contains their first ho-
mological invariants. In companion with the novel positional embedding layer, we explicitly encode
cyclic subgraphs in the dual-path message passing layer and incorporate channel-wise graph infor-
mation in the graph information layer. These are combined with global attention across all Graph
Transformer layers, drawing inspiration from Choi et al. (2023) and Rampášek et al. (2023). As
a result, the TIGT layer can concatenate hidden representations from the dual-path message pass-
ing layer, combining information of original structure and cyclic subgraphs, global attention layer,
and graph information layer to preserve both topological information and graph-level information in
each layer. Specifically, the dual-path message passing layer enables overcoming the limitations of
positional encoding and structural encoding to increase expressive power when the number of layers
increases. We justify the proposed model’s expressive power based on the theory of covering space.
Furthermore, we perform experiment in synthetic datasets aimed at distinguishing isomorphism
classes of graphs and benchmark datasets aimed at demonstrating the state-of-the-art of competitive
predictive performance of the proposed model.

Our main contributions can be summarized as follows: (i) Theoretical justification of expressive
powers of TIGT and its comparison with other Graph Transformers by utilizing the theory of cov-
ering spaces, comparison of Euler characteristic formulae of graphs and their subgraphs, and the
geometric rate of convergence of Markov operators over finite graphs to stationary distributions. (ii)
Novel positional embedding layer based on the MPNNs and simple architectures to enrich topologi-
cal information in each Graph Transformer layer (iii) Outperformance shown in processing synthetic
dataset to assess the expressive power of GNNs (iv) State-of-art or competitive results, especially in
the large graph-level benchmarks.

2 PRELIMINARY

Message passing neural networks MPNNs have demonstrated proficiency in acquiring vector
representations of graphs by handling local information based on the connectivity between nodes
among other types of GNNs such as Graph Convolution Network (GCN), Graph Attention Network
(GAT) (Veličković et al., 2018), Graph Isomorphism Network (GIN) (Xu et al., 2019) and Residual
Graph ConvNets (GatedGCN) (Bresson & Laurent, 2018). We denote MPNNl when it has a com-
position of l neighborhood aggregatin layers. Each l-th layer H(l) of the network constructs hidden
node attributes of dimension kl, denoted as h(l)

v , using the following composition of functions:{
h
(l)
v := COMBINE(l)

(
h
(l−1)
v ,AGGREGATE(l)

v

({{
h
(l−1)
u | u∈V (G),u̸=v

(u,v)∈E(G)

}}))
h
(0)
v := Xv

where Xv is the initial node attribute at v. Let M (l)
v be the collection of all multisets of kl−1-

dimensional real vectors with deg v elements counting multiplicities.

AGGREGATE(l)
v : M (l)

v → Rk′
l

is a set theoretic function of k′l-dimensional real vectors, and the combination function

COMBINE(l) : Rkl−1+k′
l → Rkl

is a set theoretic function combining the attribute hl−1
v and the image of AGGREGATE(l)

v .

Let M (L) be the collection of all multisets of kL-dimensional vectors with #V (G) elements. Let

READOUT : M (L) → RK
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Figure 1: Overall Architecture of TIGT.

be the graph readout function of K-dimensional real vectors defined over the multiset M (L). Then
the K-dimensional vector representation of G, denoted as hG, is given by

hG := READOUT
(
{{h(l)

v | v ∈ V (G)}}
)

Clique adjacency matrix The clique adjacency matrix, proposed by Choi et al. (2023), is a matrix
that represents bases of cycles in a graph in a form analogous to the adjacency matrix, enabling its
processing within GNNs. Extracting bases of cycles results in incorporating a topological property
equivalent to the first homological invariants of graphs (Paton, 1969). The set of cyclic subgraphs
of G which forms the basis of the cycle space (or the first homology group) of G is defined as the
cycle basis BG. The clique adjacency matrix, AC , is the adjacency matrix of the union of #BG

complete subgraphs, each obtained from adding all possible edges among the set of nodes of each
basis element B ∈ BG. Explicitly, the matrix AC := {aCu,v}u,v∈V (G) is given by

aCu,v :=

{
1 if ∃ B ∈ BG cyclic s.t. u, v ∈ V (B)

0 otherwise

We note that it is also possible to construct bounded clique adjacency matrices, analogously obtained
from sub-bases of cycles comprised of bounded number of nodes.

3 TOPOLOGY-INFORMED GRAPH TRANSFORMER(TIGT)

In this section, we introduce overall TIGT architecture. The overall architecture of our model is
illustrated in Figure 1.Suppose we are given the graph G := (V,E). It can be represented by four
types of matrices to use input of TIGT; a node feature matrix X ∈ Rn×kX , an adjacency matrix
A ∈ Rn×n , a clique adjacency matrix Ac ∈ Rn×n and an edge feature matrix E ∈ Rn×kE . Note
that n is the number of node, kX is node feature dimension and kE is edge feature dimension.
The clique adjacency matrices are obtained from same process in previous research (Choi et al.,
2023). For clarity and conciseness in our presentation, we have omitted the details pertaining to the
normalization layer and the residual connection. We note that some of the mathematical notations
used in explaining the model design and details of model structures conform to those shown in
(Rampášek et al., 2023).

3.1 TOPOLOGICAL POSITIONAL EMBEDDING LAYER

Most of previous researches of Graph Transformers use positional embeddings based on parameters
such as node distance, random walk, or structural similarities, in order to adequately capture the
nuances of graph structures. Diverging from this typical approach, we propose a novel method for
obtaining learnable positional encodings by leveraging MPNNs. This approach aims to enhance
the discriminative power with respect to isomorphism classes of graphs, drawing inspiration from
Cy2C-GNNs (Choi et al., 2023). First, we use any MPNNs to obtained hidden attribute from original
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graph and new graph structure with clique adjacency matrix as follows:

hA = MPNN(X,A), hA ∈ Rn×k

hAC
= MPNN(X,AC), hAC

∈ Rn×k

h = [hA hAC ] , h ∈ Rn×k×2

where X represents the node embedding tensor from the embedding layers, and [ ] denotes the
process of stacking two hidden representations. It’s important to note that MPNN for adjacency
matrix and clique adjacency matrix share weights, and the number of layers of MPNNs are not a
constraint. Then the node features are updated along with topological positional attributes, as shown
below:

X0
i = Xi + SUM(Activation(hi ⊙ θpe)), X0 ∈ Rn×k

where i is the node index in graph and θpe ∈ R1×k×2 represents the learnable parameters that are
utilized to integrate features from two different universal cover. The SUM operation performs a sum
of the hidden features hA and hAc

by summing over the last dimensions. For the Activation func-
tion, in this study, we use hyperbolic tangent function to bound the value of positional information.
Regardless of the presence or absence of edge attributes, we do not use any existing edge attributes
in this layer. The main objective of this layer is to enrich node features by adding topological in-
formation by combining the two universal covers. The results X0 will be subsequently fed into the
encoder layers of TIGT.

3.2 ENCODER LAYER OF TIGT

The Encoder layer of the TIGT is based on the three components: A Dual-path message passing
layer: A global attention layer: And a graph information layer. For the input to the Encoder layer,
the transformed input feature X l−1, along with A, Ac, and El−1 is utilized, where l is the encoder
layer number in TIGT.

Dual-path MPNNs Hidden representations X l−1, sourced from the preceding layer, paired with
the adjacency matrix and clique adjacency matrix, are processed through a dual-path message pass-
ing layer as follows:

X l
MPNN,A = MPNNA(X

l−1, El−1, A), X l
MPNN,A ∈ Rn×k

X l
MPNN,AC

= MPNNAC
(X l−1, AC), X l

MPNN,AC
∈ Rn×k

Global attention layer To capture global relationship of each node, we apply multi-head attention
of vanilla Transformer as follows:

X l
MHA = MHA(X l−1), X l

MHA ∈ Rn×k

where MHA is multi-head attention layer. Then we obtained representation vectors from local neigh-
borhood, all nodes in graph and neighborhood in same cyclic subgraph. Combining these represen-
tations, we obtain the intermediate node representations given by:

X̄ l = X l
MPNN,A +X l

MPNN,AC
+X l

MHA, X̄ l ∈ Rn×k

Graph information layer The pooled graph features, extracted from the Graph Information Layer,
are seamlessly integrated. Inspired by the squeeze-and-excitation block (Hu et al., 2019), this pro-
cess adaptively recalibrates channel-wise graph features into each node feature as:

Y l
G,0 = READOUT

(
{X̄ l

v | v ∈ V (G)}
)
, X l

G ∈ R1×k

Y l
G,1 = ReLU(LIN1(Y

l
G,0)), Y l

G,1 ∈ R1×k/N

Y l
G,2 = Sigmoid(LIN2(Y

l
G,1)), Y l

G,2 ∈ R1×k

X̄ l
G = X̄ l ⊙ Y l

G, X̄ l
G ∈ Rn×k

where LIN1 is linear layer for squeeze feature dimension and LIN2 is linear layer for excitation
feature dimension. Note that N is reduction factor for squeezing feature.

To culminate the process and ensure channel mixing, the features are passed through an MLP layer
as follows:

X l = MLP(X̄ l
G), X l ∈ Rn×k
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3.3 MATHEMATICAL BACKGROUND OF TIGT

Clique adjacency matrix The motivation for utilizing the clique adjacency matrix in implement-
ing TIGT originates from the recent work by Choi et al., which establishes a mathematical identifi-
cation of discerning capabilities of GNNs using the theory of covering spaces of graphs (Choi et al.,
2023). To summarize their work, conventional GNNs represent two graphs G and H , endowed with
node feature functions XG : G → Rk and XH : G → Rk, as identical vector representations if and
only if the universal covers of G and H are isomorphic, and the pullback of node attributes over the
universal covers are identical. We note that universal covers of graphs are infinite graphs containing
unfolding trees of the graph rooted at a node as subgraphs. In other words, these universal covers
do not contain cyclic subgraphs which may be found in the original given graph as subgraphs. Ad-
ditional measures to further distinguish cyclic structures of graphs are hence required to boost the
distinguishing power of GNNs. Among various techniques to represent cyclic subgraphs, we focus
on the following two solutions which can be easily implemented: (1) Construct clique adjacency
matrices AC , as utilized in the architectural component of TIGT, which transform the geometry of
universal covers themselves: (2) Impose additional positional encodings, which alter the pullback
of node attributes over the universal covers. The distinguishing power of TIGT can be stated as
follows, whose proof follows from the results shown in Choi et al. (2023).
Theorem 3.1. Suppose G and H are two graphs with the same number of nodes and edges. Suppose
that there exists a cyclic subgraph C that is an element of a cycle basis of G such that satisfies the
following two conditions: (1) C does not contain any proper cyclic subgraphs (2) Any element of a
cycle basis of H is not isomorphic to C. Then TIGT can distinguish G and H as non-isomorphic.

As a corollary of the above theorem, we obtain the following explicit quantification of discriminative
power of TIGT in classifying graph isomorphism classes. We leave the details of the proofs of both
theorems in Appendix A.1 and A.2.
Theorem 3.2. There exists a pair of graphs G and H such that TIGT can distinguish as non-
isomorphic whereas 3-Weisfeiler-Lehman (3-WL) test cannot.

Theorem 3.2 hence shows that TIGT has capability to distinguish pairs of graphs which are
not distinguishable by algorithms comparable to 3-WL test, such as the generalized distance
Weisfeiler-Lehman test (GD-WL) utilizing either shortest path distance (SPD) or resistance distance
(RD) (Zhang et al., 2023).

Graph biconnectivity Given that TIGT is able to distinguish classes of graphs that 3-WL cannot,
it is reasonable to ask whether TIGT can capture topological properties of graphs that state-of-the-
art techniques can encapsulate, which is the problem of detecting bi-connectivity of graphs (Zhang
et al., 2023; Ma et al., 2023). We recall that a connected graph G is vertex (or edge) biconnected if
there exists a vertex v (or an edge e) such that G \ {v} (or G \ {e}) has more connected components
than G. As these state-of-the-art techniques can demonstrate, TIGT as well is capable to distinguish
vertex (or edge) bi-connectivity. The idea of the proof relies on comparing the Euler characteric
formula for graphs G and G\{v} (or G\{e}), the specific details of which are provided in Appendix
A.3.
Theorem 3.3. Suppose G and H are two graphs with the same number of nodes, edges, and con-
nected components such that G is vertex (or edge) biconnected, whereas H is not. Then TIGT can
distinguish G and H as non-isomorphic graphs.

In fact, as shown in Appendix C of Zhang et al. (2023), there are state-of-the-art techniques which
are designed to encapsulate cycle structures or subgraph patterns but cannot distinguish biconnec-
tivity of classes of graphs, such as cellular WL (Bodnar et al., 2021a), simplicial WL (Bodnar
et al., 2021b), and GNN-AK (Zhao et al., 2022). These results indicate that TIGT can detect both
cyclic structures and bi-connectivity of graphs, thereby addressing the topological features the gen-
eralized construction of Weisfeiler-Lehman test aims to accomplish, as well as showing capabilities
of improving distinguishing powers in comparison to other pre-existing techniques.

Positional encoding As aforementioned, the method of imposing additional positional encodings
to graph attributes can allow neural networks to distinguish cyclic structures, as shown in various
types of Graph Transformers (Ma et al., 2023; Rampášek et al., 2023; Ying et al., 2021). One draw-
back, however, is that these encodings may not be effective enough to represent classes of topolog-
ically non-isomorphic graphs as distinct vectors which are not similar to one another. We present a
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heuristic argument of the drawback mentioned above. Suppose we utilize a Transformer with finitely
many layers to obtain vector representations X∗

G, X
∗
H ∈ Rm of two graphs G and H with node at-

tribute matrices XG, XH ∈ Rn×k and positional encoding matrices POSG, POSH ∈ Rn×k′
. Sup-

pose further that all layers of the Transformer are comprised of compositions of Lipschitz continuous
functions. This implies that the Transformer can be regarded as a Lipschitz continuous function from
Rn×(k+k′) to Rm. Hence, for any ϵ > 0 such that ∥[XG|POSG] − [XH |POSH(v)]∥ < ϵ, there
exists a fixed constant K > 0 such that ∥X∗

G −X∗
H∥ < Kϵ. This suggests that if the node attributes

and the positional encodings of non-isomorphic classes of graphs are similar to one another, say
within ϵ-error, then such Transformers will represent these graphs as similar vectors, say within Kϵ-
error. Hence, it is crucial to determine whether the given positional encodings effectively perturbs
the node attributes to an extent that results in obtaining markedly different vector representations.

In relation to the above observation, we show that the relative random walk probabilities positional
encoding (RRWP) suggested in Ma et al. (2023) may not effectively model K steps of random walks
on graphs G containing a cyclic subgraph with odd number of nodes and may not be distinguishable
by 1-WL as K grows arbitrarily large, the proof of which is outlined in Appendix A.4.
Theorem 3.4. Let G be any collections of graphs whose elements satisfy the following three condi-
tions: (1) All graphs G ∈ G share the same number of nodes and edges: (2) Any G ∈ G contains
a cyclic subgraph with odd number of nodes: (3) For any number d ≥ 1, all the graphs G ∈ G
have identical number of nodes whose degree is equal to d. Fix an integer K, and suppose the node
indices for G ∈ G are ordered based on its increasing degrees. Let P be the RRWP positional
encoding associated to G defined as Pi,j := [I,M,M2, · · · ,MK−1]i,j ∈ RK , where M := D−1A
with A being the adjacency matrix of G, and D the diagonal matrix comprised of node degrees of G.
Then there exists a unique vector π ∈ Rn independent of the choice of elements in G and a number
0 < γ < 1 such that for any 0 ≤ l ≤ K − 1, we have max(i,j) ∥Ml

i,j − πj∥ < γl.

In particular, the theorem states that the positional encodings which are intended to model K steps
of random walks converge at a geometric rate to a fixed encoding π ∈ RK regardless of the choice of
non-isomorphism classes of graphs G ∈ G. Hence, such choices of positional encodings may not be
effective enough to represent differences in topoloical structures among such graphs as differences
in their vector representations.

4 EXPERIMENTS

Dataset To analyze the effectiveness of TIGT compared to other models in terms of expressive
powers, we experiment on the Circular Skip Link(CSL) dataset (Murphy et al., 2019). CSL dataset
is comprised of graphs that have different skip lengths R ∈ {2, 3, 4, 5, 6, 9, 11, 12, 13, 16} with 41
nodes that have the same features. Further, we utilize well-known graph-level benchmark datasets
to evaluate proposed models compared to other models. We leverage five datasets from the ”Bench-
marking GNN” studies: MNIST, CIFAR10, PATTERN, and CLUSTER, adopting the same experi-
mental settings as prior research (Dwivedi et al., 2022). Additionally, we use two datasets from the
”Long-Range Graph Benchmark” (Dwivedi et al., 2023): Peptides-func and Peptides-struct. Lastly,
to further verify the effectiveness of the proposed model on large datasets, we perform experiments
on ZINC full dataset (Irwin et al., 2012), which is the full version of the ZINC dataset with 250K
graphs and PCQM4Mv2 dataset (Hu et al., 2020) which is large-scale graph regression benchmark
with 3.7M graphs. These benchmark encompass binary classification, multi-label classification, and
regression tasks across a diverse range of domain characteristics. The detail of the aforementioned
datasets are summarized in Appendix C.1.

Models To evaluate the discriminative power of TIGT, we compare a set of previous re-
searches related to expressive power of GNNs on CSL dataset such as Graph Transformers
(GraphGPS (Rampášek et al., 2023), GRIT (Ma et al., 2023)) and other message-passing neural net-
works (GCN Kipf & Welling (2017), GIN, Relational Pooling GIN(RP-GIN) (Murphy et al., 2019),
Cy2C-GNNs (Choi et al., 2023)). We compare our approach on well-known benchmark datasets to
test graph-level test with the latest SOTA techniques, widely adopted MPNNs models, and various
Graph Transformer-based studies: GRIT (Ma et al., 2023), GraphGPS (Rampášek et al., 2023)),
GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), its variant with edge-features (Hu et al., 2020),
GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2018), GatedGCN-LSPE (Dwivedi
et al., 2022), PNA (Corso et al., 2020), Graphormer (Ying et al., 2021), K-Subgraph SAT (Chen

6



Under review as a conference paper at ICLR 2024

et al., 2022), EGT (Hussain et al., 2022), SAN (Kreuzer et al., 2021), Graphormer-URPE (Luo
et al., 2022), Graphormer-GD Zhang et al. (2023), DGN (Beaini et al., 2021), GSN (Bouritsas
et al., 2021), CIN (Bodnar et al., 2021b), CRaW1 (Tönshoff et al., 2023), and GIN-AK+ (Zhao
et al., 2022).

TIGT Setup For hyperparameters of models on CSL datasets, we fixed the hidden dimension
and batch size to 16, and other hyperparameters were configured similarly to the setting designed
for the ZINC dataset. For a fair comparison of the other nine benchmark datasets, we ensured that
both the hyperparameter settings closely matched those found in the GraphGPS (Rampášek et al.,
2023) and GRIT (Ma et al., 2023) studies. The differences in the number of trainable parameters
between TIGT and GraphGPS primarily arise from the additional components introduced to enrich
topological information within the Graph Transformer layers. Further details on hyperparameters,
such as the number of layers, hidden dimensions, and the specific type of MPNNs, are elaborated
upon in the Appendix C.2.

Performance on the CSL dataset In order to test the expressive power of the proposed model
and state-of-the-art Graph Transformers, we evaluated their performance on the synthetic dataset
CSL. The test performance metrics are presented in Table 1. Our analysis found that TIGT, GPS
with random-walk structural encoding (RWSE), and GPS with RWSE and Laplacian eigenvectors
encodings (LapPE) outperformed other models. However, the recent state-of-the-art model, GRIT
with Relative Random Walk Probabilities (RRWP), could not discriminate CSL class. Interestingly,
TIGT demonstrated resilience in maintaining a near 100% performance rate, irrespective of the
number of added Graph Transformer layers. This consistent performance can be attributed to TIGT’s
unique Dual-path message-passing layer, which ceaselessly infuses topological information across
various layers. Conversely, other models, which initially derive benefits from unique node attribution
facilitated by positional encoding, showed signs of diminishing influence from this attribution as the
number of layers grew. Additionally, we compared our findings with those of GAT and Cy2C-
GNNs models. Consistent with previous studies Choi et al. (2023), GAT was unable to perform
the classification task on the CSL dataset effectively. In the case of the Cy2C-GNN model, while it
demonstrated high accuracy in a single-layer configuration, similar to GPS, we observed a decline
in classification performance as the number of layers increased.

Results from benchmark datasets First, we present the test performance on five datasets from
Benchmarking GNNs (Dwivedi et al., 2022) in Table 2. The mean and standard deviation are re-
ported over four runs using different random seeds. It is evident from the results that our model ranks
either first or second in performance on three benchmark datasets: ZINC, MNIST, and CIFAR10.
However, for the synthetic datasets, PATTERN, and CLUSTER, our performance is found to be
inferior compared to recent state-of-the-art models but is on par with the GraphGPS model. Next,
we further assess the effectiveness of our current model by evaluating its test performance on four
datasets from the ”Long-Range Graph Benchmark” (Dwivedi et al., 2023), full ZINC dataset (Irwin
et al., 2012), and the PCQM4Mv2 dataset (Hu et al., 2020). In the large datasets, the full version
of the ZINC dataset and the PCQM4Mv2 dataset, TIGT consistently outperforms other models.
In particular, on the PCQM4Mv2 dataset, our model demonstrated superior performance with fewer
parameters compared to state-of-the-art models. In the ”Long-Range Graph Benchmark,” our model
also present the second-highest performance compared to other models. Through all these experi-
mental results, it is evident that by enhancing the discriminative power to differentiate isomorphisms
of graphs, we can boost the predictive performances of Graph Transformers. This has enabled us to
achieve competitive results in GNN research, surpassing even recent state-of-the-art model on sev-
eral datasets. In a comparative analysis between Cy2C-GNN and TIGT, we observed a significant
increase in performance across all datasets with TIGT. This indicates that the topological non-trivial
features of graphs are well-reflected in TIGT, allowing for both a theoretical increase in expressive
power and improved performance on benchmark datasets.

5 CONCLUSION

In this paper, we introduced TIGT, a novel Graph Transformer designed to enhance the predictive
performance and expressive power of Graph Transformers. This enhancement is achieved by in-
corporating a topological positional embedding layer, a dual-path message passing layer, a global
attention layer, and a graph information layer. Notably, our topological positional embedding layer
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Table 1: Results of graph classification obtained from CSL dataset (Murphy et al., 2019). Note that
a bold method indicate the results obtained by ours. All results other than the bold method are cited
from available results obtained from pre-existing publications. Note that mean ± standard deviation
of 4 runs with different random seeds in our results.Highlighted are the top first, second, and third
results.

GNNs GIN RP-GIN GCN Cy2C-GCN-1
10.0±0.0 37.6±12.9 10.0±0.0 91.3±1.6

GATs GAT-1 GAT-2 GAT-5 GAT-10
10.0±0.0 10.0±0.0 10.0±0.0 10.0±0.0

Cy2C-GNNs Cy2C-GIN-1 Cy2C-GIN-2 Cy2C-GIN-5 Cy2C-GIN-10
98.33±3.33 46.67±38.20 9.17±5.69 7.49±3.21

GPS 1 layer 2 layers 5 layers 10 layers
5.0±3.34 6.67±9.43 3.34±3.85 5.0±3.34

GPS+RWSE 1 layer 2 layers 5 layers 10 layers
88.33±11.90 93.33±11.55 90.00±11.06 75.0±8.66

GPS+LapPE+RWSE 1 layer 2 layers 5 layers 10 layers
100±0.0 95±10.0 93.33±13.33 86.67±10.89

GRIT+RRWP 1 layer 2 layers 5 layers 10 layers
10.0±0.0 10.0±0.0 10.0±0.0 10.0±0.0

TIGT 1 layer 2 layers 5 layers 10 layers
98.33±3.35 100±0.0 100±0.0 100±0.0

Table 2: Graph classification and regression results obtained from five benchmarks from (Dwivedi
et al., 2022). Note that N/A indicate the methods which do not report test results on the given graph
data set and a bold method indicate the results obtained by ours. All results other than the bold
method are cited from available results obtained from pre-existing publications. Note that mean ±
standard deviation of 4 runs with different random seeds in our results.Highlighted are the top first,
second, and third results.

ZINC MNIST CIFAR10 PATTERN CLUSTER
Model MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑
GCN 0.367±0.011 90.705±0.218 55.710±0.381 71.892±0.334 68.498±0.976
GIN 0.526±0.051 96.485±0.252 55.255±1.527 85.387±0.136 64.716±1.553
GAT 0.384±0.007 95.535±0.205 64.223±0.455 78.271±0.186 73.840±0.326

GatedGCN 0.282±0.015 97.340±0.143 67.312±0.311 85.568±0.088 73.840±0.326
GatedGCN+LSPE 0.090±0.001 N/A N/A N/A N/A

PNA 0.188±0.004 97.94±0.12 70.35±0.63 N/A N/A
DGN 0.168±0.003 N/A 72.838±0.417 86.680±0.034 N/A
GSN 0.101±0.010 N/A N/A N/A N/A
CIN 0.079±0.006 N/A N/A N/A N/A

CRaW1 0.085±0.004 97.944±0.050 69.013±0.259 N/A N/A
GIN-AK+ 0.080±0.001 N/A 72.19±0.13 86.850±0.057 N/A

SAN 0.139±0.006 N/A N/A 86.581±0.037 76.691±0.65
Graphormer 0.122±0.006 N/A N/A N/A N/A

K-Subgraph SAT 0.094±0.008 N/A N/A 86.848±0.037 77.856±0.104
EGT 0.108±0.009 98.173±0.087 68.702±0.409 86.821±0.020 79.232±0.348

Graphormer-GD 0.081±0.009 N/A N/A N/A N/A
GPS 0.070±0.004 98.051±0.126 72.298±0.356 86.685±0.059 78.016±0.180
GRIT 0.059±0.002 98.108±0.111 76.468±0.881 87.196±0.076 80.026±0.277

Cy2C-GNNs 0.102±0.002 97.772±0.001 64.285±0.005 86.048±0.005 64.932±0.003
TIGT 0.057±0.002 98.230±0.133 73.955±0.360 86.680±0.056 78.033±0.218
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Table 3: Graph-level task results obtained from two long-range graph benchmarks (Dwivedi et al.,
2023) , ZINC-full dataset (Irwin et al., 2012) and PCQM4Mv2 (Hu et al., 2020). Note that N/A
indicate the methods which do not report test results on the given graph data set and a bold method
indicate the results obtained by ours. All results other than the bold method are cited from available
results obtained from pre-existing publications. Note that mean ± standard deviation of 4 runs with
different random seeds in our results. Highlighted are the top first, second, and third results.

Long-range graph benchmark ZINC-full PCQM4Mv2
Peptides-func Peptides-struct

Model AP↑ MAE↓ Model MAE↓ Model MAE(Valid)↓ # Param
GCN 0.5930±0.0023 0.3496±0.0013 GCN 0.113±0.002 GCN 0.1379 2.0M
GINE 0.5498±0.0079 0.3547±0.0045 GIN 0.088±0.002 GIN 0.1195 3.8M

GatedGCN 0.5864±0.0035 0.3420±0.0013 GAT 0.111±0.002 GCN-virtual 0.1195 4.9M
GatedGCN+RWSE 0.6069±0.0035 0.3357±0.0006 SignNet 0.024±0.003 GIN-virtual 0.1083 6.7M
Transformer+LapPE 0.6326±0.0126 0.2529±0.016 Graphormer 0.052±0.005 Graphormer 0.0864 48.3M

SAN+LapPE 0.6384±0.0121 0.2683±0.0043 Graphormer-URPE 0.028±0.002 GRPE 0.0890 46.2M
SAN+RWSE 0.6439±0.0075 0.2545±0.0012 Graphormer-GD 0.025±0.004 TokenGT (Lap) 0.0910 48.5M

GPS 0.6535±0.0041 0.2500±0.0012 GPS N/A GPS-medium 0.0858 19.4M
GRIT 0.6988±0.0082 0.2460±0.0012 GRIT 0.023±0.001 GRIT 0.0859 16.6M

Cy2C-GNNs 0.5193±0.0025 0.2521±0.0012 Cy2C-GNNs 0.042±0.001 Cy2C-GNNs 0.0956 4M
TIGT 0.6679±0.0074 0.2485±0.0015 TIGT 0.014±0.001 TIGT 0.0826 13.0M

is learnable and leverages MPNNs. It integrates universal covers drawn from the original graph
structure and a modified structure enriched with cyclic subgraphs. This integration aids in detect-
ing isomorphism classes. Throughout its architecture, TIGT encodes cyclic subgraphs at each layer
using the dual-path message passing mechanism, ensuring that expressive power is maintained as
layer depth increases. Despite a modest rise in complexity, TIGT showcases superior performance
in experiments on the CSL dataset, surpassing the expressive capabilities of previous GNNs and
Graph Transformers. Additionally, both mathematical justifications and empirical evaluations un-
derscore our model’s competitive advantage over contemporary Graph Transformers across diverse
benchmark datasets.

While TIGT can be successfully applied to graph-level tasks, there remain avenues for future ex-
ploration. Firstly, the computational complexity is limited to O(N2 +NE +NC) with the number
of node N , the number of edge NE and the number of edge in cyclic subgraphs NC . Especially,
due to the implementation of global attention in the Transformer, computational complexity poses
challenges that we are keen to address in subsequent research. Moreover, beyond the realm of graph-
level tasks, there is potential to broaden the application of TIGT into areas like node classification
and link prediction. Integrating the topological characteristics inherent in TIGT with these domains
might uncover more profound insights and elevate predictive accuracy.
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Pietro Liò. Directional graph networks, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works, 2022.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Mont-
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A MATHEMATICAL PROOFS

This subsection focuses on listing the mathematical background required for proving a series of
theorems outlined in the main text of the paper. Throughout this subsection, we regard a graph
G := (V,E) as a 1-dimensional topological space endowed with the closure-finiteness weak topol-
ogy (CW topology), the details of which are written in Hatcher (2002)[Chapter 0, Appendix]. In
particular, we may regard G as a 1-dimensional CW complex, the set of nodes of G corresponds to
the 0-skeleton of G, and the set of edges of G corresponds to the 1-skeleton of G.

By regarding G as a 1-dimensional CW complex, we are able to reinterpret the infinite unfolding
tree of G rooted at any choice of a node v ∈ G as a contractible infinite 1-dimensional CW complex,
also known as the universal cover of G.

Definition A.1. Given any topological space X , the universal cover πX : X̃ → X is a contractible
topological space such that for any point x ∈ X , there exists an open neighborhood U containing x
such that π−1

X (U) is a disjoint union of open neighborhoods, each of which is homeomorphic to U .

A.1 PROOF OF THEOREM 3.1

The proof follows immediately from the fact that TIGT utilizes clique adjacency matrix AC (or
bounded clique adjacency matrix), whose mathematical importance was explored in Theorem 3.3,
Lemma 4.1, and Theorem 4.3 of Choi et al. (2023). We provide an exposition of the key ideas of the
proof of the above three theorems here.

Let G and H be two graphs endowed with node attribute functions fG : V (G) → Rk and fH :
V (H) → Rk. Theorem 3.3 of Choi et al. (2023) implies that conventional GNNs can represent two
graphs G and H as identical vector representations if and only if the following two conditions hold:

• There exists an isomorphism φ : G̃ → H̃ between two universal covers of G and H .

• There exists an equality of pullback of node attributes fG ◦ πG = fH ◦ πH ◦ φ.

In particular, even if G and H have different cycle bases whose elements consist of cyclic subgraphs
not containing any other proper cyclic subgraphs, if the universal covers of G and H are isomorphic,
then conventional GNNs cannot distinguish G and H as non-isomorphic.

To address this problem, one can include additional edges to cyclic subgraphs of G and H to alter
universal covers of G and H to be not isomorphic to each other. This is the key insight in Lemma
4.1 of Choi et al. (2023). Any two cyclic graphs without proper cyclic subgraphs have isomorphic
universal covers, both of which are homeomorphic to the real line R1. however, when two cyclic
graphs are transformed into cliques (meaning that all the nodes lying on the cyclic graphs are con-
nected by edges), then as long as the number of nodes forming the cyclic graphs are different, the
universal covers of the two cliques are not isomorphic to one another.

The task of adjoining additional edges connecting nodes lying on a cyclic graph is executed by
utilizing the clique adjacency matrix AC , the matrix of which is also constructed in Choi et al.
(2023). Hence, Theorem 4.3 of Choi et al. (2023) uses Lemma 4.1 to conclude that by utilizing the
clique adjacency matrix AC (or the bounded clique adjacency matrix), one can add suitable edges to
cyclic subgraphs of G and H which do not contain any proper cyclic subgraphs, thereby constructing
non-isomorphic universal covers of G and H which allow conventional GNNs to represent G and
H as non-identical vectors. In a similar vein, TIGT also utilizes clique adjacency matrices AC as an
input data, the data of which allows one to add suitable edges to cyclic subgraphs of any classes of
graphs to ensure constructions of their non-isomorphic universal covers.

A.2 PROOF OF THEOREM 3.2

We now prove that TIGT is capable of distinguishing a pair of graphs G and H which are not
distinguishable by 3-WL. The graphs of our interest are non-isomorphic families of strongly regular
graphs SR(16, 6, 2, 2), in particular the 4 × 4 rook’s graph and the Shrikhande graph. Both graphs
are proven to be not distinguishable by 3-Weisfeiler-Lehman test (Bodnar et al., 2021b)[Lemma 28],
but possess different cycle bases whose elements comprise of cyclic graphs which does not contain
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any proper cyclic subgraphs (Bodnar et al., 2021a)[Theorem 16]. Theorem 3.1 hence implies that
TIGT is capable of distinguishing the 4× 4 rook’s graph and the Shrikhande graph.

We note that these types of strongly regular graphs are also utilized to demonstrate the superiority of
a proposed GNN to 3-WL test, such as graph inductive bias Transformers (GRIT) (Ma et al., 2023)
or cellular Weisfeiler-Lehman test (CWL) (Bodnar et al., 2021a).

A.3 PROOF OF THEOREM 3.3

Next, we demonstrate that TIGT is also capable of distinguishing biconnectivity of pairs of graphs
G and H . Recall that the Euler characteristic formula (Hatcher, 2002)[Theorem 2.44] for graphs
imply that

#E(G)−#V (G) = # Connected components of G−# cycle basis of G

where the term ”# cycle basis of G” is the number of elements of a cycle basis of G. This number is
well-defined regardless of the choice of a cycle basis, because its number is equal to the dimension
of the first homology group of G with rational coefficients, one of the topological invariants of G.

Without loss of generality, assume that G is vertex-biconnected whereas H is not. Then there exists
a vertex v ∈ V (G) such that G \ {v} has more connected components than G and H . This implies
that given any choice of bijection ϕ : V (G) → V (H) between the set of nodes of G and H , the
graphs G \ {v} and H \ ϕ({v}) satisfy the following series of equations:

# Connected components of H \ ϕ({v})−# cycle basis of H \ ϕ({v})
= #E(H \ ϕ({v}))−#V (H \ ϕ({v}))
= #E(H)−#V (H) + 1

= #E(G)−#V (G) + 1

= #E(G \ {v})−#V (G \ {v})
= # Connected components of G \ {v} −# cycle basis of G \ {v}

By the condition that G is vertex-biconnected whereas H is not, it follows that the number of cycle
basis of G \ {v} and the number of cycle basis of H \ {ϕ(v)} are different. Because the above
equations hold for any choice of cycle bases G and H , we can further assume that both cycle bases
G and H satisfy the condition that all elements do not contain proper cyclic subgraphs. But because
the number of edges and vertices of the two graphs G \ {v} and H \ {ϕ(v)} are identical, it follows
that there exists a number c > 0 such that the number of elements of cycle bases of G \ {v} and
H\ϕ({v}) whose number of nodes is equal to c are different. Hence, the two graphs G and H can be
distinguished by TIGT via the utilization of clique adjacency matrices of G\{(v)} and H \ϕ({v}),
i.e. applying Theorem 3.1 to two graphs G \ {(v)} and H \ ϕ({v}).
In fact, the theorem can be generalized to distinguish any pairs of graphs G and H with the same
number of edges, nodes, and connected components, whose number of components after removing
a single vertex or an edge become different. We omit the proof of the corollary, as the proof is a
direct generalization of the proof of Theorem 3.3.

Corollary A.2. Let G and H be two graphs with the same number of nodes, edges, and connected
components. Suppose there exists a pair of nodes v ∈ V (G) and w ∈ V (H) (or likewise a pair of
edges e1 ∈ E(G) and e2 ∈ E(H)) such that the number of connected components of G \ {v} and
H \ {w} are different (and likewise for G \ {e1} and H \ {e2}). Then TIGT can distinguish G and
H as non-isomorphic graphs.

A.4 PROOF OF THEOREM 3.4

The idea of the proof follows from focuses on reinterpreting the probability matrix M := D−1A as
a Markov chain defined over a graph G ∈ G.

Let’s recall the three conditions applied to the classes of graphs inside our collection G:

• All graphs G ∈ G share the same number of nodes and edges

• Any G ∈ G contains a cyclic subgraph with odd number of nodes
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• For any number d ≥ 1, all graphs G ∈ G have identical number of nodes whose degree is
equal to d.

Denote by n the number of nodes of any graph G ∈ G. The second condition implies that any
graph G ∈ G is non-bipartite, hence the probability matrix M is an irreducible aperiodic Markov
chain over the graph G. In particular, this shows that the Markov chain M has a unique stationary
distribution π ∈ Rn such that the component of π at the j-th node of G satisfies

πj =
d(j)

2#E(G)

where d(j) is the degree of the node j (Lovasz, 1993)[Section 1]. The first condition implies that
regardless of the choice of the graph G ∈ G, the stationary distributions of π obtained from such
Markov chains associated to each G are all identical up to re-ordering of node indices based on their
node degrees. The geometric ergodicity of Markov chains, as stated in Lovasz (1993)[Theorem 5.1,
Corollary 5.2], show that for any initial probability distribution δ ∈ Rn over the graph G, there
exists a fixed constant C > 0 such that for any l ≥ 0,

max
j

|(δT Ml)j − πj | < C × γl

The geometric rate of convergence γ satisfies the inequality 0 < γ < 1. We note that the value
of γ is determined from eigenvalues of the matrix N := D−1/2MD1/2, all of whose eigenvalues
excluding the largest eigenvalue is known to have absolute values between 0 and 1 for non-bipartite
graphs G (Lovasz, 1993)[Section 3]. To obtain the statement of the theorem, we apply (??) with
probability distributions δ whose i-th component is 1, and all other components are equal to 0.

B ABALATION STUDY

To understand the significance of each component in our deep learning model, we performed mul-
tiple ablation studies using the ZINC dataset (Dwivedi et al., 2022). The results are presented in
Table 4. The influence of the graph information and the topological positional embedding layer
is relatively marginal compared to other layers. The choice of weight-sharing within the topo-
logical positional embedding layer, as well as the selection between the hyperbolic tangent and
ReLU activation functions, play a significant role in the model’s performance. Likewise, opting
for Single-path MPNNs, excluding the adjacency matrix instead of the proposed Dual-path in each
TIGT layer, results in a considerable performance drop. Within the graph information layer, it’s
evident that employing a sum-based readout function, akin to graph pooling, is crucial for extract-
ing comprehensive graph information and ensuring optimal results. Additionally, we experimented
with applying the Performer, which utilizes a kernel trick to replace the quadratic complexity of
the transformer’s global attention with linear complexity, in our TIGT model. However, we found
that this resulted in performance similar to models that did not use global attention. This sug-
gests that TIGT may require further research to address the issue of quadratic complexity effec-
tively. In a similar setting, we conducted experiments with Cy2C-GNN, which has fewer parame-
ters (114,433) compared to TIGT, and observed poorer performance. We also tested a larger version
of Cy2C-GNN, named Cy2C-GNN(Large), with 1,766,401 parameters—approximately three times
more than TIGT’s 539,873—only to find that this resulted in a worse mean absolute error (MAE).

C IMPLEMENTATION DETAILS

C.1 DATASETS

A detail of statistical properties of benchmark datasets are summarized in Table 5. We perform the
experiments on GraphGPS Rampášek et al. (2023) framework.

C.2 HYPERPARAMETERS

For all models we tested on the CSL dataset, we consistently set the hidden dimension to 32 and
the batch size to 5. Other hyperparameters were kept consistent with those used for the models
evaluated on the zinc dataset.
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Table 4: Ablation study to analyze the effectiveness of the component of TIGT on the ZINC
dataset. (Dwivedi et al., 2022).

ZINC MAE↓
TIGT 0.057±0.002

w/o graph information 0.059±0.005
w/o topological positional embedding 0.060±0.003

not share weight in topological positional embedding 0.061±0.003
Transformer → Performer in global attention 0.063±0.001

w/o global attention 0.063±0.003
Tanh → ReLU in topological positional embedding 0.063±0.004

Dual-path MPNNs → Single-path MPNNs 0.064±0.003
Sum → Mean readout in graph information 0.069±0.001

Cy2C-GNNs 0.102±0.002
Cy2C-GNNs(Large) 0.121±0.003

GraphGPS 0.070±0.004

Table 5: Summary of the statistics of dataset in overall experiments (Dwivedi et al., 2022; 2023;
Irwin et al., 2012; Hu et al., 2020).

Dataset ZINC/ZINC-full MNIST CIFAR10 PATTERN CLUSTER Peptides-func Peptides-struct PCQM4Mv2
# Graphs 12,000/250,000 70,000 60,000 14,000 12,000 15,535 15,535 3,746,620

Average # nodes 23.2 70.6 117.6 118.9 117.2 150.9 150.9 14.1
Average # edges 24.9 564.5 941.1 3,039.3 2,150.9 307.3 307.3 14.6

Directed No Yes Yes No No No No No
Prediction level Graph Graph Graph Inductive node Inductive node Graph Graph Graph

Task Regression 10-class classfi. 10-class classfi. Binary classif. 6-class classif. 10-task classif. 11-task regression Regression
Metric Mean Abs. Error Accuracy Accuracy Weighted Accuracy Accuracy Avg. Precision Mean Abs. Error Mean Abs. Error

Average # H1 cycles 2.8/2.8 212.1 352.5 2921.4 2034 3.7 3.7 1.4
Average magnitude # cycles 5.6/5.6 4.4 5.1 3.6 4.1 6.7 6.7 4.9

# graph w/o cycles 66/1109 0 0 0 0 1408 1408 444736

To ensure a fair comparison, we followed the hyperparameter settings of GraphGPS (Rampášek
et al., 2023) as outlined in their benchmark datasets. It’s worth noting that, due to the intrinsic
nature of the TIGT architecture, the number of model parameters varies. Details regarding these
hyperparameters are provided in Table 6.

C.3 IMPLEMENTATION DETAIL OF EXPERIMENT ON CSL DATASET

The CSL dataset Murphy et al. (2019) was obtained using the ’GNNBenchmarkDataset’ option
from the PyTorch Geometric library Fey & Lenssen (2019). We partitioned the dataset into training,
validation, and test sets with proportions of 0.6, 0.2, and 0.2, respectively. Detailed descriptions
of the hyperparameters are presented in Table 7. Hyperparameters for the CSL dataset that are not

Table 6: Hyperparameters for ten datasets from BenchmarkingGNNs Dwivedi et al. (2022), ZINC-
full Irwin et al. (2012), the Long-range Graph Benchmark Dwivedi et al. (2023) and PCQM4Mv2 Hu
et al. (2020).

Layer ZINC/ZINC-full MNIST CIFAR10 PATTERN CLUSTER Peptide-func Peptides-struct PCQM4Mv2

Topological P.E
MPNNs GIN GatedGCN GAT GatedGCN GIN GIN GIN GIN

Weights of MPNNs Share Not share Share Not share Not share Not share Not share Not share
Activation Tanh Tanh Tanh ReLU Tanh Tanh ReLU ReLU
Normalize Batch Batch Batch Batch Batch Batch Batch Batch
Self-loop False False False False False False False True

Dual-path MPNNs
MPNNs GIN GatedGCN GAT GatedGCN GatedGCN GatedGCN GIN GatedGCN

Weights of MPNNs Not share Not share Single-path Single-path Single-path Single-path Single-path Not share
Dropout 0.0 0.0 0.05 0.05 0.05 0.0 0.05 0.05

Global attention

# Layers 10 3 3 4 6 4 4 10
Hidden dim 64 52 52 64 48 96 96 256

# Heads 4 4 4 8 8 4 4 8
Attention dropout 0.5 0.5 0.8 0.2 0.8 0.5 0.5 0.2

Graph information
Residual connection True(In) False True(In) True(In) True(In) True True True

Pooling Sum Mean Mean Sum Mean Sum Sum Mean
Reduction factor 4 4 4 4 4 4 4 4

Graph pooling Sum Mean Mean - - Mean Mean Mean

Train

Batch size 32/256 16 16 32 16 32 32 256
Learning rate 0.001 0.001 0.001 0.0005 0.001 0.0003 0.0003 0.0005

# Epochs 2000 200 100 100 100 200 200 250
# Weight decay 1e-5 1e-5 1e-5 1e-5 1e-5 0.0 0.0 0.0

# Parameters 539873 190473 98381 279489 533814 565066 574475 13.0M
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Table 7: Hyperparameters for ten datasets from CSL dataset.

Layer Cy2C-GNNs GPS+LapPE+RWSE GRIT+RRWP TIGT

Encoder

Type of MPNNs GIN GIN - GIN
Type of Attention layer - Transformer GRIT Transformer

Hidden dim 64 64 64 64
# Heads - 4 4 4
Dropout 0.0 0.0 0.0 0.0

Train

Batch size 4 4 4 4
Learning rate 0.001 0.001 0.001 0.001

# Epochs 200 200 200 200
# Weight decay 1e-5 1e-5 1e-5 1e-5

# layer (prediction head) 1 1 1 1
Preprocessing time 0.24s 0.30s 0.11s 0.24s

# Parameters/Computation time(epoch)
# Layers 1 36634/3.0s 45502/4.4s 50458/5.37s 64490/4.2s
# Layers 2 45082/3.3s 87422/5.7s 97626/5.73s 117114/5.8s
# Layers 5 70426/3.8s 213182/9.4s 236506/9.9s 274986/10.8s
# Layers 10 112666/5s 422782/15.5s 474970/13.7s 538106/18.3s

specified here are consistent with those used in the ZINC dataset experiment Rampášek et al. (2023);
Ma et al. (2023).
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