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Abstract

Foundation models are becoming increasingly de-
ployed in high-stakes contexts in fields such as
medicine, finance, and law. In these contexts,
there is a trade-off between model explainability
and data privacy: explainability promotes trans-
parency, and privacy is a limit on transparency. In
this work, we push the boundaries of this trade-
off: with a focus on vision transformers for image
classification fine-tuning, we reveal unforeseen
privacy risks of post-hoc feature attribution expla-
nations. We construct VAR-LRT and L1/L2-LRT,
two novel membership inference attacks based
on feature attribution explanations that are signifi-
cantly more successful than existing attacks, par-
ticularly in the low false-positive rate regime that
allows an adversary to identify specific training
set members with high confidence. We carry out
a rigorous empirical analysis with 2 novel attacks,
5 vision transformer architectures, 5 benchmark
datasets, and 4 state-of-the-art post-hoc explana-
tion methods. Our work addresses the lack of
trust in post-hoc explanation methods that has
contributed to the slow adoption of foundation
models in high-stakes domains.

1. Introduction
Foundation models are becoming increasingly deployed in
high-stakes contexts such as medical diagnoses and loan
approvals. Since these models rely on sensitive personal
data, regulatory principles that enforce safe and trustworthy
model training and usage have become increasingly impor-
tant. One key regulatory principle is the Right to Privacy,
which aims to protect against training data leakage (Weller,
2019). The right to privacy is a limit to model explainabil-
ity, which is itself another important pillar of trustworthy
ML. Given the inherent complexity of foundation models,
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explanations are increasingly necessary in offering users in-
formation about how models make decisions with respect to
data. It is common to use post-hoc explanations that explain
the behavior of a trained model on a specific data exam-
ple; feature attributions are a broad and commonly studied
sub-class of post-hoc explanations (Lundberg & Lee, 2017;
Ribeiro et al., 2016; Shrikumar et al., 2017).

One widely used standard to empirically verify whether
a model obeys privacy is membership inference attacks
(MIAs) (Shokri et al., 2017), which predict if a data example
was used to train a model. Successful MIAs are a violation
of privacy—if an adversary knows that a patient’s medical
record was used to train a certain model that predicts the
optimal treatment for a particular disease, the adversary can
correctly conclude that this patient has the disease.

There is limited work on the susceptibility of model ex-
planations to membership inference, let alone work on the
privacy risks of model explanations altogether. Our work re-
veals unforeseen data privacy violations of post-hoc feature
attribution explanations through addressing the following
question: Can we devise novel membership inference at-
tacks on post-hoc explanations of foundation models that
1) have higher success than existing attacks, and 2) allow
an adversary to confidently identify specific members of
the training set in the “low false-positive rate regime”?

2. Related Work
Recent work shows that explanations do risk leaking sensi-
tive training data information via membership inference:
Shokri et al. (2021) and Pawelczyk et al. (2022) show
that backpropagation-based explanations and algorithmic
recourse, respectively, can leak training set membership in-
formation. However, this existing work is limited: Shokri
et al.’s attacks are evaluated using average-case metrics that
do not characterize whether the attack can confidently iden-
tify any specific members of the training set. Pawelczyk
et al.’s work highlights that an adversary can accurately
identify specific training set members with high confidence
but focuses only on counterfactual explanations of binary
classification models, thus not addressing a broader class of
feature attribution explanations on more complex deep clas-
sification models. Moreover, both works involve training
low-dimensional real-world datasets; neither addresses the
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privacy risks of explanations coming from the fine-tuning
of foundation models on complex datasets.

Our work extends that of Shokri et al. and Pawelczyk et al.
by developing successful MIAs, leveraging feature attribu-
tions on deep image classification models, that confidently
identify specific training set members at low FPR.

3. Preliminaries
Let Dtrain = {X ,Y} = {(xi, yi)}Ni=1 be a training dataset
drawn from some underlying distribution D. Let fθ be the
model parameterized by θ, x ∈ Rd be an input feature
vector, and y ∈ [k] be an output label. X ∈ RN×d denotes
the feature set, and Y ∈ [k]N denotes the labels over X .

The Case for Vision Transformers. In this work, we eval-
uate pre-trained vision transformers on image classification
fine-tuning tasks—membership inference, in our case, seeks
to infer whether an example was used to fine-tune the model.
Appendix B discusses the choice of studying foundation
models and specifically this architecture.

Post-Hoc Feature Attributions. A post-hoc explanation
function φ takes as input a trained model fθ and a point of in-
terest x ∈ Rd. A feature attribution explanation φ(x) is a
k-dimensional vector whose i-th coordinate, φi(x), reflects
the extent to which the i-th feature influences the prediction
the model outputs for x. We study the following feature
attribution methods: Input ∗ Gradient (IXG), Saliency Maps
(SL), Integrated Gradients (IG), and (a gradient-based ap-
proximation to) SHAP (GS). We describe each of these
methods in Appendix C.

Membership Inference Attacks. Suppose an adversary
possesses a set of data examples. The goal of a member-
ship inference attack (MIA) is for an adversary to create
a function that predicts, as accurately as possible, whether
each data example belongs to the training set of fθ. MIAs
are predominantly loss-based, testing if the loss of the model
for each example is below some threshold; in loss-based
attacks, the adversary requires access to true labels. Tra-
ditionally, MIAs are evaluated using average-case metrics
such as the receiver operating characteristic (ROC) curve—
which plots attack true positive rate (TPR) against false
positive rate (FPR)—and the area under that curve (AUC).

Likelihood Ratio Attacks & the Low-FPR Regime. Car-
lini et al. (2021) propose a re-formulation of the MIA prob-
lem to focus not on average-case performance but rather
on the “low FPR regime.” If an MIA has high TPR at low
FPR, that means it can confidently identify the training set
membership of a few observations in a sensitive dataset.
Attack success at low FPR is a greater privacy violation than
an attack that only unreliably achieves high aggregate suc-
cess rate. This work also initiated the practice of reporting

log-scaled ROC curves, rather than linearly scaled curves,
to make visible TPRs at very low FPRs.

Carlini et al. (2021) additionally propose the Likelihood Ra-
tio Attack (LiRA) that is significantly more successful than
the existing thresholding attacks on model loss, in particular
at low FPRs. In LiRA, the adversary trains shadow mod-
els on datasets with and without target example (x, y). Let
Qin(x, y) = {f ← T (Dattack∪{(x, y)} |Dattack ← D}}
represent the distribution of models trained on datasets con-
taining (x, y). Likewise, we have Qout(x, y) = {f ←
T (Dattack \{(x, y)} |Dattack ← D}}. The adversary esti-
mates the likelihood ratio Λ̂(fθ; (x, y)) ≈ p(fθ|Qin(x,y))

p(fθ|Qout(x,y))

and then thresholds on Λ̂: MembershipLiRA,τ (x, y) =

True if Λ̂ ≥ τ , False otherwise, where τ is a threshold that
maximizes TPR at a given FPR.

Explanation-Based MIAs. Shokri et al. (2021) propose
an explanation-based attack that directly thresholds on the
explanation variance. Example x is predicted to be a mem-
ber iff Var(φ(x)) ≤ τ, where τ is an optimal threshold we
assume that the adversary has access to. We elaborate on the
intuition behind using explanation variance in MIAs in Sec-
tion 4. Shokri et al.’s attack, which we call the “thresholding
attack,” is the baseline attack on which we improve.

4. Our Membership Inference Attack Methods
on Model Explanations

We present our new MIAs, based on Carlini et al.’s LiRA
framework, that leverage the variances, L1 norms, and
L2 norms of each example’s feature attribution. We name
these attacks VAR-LRT, L1-LRT, and L2-LRT, respectively.
These black-box attacks assume that for every example, the
adversary has access to the model’s prediction on that exam-
ple and a post-hoc explanation; access to true labels is not
required.

Attack on Explanation Variances (VAR-LRT). The thresh-
olding attack on explanation variance by Shokri et al. (2021)
follows the intuition that gradient descent pushes training set
points further from the decision boundary, and non-training
points are on average closer to the decision boundary. (This
intuition is also leveraged in other adversarial ML work
(Choquette-Choo et al., 2021; Yu et al., 2019).) The act of
leveraging explanation variance is motivated by this idea—
that for points closer to the decision boundary, changing
a feature affects the prediction itself more strongly, which
leads to higher explanation variance. If a point is farther
from the decision boundary, that means the model is more
certain about the point’s prediction, and the model’s behav-
ior on the point is unlikely to change if we slightly perturb
the point. Shokri’s attack methods directly threshold on
explanation variance in inferring training set membership of
each example; in our attack methods, we use this attack’s
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Algorithm 1 VAR-LRT: LiRA on explanation variances.
The adversary trains shadow models on datasets with and
without the target example, estimates parameters of the in-
and out- distributions of sample variances of explanations
(assuming Normal distributions of explanation variances),
and runs a likelihood ratio test.
Require: model fθ, example (x, y) ∈ Rd,

explanation vector φ(f, (x, y)) ∈ Rd, data distribution
D, number of shadow model iterations NS

1: variancesin = {}, variancesout = {}
2: for NS times do
3: Dattack ←$ D ▷ sample a shadow dataset
4: fin ← T (Dattack ∪ {(x, y)}) ▷ train IN model with

(x, y) in training set
5: φin ← φ(fin, (x, y)) ▷ generate post-hoc explanation of

fin’s behavior on (x, y)

6: φ̄in ← 1
d

∑d
i=1 φin,i

7: variancesin ← variancesin ∪{ 1d
∑d

i=1(φin,i− φ̄in)
2}

▷ record sample variance of φin

8: fout ← T (Dattack\{(x, y)}) ▷ train OUT model
9: φout ← φ(fout, (x, y)) ▷ generate post-hoc explanation

of fout’s behavior on (x, y)

10: φ̄out ← 1
d

∑d
i=1 φout,i

11: variancesout ← variancesout ∪ { 1d
∑d

i=1(φout,i −
φ̄out)

2} ▷ record sample variance of φout

12: end for
13: µ̂in ← mean(variancesin), µ̂out ← mean(variancesout)
14: σ̂2

in ← var(variancesin), σ̂2
out ← var(variancesout)

15: φobs ← φ(fθ, (x, y)), φ̄obs ←
∑d

i=1 φobs,i

16: varianceobs =
1
d

∑d
i=1(φobs,i − φ̄obs)

2 ▷ query model

17: return Λ̂ =
p(varianceobs | N (µ̂in, σ̂

2
in))

p(varianceobs | N (µ̂out, σ̂2
out))

intuition but enhance attack design. Our first attack, VAR-
LRT, computes likelihood ratios of explanation variances.
Algorithm 1 shows VAR-LRT in detail.

Attacks on Explanation L1 and L2 Norms (L1-LRT/L2-
LRT). Nasr et al. (2019) previously highlighted disparities
between gradient norm distributions of members and non-
members, implying the efficacy of the gradient norm as an
attack statistic. Recently, Wang et al. (2024) studied a white-
box attack based on gradient norms on open-source large
language models. Explanation norms are closely related to
gradient norms, and we draw this connection—as well as
explain our intuition behind constructing LiRAs based on
explanation norms—in Appendix D. As far as we know,
there is no prior work leveraging norms of model expla-
nations in membership inference attack. Algorithm 2 in
Appendix D shows our explanation L1 norm-based LiRA
algorithm (L1-LRT), which does so. The L2-LRT attack is
almost identical but is based instead on L2 norms.

(a) VAR-LRT log-scaled ROC curves.

(b) Baseline thresholding attack log-scaled ROC curves.

Figure 1. VAR-LRT vs. baseline thresholding attack ROCs for
the CIFAR-10 (left), CIFAR-100 (middle), and Food 101 (right)
datasets. We present results for all explanation methods under each
dataset’s chosen model and hyperparameter setting.

5. Experimental Results
5.1. Setup

We give full details on experimental setups and implemen-
tation in Appendix E, but in short, we fine-tune and report
results on the following datasets: CIFAR-10, CIFAR-100,
Street View House Numbers (SVHN), Food 101, and Ger-
man Traffic Sign Recognition Benchmark (GTSRB). For
each dataset and attack, we “choose” a vision transformer
model (out of 2-3 ImageNet pre-trained models analyzed
per dataset) and hyperparameter setting to report in the main
body, with additional and ablation experiment results in the
appendices. All experimental results are taken across 33
attack runs, with 32 shadow models per attack. Missing data
in a few experimental setups is attributed to limitations in
our compute resources.

5.2. Evaluation of the VAR-LRT Attack

We first present results on VAR-LRT and do an apples-to-
apples comparison of the performance of this attack with
that of Shokri et al.’s thresholding attack. Figure 1 displays
log-scaled ROC curves of the VAR-LRT versus baseline
thresholding attacks for the CIFAR-10, CIFAR-100, and
Food 101 datasets.

We observe from the log-scaled ROC curves in Figure 1
that across datasets and explanation methods, VAR-LRT
performs significantly better than random guessing at low
FPRs. This means it confidently captures a small, known
subset of training data members. Across datasets and ex-
planation methods, VAR-LRT is more successful than the
baseline attack at this task. More thoroughly, we present
numerical results comparing VAR-LRT with the threshold-
ing attack for four datasets and all explanation methods in
Table 1. We present each attack’s performance on each
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metric and ∆, the change between the two attacks’ average
performance. We encourage the reader to focus primarily on
viewing the ∆ columns but nonetheless provide complete
metric values for reference. All ∆ values are green except
for those corresponding to the AUC metric for the GS expla-
nation type. We are least concerned about this average-case
metric—the ∆ values for the TPR @ low FPR values are all
highly positive, supporting the conclusion throughout this
section that VAR-LRT is a much stronger attack than the
thresholding attack.

Table 1. Comparing VAR-LRT vs. thresholding attack success.
TPRx denotes the TPR at FPR = x (i.e. FPR = 100 ·x%). Green
and red ∆ values indicate metrics in which VAR-LRT has higher
and lower average value, respectively.

Expl Type Metric CIFAR-10 SVHN

Thres. VAR-LRT ∆ (Avg.) Thres. VAR-LRT ∆ (Avg.)

IXG TPR.001 ↑ 0.0015± 0.0007 0.0416± 0.0213 0.0401 0.0012± 0.0001 0.0121± 0.0103 0.0471
TPR.01 ↑ 0.0116± 0.0024 0.1055± 0.0277 0.0938 0.0099± 0.0190 0.0570± 0.0241 0.0109
AUC ↑ 0.5707± 0.0076 0.5998± 0.0174 0.0291 0.5448± 0.0080 0.5863± 0.0182 0.0415

SL TPR.001 0.0015± 0.0009 0.0309± 0.0164 0.0294 0.0012± 0.0008 0.0139± 0.0114 0.0566
TPR.01 0.0112± 0.0019 0.0958± 0.0027 0.0846 0.0103± 0.0029 0.0668± 0.0258 0.0126
AUC 0.5706± 0.0073 0.5950± 0.0170 0.0245 0.5456± 0.0079 0.5889± 0.0181 0.0432

IG TPR.001 0.0012± 0.0009 0.0222± 0.0114 0.0210 0.0013± 0.0007 0.0046± 0.0027 0.0152
TPR.01 0.0105± 0.0021 0.0830± 0.0230 0.0725 0.0107± 0.0023 0.0260± 0.0071 0.0034
AUC 0.5539± 0.0068 0.5872± 0.0193 0.0333 0.5233± 0.0051 0.5412± 0.0091 0.0180

GS TPR.001 0.0016± 0.0008 0.0030± 0.0017 0.0014 0.0013± 0.0008 0.0024± 0.0014 0.0047
TPR.01 0.0119± 0.0024 0.0265± 0.0089 0.0147 0.0103± 0.0026 0.0150± 0.0036 0.0011
AUC 0.5445± 0.0046 0.5776± 0.0104 −0.0078 0.5229± 0.0054 0.5206± 0.0064 −0.0023

(a) CIFAR-10 and SVHN.

Expl Type Metric CIFAR-100 Food 101

Thres. VAR-LRT ∆ (Avg.) Thres. VAR-LRT ∆ (Avg.)

IXG TPR.001 ↑ 0.0021± 0.0010 0.0200± 0.0112 0.0179 0.0012± 0.0006 0.0070± 0.0018 0.0057
TPR.01 ↑ 0.0158± 0.0027 0.1208± 0.0271 0.1050 0.0107± 0.0021 0.0225± 0.0040 0.0118
AUC ↑ 0.6549± 0.0100 0.6708± 0.0116 0.0157 0.5106± 0.0048 0.5173± 0.0050 0.0067

SL TPR.001 0.0018± 0.0010 0.0209± 0.0109 0.0191 0.0014± 0.0007 0.0021± 0.0014 0.0062
TPR.01 0.0156± 0.0029 0.1176± 0.0257 0.1020 0.0106± 0.0021 0.0258± 0.0041 0.0152
AUC 0.6522± 0.0098 0.6678± 0.0112 0.0156 0.5105± 0.0043 0.5170± 0.0051 0.0066

IG TPR.001 - - - 0.0013± 0.0009 0.0028± 0.0009 0.0015
TPR.01 - - - 0.0109± 0.0026 0.0147± 0.0025 0.0039
AUC - - - 0.5065± 0.0048 0.5074± 0.0047 0.0009

GS TPR.001 0.0019± 0.0010 0.0027± 0.0011 0.0008 0.0012± 0.0007 0.0013± 0.0007 0.0002
TPR.01 0.0152± 0.0019 0.0200± 0.0036 0.0049 0.0110± 0.0022 0.0116± 0.0023 0.0006
AUC 0.5847± 0.0065 0.5572± 0.0080 −0.0275 0.5057± 0.0052 0.5021± 0.0033 −0.0036

(b) CIFAR-100 and Food 101.

5.3. Evaluation of the L1-LRT and L2-LRT Attacks

Figure 2 displays L1-LRT and L2-LRT attack ROCs for
the CIFAR-10, CIFAR-100, and Food 101 datasets. L1-
LRT and L2-LRT behave similarly to one another across
the ROC curve, and both are highly successful, objectively
and relative to VAR-LRT. (We observe that L1-LRT gen-
erally performs better than L2-LRT and hypothesize why
this is the case in Appendix H.) To further highlight our
most successful attack, L1-LRT, Table 2 shows numerical
L1-LRT results for all five datasets; we see many bolded
quantities highlighting where TPR at FPR = x is at least
10 · x. We also observe that across the table, the mean
TPR value at FPR = x is higher than x. This means that
attacks perform reliably across the board, and a substantial
number of attacks—especially on IXG and SL explanation
types—perform exceedingly well at small FPR values.

More Results and Ablation Experiments Additional
results on model and attack performance and ablation exper-
iments are in Appendices F, G, H, and I.

(a) L1-LRT log-scaled ROC curves.

(b) L2-LRT log-scaled ROC curves.

Figure 2. L1-LRT and L2-LRT attack results for the CIFAR-10
(left), CIFAR-100 (middle), and Food 101 (right) datasets.

Table 2. Numerical attack results for L1-LRT. The bolded quanti-
ties show where TPR at FPR = x is at least 10 · x.

Exp Type Metric Dataset

CIFAR-10 CIFAR-100 Food 101 SVHN GTSRB

IXG TPR.001 0.093± 0.022 0.022± 0.013 0.203± 0.140 0.015± 0.014 0.009± 0.002
TPR.01 0.156± 0.018 0.130± 0.037 0.310± 0.131 0.065± 0.029 0.027± 0.004
AUC 0.639± 0.008 0.716± 0.012 0.780± 0.046 0.603± 0.018 0.518± 0.005

SL TPR.001 0.093± 0.022 0.021± 0.011 0.210± 0.143 0.017± 0.015 0.012± 0.002
TPR.01 0.155± 0.019 0.128± 0.035 0.309± 0.132 0.077± 0.030 0.030± 0.005
AUC 0.639± 0.009 0.716± 0.011 0.782± 0.043 0.605± 0.018 0.518± 0.005

IG TPR.001 0.026± 0.008 − 0.044± 0.024 0.006± 0.003 0.004± 0.001
TPR.01 0.080± 0.012 − 0.159± 0.032 0.008± 0.007 0.017± 0.003
AUC 0.590± 0.009 − 0.700± 0.051 0.554± 0.009 0.508± 0.004

GS TPR.001 0.006± 0.002 0.003± 0.001 0.006± 0.003 0.003± 0.001 0.002± 0.001
TPR.01 0.033± 0.005 0.027± 0.005 0.044± 0.016 0.017± 0.004 0.012± 0.003
AUC 0.554± 0.006 0.586± 0.009 0.616± 0.032 0.532± 0.007 0.502± 0.004

6. Discussion and Future Work
The lack of trust in post-hoc explanations contributes to the
slow adoption of foundation models in high-stakes domains.
This paper reveals unforeseen vulnerabilities of feature attri-
bution explanations to membership inference by introducing
two novel attacks that respectively leverage variances and
norms of attribution vectors. We show on vision transform-
ers that these attacks are significantly more successful than
existing attacks that leverage explanations, particularly at
confidently identifying specific training set members.

Within adversarial machine learning, there remain open
research directions concerning how post-hoc model expla-
nations may be leveraged to compromise data privacy. For
example, can we get similar attack success without requiring
adversarial fine-tuning of shadow models? Can we formally
quantify attack success (i.e. TPR at certain FPR)? How
successful might other non-MIA attack types that lever-
age explanations be? Furthermore, with the existence of
privacy-preserving mechanisms in mind—such as differen-
tial privacy—we pose additional questions: Can we devise
privacy-preserving explanation methods that retain adequate
quality? Is there an inevitable conflict between explainabil-
ity and data privacy? These are questions worth exploring,
particularly by researchers also interested in data privacy.
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A. Appendix
Our appendices are organized into the following parts:

• B: The Case for Foundation Models and Vision Transformers

• C: Post-Hoc Feature Attribution Explanations

• D: L1-LRT/L2-LRT Intuition and Algorithm

• E: Experimental Setups and Implementation Details

• F: Model Performance

• G: More VAR-LRT Results

• H: More L1-LRT/L2-LRT Results

• I: Ablation Experiments
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B. The Case for Foundation Models and Vision Transformers
Fine-tuning happens when a pre-trained foundation model is then trained on a smaller, more specific new task (Dosovitskiy
et al., 2020). Foundation models in general are desirable for a variety of reasons with respect to our research questions:

• Foundation models are generally pre-trained on data with public access, which means the models do not touch sensitive
data until possibly during downstream tasks. Hence, pre-trained foundation models adhere to the right to privacy.

• Foundation models such as large language models (e.g. GPT (OpenAI et al., 2024)) and vision-language models (e.g.
CLIP (Radford et al., 2021)) are widely applied to complex real-world settings. In terms of vision tasks, for example,
foundation models are used for applications ranging from medical imaging (Azad et al., 2023; Moor et al., 2023;
Sowrirajan et al., 2021; Ke et al., 2021; Tian et al., 2024; Wu et al., 2023) to astronomy (Grezes et al., 2021; Nguyen
et al., 2023) to robotics (Kawaharazuka et al., 2024; Brohan et al., 2023). By virtue of their versatility and widespread
use, foundation models are thus a viable choice of model type in settings involving sensitive personal data.

• Fine-tuning foundation models on downstream tasks requires substantially fewer computational resources than training
the model from scratch. Fine-tuning generally requires fewer epochs than standard training. To conduct membership
inference in this work, we fine-tune tens of shadow models per attack experiment, and doing so is computationally
more feasible than training these numerous large models from scratch.

For these reasons, in particular for the first reason on privacy defense, we choose to evaluate our methods using large
pre-trained foundation models on fine-tuned tasks.

B.1. The Vision Transformer Architecture

In this work, we evaluate our methods on image classification tasks. We choose to focus on image classification tasks rather
than text classification, since post-hoc explanations are conceptually better defined for images: each pixel is a feature, and
post-hoc explanations reveal which pixels in an image are most influential to a model’s prediction of that image’s class.
Text corpora are typically higher-dimensional and less standardized than images (which can readily be scaled to a fixed,
standardized dimension), meaning that explanations on text-datasets are especially sparse. Furthermore, flagship papers
on post-hoc explainability methods (Lundberg & Lee, 2017; Sundararajan et al., 2017; Shrikumar et al., 2017) typically
evaluate their explanation methods on image data. Such image classification tasks are commonly trained with convolutional
neutral network (CNN) foundation models; for example, He et al. (2015) famously introduced the state-of-the-art residual
network (“ResNet”) CNN architecture.

Separately, in the natural language processing domain, the Transformer architecture was proposed by Vaswani et al. (2017)
for machine translation. Since then, Transformer-based architectures have become state-of-the-art in many NLP tasks.
Transformers rely on a self-attention mechanism that is scalable, efficient, and captures both short-term and long-term
dependencies among text sequences. Compared with previously prevalent CNN and recurrent neural network approaches to
NLP tasks, Transformers have both higher performance and higher speed. Transformers are commonly pre-trained on large
text corpora and then fine-tuned on smaller, more specific tasks, making them a suitable foundation model.

Applying Transformers to image classification tasks naively would require that each pixel attend to each other pixel; this is
intractable. Dosovitskiy et al. (2020) propose the state-of-the-art solution in the vision transformer (ViT) architecture: the
ViT reshapes each original input image x ∈ RH×W×C into a sequence of flattened 2D patches xp ∈ RN×(P 2·C), where
(H ×W ) are the dimensions of the original image, C is the number of (color) channels, (P × P ) are the dimensions of
each image patch, and N = HW

P 2 is the number of patches. After each image is split into fixed-size patches, ViT linearly
embeds each image and adds positional embeddings to incorporate positional information (of the patches within each image).
The embedded vectors are then fed into ViT’s Transformer encoder, which is built with alternating layers of multiheaded
self-attention units and multilayer perception (MLP) units. Each MLP block contains two layers with a Gaussian Error
Linear Unit (GELU) activation function. The GELU function is a high-performing neural network activation function that
often yields a performance improvement upon the more vanilla ReLU activation function (Hendrycks & Gimpel, 2016). For
Z ∼ N (0, 1) a Standard Normal random variable, GELU is defined as

GELU(x) = xP (Z ≤ x).

Figure 3 visualizes GELU compared with other common neural network activation functions. Figure 4 provides an overview
of the vision transformer architecture.
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Figure 3. The GELU, ReLU, and ELU (Exponential Linear Unit) (Clevert et al., 2016) activation functions. The vision transformer
architecture uses GELU activations.

Figure 4. Overview of the vision transformer (ViT) model architecture. ViT splits an image into patches, embeds them (linearly and
positionally), and feeds the embeddings into a Transformer encoder.

In this work, we use vision transformers in our experiments because not only are vision transformers state-of-the-art
foundation models, but they perform better on fine-tuned downstream datasets than the ResNet foundation model.

C. Post-Hoc Feature Attribution Explanations
We study the following backpropagation-based feature attribution methods: Input ∗ Gradient (IXG), Saliency Maps (SL),
Integrated Gradients (IG), and (a gradient-based approximation to) SHAP (GS). We describe each of these methods, as well
as any desirable properties they exhibit (according to the pioneers of these methods).

C.1. Input ∗ Gradient (IXG)

We first introduce the Input * Gradient technique (Shrikumar et al., 2017). This attribution vector is relatively simple to
generate, computed by taking the partial derivatives of the output with respect to each input feature and multiplying them
with the input itself:

φi(x) = xi ·
∂fθ(x)

∂xi
.

C.2. Saliency Maps (SL)

Saliency maps are almost equivalent to taking vanilla gradients. The only difference is that this method computes the
absolute value of the gradient with respect to each input feature.

The interpretation of absolute value is that features with the highest absolute gradient need to be perturbed the least in

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

On the Privacy Risks of Post-Hoc Explanations of Foundation Models

order for the model’s predicted output to change the most. The ensuing limitation of saliency maps is that they do not
differentiate between features that contribute positively to prediction and features that contribute negatively. However, since
our explanation-based attack methods are based on scalar summaries of attribution vectors (e.g. variance and norms), this
limitation is not a direct concern.

C.3. Integrated Gradients (IG)

Integrated gradients (Sundararajan et al., 2017) similarly computes the partial derivatives of the output with respect to each
input feature. However, instead of only computing the gradient on the original input, IG computes the average gradient as
the input varies along a linear path from a baseline xBL to x (usually, xBL = 0). The mathematical definition of IG is

φIG(x)i = (xi − xBL,i) ·
∫ 1

α=0

∂fθ(x
α)

∂xα
i

dα

∣∣∣∣
xα=x+α(x−xBL)

.

Through an axiomatic approach, IG is designed to satisfy three desirable properties of attribution methods: sensitivity,
implementation invariance, and completeness. Implementation-wise, we can only approximate the integral by taking a
Riemann sum over a discrete number of gradients along the linear path from baseline to input.

Sensitivity Sensitivity means that given a point x ∈ X such that xi ̸= xBL,i and fθ(x) ̸= fθ(xBL), then φi(x) ̸= 0. In
words, sensitivity asserts that for every input and baseline that differ in one feature but have different predictions, then the
explanation method should give that feature a non-zero attribution.

Completeness Completeness means that
∑n

i=1 φi(x) = fθ(x) − fθ(xBL): the attributions sum up to the difference
between the output of fθ at the input x and the baseline xBL.

Implementation invariance Two models f1 and f2 are functionally equivalent if f1(x) = f2(x) for all inputs x. The
implementation invariance axiom asserts that explanations should be identical for functionally equivalent models.

C.4. SHapley Additive exPlanations (SHAP; Abbreviated as GS)

In the original SHAP paper, Lundberg & Lee (2017) assume an additive explanation model g: g is an interpretable
approximation of the original model fθ that is a linear combination of binary variables. The authors show that only
one possible additive explanation model g satisfies the three axiomatic properties of local accuracy, missingness, and
monotonicity (details of which are beyond the scope of this work). Further, the corresponding feature importance values ϕi

of model g coincide with Shapley values (Shapley, 1952) in cooperative game theory. The SHAP explanation framework is
based on the Shapley values of a conditional expectation function derived from fθ, the details of which are also beyond the
scope of this work. At a high level, SHAP values set φi to the change in the expected model prediction when conditioning
on feature i.

SHAP values are difficult to compute exactly, and in this work, we use a gradient-based approximation to SHAP values that
approximates the expectation of gradients * (inputs - baselines) (Kokhlikyan et al., 2020). The approximation works as
follows: we add Gaussian random noise to each input sample multiple times, select random points along the path between
the input x and a baseline xBL, and compute the gradient of outputs with respect to these points on the path. We use this
approximation and refer to it as “Gradient SHAP” with abbreviation “GS.”

D. L1-LRT/L2-LRT Intuition and Algorithm
Before we discuss intuition on constructing likelihood ratio test statistics based on explanation norms, we first discuss
intuition behind using gradient norms, since gradients are closely related to explanations.

Intuition: Attacks on Gradient Norms Broadly speaking, a model fθ is trained to approximately minimize the loss that
fθ incurs on training examples.

The gradient of the model loss with respect to model parameters reflects the magnitude and direction of the “step” that
gradient descent takes during model training. The following intuition assumes a convex loss function. As the training
process approaches a local minimum of the “loss landscape” (i.e. the structure of the loss function in the parameter space
that the model traverses step-wise during training), the model takes smaller and smaller steps in each subsequent iteration
of the gradient descent process, until it reaches convergence. A trained model is not as “well-fit” to non-members of the
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training set as it is to members. Hence, the model is more likely to take steeper and bigger gradient descent steps on unseen
test set examples than on train set examples. The L1 norm of the gradient directly encodes the steepness of the descent
step taken after a model “sees” an example. This intuition suggests that the gradient norms of training set members are on
average smaller than gradient norms of non-members. Although the cross-entropy loss function we use is not convex in
complex neural network settings, this intuition still motivates us to experiment with the gradient norm attack method.

Intuition: From Gradient Norms to Explanation Norms The backpropagation-based post-hoc explanation methods
that we work with involve computing gradients of fθ’s model output with respect to input features. These gradients are
not exactly the same as the gradients computed during training, which are gradients of the loss function with respect to
model parameters. However, we can still leverage the aforementioned intuition, since model parameter values directly
reflect—albeit in a non-linear manner—how input features contribute to model predictions. Furthermore, there is separate
intuition on the type of gradient computed in post-hoc explanations: this gradient represents the extent to which fθ’s
prediction changes if we were to perturb the input features. Since the training process pushes training set members further
away from the decision boundary compared to non-members (behavior we previously explained in Section 4), it follows that
perturbing the input features of an arbitrary training data point would scarcely change the model’s behavior on or prediction
for that point. Conceptually, this corresponds to a smaller gradient magnitude on training points—and magnitudes are
equivalent to L2 norms.

Algorithm 2 shows our explanation L1 norm-based LiRA algorithm (L1-LRT). The L2-LRT attack is almost identical but
instead based instead on L2 norms.

Algorithm 2 L1-LRT: Likelihood ratio attack on the L1 norms of post-hoc explanations. The adversary trains shadow
models on datasets with and without the target example, generates post-hoc explanations on each example in their dataset,
estimates parameters of the in- and out- distributions of sample variances of post-hoc explanations, and runs a likelihood
ratio test.
Require: model fθ, example (x, y) ∈ Rd, explanation vector φ(f, (x, y)) ∈ Rd, data distribution D,

number of shadow model iterations NS

1: normsin = {}
2: normsout = {}
3: for NS times do
4: Dattack ←$ D ▷ sample a shadow dataset
5: fin ← T (Dattack ∪ {(x, y)}) ▷ train IN model with (x, y) in training set
6: φin ← φ(fin, (x, y)) ▷ generate post-hoc explanation of fin’s behavior on (x, y)

7: normsin ← normsin ∪ {
∑d

i=1 |φin,i|} ▷ record L1 norm of φin

8: fout ← T (Dattack\{(x, y)}) ▷ train OUT model with (x, y) not in training set
9: φout ← φ(fout, (x, y)) ▷ generate post-hoc explanation of fout’s behavior on (x, y)

10: normsout ← normsout ∪ {
∑d

i=1 |φout,i|} ▷ record L1 norm of φout

11: end for
12: µ̂in ← mean(normsin)
13: µ̂out ← mean(normsout)
14: σ̂2

in ← var(normsin)
15: σ̂2

out ← var(normsout)
16: φobs ← φ(fθ, (x, y))

17: normobs =
∑d

i=1 |φobs,i| ▷ query target model

18: return Λ̂ =
p(normobs | N (µ̂in, σ̂

2
in))

p(normobs | N (µ̂out, σ̂2
out))

E. Experimental Setups and Implementation Details
E.1. Datasets

In this chapter, we discuss experimental setups and implementation details.

Across models and datasets, we sub-sample a smaller dataset of size 20000 for fine-tuning each shadow model and computing
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post-hoc explanations. In the membership inference attack literature, sub-sampling is commonplace. In our predecessor
work, Shokri et al. (2021) employ sub-sampling in many of their experiments on explanation-based membership inference
attacks, using sub-sample sizes of 5000, 10000, and 20000, among others. We generally use a 50%/50% train-test split
across all attack and shadow model training procedures, since our attack success evaluation metrics are most straightforward
to interpret when there is a balanced amount of training and test data given to the adversary; this is also the approach taken
by Shokri et al.

We present results for models fine-tuned on the following datasets designed for image classification. Each dataset consists of
color images in 3 color channels (red, green, and blue).

CIFAR-10 and CIFAR-100 CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) are well-known and widely used benchmark
datasets for image classification. They consist of 10 and 100 classes, respectively, with 6000 and 600 images per class,
respectively. The datasets are by default split into 50000 training images and 10000 test images, but for purposes of our
membership inference attacks, we use a 50%/50% train-test split.

Food 101 Food 101 (Bossard et al., 2014) is a dataset of 101 food categories with 101,000 images in total. For each class,
there are 750 training and 250 test images. According to Boassard et al., “on purpose, the training images were not cleaned,
and thus still contain some amount of noise. This comes mostly in the form of intense colors and sometimes wrong labels.”

Street View House Numbers (SVHN) The SVHN dataset (Netzer et al., 2011) contains satellite images of house numbers
in Google Street View. It is similar to MNIST (Khodabakhsh et al., 2019) in that images are of small cropped digits and that
there are 10 classes, but it is a larger dataset (73257 train and 26032 test images) and contains color images (whereas MNIST
images are black-and-white). SVHN’s increased complexity (compared to MNIST) makes it an appropriate downstream
task for pre-trained foundation models.

German Traffic Sign Recognition Benchmark (GTSRB) The GTSRB dataset (Stallkamp et al., 2012) features 43
classes of traffic signs split into 39209 training images and 12630 test images.

Each of our datasets is housed in Torchvision’s datasets module (Marcel & Rodriguez, 2010) (see CIFAR-10, CIFAR-100,
Food 101, SVHN, GTSRB).

E.2. Model Architectures and Training

We import and fine-tune pre-trained models from timm (standing for PyTorch Image Models) (Wightman, 2019), a deep
learning library that provides state-of-the-art computer vision models and helper utilities to work with them.

For each dataset, we experiment across the following model architectures. Each model has a patch size of 16, an input image
dimension of 224, and is pre-trained on some ordered sample (possibly with replacement) of ImageNet-22k, ImageNet-21k,
and ImageNet-1k.

• CIFAR-10: timm’s vit small patch16 224 (30.1 M parameters), vit relpos small patch16 224.sw in1k
(22.0 M parameters, with relative position embeddings), and vit relpos base patch16 224.sw in1k
(86.4 M parameters, with relative position embeddings). In the main body, we report the VAR-LRT attack on
vit relpos small patch16 224.sw in1k and the L1-LRT/L2-LRT attacks on vit small patch16 224.

• CIFAR-100: timm’s beit base patch16 224.in22k ft in22k in1k (86.5 M parameters) and
beitv2 base patch16 224.in1k ft in22k in1k (86.5 M parameters). For the main body, we report all
attacks on beit base patch16 224.in22k ft in22k in1k.

• Food 101, SVHN, and GTSRB: vit small patch16 224 and vit relpos small patch16 224.sw in1k.
For the main body, we report all attacks on vit small patch16 224.

E.3. Data Pre-Processing

We employ the following pre-processing methods for each image in each dataset:

1. We resize each input image to have dimension 3× 224× 224, where the first dimension corresponds to the three color
channels (Red, Green, Blue). The per-color channel dimension is 224 because that is the input dimension expected
from the model architectures we use.
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2. We apply the transformation torchvision.transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5,
0.5)). The first (0.5, 0.5, 0.5) corresponds to post-normalization mean of pixel values for each of the three
(RGB) color channels, and the second (0.5, 0.5, 0.5) corresponds to post-normalization standard deviation.
This operation centers the input image tensors around zero and scales them to a range of approximately −1 to 1.

E.4. Training Hyperparameters

Table 3 describes the chosen hyperparameter settings for each dataset, based on a combination of test accuracy (for model
usefulness) and MIA attack success. “Mini-batch size” describes the number of samples in each mini-batch during training;
the model is trained on each mini-batch separately. “Batch size” determines the sampling rate used in gradient descent.
Sampling rate = (batch size) / (length of training data), and this quantity describes the proportion of the training data used
for each parameter update step. This sampling rate is relevant to DP-SGD, where Gaussian noise is added to the gradients
computed from only a subset of the training data at each update step.

Dataset Batch Size Mini-Batch Size Learning Rate Epochs
CIFAR-10 1000 50 0.005 30

CIFAR-100 1000 50 0.005 9
Food 101 512 50 0.005 50

SVHN 512 50 0.005 50
GTSRB 512 50 0.005 50

Table 3. Training hyperparameters for each dataset.

E.5. Post-Hoc Explanation Parameters

We use Captum, a model interpretability and understanding library for PyTorch (Kokhlikyan et al., 2020), to compute
explanations in the form of attribution vectors. Captum supports all of the backpropagation-based methods we study (IXG,
SL, IG, and GS), among others. Throughout this work, if an ROC curve or table omits results of a few particular settings of
dataset and explanation type, that means it takes our computing resources too long to generate explanations of that type of
20000 data examples.

In Captum, each feature attribution method accepts a list of parameters. Each method requires as input the target
parameter, which specifies the output indices for which we want gradients to be computed. Captum’s documentation
(Kokhlikyan et al., 2020) states that “for classification cases, this is usually the target class.” We retain this default (target
= predicted class), with the intuition that the explanations should capture the features important to the model’s predictions
on the predicted class, not on any other class.

Integrated gradients (IG) has a baseline parameter (see Section C.3). We set this xBL quantity to the all-zero tensor,
which is the default value in the Captum library. IG also has an n steps parameter, which describes the number of
approximation steps used in integration. Captum sets the default n steps value to 50, but to speed up computation, we set
n steps = 25.

Gradient SHAP (GS) has a baseline parameter as well (see Section C.4), which we set to a tensor where each component
is distributed N (0, 0.0012). GS also has an n samples parameter used for the following, according to Captum’s
documentation: “[GS] adds white noise to each input sample n samples times, selects a random baseline from baselines’
distribution and a random point along the path between the baseline and the input, and computes the gradient of outputs
with respect to those selected random points.” Captum sets n samples to 5 by default, and we retain this setting.

E.6. Likelihood Ratio Attack Implementation

For each attack setting, we train N + 1 total models, where N is the total number of shadow models of each attack. We
perform N + 1 runs of each attack, each time treating a different model as the target model and treating the remaining N
models as shadow models. Each of the N + 1 models is trained on a randomly selected 10000 points out of the subsampled
dataset of size 20000, and the remaining 10000 points are used for testing. For each of the 20000 examples, we record
whether that example is in the training set or the test set of each model and save that information as a vector of 0’s and
1’s. The training set membership information of all N + 1 models is saved in a matrix of dimension 20000 × (N + 1).
For each example, we also record the variance, L1 norm, and L2 norm “scores” of each model’s post-hoc explanation of
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that example. The explanation scores of all examples on all N + 1 models are saved in three matrices, each of dimension
20000× (N + 1). Using the saved explanation scores (variances and L1/L2 norms) and training set membership statuses of
each example, we run likelihood ratio attacks.

We use N = 32, meaning that we train 32 shadow models per attack and perform 33 total runs of each attack setting.

F. Model Performance
In Table 4, we present train and test accuracies for non-privately fine-tuned models on all datasets. Different models
fine-tuned on the same datasets have similar test accuracies on these datasets. Overall, the models in our experiments are
usefully representative of models deployable to the real world, due to their high test accuracy.

CIFAR-10 Train Accuracy (%) Test Accuracy (%)
vit small patch26 224 100.000± 0.000 96.064± 0.613

vit relpos small patch16 224.sw in1k 99.938± 0.0797 95.404± 0.691
vit relpos base patch16 224.sw in1k 99.788± 0.202 95.508± 0.831

CIFAR-100 Train Accuracy (%) Test Accuracy (%)
beit base patch16 224.in22k ft in22k in1k 98.722± 0.321 80.109± 0.590

beitv2 base patch16 224.in12k ft in22k in1k 94.928± 0.748 81.902± 0.621

Food 101 Train Accuracy (%) Test Accuracy (%)
vit small patch26 224 99.761± 0.325 83.685± 3.878

vit relpos small patch16 224.sw in1k 99.630± 0.429 81.204± 3.139

SVHN Train Accuracy (%) Test Accuracy (%)
vit small patch26 224 99.552± 0.223 91.558± 1.056

vit relpos small patch16 224.sw in1k 99.580± 0.215 91.823± 1.177

GTSRB Train Accuracy (%) Test Accuracy (%)
vit small patch26 224 100.000± 0.000 99.899± 0.037

vit relpos small patch16 224.sw in1k 100.000± 0.000 99.912± 0.030

Table 4. Model performance. We report average train and test accuracies for all non-privately finetuned models on all datasets. The
“chosen” epoch counts are shown as bolded rows. The results are averaged over 33 evaluation runs and include ±1 standard deviation.

G. More VAR-LRT Results
Figure 5 shows VAR-LRT ROCs for CIFAR-10, CIFAR-100, and Food 101 under the following additional model architec-
tures not shown in the main body.

• CIFAR-10: vit small patch16 224, vit relpos base patch16 224.sw in1k

• CIFAR-100: beit base patch16 224.in22k ft in22k in1k

• Food 101: vit relpos small patch16 224.sw in1k

Figure 5. VAR-LRT log-scaled ROC curves for the CIFAR-10 (first and second from the left), CIFAR-100 (second from the right), and
Food 101 (right) datasets, on different model architectures than are presented in the main body.

In the main text, we presented VAR-LRT attack ROCs for the CIFAR-10, CIFAR-100, and Food 101 datasets but omitted
plots on the SVHN and GTSRB datasets. Figure 6 shows these omitted plots, using the vit small patch16 224
architecture. VAR-LRT also performs better than random guessing on these datasets, particularly at low FPR.
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Figure 6. VAR-LRT ROCs for the SVHN (left) and GTSRB (right) datasets, vit small patch16 224 model.

H. More L1-LRT/L2-LRT Results
In Figure 7, we present L1-LRT (top) and L2-LRT (bottom) results on the following datasets and architectures that were not
featured in the main body:

• CIFAR-10: vit relpos small patch16 224.sw in1k, vit relpos base patch16 224.sw in1k

• CIFAR-100: beit base patch16 224.in22k ft in22k in1k

• Food 101: vit relpos small patch16 224.sw in1k

(a) L1-LRT log-scaled ROC curves.

(b) L2-LRT log-scaled ROC curves.

Figure 7. L1-LRT and L2-LRT attack results for the CIFAR-10 (first and second from the left), CIFAR-100 (second from the right), and
Food 101 (right) datasets, on different model architectures than are presented in the main body.

In the main text, we presented L1-LRT and L2-LRT attack ROCs for the CIFAR-10, CIFAR-100, and Food 101 datasets
but omitted plots on the SVHN and GTSRB datasets. In Figure 8, we show these omitted plots, coming from the
vit small patch16 224 model.

We observe in the main text, as well as in this appendix, that L1-LRT attacks are more successful than L2-LRT attacks overall.
We hypothesize that this may be related to the gradient of the cross-entropy loss with respect to weights in the last hidden
layer of the underlying model. Let wji be the weight linking hidden unit value hj to the (pre-activation) output zi: this means
zi = hjwji + bj , where bj is a bias term. For feature vector x, let yi be the ith element of the ground-truth one-hot encoded
vector y ∈ {0, 1}k. Let ŷi = p(x)i represent the ith element of the model’s predicted probability distribution over the classes.

Beaujour (Beaujour, 2017) derives the gradient of cross-entropy loss with respect to weight wji :
∂L
∂wji

= hj(ŷi − yi).
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(a) SVHN, L1-LRT (left) and L2-LRT (right).

(b) GTSRB, L1-LRT (left) and L2-LRT (right).

Figure 8. L1-LRT and L2-LRT attack ROCs for the SVHN and GTSRB datasets, across all explanation types.

The gradient is linear in the distance between predicted and true class probabilities, so intuitively, gradient descent “travels
linearly” through this probability vector space. The gradient of the model output with respect to the input features is closely
related to the gradient of the model loss with respect to the final-layer weights, since model weights directly reflect how
input features map to model predictions.

We thus hypothesize that the L1 norm of the gradient of the model output with respect to input features, which is also
a “linear” distance metric, better reflects the linear behavior of gradient descent than does the L2 norm of the gradient.
However, this is but a hypothesis, and we encourage future exploration into this result.

I. Ablation Experiments
I.1. On the Computational Efficiency versus the Privacy Risk of Explanations

Our tables and figures present a salient observation that we have not yet verbalized: that across datasets, attacks on Input *
Gradient (IXG) and Saliency (SL) generally perform best, while attacks on Integrated Gradients (IG) and Gradient SHAP
(GS) tend to have lower success. This finding highlights a trade-off between the computational efficiency of an explanation
method and its susceptibility to privacy attack; according to Table 5, IXG and SL attributions are much faster to compute
than GS and IG explanations.

An attacker can more readily leverage explanation methods that are computationally efficient: our attacks require computing
a full set of feature attributions based on each shadow model, and this process is significantly easier if we use more efficient
explanation methods. Thus, this trade-off is itself a sign of privacy risk.

Explanation Type Time (200 Iters)
IXG 1:07
SL 1:07
GS 6:24
IG 13:12

Table 5. Comparing computational efficiency of explanation methods. Time (mm:ss) taken for each explanation method to generate
attributions for 200 CIFAR-10 examples.
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On the thread of comparing explanation methods with one another, one redeeming observation, however, is that because GS
and IG theoretically satisfy desirable axiomatic properties that SL and IXG do not, the observation that GS and IG are less
susceptible to privacy attack is auspicious from an axiomatic approach: the explanations with axiomatic properties are also
better defended against privacy risk. (Recall that Appendix C highlights these axiomatic properties.)

I.2. On the Impact of Overfitting and Underfitting

Figure 9 presents attack performance plots across different fine-tuning epoch counts on CIFAR-10 and CIFAR-100 data
using the vit small patch16 224 model. We experiment across the following epoch counts for the two datasets:

• CIFAR-10: 5, 10, 30 (30 is default)

• CIFAR-100: 5, 7, 9, 30, 50 (9 is default)

(a) CIFAR-10 Attacks.

(b) CIFAR-100 Attacks.

Figure 9. VAR-LRT on CIFAR-10 and CIFAR-100 data; multiple epoch settings. Each plot shows ROC curves of attacks for a single
dataset and explanation type, with each curve within each plot corresponding to a different epoch setting.

CIFAR-10 and Underfitting Figure 9 shows that even when the model is fine-tuned on CIFAR-10 for 10 epochs (well
below the “chosen” 30 epoch setting), VAR-LRT still performs successfully, at least compared with the thresholding attack,
not only on average (through improved AUC) but especially in the FPR=0.001 and FPR=0.01 regions. Although we cannot
make such strong statements about statistical significance for the 5 epochs setting, the ROC curves and reported AUC values
still show higher success for the VAR-LRT attack compared to the thresolding attack.

CIFAR-100 and Overfitting Figure 9 shows that even when the model is fine-tuned on CIFAR-100 for 30 or 50 epochs
(well above the “chosen” 9 epoch setting), the ROC curves and reported AUC values show higher success for the VAR-LRT
attack. Specifically, VAR-LRT captures significantly higher TPR than the thresholding attack when FPR is between 0.01 and
0.1. VAR-LRT shows improvement on average in other metrics (AUC, TPR FPR=0.001) as well, albeit without statistical
significance.

Hence, VAR-LRT’s performance exceeds that of the thresholding attack and is objectively successful even when the model
is overfit or underfit.

Overfitting and Training Data Leakage This figure also generally shows that the longer we fine-tune a model for (that
is, the more epochs undergoes fine-tuning), the more susceptible to privacy attack the ensuing explanations are; this result
holds across datasets and explanation methods. Intuitively, the more epochs the model is trained for, the more “familiar” the
model becomes on training points, and the further away the decision boundary moves from these points. Explanations, by
design, capture model behavior, and model behavior varies more between training and non-training examples as it becomes
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more “familiar” with training examples. Hence, it follows intuitively that training data explanations will indeed on average
differ more from non-training data explanations. This result more broadly reveals a downside to model overfitting beyond
the more commonly discussed implication that overfitting leads to low model generalizability on unseen data: overfitting
leads to increased data privacy risk, especially as we add transparency to models through explainability. Consequently, as
researchers investigate privacy risk defenses in model training, it is important and promising to consider approaches that
directly or indirectly avoid overfitting.

I.3. On the Impact of More Shadow Models

For this investigation, we fix the number of evaluation runs per attack setup to 20. Figure 10 shows the IXG L1-LRT
attack on CIFAR-10 and the vit small patch16 224 model over [32, 64, 128] shadow models. We observe that even
quadrupling the number of shadow models from 32 to 128 has no impact on attack performance. Several membership
inference attack works evaluate their results with more shadow models than the 32 and 16 used in this work. For example,
Carlini et al. (2021) frequently use 64 and 128 shadow models in their experiments, and Abascal et al. (2023) use 128
shadow models. We use fewer shadow models out of respect for compute resource limitations, and Figure 10 shows that we
do not sacrifice on attack performance in doing so.

Figure 10. Impact of changing the number of shadow models. We show log-scaled ROC curves for the IXG L1-LRT attack on
CIFAR-10 over [32, 64, 128] shadow models, using the vit small patch16 224 model. Each curve is taken across 20 evaluation
runs. We observe no difference in attack performance after changing shadow model count.
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