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ABSTRACT

Autonomous AI Agents powered by LLMs have shown remarkable abilities in
diverse domains. However, the training process typically require centralized col-
lection of large amounts of real-world user data, posing substantial privacy and
regulatory concerns. To this end, we explore a new decentralized training paradigm,
namely FEDAGENT (Federated Agent Reinforcement Learning), which enables
collaborative learning of AI agents across distributed clients without sharing local
data. Moreover, we construct the first decentralized agent learning environment
FEDAGENTGYM, which includes four types of LLM agents, two application
scenarios (WebShop and ALFWorld), three variations of decentralized settings, and
three newly defined heterogeneity challenges (Preference Heterogeneity, Coverage
Heterogeneity, and Hardness Heterogeneity), to systematically investigate its effec-
tiveness and impact factors. Extensive theoretical and empirical studies show that
FEDAGENT can have comparable performance to the centralized training paradigm
and exhibit strong robustness against heterogeneities, which shows the feasibility
of training AI agents without sacrificing data privacy. The code is available here.

1 INTRODUCTION

The rapid advancement of AI agents, especially those powered by Large Language Models (LLMs),
has demonstrated remarkable capabilities across diverse domains, from web navigation to embodied
environments (Zhang et al., 2025; Gao et al., 2025; Liu et al., 2025). However, training these agents
typically requires centralized access to vast amounts of users’ real-world task query and trajectory
data, which are inherently privacy-sensitive and hard to acquire due to regulatory compliance. Thus,
a foundational question is: how to train AI agents while protecting users’ data privacy?

In this paper, we explore a new decentralized training paradigm, namely FEDAGENT (Federated
Agent Reinforcement Learning), which enables collaborative learning of AI agents, particularly
LLMs, across distributed clients without sharing local data. In each round, the server distributes the
current model to selected clients, who then train locally on their own data and send back their updated
models. The server aggregates these updates by averaging them to create an improved global model
for the next round. This process repeats iteratively, facilitating distributed LLM agent training while
preserving data privacy since only model parameters, not raw data, are exchanged.

Compared with the previous federated learning literature, FEDAGENT is faced with fundamentally
new challenges. The majority of existing federated learning research has concentrated on supervised
classification tasks. There are also recent works that have explored federated reinforcement learning
(FRL) for traditional RL settings (Liu et al., 2024; Qi et al., 2021; Kairouz et al., 2021). However, both
of them operate under distinct assumptions compared to LLM agent learning. Supervised federated
learning is usually built on static data distributions and one-shot predictions, while traditional FRL
typically assumes simple rewards, well-defined state and action spaces. In contrast, LLM agent
learning involves diverse task formulations, multi-step natural language reasoning, and complex
environment interactions, which create entirely new challenges for federated paradigms.

To systematically investigate the effectiveness of this new training paradigm as well as the impact
factors, we built the first decentralized agent learning environment FEDAGENTGYM, which incor-
porate four types of LLM agents (Qwen2.5-{1.5,3,7}B-Instruct and Llama-3.2-3B-Instruct),
two applications (WebShop and ALFWorld), three variations of decentralized settings (samples per
client, clients selected per communication round, and local training epochs per client per round).

Importantly, since the existing heterogeneity challenges in federated learning have mostly been
defined in the context of supervised classification tasks (Ye et al., 2023; Gao et al., 2022), which
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Figure 1: An Illustration of FEDAGENT and FEDAGENTGYM.

focus on label skew, feature shift, or quantity imbalance, they are not directly applicable to LLM
agent learning. Thus, we propose three new and orthogonal definitions of client heterogeneity unique
to decentralized AI agent learning: Preference Heterogeneity, where clients may prefer distinct types
of tasks; Coverage Heterogeneity, where the task sampling scope may vary across clients; Hardness
Heterogeneity, where the overall difficulty of tasks may differ among clients. Moreover, we carefully
design three novel client partitioning strategies PREFERENCEPARTITION, COVERAGEPARTITION,
and HARDNESSPARTITION accordingly, grounded in mathematical techniques such as Gaussian
Noise, Multinomial Sampling and Beta Distribution. These strategies allow us to precisely control the
extent of one type of heterogeneity across clients with a single hyperparameter, while keeping the other
characteristics of the client distribution unchanged. We then incorporate them into FEDAGENTGYM
to isolate and analyze the impact of each form of heterogeneity on FEDAGENT separately.

To validate the effectiveness of FEDAGENT, we first conduct a theoretical analysis on its convergence.
Then, through extensive and systematic empirical studies with FEDAGENTGYM, we demonstrate that
FEDAGENT consistently outperforms local agent training and can achieve performance comparable
with centralized agent training, despite never sharing local data. Moreover, FEDAGENT exhibits
strong robustness to the aforementioned preference, coverage, and hardness heterogeneity challenges,
while revealing sensitivities to certain decentralized configurations. Overall, our studies show the
potential of scalable agent learning without sacrificing data privacy, provide valuable insights that
inform practical deployment, and open new research directions in the field of agent learning.

Our contributions can be summarized as follows:

• We explored a new decentralized paradigm of training AI agents, namely FEDAGENT (Federated
Agent Reinforcement Learning), which enables collaborative agent learning across distributed
clients without sharing local data. We also provide a theoretical analysis on its convergence.

• We propose to categorize the new client heterogeneity challenges in decentralized agent learning
into Preference Heterogeneity, Coverage Heterogeneity, and Hardness Heterogeneity. To investigate
how each type of heterogeneity affects the performance, we introduce three novel client partitioning
methods: PREFERENCEPARTITION, COVERAGEPARTITION, and HARDNESSPARTITION.

• We constructed the first decentralized agent learning environment FEDAGENTGYM, which in-
cludes four types of LLM agents, two applications (WebShop and ALFWorld), three variations of
decentralized settings, and three heterogeneity challenges, to analyze the performance of FEDA-
GENT systematically and controllably, and offer insights to guide future development.

• Extensive studies show that FEDAGENT not only beats the single-client local training paradigm but
also can achieve comparable performance to the centralized agent learning paradigm. Furthermore,
FEDAGENT shows high robustness against the three types of heterogeneity challenges. We also
provide insights on its sensitivity to different decentralized settings.

• We release our code and environment as an extendable open-source library to inspire more future
works in this new direction. The link to the repository is available here.
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Algorithm 1 FEDAGENT with Client and Server training

Require: Total clients K, rounds T , clients-per-round M , local steps τ , learning rate η
Ensure: Final LLM-based global policy parameters θfinal

1: Initialize global policy parameters θ0 (an LLM)
2: for t = 0 to T − 1 do
3: Server: sample client subset St ⊂ [K] with |St| = M (uniform without replacement)
4: Server: broadcast θt to all k ∈ St

5: for each k ∈ St in parallel do
6: Set local iterate θk,t,0 ← θt
7: for i = 0 to τ − 1 do
8: Collect a mini batch of trajectories Bk,t,i using policy πθk,t,i

in environmentMk

9: Estimate policy gradient for Jk(θk,t,i) on client k:

gk,t,i ← ∇θĴk(θk,t,i;Bk,t,i) (e.g., GRPO)

10: Local update: θk,t,i+1 ← θk,t,i + η gk,t,i
11: end for
12: Client returns local model θk,t,τ ▷ equivalently ∆θk,t = θk,t,τ − θt
13: end for
14: Server: Aggregation via model averaging:

θt+1 ←
1

M

∑
k∈St

θk,t,τ (equivalently θt+1=θt +
1
M

∑
k∈St

(θk,t,τ − θt))

15: end for
16: return θfinal ← θT

2 FEDAGENT: FEDERATED AGENT REINFORCEMENT LEARNING

As shown in Algorithm 1, we consider a federated reinforcement learning setup for FEDAGENT. A
population of clients are indexed by k ∈ [K] = {0, . . . ,K−1}. Training proceeds for communication
rounds t = 0, . . . , T − 1. At round t, the server samples a subset St ⊂ [K] of size |St| = M
uniformly without replacement, broadcasts the current global policy parameters θt, and aggregates
the participating clients’ locally updated parameters.

LLM Agent Training. The agent is a parametric policy πθ (an LLM) that, conditioned on a task
description c and an interaction history hu up to step u, produces an action au ∼ πθ(· | hu, c). An
action often contains both a sequence of free-form tokens (i.e., the agent’s intermediate reasoning)
and environment-facing choice (e.g., tool API calling). Each client k operates in a Markov Decision
Process (MDP) environmentMk = (Sk,Ak, Pk, rk, ρk, γ) with state space Sk, action space Ak,
transition kernel Pk, reward function rk, initial-state distribution ρk, and discount γ ∈ (0, 1]. Client k
also has a distribution Dk over textual task descriptions c ∈ Ck. Fix k and a task description c ∼ Dk.
The agent interacts withMk for horizon H , producing a trajectory:

χ = (c, s0, a0, r0, . . . , sH), s0 ∼ ρk(· | c), au ∼ πθ(· | hu, c), su+1 ∼ Pk(· | su, au, c).

The discounted return of χ is R(χ) =
∑H−1

u=0 γuru. It is worth noting that when the LLM agents
generate H consecutive textual actions (a0, ..., a(H−1)) in a trajectory χ, each action may span
thousands of tokens, considering LLM agents’ long reasoning capacity (DeepSeek-AI et al., 2025).
This makes token-level credit assignment across the trajectory particularly challenging.

Local objective (client k). Client k aims to maximize the expected episodic return of the policy on
its own environments and tasks:

Jk(θ) = Ec∼Dk
Eχ∼(πθ,Mk,c)

[
R(χ)

]
. (1)

During round t, each participating client initializes a local iterate at the broadcast model, θk,t,0 ← θt,
and performs τ steps of stochastic policy optimization. At local step i ∈ {0, . . . , τ − 1}, the
client collects a batch of trajectories Bk,t,i = {χ(b)}Nk,t,i

b=1 by interacting withMk under πθk,t,i
and

computes a policy-gradient estimate:
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gk,t,i = ∇θĴk(θk,t,i;Bk,t,i) =
1

Nk,t,i

Nk,t,i∑
b=1

H(χ(b))−1∑
u=0

∇θ log πθk,t,i

(
a(b)u | h(b)

u , c(b)
)
Â(b)

u , (2)

where Â
(b)
u is any valid return/advantage signal (e.g., a GRPO-style estimator (Shao et al., 2024)).

The local update is θk,t,i+1 = θk,t,i + η gk,t,i, (i = 0, . . . , τ − 1) with step size η > 0. After τ steps
the client returns its local model θk,t,τ (equivalently the update ∆θk,t = θk,t,τ − θt) to the server.

Global objective and aggregation. The federated learning goal is to maximize a weighted average
of client objectives:

Jglobal(θ) =

K−1∑
k=0

wk Jk(θ), wk ≥ 0,

K−1∑
k=0

wk = 1. (3)

In the FEDAGENT, the server uses uniform model averaging over the M participating clients each
round (i.e., wk = 1

K conceptually, with partial participation realized by St). Upon receiving the
τ -step local models {θk,t,τ}k∈St , the server performs model averaging: θt+1 = 1

M

∑
k∈St

θk,t,τ =

θt +
1
M

∑
k∈St

(
θk,t,τ − θt

)
. After T rounds the server outputs θfinal = θT .

3 FEDAGENTGYM: A DECENTRALIZED AGENT LEARNING ENVIRONMENT

3.1 LLM AGENTS AND APPLICATION DATASETS

FEDAGENTGYM is designed as an environment to investigate the impact factors of training AI
agents, especially LLM, in a decentralized way. It includes four types of LLM agents, including
Qwen2.5-{1.5,3,7}B-Instruct and Llama-3.2-3B-Instruct, and two challenging application
datasets (WebShop (Yao et al., 2022) and ALFWorld (Shridhar et al., 2020)), which require complex
reasoning process and multi-step environment interactions. We adopt these two datasets to simulate
the real-world scenarios where data privacy concerns are paramount.

WebShop is a web-based interactive platform that evaluates LLM agents within authentic e-commerce
scenarios. Task completion requires agents to navigate a simulated HTML shopping interface to
locate, browse, and purchase appropriate items. The dataset features an extensive catalog of over 1.1
million products paired with 12, 000 user instructions, creating a rich and varied action space.

ALFWorld provides an embodied simulation benchmark that evaluates LLM agents’ capacity for
sequential decision-making tasks. Each scenario presents the agent with a textual objective that must
be achieved through iterative environment interaction. The dataset encompasses 3, 827 task instances
spanning six types of household activities: Pick & Place (Pick), Examine in Light (Look), Clean &
Place (Clean), Heat & Place (Heat), Cool & Place (Cool), and Pick Two & Place (Pick2).

3.2 DECENTRALIZED SETTINGS

We comprehensively examine the impact of different decentralized settings on FEDAGENT perfor-
mance across three critical dimensions. First, we vary the number of samples per client, which
determines the sampling scope for each LLM agent’s exploration of the action space and response
generation, directly affecting both the diversity of experiences collected and the quality of policy
gradient estimates. Second, we change the number of clients selected per communication round,
controlling both the computational parallelism and the degree of heterogeneity in exploration strate-
gies incorporated during global model aggregation. Third, we adjust the number of local training
batches per client per round, governing the extent of local optimization on the sampled trajectories
before synchronization with the central server. These parameters collectively influence fundamental
trade-offs between exploration diversity, communication overhead, and convergence stability in the
federated setting. Through extensive studies across these dimensions, we characterize how different
decentralized training design choices affect the final policy performance of FEDAGENT.

3.3 HETEROGENEITY CHALLENGES

To systematically evaluate how FEDAGENT performs under realistic client distributions, we propose
three novel and orthogonal heterogeneity definitions, as conventional heterogeneity dimensions in
federated classification tasks (e.g., feature or label skew) (Ye et al., 2023; Gao et al., 2022) are not
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directly applicable. We also propose the corresponding client partitioning strategies, allowing us to
understand the individual impact of different heterogeneity types separately.

Preference Heterogeneity: When Clients Have Different Task Preferences. In real-world
federated learning, different clients often prefer distinct types of tasks. For example, in the ALFWorld,
some users might frequently interact with kitchen-related tasks (like “put the apple in the fridge”),
while others primarily encounter bedroom tasks (like “examine the lamp”). In WebShop, some may
have mostly electronics searches while others mainly focus on clothing or home goods.

To simulate this preference heterogeneity, we propose the PREFERENCEPARTITION algorithm. The
pseudo code is illustrated in Algorithm 2 in Appendix B.1. We model this by starting with the global
distribution of task categories and introducing controlled noise to create client-specific preferences.
Specifically, we add Gaussian Noise to the log-probabilities of the global category distribution,
apply softmax normalization, and use the resulting probabilities to sample L instructions per client
via Multinomial Sampling. This approach allows precise control over client distributions with a
hyperparameter ω on topical preference heterogeneity, while maintaining the same total dataset size
and per-client instruction count. More specifically, small noise values produce clients with similar
task distributions, while larger noise creates highly specialized clients with distinct preferences.

Coverage Heterogeneity: When Clients Have Different Task Sampling Scopes. Even when
clients encounter similar types of tasks, they may face vastly different quantities. A larger quantity of
tasks indicates coverage of a broader sampling scope per epoch in reinforcement learning (we follow
the setting in (Feng et al., 2025) to iteratively sample with replacement from the local data each
epoch), while the sampling size remains fixed. Importantly, this differs from the quantity imbalance
in conventional supervised federated classification tasks, where training proceeds over the entire
dataset each epoch. In WebShop, for instance, some users might have extensive browsing histories
with hundreds of product interactions, while others have only completed a few shopping sessions.

To model this coverage heterogeneity, we develop the COVERAGEPARTITION algorithm. The pseudo
code is shown in Algorithm 3. We fix a global overlap target r (representing the average number of
clients that see each instruction) and draw each client’s data quantity from a Beta Distribution, which
we then map to the range [Lmin, Lmax]. Task instructions are allocated to clients using weighted
sampling without replacement to satisfy both individual client quotas and the global overlap constraint.
This method isolates the effect of task sampling scope on FEDAGENT performance while keeping
the underlying task distribution consistent across clients. Also, this method controls the extent of
coverage heterogeneity via hyperparameter ξ without impacting the overall mean of client quantities.

Hardness Heterogeneity: When Clients Face Different Task Difficulties. A particularly im-
portant but often overlooked source of heterogeneity is the overall difficulty of tasks that different
clients encounter, which can be quantified by the success rate of tasks. For example, in ALFWorld,
some clients might consistently face simple navigation tasks with high success rates, while others
encounter complex multi-step reasoning tasks that frequently result in failure.

As demonstrated in Algorithm 4, our proposed HARDNESSPARTITION algorithm addresses this by
partitioning the task instruction pool into “successful” and “unsuccessful” examples with a pretrained
checkpoint. Then, using our COVERAGEPARTITION method, we first distribute successful instructions
according to a Beta Distribution that determines each client’s success rate. We then fill remaining
slots with unsuccessful examples sampled uniformly, ensuring all clients have exactly L instructions.
This method enables us to study how different success rate distributions, which are controlled by a
hyperparameter ξ′ and measures the extent of hardness of task distributions for each client, affect
FEDAGENT while maintaining consistent dataset sizes and global overlap patterns across all clients.

4 THEORETICAL ANALYSIS ON CONVERGENCE

Theorem 1 (Convergence of FEDAGENT). Under Assumptions 1–5, suppose that at each communi-
cation round t the server uniformly samples without replacement a subset St ⊂ [K] of size M ≤ K
and aggregates only those clients’ updates:θt+1 = θt +

1
M

∑
k∈St

∆θk,t, with the same local inner
loop and notation as in Algorithm 1. Let each selected client perform τ local steps with stepsize η.
Choose the stepsize η = 1

Lτ and let θ̃ be a uniform random iterate drawn from {θt}T−1
t=0 . Then

E
[
J(θ⋆)− J(θ̃)

]
≤ L

µT

(
J(θ⋆)−J(θ0)

)
+

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.
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In particular, the convergence rate remains O(1/T ). The “noise floor” comprises: (i) an O(1/M)
local stochastic term, (ii) an O

(
K−M

M(K−1)

)
heterogeneity term due to client sampling, and (iii) an

O
( (τ−1)2

τ2

)
local-drift term that vanishes when τ = 1.

Remark. Theorem 1 establishes that the FEDAGENT paradigm converges to a neighborhood of the
optimum under the PL and smoothness conditions. With stepsize η = 1/(Lτ) and T communication
rounds, the suboptimality decomposes into (i) a transient term that decays as O(1/T ) and (ii) a
time-invariant “noise floor”. The floor tightens with a larger M , vanishes in the full-participation and
single-step homogeneous limit (M = K, τ = 1, ζ2≈ 0), and otherwise quantifies the computation–
communication trade-off. The proof of Theorem 1 is in Appendix C. The key implications are:

1. Convergence rate (O(1/T )): The term L
µT (J(θ

∗)− J(θ0)) exhibits a linear-in-1/T convergence
rate with respect to the number of communication rounds. Better conditioning (smaller L/µ)
accelerates approach towards the asymptotic regime.

2. Effect of partial participation (O(1/M)): The variance term G2+σ2

M decays inversely with
the number of participating clients each round. Increasing M reduces stochastic noise in the
aggregated update. In the limit M=K, it matches the variance level under full participation.

3. Client sampling and heterogeneity (O
(

K−M
M(K−1)

)
): The middle term K−M

M(K−1) ζ
2 is induced by

client sampling each round without replacement under the heterogeneity assumption. It vanishes
when M =K and grows with smaller M and larger heterogeneity ζ2, implying the potential
benefits of a larger number of clients each round, stratified or clustered client sampling.

4. Local-drift from multiple local steps (O
( (τ−1)2

τ2

)
): Performing τ > 1 local steps introduces

a bias captured by (τ−1)2

2τ2 (G2 + σ2). This term is 0 at τ = 1 and approaches 1
2 (G

2 + σ2) as
τ →∞, quantifying the classic trade-off between fewer communications and increased drift.

5. Noise floor and tuning guidelines: The bracketed expression in Theorem 1 is a T -independent
error floor. Once the O(1/T ) term becomes negligible as the number of rounds grows, additional
rounds do not improve the bound unless one (a) increases M , (b) reduces heterogeneity (e.g., via
smarter client selection that lowers ζ2), or (c) decreases τ to curb local drift.

5 MAIN EXPERIMENTS

Experiment Setup. In this section, we aim to investigate the performance of FEDAGENT under
a uniform client distribution, which is independent of the aforementioned three types of client
heterogeneities. We partitioned the whole dataset (WebShop or ALFWorld) into 100 clients. Each
client has 100 task instructions and there is a potential overlap between clients. 2 clients are randomly
selected each round. Each client is trained for 3 epochs per round, with a total of 70 rounds and 210
epochs overall. For each epoch, 64 tasks are sampled iteratively with replacement from local data.

As for FEDAGENT, we adopt GRPO (Shao et al., 2024) for policy optimization. Then, following the
literature in federated learning (Liu et al., 2024), we select two typical baselines: Centralized Agent
Training and Local Agent Training. Centralized Agent Training uses the full dataset (i.e., 64 tasks
are sampled iteratively from the whole dataset each epoch), while Local Agent Training uses only a
specific client’s dataset (we selected client index 21, 42, or 84 as the baselines). Both of them run for
the same total epochs as FEDAGENT and also adopt GRPO for policy optimization.

Result Analysis. As shown in Table 1, FEDAGENT consistently outperforms Local Agent
Training and achieves comparable performance to Centralized Agent Training. For instance, on
ALFWorld using Qwen2.5-1.5B-Instruct, FEDAGENT achieves a 61.7% success rate compared to
local training variants that range from 47.7% to 57.0%, while nearly matching the centralized training
performance of 57.8%. This pattern is consistently observed across different model scales (1.5B, 3B,
7B), model architectures (qwen and llama), and client indexes (21, 42, and 84). Similarly, on the
WebShop benchmark, FEDAGENT maintains this advantage with Qwen2.5-7B-Instruct achieving
68.9% success rate versus local training with different indexes ranging from 33.6% to 49.2%, while
remaining competitive with centralized training at 64.7%. These results demonstrate the advantage of
FEDAGENT in achieving competitive performance while preserving users’ data privacy inherently.
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Method ALFWorld WebShop

Pick Look Clean Heat Cool Pick2 All Score Succ.
Qwen2.5-1.5B-Instruct
Local (Client 21) 42.9 25.0 38.5 37.5 14.3 14.3 29.7 69.9 57.0
Local (Client 42) 50.0 37.5 76.9 25.0 42.9 14.3 45.3 75.1 53.1
Local (Client 84) 50.0 37.5 46.2 25.0 28.6 0.0 34.4 72.7 47.7
Centralized 64.3±4.8 37.5±0.9 69.2±6.1 50.0±2.2 42.9±3.8 28.6±0.4 51.6±3.0 79.9±4.7 57.8±5.7

FEDAGENT 80.0±4.2 75.0±1.7 53.8±4.3 37.5±1.3 83.3±4.7 50.0±1.0 64.1±2.8 83.2±4.5 61.7±1.8

Qwen2.5-3B-Instruct
Local (Client 21) 41.5 12.5 34.9 51.0 18.9 21.2 31.3 59.8 55.0
Local (Client 42) 46.5 37.5 24.4 15.0 33.7 33.3 28.2 61.3 59.3
Local (Client 84) 22.8 27.5 39.1 46.3 48.3 36.5 29.9 77.6 58.6
Centralized 94.1±0.9 80.0±2.5 64.3±1.4 42.9±2.6 50.0±2.7 22.2±5.2 62.5±4.2 70.0±1.5 53.9±2.8

FEDAGENT 95.5±4.3 62.5±3.0 49.7±1.7 47.5±2.4 85.3±3.6 45.1±2.1 65.2±3.9 85.5±3.4 63.1±3.1

Qwen2.5-7B-Instruct
Local (Client 21) 35.5 25.0 61.0 25.9 35.8 45.2 38.4 70.9 49.2
Local (Client 42) 29.0 45.0 18.8 25.6 15.9 38.0 42.1 78.2 33.6
Local (Client 84) 34.7 47.5 44.4 51.3 40.1 21.8 35.7 60.6 39.3
Centralized 93.7±4.5 82.5±2.1 71.5±3.3 47.9±3.7 63.2±3.8 31.9±1.0 73.3±4.0 78.8±2.8 64.7±1.6

FEDAGENT 94.5±2.3 85.0±4.1 56.0±0.8 62.5±1.2 86.7±2.9 42.8±3.4 75.5±2.9 89.0±4.1 68.9±3.8

Llama-3.2-3B-Instruct
Local (Client 21) 39.8 50.0 17.9 40.0 20.7 34.0 38.1 65.3 50.5
Local (Client 42) 18.2 55.0 41.9 34.3 41.0 25.0 35.0 67.0 51.0
Local (Client 84) 29.9 32.5 39.0 18.9 18.8 37.6 29.7 70.2 55.7
Centralized 72.4±4.6 62.5±4.5 59.3±3.1 45.2±0.5 53.7±2.2 27.9±3.0 54.9±2.9 72.3±3.7 56.2±1.6

FEDAGENT 83.7±1.7 57.5±6.0 60.6±3.4 55.9±0.9 65.3±2.8 24.9±3.1 61.2±3.3 74.4±4.9 57.8±3.2

Table 1: Performance Comparison on ALFWorld and WebShop. We report the averaged perfor-
mance and the corresponding standard deviation for Centralized Training and FEDAGENT over three
random seeds. For ALFWorld, the Success Rate (%) is reported for each subtask as well as for the
overall dataset. For WebShop, both the Task Score (%) and the Success Rate (%) are reported.

(a) WebShop (b) ALFWorld
Figure 2: Training Dynamics of FEDAGENT and Centralized Training. Circle marks with different
colors indicate the model performance after training on specific selected clients each round. The red
line refers to the performance of the aggregated models on server throughout the training process.

Figure 2 shows the whole training dynamics of FEDAGENT and Centralized Agent Training with
Qwen2.5-1.5B-Instruct on WebShop and ALFWorld datasets. Both paradigms ultimately con-
verge to similar success rates despite different training dynamics (∼ 0.6 for WebShop, ∼ 0.5
for ALFWorld). In WebShop (left), both approaches demonstrate steady monotonic improvement,
with centralized training initially outperforming FEDAGENT until approximately epoch 120, after
which both converge to similar success rates around 0.6. In contrast, ALFWorld (right) exhibits
relatively more volatile training dynamics with frequent performance fluctuations for both methods,
ultimately converging to success rates around 0.5. This further illustrates that FEDAGENT can achieve
comparable performance with centralized training.

6 IMPACT OF DIFFERENT DECENTRALIZED SETTINGS

Experiment Setup. In this section, we aim to study the impact of different decentralized settings
on FEDAGENT in FEDAGENTGYM by systematically varying three key hyperparameters across two

7
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(a) Samples per client, WebShop (b) Samples per client, ALFWorld

(c) Clients selected per round, WebShop (d) Clients selected per round, ALFWorld

(e) Epochs per client per round, WebShop (f) Epochs per client per round, ALFWorld

Figure 3: Training Dynamics of FEDAGENT in Different Decentralized Settings.

different datasets (WebShop and ALFWorld). We adopt Qwen2.5-1.5B-Instruct for all configura-
tions. The experimental setup examines: (1) samples per client. We test 100, 500, and 1, 000 tasks
per client to understand how task sampling scope affects FEDAGENT learning dynamics; (2) clients
selected per round. We compare 1, 2, and 4 participating clients each round to analyze the effect of
federation scale on performance; and (3) epochs per client per round. We evaluate 1, 3, and 5 local
training epochs to determine the optimal number of local computations before aggregation. Since
we keep the total number of epochs the same at 210 for all configurations, 1, 3, and 5 local training
epochs correspond to 210, 70, and 42 total rounds, respectively.

Result Analysis. The results in Figure 3 demonstrate that FEDAGENT exhibits distinct sensitivity
patterns towards decentralized settings, depending on the specific hyperparameter and dataset.
First, it shows notable sensitivity to the number of epochs per client per round. Moving from 1 to 5
epochs per round leads to significant performance gains, especially after around 100 training epochs,
highlighting that shallow local updates are insufficient to unlock the full potential of FEDAGENT.
On ALFWorld, FEDAGENT is also sensitive to the number of clients selected per round, with 2
clients per round outperforming 1 or 4, suggesting that too few or too many clients could hinder
convergence. By contrast, FEDAGENT appears insensitive to the number of samples per client, as
performance curves largely overlap across 100, 500, and 1, 000 samples per round, suggesting that
the task sampling scope for one client beyond a certain threshold may not be the limiting factor.
Our studies offer valuable insights on the practical deployment of FEDAGENT and also suggest that
optimal federated agent learning configurations are environment-dependent.

7 IMPACT OF HETEROGENEITY CHALLENGES

Experiment Setup. In this section, we aim to study the impact of different heterogeneity challenges
on FEDAGENT in FEDAGENTGYM. As shown in Appendix B.2, we can leverage our proposed client
partitioning strategies PREFERENCEPARTITION, COVERAGEPARTITION, and HARDNESSPARTITION
to precisely control the extent of one form of heterogeneity (Preference, Coverage, or Hardness
Heterogeneity) across clients with a hyperparameter ω, ξ, or ξ′. We keep the number of total epochs
as 210 and the number of all clients as 100, which are consistent with the main experiments. We
adopt Qwen2.5-1.5B-Instruct in the experiments.

8
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(a) Preference Heterogeneity, WebShop (b) Preference Heterogeneity, ALFWorld

(c) Coverage Heterogeneity, WebShop (d) Coverage Heterogeneity, ALFWorld

(e) Hardness Heterogeneity, WebShop (f) Hardness Heterogeneity, ALFWorld

Figure 4: Training Dynamics of FEDAGENT in Different Heterogeneity Challenges.

Result Analysis. As shown in Figure 4, FEDAGENT shows high robustness against the three
heterogeneity challenges. Across all scenarios, preference heterogeneity (panels a,b), coverage
heterogeneity (panels c,d), and hardness heterogeneity (panels e,f), even when comparing low
heterogeneity settings (ω = 0.1, ξ = 256, ξ′ = 256) against high heterogeneity settings (ω = 0.9,
ξ = 1, ξ′ = 1), FEDAGENT consistently achieves strong success rates that steadily improve
throughout training, The learning curves show that FEDAGENT maintains stable convergence behavior
in both WebShop and ALFWorld environments regardless of heterogeneity intensity, with success
rates generally reaching 0.5-0.6 by the end of training. Crucially, the performance degradation
is minimal even under extreme heterogeneity conditions, indicating that FEDAGENT has great
potential to handle real-world scenarios across the full spectrum of heterogeneity challenges.

8 RELATED WORK

RL has been instrumental in empowering LLM agents to function effectively in dynamic and open-
ended environments. Initial studies leveraged traditional RL approaches like DQN (Mnih et al., 2015)
for training LLM agents in text-based gaming environments (Narasimhan et al., 2015). Subsequent re-
search began incorporating value-based techniques across broader agent applications such as Android
device manipulation (Rawles et al., 2023) and embodied environments like ALFWorld (Shridhar et al.,
2020). Contemporary methods have expanded RL training to encompass sophisticated web-based and
application-specific tasks (Zhou et al., 2024; Putta et al., 2024). In previous works, real-world task
queries and trajectories have been essential for training AI agents in practical applications. However,
they are becoming increasingly difficult to acquire due to privacy concerns. Our work makes an
initial effort to explore training AI agents without compromising user data privacy.

9 CONCLUSION

In this work, we explored FEDAGENT (Federated Agent Reinforcement Learning), a new collaborative
paradigm to train AI agent, particularly LLMs, across distributed clients, and built FEDAGENTGYM,
the first decentralized agent learning environment. Extensive theoretical and empirical studies
demonstrate that FEDAGENT can achieve performance on par with centralized training and maintain
strong robustness to heterogeneities. Our work validates the feasibility of training AI agents while
protecting user data privacy and charts new research directions in agent learning.

9
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ensuring all user data remains distributed across local clients throughout the training process.
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A LLM USAGE DISCLOSURE

We hereby disclose that Large Language Models (LLMs) are utilized solely for the purposes of
grammar correction and textual refinement.
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B MORE DETAILS OF HETEROGENEITY CHALLENGES

B.1 PSEUDO CODE FOR CLIENT PARTITIONING STRATEGIES

Algorithm 2 PREFERENCEPARTITION

Require: Category pools {Ic}Cc=1 with sizes nc; total clients K; per-client set size L; jitter ω
Ensure: Client datasets X1, . . . , XK with |Xk| = L

1: pc ← nc/
∑C

j=1 nj ; ℓc ← log pc

1−pc
▷ global mix + logit anchors

2: for k = 1 to K do
3: zc ∼ N (ℓc, ω

2) for c = 1 . . . C; qc ← exp(zc)/
∑

j exp(zj) ▷ larger ω⇒ higher variance
4: (a1, . . . , aC) ∼ Multinomial(L; q1, . . . , qC) ▷ category counts for client k
5: if any ac > nc then set ac ← min(ac, nc) and redistribute leftover by q to classes with spare

capacity ▷ capacity fix within a set
6: Xk ←

⋃C
c=1 SAMPLEWITHOUTREPLACEMENT(Ic, ac)

7: end for
8: return {Xk}Kk=1

Algorithm 3 COVERAGEPARTITION

Require: total items N (indexed 1:N ); total clients K; per-client bounds (Lmin, Lavg, Lmax) with
Lmin≤Lavg≤Lmax; dispersion ξ; desired average replicas per item r

Ensure: Client datasets X1, . . . , XK

1: T ← ⌊rN⌉ ▷ total assignments (sum of all |Xk|); keeps global overlap fixed
2: assert KLmin ≤ T ≤ KLmax ▷ feasibility under per-client bounds
3: µ← (Lavg − Lmin)/(Lmax − Lmin); α← µξ, β ← (1− µ)ξ ▷ Beta params with mean fixed

at Lavg
4: Sample xk ∼ Beta(α, β) for k = 1 . . .K ▷ larger ξ⇒ lower variance (sizes closer to Lavg)

5: uk ← Lmin + xk(Lmax − Lmin); uk ← uk ·
T∑
j uj

▷ shape then renormalize to sum T

6: nk ← ROUNDTOSUM(u, T, [Lmin, Lmax]) ▷ largest remainder with clipping to [Lmin, Lmax]
7: m← ⌊r⌋, M ← ⌈r⌉, H ← T −mN
8: Set qi ←M for any H items; qi ← m otherwise
9: Initialize Xk ← ∅, remk ← nk for all k

10: for i = 1 to N do ▷ weighted, no-replacement placement across clients
11: A ← {k : remk > 0}; choose qi distinct k ∈ A with Pr(k) ∝ remk

12: Add item i to each chosen Xk and decrement the corresponding remk

13: end for
14: return {Xk}Kk=1

Algorithm 4 HARDNESSPARTITION

Require: total items N (indexed 1:N ); disjoint index sets S (successful) and U (unsuccessful) with
S ∪ U = {1:N}; total clients K; per-client set size L; Hyperparameters for COVERAGEPARTI-
TION: bounds (ℓ, c, h) with h ≤ L, dispersion ξ′, overlap r

Ensure: client datasets X1, . . . , XK with |Xk| = L
1: {Yk}Kk=1 ← COVERAGEPARTITION

(
|S|,K, (ℓ, c, h), ξ′, r

)
▷ larger ξ′⇒ lower variance

2: for k = 1 to K do
3: mk ← L− |Yk|; Fk ← SAMPLEWITHOUTREPLACEMENT(U ,mk)
4: Xk ← Yk ∪ Fk

5: end for
6: return {Xk}Kk=1
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B.2 CLIENT DISTRIBUTIONS UNDER PARTITIONING STRATEGIES

B.2.1 PREFERENCE HETEROGENEITY
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Figure 5: Client Distribution under Preference Heterogeneity (WebShop, ω = 0.1).
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Figure 6: Client Distribution under Preference Heterogeneity (WebShop, ω = 0.9).
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Figure 7: Client Distribution under Preference Heterogeneity (ALFWorld, ω = 0.1).
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Figure 8: Client Distribution under Preference Heterogeneity (ALFWorld, ω = 0.9).
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B.2.2 COVERAGE HETEROGENEITY
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Figure 9: Client Distribution under Coverage Heterogeneity (WebShop, ξ = 1).
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Figure 10: Client Distribution under Coverage Heterogeneity (WebShop, ξ = 256).
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Figure 11: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ = 1).
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Figure 12: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ = 256).
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B.2.3 HARDNESS HETEROGENEITY
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Figure 13: Client Distribution under Coverage Heterogeneity (WebShop, ξ′ = 1).
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Figure 14: Client Distribution under Coverage Heterogeneity (WebShop, ξ′ = 256).
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Figure 15: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ′ = 1).
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Figure 16: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ′ = 256).
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C PROOF OF THE CONVERGENCE

Assumption 1 (L-smooth gradients). For all θ, θ′ ∈ Rd and k ∈ [K], the client objectives have
L-Lipschitz gradients:

∥∇Jk(θ)−∇Jk(θ′)∥ ≤ L∥θ − θ′∥.
Assumption 2 (G-bounded gradients). For all θ ∈ Rd and k ∈ [K], the full gradients are bounded:

∥∇Jk(θ)∥ ≤ G.

Assumption 3 (σ-bounded variance). For all θ ∈ Rd and k ∈ [K], the stochastic gradient estimator
has bounded variance:

E
[
∥∇Jk(θ;B)−∇Jk(θ)∥2

]
≤ σ2,

where∇Jk(θ;B) denotes the mini-batch gradient.

Assumption 4 (Polyak–Łojasiewicz (PL) condition). The global objective satisfies, for some µ > 0
and θ⋆ = argmaxθ J(θ),

2µ
(
J(θ⋆)− J(θ)

)
≤ ∥∇J(θ)∥2, ∀ θ ∈ Rd.

Assumption 5 (Bounded client heterogeneity). There exists ζ2 such that for all θ,

1

K

K−1∑
k=0

∥∥∇Jk(θ)−∇J(θ)∥∥2 ≤ ζ2, where∇J(θ) = 1

K

K−1∑
k=0

∇Jk(θ).

Remark. Assumptions 1-3 are standard in stochastic optimization literature. As for Assumption 4
(the PL condition), in practice, policy-gradient methods that constrain update size, such as trust-region
approaches or proximal policy methods, yield smoother policy updates, making the PL assumption
more tenable. Recent works have likewise employed PL-type conditions to obtain convergence
guarantees for non-convex reinforcement learning objectives (Bhandari & Russo, 2024; Karimi et al.,
2016; Yuan et al., 2022), supporting our adoption of this assumption. Assumption 5 is a common
“bounded heterogeneity” condition used to control client drift in federated learning analyses (Li et al.,
2020; Karimireddy et al., 2020; Stich, 2018; Khaled et al., 2020; Woodworth et al., 2020).

Theorem 1 (Convergence of FEDAGENT). Under Assumptions 1–5, suppose that at each communi-
cation round t the server uniformly samples without replacement a subset St ⊂ [K] of size M ≤ K
and aggregates only those clients’ updates: θt+1 = θt +

1
M

∑
k∈St

∆θk,t, with the same local inner
loop and notation as in alg:fedagent. Let each selected client perform τ local steps with stepsize η.
Choose the stepsize η = 1

Lτ and let θ̃ be a uniform random iterate drawn from {θt}T−1
t=0 . Then

E
[
J(θ⋆)− J(θ̃)

]
≤ L

µT

(
J(θ⋆)−J(θ0)

)
+

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.

In particular, the convergence rate remains O(1/T ). The “noise floor” comprises: (i) an O(1/M)
local stochastic term, (ii) an O

(
K−M

M(K−1)

)
heterogeneity term due to client sampling, and (iii) an

O
( (τ−1)2

τ2

)
local-drift term that vanishes when τ = 1.

C.1 PROOF SKETCH

Proof sketch. Our proof generally follows the proof of Theorem 4.1 in (Fan et al., 2025), with key
modifications on second-moment bound for the aggregated update and local-drift term.

Let uk,t :=
∑τ−1

i=0 gk,t,i be client k’s aggregate local stochastic gradients in round t, and ḡk,t :=
1
τ

∑τ−1
i=0 gk,t,i. Define the round-average ḡt :=

1
M

∑
k∈St

ḡk,t, so the server update is ∆t = θt+1 −
θt = ητ ḡt.

(1) One-step descent. By L-smoothness of J ,

E[J(θt+1) | θt] ≥ J(θt) + ητ
(
1− Lητ

2

)
∥∇J(θt)∥2 −

L

2
η2τ2 E∥ḡt −∇J(θt)∥2 (4)
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(2) Variance–bias decomposition with Finite-Population Correction (FPC). Decompose

ḡt −∇J(θt) =
(

1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
)

︸ ︷︷ ︸
client sampling

+ 1
M

∑
k∈St

(
ḡk,t − Eḡk,t

)
︸ ︷︷ ︸

local stochastic noise

+ 1
M

∑
k∈St

bk,t︸ ︷︷ ︸
local drift

,

where bk,t := E[ḡk,t | θt]−∇Jk(θt). The three terms are bounded as follows:

E
∥∥∥ 1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
∥∥∥2 =

(K −M)

M(K − 1)
· 1
K

K∑
k=1

∥∥∇Jk(θt)−∇J(θt)∥∥2
≤ 2(K −M)

M(K − 1)
ζ2, (FPC)

E
∥∥∥ 1
M

∑
k∈St

(
ḡk,t − Eḡk,t

)∥∥∥2 ≤ G2 + σ2

M
, (local noise)

bk,t =
1

τ

τ−1∑
i=0

(
∇Jk(θk,i)−∇Jk(θt)

)
, E∥bk,t∥2 ≤

L2η2(τ − 1)2

2
(G2 + σ2),

⇒ E
∥∥∥ 1
M

∑
k∈St

bk,t

∥∥∥2 ≤ L2η2(τ − 1)2

2
(G2 + σ2). (local drift)

Combining,

E
∥∥ḡt −∇J(θt)∥∥2 ≤ G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

L2η2(τ − 1)2

2
(G2 + σ2). (5)

(3) PL and averaging. Let δt := E[J(θ⋆)− J(θt)]. Applying the PL condition ∥∇J(θt)∥2 ≥
2µ δt in Equation (4) yields the linear recursion

δt+1 ≤
(
1−2µητ

(
1− Lητ

2

))
δt +

L

2
η2τ2

(G2 + σ2

M
+
2(K −M)

M(K − 1)
ζ2+

L2η2(τ − 1)2

2
(G2+σ2)

)
,

where, in forming Equation (5), we control the sampling-drift mixed term via Young’s inequality
2⟨X,Y ⟩ ≤ ∥X∥2+∥Y ∥2 (thus inflating the sampling and drift pieces by a factor of 2). With η = 1

Lτ

the contraction becomes 1−µ/L, and the drift contribution simplifies to (τ−1)2

2τ2 (G2+σ2). Unrolling
the recursion and averaging the gaps gives

1

T

T−1∑
t=0

δt ≤
L

µT
δ0 +

1

2µ

(G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

)
.

Finally, let θ̃ be drawn uniformly at random from {θt}T−1
t=0 ; then E

[
J(θ⋆)− J(θ̃)

]
= 1

T

∑T−1
t=0 δt,

which yields the stated bound.

C.2 A MORE DETAILED PROOF

Proof. We give a more detailed proof as follows. Our proof generally follows the proof of Theorem 4.1
in (Fan et al., 2025). Throughout, write Et[·] := E[· | θt]. Let each selected client k ∈ St perform τ
local stochastic policy-gradient steps with per-step gradients gk,t,i, i = 0, . . . , τ − 1,

θk,t,0 = θt, θk,t,i+1 = θk,t,i+η gk,t,i, E[ gk,t,i | θk,t,i ] = ∇Jk(θk,t,i), E∥gk,t,i∥2 ≤ G2+σ2.

Define the client’s round aggregates uk,t :=
∑τ−1

i=0 gk,t,i and ḡk,t :=
1
τ uk,t, and the server’s round

average

ḡt :=
1

M

∑
k∈St

ḡk,t, ∆t := θt+1 − θt = ητ ḡt.

We analyze J(θt+1) by Assumption 1 L-smoothness of J :

J(θt+1) ≥ J(θt) +
〈
∇J(θt),∆t

〉
− L

2
∥∆t∥2 (6)
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A. One-step progress. Let g⋆t := ∇J(θt) and et := ḡt − g⋆t . With η = 1
Lτ we have ∆t =

1
L ( g

⋆
t + et ) and thus

⟨g⋆t ,∆t⟩ −
L

2
∥∆t∥2 =

1

L

(
∥g⋆t ∥2 + ⟨g⋆t , et⟩

)
− 1

2L
∥g⋆t + et∥2

=
1

L

(
∥g⋆t ∥2 + ⟨g⋆t , et⟩

)
− 1

2L

(
∥g⋆t ∥2 + 2⟨g⋆t , et⟩+ ∥et∥2

)
=

1

2L
∥g⋆t ∥2 −

1

2L
∥et∥2. (7)

Plugging equation 7 into equation 6 and taking Et[·],

Et[J(θt+1)] ≥ J(θt) +
1

2L
∥g⋆t ∥2 −

1

2L
Et∥et∥2 (8)

Thus the entire task reduces to bounding Et∥et∥2.

B. Variance–bias decomposition of Et∥et∥2. We decompose et into three parts:

et =
(

1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
)

︸ ︷︷ ︸
client sampling

+ 1
M

∑
k∈St

(
ḡk,t − Etḡk,t

)
︸ ︷︷ ︸

local stochastic noise

+ 1
M

∑
k∈St

bk,t︸ ︷︷ ︸
local drift

,where bk,t := Et[ḡk,t]−∇Jk(θt).

(9)
We now bound the mean-squared norm of each contribution. (All bounds hold component-wise and
hence for the Euclidean norm.)

Lemma 1 (FPC: client-sampling variance). Let x1, . . . , xK ∈ Rd, x̄ = 1
K

∑
k xk, and S be a

uniform size-M sample without replacement with |S| = M where 1 ≤M ≤ K. Then

E
∥∥∥ 1

M

∑
k∈S

xk − x̄
∥∥∥2 =

K −M

M(K − 1)
· 1
K

K−1∑
k=0

∥xk − x̄∥2.

Proof. Let Σ := 1
K

∑K−1
k=0 (xk − x̄)(xk − x̄)⊤. This is the standard finite-population correc-

tion (Cochran, 1977): Cov
(

1
M

∑
k∈S xk

)
= K−M

M(K−1) Σ. Taking trace on both sides yields the
claim since E∥Z − EZ∥2 = trCov(Z).

Applying Lemma 1 with xk = ∇Jk(θt) and using∇J(θt) = 1
K

∑K−1
k=0 ∇Jk(θt), we obtain

Et

∥∥∥ 1

M

∑
k∈St

∇Jk(θt)−∇J(θt)
∥∥∥2 ≤ K −M

M(K − 1)
ζ2. (10)

Lemma 2 (Local stochastic noise). With the standing bounded-second-moment assumption, for
each client k and round t, Et∥ḡk,t − Etḡk,t∥2 ≤ G2 + σ2. Moreover, conditioned on θt and St, the
per-client noises are independent across k ∈ St. Consequently,

Et

∥∥∥ 1

M

∑
k∈St

(
ḡk,t − Etḡk,t

)∥∥∥2 ≤ G2 + σ2

M
. (11)

Proof. Since ḡk,t = 1
τ

∑τ−1
i=0 gk,t,i and E∥gk,t,i∥2 ≤ G2+σ2, we have Et∥ḡk,t∥2 ≤ G2+σ2, hence

Et∥ḡk,t − Etḡk,t∥2 ≤ Et∥ḡk,t∥2 ≤ G2 + σ2. Independence across clients (conditional on θt, St)
implies that variances add, yielding equation 11.

Lemma 3 (Local drift/bias bound). Let

bk,t := Et[ḡk,t]−∇Jk(θt), ḡk,t =
1

τ

τ−1∑
i=0

gk,t,i,
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where the local iterates satisfy θk,t,0 = θt, θk,t,i+1 = θk,t,i+ η gk,t,i, E[gk,t,i | θk,t,i] = ∇Jk(θk,t,i),
and E∥gk,t,i∥2 ≤ G2 + σ2. If Jk is L-smooth, then

Et∥bk,t∥2 ≤
L2η2(τ − 1)2

4
(G2 + σ2). (12)

Moreover, for any sampled set St of size M ,

Et

∥∥∥ 1

M

∑
k∈St

bk,t

∥∥∥2 ≤ 1

M

∑
k∈St

Et∥bk,t∥2 ≤
L2η2(τ − 1)2

4
(G2 + σ2). (13)

Proof. By definition and L-smoothness of Jk,

bk,t =
1

τ

τ−1∑
i=0

(
∇Jk(θk,t,i)−∇Jk(θt)

)
=

1

τ

τ−1∑
i=1

Hk,t,i (θk,t,i − θt),

where each Hk,t,i is a (mean-value) linear map with operator norm ∥Hk,t,i∥ ≤ L. Using the local
recursion θk,t,i − θt = η

∑i−1
j=0 gk,t,j and swapping sums gives

bk,t =
η

τ

τ−2∑
j=0

( τ−1∑
i=j+1

Hk,t,i

)
gk,t,j =:

η

τ

τ−2∑
j=0

Ak,t,j gk,t,j ,

with Ak,t,j :=
∑τ−1

i=j+1 Hk,t,i and hence ∥Ak,t,j∥ ≤
∑τ−1

i=j+1 ∥Hk,t,i∥ ≤ L(τ − 1− j).

Applying the weighted Cauchy-Schwarz inequality,∥∥∥∑
j

Ak,t,jgk,t,j

∥∥∥2 ≤ (∑
j

∥Ak,t,j∥
)(∑

j

∥Ak,t,jgk,t,j∥2

∥Ak,t,j∥

)
≤

(∑
j

∥Ak,t,j∥
)(∑

j

∥Ak,t,j∥ ∥gk,t,j∥2
)
,

and taking Et together with E∥gk,t,j∥2 ≤ G2 + σ2 yields

Et∥bk,t∥2 ≤
η2

τ2

( τ−2∑
j=0

∥Ak,t,j∥
)2

(G2 + σ2) ≤ η2

τ2

(
L

τ−2∑
j=0

(τ − 1− j)
)2

(G2 + σ2).

Since
∑τ−2

j=0 (τ − 1− j) =
∑τ−1

m=1 m = τ(τ−1)
2 , we obtain

Et∥bk,t∥2 ≤ L2η2
(τ − 1)2

4
(G2 + σ2),

which is equation 12. For the client average, convexity of the squared norm (or Jensen) gives

Et

∥∥∥ 1

M

∑
k∈St

bk,t

∥∥∥2 ≤ 1

M

∑
k∈St

Et∥bk,t∥2,

and the second inequality in equation 13 follows by applying equation 12 to each k ∈ St.

With Lemma 3 in place, combining equation 10, equation 11, equation 13, equation 9, and Young’s
inequality 2⟨X,Y ⟩ ≤ ∥X∥2 + ∥Y ∥2 gives the (assumption-free) second-moment control

Et∥et∥2 ≤
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

L2η2(τ − 1)2

2
(G2 + σ2). (14)

C. Closing the one-step inequality. Insert equation 14 into equation 8 and use η = 1
Lτ to get

Et[J(θt+1)] ≥ J(θt) +
1

2L
∥∇J(θt)∥2 −

1

2L

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
(15)
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D. PL inequality, recursion, and averaging. Let δt := E
[
J(θ⋆)− J(θt)

]
. By the PL condition,

∥∇J(θt)∥2 ≥ 2µ δt. Taking total expectation of equation 15 and using η = 1
Lτ together with the

variance-bias bound that includes the mixed-term control (i.e., 2⟨S,D⟩ ≤ ∥S∥2 + ∥D∥2), we obtain

δt+1 ≤
(
1− µ

L

)
δt +

1

2L

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
. (16)

Summing equation 16 over t = 0, . . . , T − 1 and dividing by T , and noting that
∑T−1

t=0 (δt+1− δt) =
δT − δ0 ≤ δ0, yields

1

T

T−1∑
t=0

δt ≤
L

µT
δ0 +

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.

Finally, let θ̃ be drawn uniformly from {θt}T−1
t=0 . Then E[J(θ⋆)− J(θ̃)] = 1

T

∑T−1
t=0 δt, which gives

the claimed bound.
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