
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEDERATED AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous AI Agents powered by LLMs have shown remarkable abilities in
diverse domains. However, the training process typically require centralized col-
lection of large amounts of real-world user data, posing substantial privacy and
regulatory concerns. To this end, we explore a new decentralized training paradigm,
namely FEDAGENT (Federated Agent Reinforcement Learning), which enables
collaborative learning of AI agents across distributed clients without sharing local
data. Moreover, we construct the first decentralized agent learning environment
FEDAGENTGYM, which includes four types of LLM agents, two application
scenarios (WebShop and ALFWorld), three variations of decentralized settings, and
three newly defined heterogeneity challenges (Preference Heterogeneity, Coverage
Heterogeneity, and Hardness Heterogeneity), to systematically investigate its effec-
tiveness and impact factors. Extensive theoretical and empirical studies show that
FEDAGENT can have comparable performance to the centralized training paradigm
and exhibit strong robustness against heterogeneities, which shows the feasibility
of training AI agents without sacrificing data privacy. The code is available here.

1 INTRODUCTION

The rapid advancement of AI agents, especially those powered by Large Language Models (LLMs),
has demonstrated remarkable capabilities across diverse domains, from web navigation to embodied
environments (Zhang et al., 2025; Gao et al., 2025; Liu et al., 2025). However, training these agents
typically requires centralized access to vast amounts of users’ real-world task query and trajectory
data, which are inherently privacy-sensitive and hard to acquire due to regulatory compliance. Thus,
a foundational question is: how to train AI agents while protecting users’ data privacy?

In this paper, we explore a new decentralized training paradigm, namely FEDAGENT (Federated
Agent Reinforcement Learning), which enables collaborative learning of AI agents, particularly
LLMs, across distributed clients without sharing local data. In each round, the server distributes the
current model to selected clients, who then train locally on their own data and send back their updated
models. The server aggregates these updates by averaging them to create an improved global model
for the next round. This process repeats iteratively, facilitating distributed LLM agent training while
preserving data privacy since only model parameters, not raw data, are exchanged.

Compared with the previous federated learning literature, FEDAGENT is faced with fundamentally
new challenges. The majority of existing federated learning research has concentrated on supervised
classification tasks. There are also recent works that have explored federated reinforcement learning
(FRL) for traditional RL settings (Liu et al., 2024; Qi et al., 2021; Kairouz et al., 2021). However, both
of them operate under distinct assumptions compared to LLM agent learning. Supervised federated
learning is usually built on static data distributions and one-shot predictions, while traditional FRL
typically assumes simple rewards, well-defined state and action spaces. In contrast, LLM agent
learning involves diverse task formulations, multi-step natural language reasoning, and complex
environment interactions, which create entirely new challenges for federated paradigms.

To systematically investigate the effectiveness of this new training paradigm as well as the impact
factors, we built the first decentralized agent learning environment FEDAGENTGYM, which incor-
porate four types of LLM agents (Qwen2.5-{1.5,3,7}B-Instruct and Llama-3.2-3B-Instruct),
two applications (WebShop and ALFWorld), three variations of decentralized settings (samples per
client, clients selected per communication round, and local training epochs per client per round).

Importantly, since the existing heterogeneity challenges in federated learning have mostly been
defined in the context of supervised classification tasks (Ye et al., 2023; Gao et al., 2022), which

1

https://anonymous.4open.science/r/federated_agent_submission-4652/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"

Env

𝑠"#$

Client 𝑘

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

Client 1

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

Client 0

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

Client 𝒌

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

FedAgent FedAgentGym

Application Datasets:

LLM Agents: qwen2.5-1.5b/-3b/-7b, llama3.2-3b

WebShop ALFWorld

Decentralized Settings: samples per client,
clients selected per round, epochs per client per round

Client Heterogeneity: Preference Heterogeneity,
Coverage Heterogeneity, Hardness Heterogeneity

Client 𝟏

Client 𝟎

…

…

…

Server

Figure 1: An Illustration of FEDAGENT and FEDAGENTGYM.

focus on label skew, feature shift, or quantity imbalance, they are not directly applicable to LLM
agent learning. Thus, we propose three new and orthogonal definitions of client heterogeneity unique
to decentralized AI agent learning: Preference Heterogeneity, where clients may prefer distinct types
of tasks; Coverage Heterogeneity, where the task sampling scope may vary across clients; Hardness
Heterogeneity, where the overall difficulty of tasks may differ among clients. Moreover, we carefully
design three novel client partitioning strategies PREFERENCEPARTITION, COVERAGEPARTITION,
and HARDNESSPARTITION accordingly, grounded in mathematical techniques such as Gaussian
Noise, Multinomial Sampling and Beta Distribution. These strategies allow us to precisely control the
extent of one type of heterogeneity across clients with a single hyperparameter, while keeping the other
characteristics of the client distribution unchanged. We then incorporate them into FEDAGENTGYM
to isolate and analyze the impact of each form of heterogeneity on FEDAGENT separately.

To validate the effectiveness of FEDAGENT, we first conduct a theoretical analysis on its convergence.
Then, through extensive and systematic empirical studies with FEDAGENTGYM, we demonstrate that
FEDAGENT consistently outperforms local agent training and can achieve performance comparable
with centralized agent training, despite never sharing local data. Moreover, FEDAGENT exhibits
strong robustness to the aforementioned preference, coverage, and hardness heterogeneity challenges,
while revealing sensitivities to certain decentralized configurations. Overall, our studies show the
potential of scalable agent learning without sacrificing data privacy, provide valuable insights that
inform practical deployment, and open new research directions in the field of agent learning.

Our contributions can be summarized as follows:

• We explored a new decentralized paradigm of training AI agents, namely FEDAGENT (Federated
Agent Reinforcement Learning), which enables collaborative agent learning across distributed
clients without sharing local data. We also provide a theoretical analysis on its convergence.

• We propose to categorize the new client heterogeneity challenges in decentralized agent learning
into Preference Heterogeneity, Coverage Heterogeneity, and Hardness Heterogeneity. To investigate
how each type of heterogeneity affects the performance, we introduce three novel client partitioning
methods: PREFERENCEPARTITION, COVERAGEPARTITION, and HARDNESSPARTITION.

• We constructed the first decentralized agent learning environment FEDAGENTGYM, which in-
cludes four types of LLM agents, two applications (WebShop and ALFWorld), three variations of
decentralized settings, and three heterogeneity challenges, to analyze the performance of FEDA-
GENT systematically and controllably, and offer insights to guide future development.

• Extensive studies show that FEDAGENT not only beats the single-client local training paradigm but
also can achieve comparable performance to the centralized agent learning paradigm. Furthermore,
FEDAGENT shows high robustness against the three types of heterogeneity challenges. We also
provide insights on its sensitivity to different decentralized settings.

• We release our code and environment as an extendable open-source library to inspire more future
works in this new direction. The link to the repository is available here.

2

https://anonymous.4open.science/r/federated_agent_submission-4652/README.md

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 FEDAGENT with Client and Server training

Require: Total clients K, rounds T , clients-per-round M , local steps τ , learning rate η
Ensure: Final LLM-based global policy parameters θfinal

1: Initialize global policy parameters θ0 (an LLM)
2: for t = 0 to T − 1 do
3: Server: sample client subset St ⊂ [K] with |St| = M (uniform without replacement)
4: Server: broadcast θt to all k ∈ St

5: for each k ∈ St in parallel do
6: Set local iterate θk,t,0 ← θt
7: for i = 0 to τ − 1 do
8: Collect a mini batch of trajectories Bk,t,i using policy πθk,t,i

in environmentMk

9: Estimate policy gradient for Jk(θk,t,i) on client k:

gk,t,i ← ∇θĴk(θk,t,i;Bk,t,i) (e.g., GRPO)

10: Local update: θk,t,i+1 ← θk,t,i + η gk,t,i
11: end for
12: Client returns local model θk,t,τ ▷ equivalently ∆θk,t = θk,t,τ − θt
13: end for
14: Server: Aggregation via model averaging:

θt+1 ←
1

M

∑
k∈St

θk,t,τ (equivalently θt+1=θt +
1
M

∑
k∈St

(θk,t,τ − θt))

15: end for
16: return θfinal ← θT

2 FEDAGENT: FEDERATED AGENT REINFORCEMENT LEARNING

As shown in Algorithm 1, we consider a federated reinforcement learning setup for FEDAGENT. A
population of clients are indexed by k ∈ [K] = {0, . . . ,K−1}. Training proceeds for communication
rounds t = 0, . . . , T − 1. At round t, the server samples a subset St ⊂ [K] of size |St| = M
uniformly without replacement, broadcasts the current global policy parameters θt, and aggregates
the participating clients’ locally updated parameters.

LLM Agent Training. The agent is a parametric policy πθ (an LLM) that, conditioned on a task
description c and an interaction history hu up to step u, produces an action au ∼ πθ(· | hu, c). An
action often contains both a sequence of free-form tokens (i.e., the agent’s intermediate reasoning)
and environment-facing choice (e.g., tool API calling). Each client k operates in a Markov Decision
Process (MDP) environmentMk = (Sk,Ak, Pk, rk, ρk, γ) with state space Sk, action space Ak,
transition kernel Pk, reward function rk, initial-state distribution ρk, and discount γ ∈ (0, 1]. Client k
also has a distribution Dk over textual task descriptions c ∈ Ck. Fix k and a task description c ∼ Dk.
The agent interacts withMk for horizon H , producing a trajectory:

χ = (c, s0, a0, r0, . . . , sH), s0 ∼ ρk(· | c), au ∼ πθ(· | hu, c), su+1 ∼ Pk(· | su, au, c).

The discounted return of χ is R(χ) =
∑H−1

u=0 γuru. It is worth noting that when the LLM agents
generate H consecutive textual actions (a0, ..., a(H−1)) in a trajectory χ, each action may span
thousands of tokens, considering LLM agents’ long reasoning capacity (DeepSeek-AI et al., 2025).
This makes token-level credit assignment across the trajectory particularly challenging.

Local objective (client k). Client k aims to maximize the expected episodic return of the policy on
its own environments and tasks:

Jk(θ) = Ec∼Dk
Eχ∼(πθ,Mk,c)

[
R(χ)

]
. (1)

During round t, each participating client initializes a local iterate at the broadcast model, θk,t,0 ← θt,
and performs τ steps of stochastic policy optimization. At local step i ∈ {0, . . . , τ − 1}, the
client collects a batch of trajectories Bk,t,i = {χ(b)}Nk,t,i

b=1 by interacting withMk under πθk,t,i
and

computes a policy-gradient estimate:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

gk,t,i = ∇θĴk(θk,t,i;Bk,t,i) =
1

Nk,t,i

Nk,t,i∑
b=1

H(χ(b))−1∑
u=0

∇θ log πθk,t,i

(
a(b)u | h(b)

u , c(b)
)
Â(b)

u , (2)

where Â
(b)
u is any valid return/advantage signal (e.g., a GRPO-style estimator (Shao et al., 2024)).

The local update is θk,t,i+1 = θk,t,i + η gk,t,i, (i = 0, . . . , τ − 1) with step size η > 0. After τ steps
the client returns its local model θk,t,τ (equivalently the update ∆θk,t = θk,t,τ − θt) to the server.

Global objective and aggregation. The federated learning goal is to maximize a weighted average
of client objectives:

Jglobal(θ) =

K−1∑
k=0

wk Jk(θ), wk ≥ 0,

K−1∑
k=0

wk = 1. (3)

In the FEDAGENT, the server uses uniform model averaging over the M participating clients each
round (i.e., wk = 1

K conceptually, with partial participation realized by St). Upon receiving the
τ -step local models {θk,t,τ}k∈St , the server performs model averaging: θt+1 = 1

M

∑
k∈St

θk,t,τ =

θt +
1
M

∑
k∈St

(
θk,t,τ − θt

)
. After T rounds the server outputs θfinal = θT .

3 FEDAGENTGYM: A DECENTRALIZED AGENT LEARNING ENVIRONMENT

3.1 LLM AGENTS AND APPLICATION DATASETS

FEDAGENTGYM is designed as an environment to investigate the impact factors of training AI
agents, especially LLM, in a decentralized way. It includes four types of LLM agents, including
Qwen2.5-{1.5,3,7}B-Instruct and Llama-3.2-3B-Instruct, and two challenging application
datasets (WebShop (Yao et al., 2022) and ALFWorld (Shridhar et al., 2020)), which require complex
reasoning process and multi-step environment interactions. We adopt these two datasets to simulate
the real-world scenarios where data privacy concerns are paramount.

WebShop is a web-based interactive platform that evaluates LLM agents within authentic e-commerce
scenarios. Task completion requires agents to navigate a simulated HTML shopping interface to
locate, browse, and purchase appropriate items. The dataset features an extensive catalog of over 1.1
million products paired with 12, 000 user instructions, creating a rich and varied action space.

ALFWorld provides an embodied simulation benchmark that evaluates LLM agents’ capacity for
sequential decision-making tasks. Each scenario presents the agent with a textual objective that must
be achieved through iterative environment interaction. The dataset encompasses 3, 827 task instances
spanning six types of household activities: Pick & Place (Pick), Examine in Light (Look), Clean &
Place (Clean), Heat & Place (Heat), Cool & Place (Cool), and Pick Two & Place (Pick2).

3.2 DECENTRALIZED SETTINGS

We comprehensively examine the impact of different decentralized settings on FEDAGENT perfor-
mance across three critical dimensions. First, we vary the number of samples per client, which
determines the sampling scope for each LLM agent’s exploration of the action space and response
generation, directly affecting both the diversity of experiences collected and the quality of policy
gradient estimates. Second, we change the number of clients selected per communication round,
controlling both the computational parallelism and the degree of heterogeneity in exploration strate-
gies incorporated during global model aggregation. Third, we adjust the number of local training
batches per client per round, governing the extent of local optimization on the sampled trajectories
before synchronization with the central server. These parameters collectively influence fundamental
trade-offs between exploration diversity, communication overhead, and convergence stability in the
federated setting. Through extensive studies across these dimensions, we characterize how different
decentralized training design choices affect the final policy performance of FEDAGENT.

3.3 HETEROGENEITY CHALLENGES

To systematically evaluate how FEDAGENT performs under realistic client distributions, we propose
three novel and orthogonal heterogeneity definitions, as conventional heterogeneity dimensions in
federated classification tasks (e.g., feature or label skew) (Ye et al., 2023; Gao et al., 2022) are not

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

directly applicable. We also propose the corresponding client partitioning strategies, allowing us to
understand the individual impact of different heterogeneity types separately.

Preference Heterogeneity: When Clients Have Different Task Preferences. In real-world
federated learning, different clients often prefer distinct types of tasks. For example, in the ALFWorld,
some users might frequently interact with kitchen-related tasks (like “put the apple in the fridge”),
while others primarily encounter bedroom tasks (like “examine the lamp”). In WebShop, some may
have mostly electronics searches while others mainly focus on clothing or home goods.

To simulate this preference heterogeneity, we propose the PREFERENCEPARTITION algorithm. The
pseudo code is illustrated in Algorithm 2 in Appendix B.1. We model this by starting with the global
distribution of task categories and introducing controlled noise to create client-specific preferences.
Specifically, we add Gaussian Noise to the log-probabilities of the global category distribution,
apply softmax normalization, and use the resulting probabilities to sample L instructions per client
via Multinomial Sampling. This approach allows precise control over client distributions with a
hyperparameter ω on topical preference heterogeneity, while maintaining the same total dataset size
and per-client instruction count. More specifically, small noise values produce clients with similar
task distributions, while larger noise creates highly specialized clients with distinct preferences.

Coverage Heterogeneity: When Clients Have Different Task Sampling Scopes. Even when
clients encounter similar types of tasks, they may face vastly different quantities. A larger quantity of
tasks indicates coverage of a broader sampling scope per epoch in reinforcement learning (we follow
the setting in (Feng et al., 2025) to iteratively sample with replacement from the local data each
epoch), while the sampling size remains fixed. Importantly, this differs from the quantity imbalance
in conventional supervised federated classification tasks, where training proceeds over the entire
dataset each epoch. In WebShop, for instance, some users might have extensive browsing histories
with hundreds of product interactions, while others have only completed a few shopping sessions.

To model this coverage heterogeneity, we develop the COVERAGEPARTITION algorithm. The pseudo
code is shown in Algorithm 3. We fix a global overlap target r (representing the average number of
clients that see each instruction) and draw each client’s data quantity from a Beta Distribution, which
we then map to the range [Lmin, Lmax]. Task instructions are allocated to clients using weighted
sampling without replacement to satisfy both individual client quotas and the global overlap constraint.
This method isolates the effect of task sampling scope on FEDAGENT performance while keeping
the underlying task distribution consistent across clients. Also, this method controls the extent of
coverage heterogeneity via hyperparameter ξ without impacting the overall mean of client quantities.

Hardness Heterogeneity: When Clients Face Different Task Difficulties. A particularly im-
portant but often overlooked source of heterogeneity is the overall difficulty of tasks that different
clients encounter, which can be quantified by the success rate of tasks. For example, in ALFWorld,
some clients might consistently face simple navigation tasks with high success rates, while others
encounter complex multi-step reasoning tasks that frequently result in failure.

As demonstrated in Algorithm 4, our proposed HARDNESSPARTITION algorithm addresses this by
partitioning the task instruction pool into “successful” and “unsuccessful” examples with a pretrained
checkpoint. Then, using our COVERAGEPARTITION method, we first distribute successful instructions
according to a Beta Distribution that determines each client’s success rate. We then fill remaining
slots with unsuccessful examples sampled uniformly, ensuring all clients have exactly L instructions.
This method enables us to study how different success rate distributions, which are controlled by a
hyperparameter ξ′ and measures the extent of hardness of task distributions for each client, affect
FEDAGENT while maintaining consistent dataset sizes and global overlap patterns across all clients.

4 THEORETICAL ANALYSIS ON CONVERGENCE

Theorem 1 (Convergence of FEDAGENT). Under Assumptions 1–5, suppose that at each communi-
cation round t the server uniformly samples without replacement a subset St ⊂ [K] of size M ≤ K
and aggregates only those clients’ updates:θt+1 = θt +

1
M

∑
k∈St

∆θk,t, with the same local inner
loop and notation as in Algorithm 1. Let each selected client perform τ local steps with stepsize η.
Choose the stepsize η = 1

Lτ and let θ̃ be a uniform random iterate drawn from {θt}T−1
t=0 . Then

E
[
J(θ⋆)− J(θ̃)

]
≤ L

µT

(
J(θ⋆)−J(θ0)

)
+

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In particular, the convergence rate remains O(1/T). The “noise floor” comprises: (i) an O(1/M)
local stochastic term, (ii) an O

(
K−M

M(K−1)

)
heterogeneity term due to client sampling, and (iii) an

O
((τ−1)2

τ2

)
local-drift term that vanishes when τ = 1.

Remark. Theorem 1 establishes that the FEDAGENT paradigm converges to a neighborhood of the
optimum under the PL and smoothness conditions. With stepsize η = 1/(Lτ) and T communication
rounds, the suboptimality decomposes into (i) a transient term that decays as O(1/T) and (ii) a
time-invariant “noise floor”. The floor tightens with a larger M , vanishes in the full-participation and
single-step homogeneous limit (M = K, τ = 1, ζ2≈ 0), and otherwise quantifies the computation–
communication trade-off. The proof of Theorem 1 is in Appendix C. The key implications are:

1. Convergence rate (O(1/T)): The term L
µT (J(θ

∗)− J(θ0)) exhibits a linear-in-1/T convergence
rate with respect to the number of communication rounds. Better conditioning (smaller L/µ)
accelerates approach towards the asymptotic regime.

2. Effect of partial participation (O(1/M)): The variance term G2+σ2

M decays inversely with
the number of participating clients each round. Increasing M reduces stochastic noise in the
aggregated update. In the limit M=K, it matches the variance level under full participation.

3. Client sampling and heterogeneity (O
(

K−M
M(K−1)

)
): The middle term K−M

M(K−1) ζ
2 is induced by

client sampling each round without replacement under the heterogeneity assumption. It vanishes
when M =K and grows with smaller M and larger heterogeneity ζ2, implying the potential
benefits of a larger number of clients each round, stratified or clustered client sampling.

4. Local-drift from multiple local steps (O
((τ−1)2

τ2

)
): Performing τ > 1 local steps introduces

a bias captured by (τ−1)2

2τ2 (G2 + σ2). This term is 0 at τ = 1 and approaches 1
2 (G

2 + σ2) as
τ →∞, quantifying the classic trade-off between fewer communications and increased drift.

5. Noise floor and tuning guidelines: The bracketed expression in Theorem 1 is a T -independent
error floor. Once the O(1/T) term becomes negligible as the number of rounds grows, additional
rounds do not improve the bound unless one (a) increases M , (b) reduces heterogeneity (e.g., via
smarter client selection that lowers ζ2), or (c) decreases τ to curb local drift.

5 MAIN EXPERIMENTS

Experiment Setup. In this section, we aim to investigate the performance of FEDAGENT under
a uniform client distribution, which is independent of the aforementioned three types of client
heterogeneities. We partitioned the whole dataset (WebShop or ALFWorld) into 100 clients. Each
client has 100 task instructions and there is a potential overlap between clients. 2 clients are randomly
selected each round. Each client is trained for 3 epochs per round, with a total of 70 rounds and 210
epochs overall. For each epoch, 64 tasks are sampled iteratively with replacement from local data.

As for FEDAGENT, we adopt GRPO (Shao et al., 2024) for policy optimization. Then, following the
literature in federated learning (Liu et al., 2024), we select two typical baselines: Centralized Agent
Training and Local Agent Training. Centralized Agent Training uses the full dataset (i.e., 64 tasks
are sampled iteratively from the whole dataset each epoch), while Local Agent Training uses only a
specific client’s dataset (we selected client index 21, 42, or 84 as the baselines). Both of them run for
the same total epochs as FEDAGENT and also adopt GRPO for policy optimization.

Result Analysis. As shown in Table 1, FEDAGENT consistently outperforms Local Agent
Training and achieves comparable performance to Centralized Agent Training. For instance, on
ALFWorld using Qwen2.5-1.5B-Instruct, FEDAGENT achieves a 61.7% success rate compared to
local training variants that range from 47.7% to 57.0%, while nearly matching the centralized training
performance of 57.8%. This pattern is consistently observed across different model scales (1.5B, 3B,
7B), model architectures (qwen and llama), and client indexes (21, 42, and 84). Similarly, on the
WebShop benchmark, FEDAGENT maintains this advantage with Qwen2.5-7B-Instruct achieving
68.9% success rate versus local training with different indexes ranging from 33.6% to 49.2%, while
remaining competitive with centralized training at 64.7%. These results demonstrate the advantage of
FEDAGENT in achieving competitive performance while preserving users’ data privacy inherently.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method ALFWorld WebShop

Pick Look Clean Heat Cool Pick2 All Score Succ.
Qwen2.5-1.5B-Instruct
Local (Client 21) 42.9 25.0 38.5 37.5 14.3 14.3 29.7 69.9 57.0
Local (Client 42) 50.0 37.5 76.9 25.0 42.9 14.3 45.3 75.1 53.1
Local (Client 84) 50.0 37.5 46.2 25.0 28.6 0.0 34.4 72.7 47.7
Centralized 64.3±4.8 37.5±0.9 69.2±6.1 50.0±2.2 42.9±3.8 28.6±0.4 51.6±3.0 79.9±4.7 57.8±5.7

FEDAGENT 80.0±4.2 75.0±1.7 53.8±4.3 37.5±1.3 83.3±4.7 50.0±1.0 64.1±2.8 83.2±4.5 61.7±1.8

Qwen2.5-3B-Instruct
Local (Client 21) 41.5 12.5 34.9 51.0 18.9 21.2 31.3 59.8 55.0
Local (Client 42) 46.5 37.5 24.4 15.0 33.7 33.3 28.2 61.3 59.3
Local (Client 84) 22.8 27.5 39.1 46.3 48.3 36.5 29.9 77.6 58.6
Centralized 94.1±0.9 80.0±2.5 64.3±1.4 42.9±2.6 50.0±2.7 22.2±5.2 62.5±4.2 70.0±1.5 53.9±2.8

FEDAGENT 95.5±4.3 62.5±3.0 49.7±1.7 47.5±2.4 85.3±3.6 45.1±2.1 65.2±3.9 85.5±3.4 63.1±3.1

Qwen2.5-7B-Instruct
Local (Client 21) 35.5 25.0 61.0 25.9 35.8 45.2 38.4 70.9 49.2
Local (Client 42) 29.0 45.0 18.8 25.6 15.9 38.0 42.1 78.2 33.6
Local (Client 84) 34.7 47.5 44.4 51.3 40.1 21.8 35.7 60.6 39.3
Centralized 93.7±4.5 82.5±2.1 71.5±3.3 47.9±3.7 63.2±3.8 31.9±1.0 73.3±4.0 78.8±2.8 64.7±1.6

FEDAGENT 94.5±2.3 85.0±4.1 56.0±0.8 62.5±1.2 86.7±2.9 42.8±3.4 75.5±2.9 89.0±4.1 68.9±3.8

Llama-3.2-3B-Instruct
Local (Client 21) 39.8 50.0 17.9 40.0 20.7 34.0 38.1 65.3 50.5
Local (Client 42) 18.2 55.0 41.9 34.3 41.0 25.0 35.0 67.0 51.0
Local (Client 84) 29.9 32.5 39.0 18.9 18.8 37.6 29.7 70.2 55.7
Centralized 72.4±4.6 62.5±4.5 59.3±3.1 45.2±0.5 53.7±2.2 27.9±3.0 54.9±2.9 72.3±3.7 56.2±1.6

FEDAGENT 83.7±1.7 57.5±6.0 60.6±3.4 55.9±0.9 65.3±2.8 24.9±3.1 61.2±3.3 74.4±4.9 57.8±3.2

Table 1: Performance Comparison on ALFWorld and WebShop. We report the averaged perfor-
mance and the corresponding standard deviation for Centralized Training and FEDAGENT over three
random seeds. For ALFWorld, the Success Rate (%) is reported for each subtask as well as for the
overall dataset. For WebShop, both the Task Score (%) and the Success Rate (%) are reported.

(a) WebShop (b) ALFWorld
Figure 2: Training Dynamics of FEDAGENT and Centralized Training. Circle marks with different
colors indicate the model performance after training on specific selected clients each round. The red
line refers to the performance of the aggregated models on server throughout the training process.

Figure 2 shows the whole training dynamics of FEDAGENT and Centralized Agent Training with
Qwen2.5-1.5B-Instruct on WebShop and ALFWorld datasets. Both paradigms ultimately con-
verge to similar success rates despite different training dynamics (∼ 0.6 for WebShop, ∼ 0.5
for ALFWorld). In WebShop (left), both approaches demonstrate steady monotonic improvement,
with centralized training initially outperforming FEDAGENT until approximately epoch 120, after
which both converge to similar success rates around 0.6. In contrast, ALFWorld (right) exhibits
relatively more volatile training dynamics with frequent performance fluctuations for both methods,
ultimately converging to success rates around 0.5. This further illustrates that FEDAGENT can achieve
comparable performance with centralized training.

6 IMPACT OF DIFFERENT DECENTRALIZED SETTINGS

Experiment Setup. In this section, we aim to study the impact of different decentralized settings
on FEDAGENT in FEDAGENTGYM by systematically varying three key hyperparameters across two

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Samples per client, WebShop (b) Samples per client, ALFWorld

(c) Clients selected per round, WebShop (d) Clients selected per round, ALFWorld

(e) Epochs per client per round, WebShop (f) Epochs per client per round, ALFWorld

Figure 3: Training Dynamics of FEDAGENT in Different Decentralized Settings.

different datasets (WebShop and ALFWorld). We adopt Qwen2.5-1.5B-Instruct for all configura-
tions. The experimental setup examines: (1) samples per client. We test 100, 500, and 1, 000 tasks
per client to understand how task sampling scope affects FEDAGENT learning dynamics; (2) clients
selected per round. We compare 1, 2, and 4 participating clients each round to analyze the effect of
federation scale on performance; and (3) epochs per client per round. We evaluate 1, 3, and 5 local
training epochs to determine the optimal number of local computations before aggregation. Since
we keep the total number of epochs the same at 210 for all configurations, 1, 3, and 5 local training
epochs correspond to 210, 70, and 42 total rounds, respectively.

Result Analysis. The results in Figure 3 demonstrate that FEDAGENT exhibits distinct sensitivity
patterns towards decentralized settings, depending on the specific hyperparameter and dataset.
First, it shows notable sensitivity to the number of epochs per client per round. Moving from 1 to 5
epochs per round leads to significant performance gains, especially after around 100 training epochs,
highlighting that shallow local updates are insufficient to unlock the full potential of FEDAGENT.
On ALFWorld, FEDAGENT is also sensitive to the number of clients selected per round, with 2
clients per round outperforming 1 or 4, suggesting that too few or too many clients could hinder
convergence. By contrast, FEDAGENT appears insensitive to the number of samples per client, as
performance curves largely overlap across 100, 500, and 1, 000 samples per round, suggesting that
the task sampling scope for one client beyond a certain threshold may not be the limiting factor.
Our studies offer valuable insights on the practical deployment of FEDAGENT and also suggest that
optimal federated agent learning configurations are environment-dependent.

7 IMPACT OF HETEROGENEITY CHALLENGES

Experiment Setup. In this section, we aim to study the impact of different heterogeneity challenges
on FEDAGENT in FEDAGENTGYM. As shown in Appendix B.2, we can leverage our proposed client
partitioning strategies PREFERENCEPARTITION, COVERAGEPARTITION, and HARDNESSPARTITION
to precisely control the extent of one form of heterogeneity (Preference, Coverage, or Hardness
Heterogeneity) across clients with a hyperparameter ω, ξ, or ξ′. We keep the number of total epochs
as 210 and the number of all clients as 100, which are consistent with the main experiments. We
adopt Qwen2.5-1.5B-Instruct in the experiments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Preference Heterogeneity, WebShop (b) Preference Heterogeneity, ALFWorld

(c) Coverage Heterogeneity, WebShop (d) Coverage Heterogeneity, ALFWorld

(e) Hardness Heterogeneity, WebShop (f) Hardness Heterogeneity, ALFWorld

Figure 4: Training Dynamics of FEDAGENT in Different Heterogeneity Challenges.

Result Analysis. As shown in Figure 4, FEDAGENT shows high robustness against the three
heterogeneity challenges. Across all scenarios, preference heterogeneity (panels a,b), coverage
heterogeneity (panels c,d), and hardness heterogeneity (panels e,f), even when comparing low
heterogeneity settings (ω = 0.1, ξ = 256, ξ′ = 256) against high heterogeneity settings (ω = 0.9,
ξ = 1, ξ′ = 1), FEDAGENT consistently achieves strong success rates that steadily improve
throughout training, The learning curves show that FEDAGENT maintains stable convergence behavior
in both WebShop and ALFWorld environments regardless of heterogeneity intensity, with success
rates generally reaching 0.5-0.6 by the end of training. Crucially, the performance degradation
is minimal even under extreme heterogeneity conditions, indicating that FEDAGENT has great
potential to handle real-world scenarios across the full spectrum of heterogeneity challenges.

8 RELATED WORK

RL has been instrumental in empowering LLM agents to function effectively in dynamic and open-
ended environments. Initial studies leveraged traditional RL approaches like DQN (Mnih et al., 2015)
for training LLM agents in text-based gaming environments (Narasimhan et al., 2015). Subsequent re-
search began incorporating value-based techniques across broader agent applications such as Android
device manipulation (Rawles et al., 2023) and embodied environments like ALFWorld (Shridhar et al.,
2020). Contemporary methods have expanded RL training to encompass sophisticated web-based and
application-specific tasks (Zhou et al., 2024; Putta et al., 2024). In previous works, real-world task
queries and trajectories have been essential for training AI agents in practical applications. However,
they are becoming increasingly difficult to acquire due to privacy concerns. Our work makes an
initial effort to explore training AI agents without compromising user data privacy.

9 CONCLUSION

In this work, we explored FEDAGENT (Federated Agent Reinforcement Learning), a new collaborative
paradigm to train AI agent, particularly LLMs, across distributed clients, and built FEDAGENTGYM,
the first decentralized agent learning environment. Extensive theoretical and empirical studies
demonstrate that FEDAGENT can achieve performance on par with centralized training and maintain
strong robustness to heterogeneities. Our work validates the feasibility of training AI agents while
protecting user data privacy and charts new research directions in agent learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research on federated agent reinforcement learning aims to address the critical privacy concerns
in AI agent training by developing decentralized paradigms that eliminate centralized data collection,
ensuring all user data remains distributed across local clients throughout the training process.

REPRODUCIBILITY STATEMENT

The link to the code repository is available here. The proof of Theorem 1 is in Appendix C.

10

https://anonymous.4open.science/r/federated_agent_submission-4652/README.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. Opera-
tions Research, 72(5):1906–1927, 2024.

William G. Cochran. Sampling Techniques. John Wiley & Sons, New York, 3rd edition, 1977. ISBN
0-471-16240-X. See § 2.6.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv: 2501.12948, 2025.

Flint Xiaofeng Fan, Cheston Tan, Yew-Soon Ong, Roger Wattenhofer, and Wei-Tsang Ooi. Fedrlhf:
A convergence-guaranteed federated framework for privacy-preserving and personalized rlhf. In
Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS’25, pp. 713–721, Richland, SC, 2025. International Foundation for Autonomous Agents
and Multiagent Systems. ISBN 9798400714269.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Dashan Gao, Xin Yao, and Qiang Yang. A survey on heterogeneous federated learning. arXiv preprint
arXiv:2210.04505, 2022.

Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong Liu,
Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial super
intelligence. arXiv preprint arXiv:2507.21046, 2025.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European conference on
machine learning and knowledge discovery in databases, pp. 795–811. Springer, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In International conference on artificial intelligence and statistics, pp.
4519–4529. PMLR, 2020.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
brain-inspired intelligence to evolutionary, collaborative, and safe systems. arXiv preprint
arXiv:2504.01990, 2025.

Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. Recent advances on federated learning: A
systematic survey. Neurocomputing, 597:128019, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-based
games using deep reinforcement learning. arXiv preprint arXiv:1506.08941, 2015.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. Federated reinforcement learning: Techniques,
applications, and open challenges. arXiv preprint arXiv:2108.11887, 2021.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767,
2018.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. Heterogeneous federated learning:
State-of-the-art and research challenges. ACM Computing Surveys, 56(3):1–44, 2023.

Rui Yuan, Robert M Gower, and Alessandro Lazaric. A general sample complexity analysis of
vanilla policy gradient. In International Conference on Artificial Intelligence and Statistics, pp.
3332–3380. PMLR, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
Zhongzhi Li, Xiangyuan Xue, Yijiang Li, et al. The landscape of agentic reinforcement learning
for llms: A survey. arXiv preprint arXiv:2509.02547, 2025.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Content of Appendix

A LLM Usage Disclosure 15

B More Details of Heterogeneity Challenges 16

B.1 Pseudo Code for Client Partitioning Strategies . 16

B.2 Client Distributions under Partitioning Strategies 17

B.2.1 Preference Heterogeneity . 17

B.2.2 Coverage Heterogeneity . 19

B.2.3 Hardness Heterogeneity . 21

C Proof of the Convergence 23

C.1 Proof Sketch . 23

C.2 A More Detailed Proof . 24

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE DISCLOSURE

We hereby disclose that Large Language Models (LLMs) are utilized solely for the purposes of
grammar correction and textual refinement.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B MORE DETAILS OF HETEROGENEITY CHALLENGES

B.1 PSEUDO CODE FOR CLIENT PARTITIONING STRATEGIES

Algorithm 2 PREFERENCEPARTITION

Require: Category pools {Ic}Cc=1 with sizes nc; total clients K; per-client set size L; jitter ω
Ensure: Client datasets X1, . . . , XK with |Xk| = L

1: pc ← nc/
∑C

j=1 nj ; ℓc ← log pc

1−pc
▷ global mix + logit anchors

2: for k = 1 to K do
3: zc ∼ N (ℓc, ω

2) for c = 1 . . . C; qc ← exp(zc)/
∑

j exp(zj) ▷ larger ω⇒ higher variance
4: (a1, . . . , aC) ∼ Multinomial(L; q1, . . . , qC) ▷ category counts for client k
5: if any ac > nc then set ac ← min(ac, nc) and redistribute leftover by q to classes with spare

capacity ▷ capacity fix within a set
6: Xk ←

⋃C
c=1 SAMPLEWITHOUTREPLACEMENT(Ic, ac)

7: end for
8: return {Xk}Kk=1

Algorithm 3 COVERAGEPARTITION

Require: total items N (indexed 1:N); total clients K; per-client bounds (Lmin, Lavg, Lmax) with
Lmin≤Lavg≤Lmax; dispersion ξ; desired average replicas per item r

Ensure: Client datasets X1, . . . , XK

1: T ← ⌊rN⌉ ▷ total assignments (sum of all |Xk|); keeps global overlap fixed
2: assert KLmin ≤ T ≤ KLmax ▷ feasibility under per-client bounds
3: µ← (Lavg − Lmin)/(Lmax − Lmin); α← µξ, β ← (1− µ)ξ ▷ Beta params with mean fixed

at Lavg
4: Sample xk ∼ Beta(α, β) for k = 1 . . .K ▷ larger ξ⇒ lower variance (sizes closer to Lavg)

5: uk ← Lmin + xk(Lmax − Lmin); uk ← uk ·
T∑
j uj

▷ shape then renormalize to sum T

6: nk ← ROUNDTOSUM(u, T, [Lmin, Lmax]) ▷ largest remainder with clipping to [Lmin, Lmax]
7: m← ⌊r⌋, M ← ⌈r⌉, H ← T −mN
8: Set qi ←M for any H items; qi ← m otherwise
9: Initialize Xk ← ∅, remk ← nk for all k

10: for i = 1 to N do ▷ weighted, no-replacement placement across clients
11: A ← {k : remk > 0}; choose qi distinct k ∈ A with Pr(k) ∝ remk

12: Add item i to each chosen Xk and decrement the corresponding remk

13: end for
14: return {Xk}Kk=1

Algorithm 4 HARDNESSPARTITION

Require: total items N (indexed 1:N); disjoint index sets S (successful) and U (unsuccessful) with
S ∪ U = {1:N}; total clients K; per-client set size L; Hyperparameters for COVERAGEPARTI-
TION: bounds (ℓ, c, h) with h ≤ L, dispersion ξ′, overlap r

Ensure: client datasets X1, . . . , XK with |Xk| = L
1: {Yk}Kk=1 ← COVERAGEPARTITION

(
|S|,K, (ℓ, c, h), ξ′, r

)
▷ larger ξ′⇒ lower variance

2: for k = 1 to K do
3: mk ← L− |Yk|; Fk ← SAMPLEWITHOUTREPLACEMENT(U ,mk)
4: Xk ← Yk ∪ Fk

5: end for
6: return {Xk}Kk=1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 CLIENT DISTRIBUTIONS UNDER PARTITIONING STRATEGIES

B.2.1 PREFERENCE HETEROGENEITY

0 10 20 30 40 50 60 70 80 90 99
Client ID

0

20

40

60

80

100

N
um

be
r

of
 S

am
pl

es

beauty
electronics
fashion
garden
grocery

Figure 5: Client Distribution under Preference Heterogeneity (WebShop, ω = 0.1).

0 10 20 30 40 50 60 70 80 90 99
Client ID

0

20

40

60

80

100

N
um

be
r

of
 S

am
pl

es

beauty
electronics
fashion
garden
grocery

Figure 6: Client Distribution under Preference Heterogeneity (WebShop, ω = 0.9).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70 80 90 99
Client ID

0

20

40

60

80

100

N
um

be
r

of
 S

am
pl

es

look_at_obj_in_light
pick_and_place_simple
pick_clean_then_place_in_recep
pick_cool_then_place_in_recep
pick_heat_then_place_in_recep
pick_two_obj_and_place

Figure 7: Client Distribution under Preference Heterogeneity (ALFWorld, ω = 0.1).

0 10 20 30 40 50 60 70 80 90 99
Client ID

0

20

40

60

80

100

N
um

be
r

of
 S

am
pl

es

look_at_obj_in_light
pick_and_place_simple
pick_clean_then_place_in_recep
pick_cool_then_place_in_recep
pick_heat_then_place_in_recep
pick_two_obj_and_place

Figure 8: Client Distribution under Preference Heterogeneity (ALFWorld, ω = 0.9).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2.2 COVERAGE HETEROGENEITY

0 20 40 60 80 100
client id

0

200

400

600

800

1000
sa

m
pl

es

Figure 9: Client Distribution under Coverage Heterogeneity (WebShop, ξ = 1).

0 20 40 60 80 100
client id

0

200

400

600

800

1000

sa
m

pl
es

Figure 10: Client Distribution under Coverage Heterogeneity (WebShop, ξ = 256).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
client id

0

200

400

600

800

1000

sa
m

pl
es

Figure 11: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ = 1).

0 20 40 60 80 100
client id

0

200

400

600

800

1000

sa
m

pl
es

Figure 12: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ = 256).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.2.3 HARDNESS HETEROGENEITY

0 20 40 60 80 100
client id

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Figure 13: Client Distribution under Coverage Heterogeneity (WebShop, ξ′ = 1).

0 20 40 60 80 100
client id

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s

Ra
te

Figure 14: Client Distribution under Coverage Heterogeneity (WebShop, ξ′ = 256).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
client id

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

Ra
te

Figure 15: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ′ = 1).

0 20 40 60 80 100
client id

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s

Ra
te

Figure 16: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ′ = 256).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C PROOF OF THE CONVERGENCE

Assumption 1 (L-smooth gradients). For all θ, θ′ ∈ Rd and k ∈ [K], the client objectives have
L-Lipschitz gradients:

∥∇Jk(θ)−∇Jk(θ′)∥ ≤ L∥θ − θ′∥.
Assumption 2 (G-bounded gradients). For all θ ∈ Rd and k ∈ [K], the full gradients are bounded:

∥∇Jk(θ)∥ ≤ G.

Assumption 3 (σ-bounded variance). For all θ ∈ Rd and k ∈ [K], the stochastic gradient estimator
has bounded variance:

E
[
∥∇Jk(θ;B)−∇Jk(θ)∥2

]
≤ σ2,

where∇Jk(θ;B) denotes the mini-batch gradient.

Assumption 4 (Polyak–Łojasiewicz (PL) condition). The global objective satisfies, for some µ > 0
and θ⋆ = argmaxθ J(θ),

2µ
(
J(θ⋆)− J(θ)

)
≤ ∥∇J(θ)∥2, ∀ θ ∈ Rd.

Assumption 5 (Bounded client heterogeneity). There exists ζ2 such that for all θ,

1

K

K−1∑
k=0

∥∥∇Jk(θ)−∇J(θ)∥∥2 ≤ ζ2, where∇J(θ) = 1

K

K−1∑
k=0

∇Jk(θ).

Remark. Assumptions 1-3 are standard in stochastic optimization literature. As for Assumption 4
(the PL condition), in practice, policy-gradient methods that constrain update size, such as trust-region
approaches or proximal policy methods, yield smoother policy updates, making the PL assumption
more tenable. Recent works have likewise employed PL-type conditions to obtain convergence
guarantees for non-convex reinforcement learning objectives (Bhandari & Russo, 2024; Karimi et al.,
2016; Yuan et al., 2022), supporting our adoption of this assumption. Assumption 5 is a common
“bounded heterogeneity” condition used to control client drift in federated learning analyses (Li et al.,
2020; Karimireddy et al., 2020; Stich, 2018; Khaled et al., 2020; Woodworth et al., 2020).

Theorem 1 (Convergence of FEDAGENT). Under Assumptions 1–5, suppose that at each communi-
cation round t the server uniformly samples without replacement a subset St ⊂ [K] of size M ≤ K
and aggregates only those clients’ updates: θt+1 = θt +

1
M

∑
k∈St

∆θk,t, with the same local inner
loop and notation as in alg:fedagent. Let each selected client perform τ local steps with stepsize η.
Choose the stepsize η = 1

Lτ and let θ̃ be a uniform random iterate drawn from {θt}T−1
t=0 . Then

E
[
J(θ⋆)− J(θ̃)

]
≤ L

µT

(
J(θ⋆)−J(θ0)

)
+

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.

In particular, the convergence rate remains O(1/T). The “noise floor” comprises: (i) an O(1/M)
local stochastic term, (ii) an O

(
K−M

M(K−1)

)
heterogeneity term due to client sampling, and (iii) an

O
((τ−1)2

τ2

)
local-drift term that vanishes when τ = 1.

C.1 PROOF SKETCH

Proof sketch. Our proof generally follows the proof of Theorem 4.1 in (Fan et al., 2025), with key
modifications on second-moment bound for the aggregated update and local-drift term.

Let uk,t :=
∑τ−1

i=0 gk,t,i be client k’s aggregate local stochastic gradients in round t, and ḡk,t :=
1
τ

∑τ−1
i=0 gk,t,i. Define the round-average ḡt :=

1
M

∑
k∈St

ḡk,t, so the server update is ∆t = θt+1 −
θt = ητ ḡt.

(1) One-step descent. By L-smoothness of J ,

E[J(θt+1) | θt] ≥ J(θt) + ητ
(
1− Lητ

2

)
∥∇J(θt)∥2 −

L

2
η2τ2 E∥ḡt −∇J(θt)∥2 (4)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(2) Variance–bias decomposition with Finite-Population Correction (FPC). Decompose

ḡt −∇J(θt) =
(

1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
)

︸ ︷︷ ︸
client sampling

+ 1
M

∑
k∈St

(
ḡk,t − Eḡk,t

)
︸ ︷︷ ︸

local stochastic noise

+ 1
M

∑
k∈St

bk,t︸ ︷︷ ︸
local drift

,

where bk,t := E[ḡk,t | θt]−∇Jk(θt). The three terms are bounded as follows:

E
∥∥∥ 1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
∥∥∥2 =

(K −M)

M(K − 1)
· 1
K

K∑
k=1

∥∥∇Jk(θt)−∇J(θt)∥∥2
≤ 2(K −M)

M(K − 1)
ζ2, (FPC)

E
∥∥∥ 1
M

∑
k∈St

(
ḡk,t − Eḡk,t

)∥∥∥2 ≤ G2 + σ2

M
, (local noise)

bk,t =
1

τ

τ−1∑
i=0

(
∇Jk(θk,i)−∇Jk(θt)

)
, E∥bk,t∥2 ≤

L2η2(τ − 1)2

2
(G2 + σ2),

⇒ E
∥∥∥ 1
M

∑
k∈St

bk,t

∥∥∥2 ≤ L2η2(τ − 1)2

2
(G2 + σ2). (local drift)

Combining,

E
∥∥ḡt −∇J(θt)∥∥2 ≤ G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

L2η2(τ − 1)2

2
(G2 + σ2). (5)

(3) PL and averaging. Let δt := E[J(θ⋆)− J(θt)]. Applying the PL condition ∥∇J(θt)∥2 ≥
2µ δt in Equation (4) yields the linear recursion

δt+1 ≤
(
1−2µητ

(
1− Lητ

2

))
δt +

L

2
η2τ2

(G2 + σ2

M
+
2(K −M)

M(K − 1)
ζ2+

L2η2(τ − 1)2

2
(G2+σ2)

)
,

where, in forming Equation (5), we control the sampling-drift mixed term via Young’s inequality
2⟨X,Y ⟩ ≤ ∥X∥2+∥Y ∥2 (thus inflating the sampling and drift pieces by a factor of 2). With η = 1

Lτ

the contraction becomes 1−µ/L, and the drift contribution simplifies to (τ−1)2

2τ2 (G2+σ2). Unrolling
the recursion and averaging the gaps gives

1

T

T−1∑
t=0

δt ≤
L

µT
δ0 +

1

2µ

(G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

)
.

Finally, let θ̃ be drawn uniformly at random from {θt}T−1
t=0 ; then E

[
J(θ⋆)− J(θ̃)

]
= 1

T

∑T−1
t=0 δt,

which yields the stated bound.

C.2 A MORE DETAILED PROOF

Proof. We give a more detailed proof as follows. Our proof generally follows the proof of Theorem 4.1
in (Fan et al., 2025). Throughout, write Et[·] := E[· | θt]. Let each selected client k ∈ St perform τ
local stochastic policy-gradient steps with per-step gradients gk,t,i, i = 0, . . . , τ − 1,

θk,t,0 = θt, θk,t,i+1 = θk,t,i+η gk,t,i, E[gk,t,i | θk,t,i] = ∇Jk(θk,t,i), E∥gk,t,i∥2 ≤ G2+σ2.

Define the client’s round aggregates uk,t :=
∑τ−1

i=0 gk,t,i and ḡk,t :=
1
τ uk,t, and the server’s round

average

ḡt :=
1

M

∑
k∈St

ḡk,t, ∆t := θt+1 − θt = ητ ḡt.

We analyze J(θt+1) by Assumption 1 L-smoothness of J :

J(θt+1) ≥ J(θt) +
〈
∇J(θt),∆t

〉
− L

2
∥∆t∥2 (6)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A. One-step progress. Let g⋆t := ∇J(θt) and et := ḡt − g⋆t . With η = 1
Lτ we have ∆t =

1
L (g

⋆
t + et) and thus

⟨g⋆t ,∆t⟩ −
L

2
∥∆t∥2 =

1

L

(
∥g⋆t ∥2 + ⟨g⋆t , et⟩

)
− 1

2L
∥g⋆t + et∥2

=
1

L

(
∥g⋆t ∥2 + ⟨g⋆t , et⟩

)
− 1

2L

(
∥g⋆t ∥2 + 2⟨g⋆t , et⟩+ ∥et∥2

)
=

1

2L
∥g⋆t ∥2 −

1

2L
∥et∥2. (7)

Plugging equation 7 into equation 6 and taking Et[·],

Et[J(θt+1)] ≥ J(θt) +
1

2L
∥g⋆t ∥2 −

1

2L
Et∥et∥2 (8)

Thus the entire task reduces to bounding Et∥et∥2.

B. Variance–bias decomposition of Et∥et∥2. We decompose et into three parts:

et =
(

1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
)

︸ ︷︷ ︸
client sampling

+ 1
M

∑
k∈St

(
ḡk,t − Etḡk,t

)
︸ ︷︷ ︸

local stochastic noise

+ 1
M

∑
k∈St

bk,t︸ ︷︷ ︸
local drift

,where bk,t := Et[ḡk,t]−∇Jk(θt).

(9)
We now bound the mean-squared norm of each contribution. (All bounds hold component-wise and
hence for the Euclidean norm.)

Lemma 1 (FPC: client-sampling variance). Let x1, . . . , xK ∈ Rd, x̄ = 1
K

∑
k xk, and S be a

uniform size-M sample without replacement with |S| = M where 1 ≤M ≤ K. Then

E
∥∥∥ 1

M

∑
k∈S

xk − x̄
∥∥∥2 =

K −M

M(K − 1)
· 1
K

K−1∑
k=0

∥xk − x̄∥2.

Proof. Let Σ := 1
K

∑K−1
k=0 (xk − x̄)(xk − x̄)⊤. This is the standard finite-population correc-

tion (Cochran, 1977): Cov
(

1
M

∑
k∈S xk

)
= K−M

M(K−1) Σ. Taking trace on both sides yields the
claim since E∥Z − EZ∥2 = trCov(Z).

Applying Lemma 1 with xk = ∇Jk(θt) and using∇J(θt) = 1
K

∑K−1
k=0 ∇Jk(θt), we obtain

Et

∥∥∥ 1

M

∑
k∈St

∇Jk(θt)−∇J(θt)
∥∥∥2 ≤ K −M

M(K − 1)
ζ2. (10)

Lemma 2 (Local stochastic noise). With the standing bounded-second-moment assumption, for
each client k and round t, Et∥ḡk,t − Etḡk,t∥2 ≤ G2 + σ2. Moreover, conditioned on θt and St, the
per-client noises are independent across k ∈ St. Consequently,

Et

∥∥∥ 1

M

∑
k∈St

(
ḡk,t − Etḡk,t

)∥∥∥2 ≤ G2 + σ2

M
. (11)

Proof. Since ḡk,t = 1
τ

∑τ−1
i=0 gk,t,i and E∥gk,t,i∥2 ≤ G2+σ2, we have Et∥ḡk,t∥2 ≤ G2+σ2, hence

Et∥ḡk,t − Etḡk,t∥2 ≤ Et∥ḡk,t∥2 ≤ G2 + σ2. Independence across clients (conditional on θt, St)
implies that variances add, yielding equation 11.

Lemma 3 (Local drift/bias bound). Let

bk,t := Et[ḡk,t]−∇Jk(θt), ḡk,t =
1

τ

τ−1∑
i=0

gk,t,i,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where the local iterates satisfy θk,t,0 = θt, θk,t,i+1 = θk,t,i+ η gk,t,i, E[gk,t,i | θk,t,i] = ∇Jk(θk,t,i),
and E∥gk,t,i∥2 ≤ G2 + σ2. If Jk is L-smooth, then

Et∥bk,t∥2 ≤
L2η2(τ − 1)2

4
(G2 + σ2). (12)

Moreover, for any sampled set St of size M ,

Et

∥∥∥ 1

M

∑
k∈St

bk,t

∥∥∥2 ≤ 1

M

∑
k∈St

Et∥bk,t∥2 ≤
L2η2(τ − 1)2

4
(G2 + σ2). (13)

Proof. By definition and L-smoothness of Jk,

bk,t =
1

τ

τ−1∑
i=0

(
∇Jk(θk,t,i)−∇Jk(θt)

)
=

1

τ

τ−1∑
i=1

Hk,t,i (θk,t,i − θt),

where each Hk,t,i is a (mean-value) linear map with operator norm ∥Hk,t,i∥ ≤ L. Using the local
recursion θk,t,i − θt = η

∑i−1
j=0 gk,t,j and swapping sums gives

bk,t =
η

τ

τ−2∑
j=0

(τ−1∑
i=j+1

Hk,t,i

)
gk,t,j =:

η

τ

τ−2∑
j=0

Ak,t,j gk,t,j ,

with Ak,t,j :=
∑τ−1

i=j+1 Hk,t,i and hence ∥Ak,t,j∥ ≤
∑τ−1

i=j+1 ∥Hk,t,i∥ ≤ L(τ − 1− j).

Applying the weighted Cauchy-Schwarz inequality,∥∥∥∑
j

Ak,t,jgk,t,j

∥∥∥2 ≤ (∑
j

∥Ak,t,j∥
)(∑

j

∥Ak,t,jgk,t,j∥2

∥Ak,t,j∥

)
≤

(∑
j

∥Ak,t,j∥
)(∑

j

∥Ak,t,j∥ ∥gk,t,j∥2
)
,

and taking Et together with E∥gk,t,j∥2 ≤ G2 + σ2 yields

Et∥bk,t∥2 ≤
η2

τ2

(τ−2∑
j=0

∥Ak,t,j∥
)2

(G2 + σ2) ≤ η2

τ2

(
L

τ−2∑
j=0

(τ − 1− j)
)2

(G2 + σ2).

Since
∑τ−2

j=0 (τ − 1− j) =
∑τ−1

m=1 m = τ(τ−1)
2 , we obtain

Et∥bk,t∥2 ≤ L2η2
(τ − 1)2

4
(G2 + σ2),

which is equation 12. For the client average, convexity of the squared norm (or Jensen) gives

Et

∥∥∥ 1

M

∑
k∈St

bk,t

∥∥∥2 ≤ 1

M

∑
k∈St

Et∥bk,t∥2,

and the second inequality in equation 13 follows by applying equation 12 to each k ∈ St.

With Lemma 3 in place, combining equation 10, equation 11, equation 13, equation 9, and Young’s
inequality 2⟨X,Y ⟩ ≤ ∥X∥2 + ∥Y ∥2 gives the (assumption-free) second-moment control

Et∥et∥2 ≤
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

L2η2(τ − 1)2

2
(G2 + σ2). (14)

C. Closing the one-step inequality. Insert equation 14 into equation 8 and use η = 1
Lτ to get

Et[J(θt+1)] ≥ J(θt) +
1

2L
∥∇J(θt)∥2 −

1

2L

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
(15)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D. PL inequality, recursion, and averaging. Let δt := E
[
J(θ⋆)− J(θt)

]
. By the PL condition,

∥∇J(θt)∥2 ≥ 2µ δt. Taking total expectation of equation 15 and using η = 1
Lτ together with the

variance-bias bound that includes the mixed-term control (i.e., 2⟨S,D⟩ ≤ ∥S∥2 + ∥D∥2), we obtain

δt+1 ≤
(
1− µ

L

)
δt +

1

2L

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
. (16)

Summing equation 16 over t = 0, . . . , T − 1 and dividing by T , and noting that
∑T−1

t=0 (δt+1− δt) =
δT − δ0 ≤ δ0, yields

1

T

T−1∑
t=0

δt ≤
L

µT
δ0 +

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.

Finally, let θ̃ be drawn uniformly from {θt}T−1
t=0 . Then E[J(θ⋆)− J(θ̃)] = 1

T

∑T−1
t=0 δt, which gives

the claimed bound.

27

	Introduction
	FedAgent: Federated Agent Reinforcement Learning
	FedAgentGym: A Decentralized Agent Learning Environment
	LLM Agents and Application Datasets
	Decentralized Settings
	Heterogeneity Challenges

	Theoretical Analysis on Convergence
	Main Experiments
	Impact of Different Decentralized Settings
	Impact of Heterogeneity Challenges
	Related Work
	Conclusion
	LLM Usage Disclosure
	More Details of Heterogeneity Challenges
	Pseudo Code for Client Partitioning Strategies
	Client Distributions under Partitioning Strategies
	Preference Heterogeneity
	Coverage Heterogeneity
	Hardness Heterogeneity

	Proof of the Convergence
	Proof Sketch
	A More Detailed Proof

