
Ada-Diffuser: Latent-Aware Adaptive Diffusion for
Decision-Making

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent work has framed decision-making as a sequence modeling problem using1

generative models such as diffusion models. Although promising, these approaches2

often overlook latent factors that exhibit evolving dynamics, elements that are funda-3

mental to environment transitions, reward structures, and high-level agent behavior.4

Explicitly modeling these hidden processes is essential for both precise dynam-5

ics modeling and effective decision-making. In this paper, we propose a unified6

framework that explicitly incorporates latent dynamics inference into generative7

decision-making from minimal yet sufficient observations. We theoretically show8

that under mild conditions, the latent process can be identified from small temporal9

blocks of observations. Building on this insight, we introduce Ada-Diffuser,10

a causal diffusion model that learns the temporal structure of observed interac-11

tions and the underlying latent dynamics simultaneously and leverages them for12

planning and control. With a proper modular design, Ada-Diffuser supports13

both planning and policy learning tasks, enabling adaptation to latent variations in14

dynamics, rewards, and even recovering hidden action variables from action-free15

demonstrations. Extensive experiments on locomotion and robotic manipulation16

benchmarks demonstrate the model’s effectiveness in accurate latent inference,17

long-horizon planning, and adaptive policy learning.18

1 Introduction19

Learning and planning in partially observable environments is a fundamental challenge in building20

intelligent agents [1]. Recent work on casting decision making as a generative modeling problem,21

taking advantage of powerful models such as transformers [2–4], diffusion models [5–13], and vision22

language action models [14–22], achieving impressive results in a wide range of tasks. However, these23

methods often fail to account for hidden latent variables and their temporal dynamics, factors that are24

prevalent in real-world settings such as robotics [23], autonomous driving [24], healthcare [25, 26],25

and economics [27]. Ignoring such latent processes can result in suboptimal decision-making,26

particularly when the observational data does not provide full coverage of the latent factors underlying27

the environment’s dynamics [28–36, 30].28

Early works address partial observability in reinforcement learning (RL) and imitation learning29

(IL) by encoding historical observations and actions into belief states or latent embeddings, which30

represent a distribution over the underlying latent state [1, 37–41, 36, 42, 43, 28, 44–46]. Policy31

optimization or planning is then carried out based on these inferred belief states. However, learning32

such representations often requires access to the historical trajectories or data from a diverse set33

of environments. This can be prohibitively expensive, particularly in high-dimensional state or34

action spaces, posing challenges for integrating these methods into modern generative decision-35

making models, which typically prioritize scalability. Can we identify the latent factors that govern36

environment dynamics and rewards, and integrate them into scalable generative decision-making37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

models to enable adaptive planning and policy learning, using only minimal observations, while38

preserving theoretical guarantees?39

In this paper, we pursue this goal by addressing two fundamental questions. First, what is the40

minimum set of observations required, in principle, to reliably identify the latent factors that govern41

the environment? Second, how can latent identification be effectively incorporated into generative42

models (e.g., diffusion models) to enable adaptive planning and policy learning? To answer the first43

question, we theoretically show that, under mild conditions, the latent factors at the time step t can44

be block-wise identified using only four surrounding observable measurements (i.e., state-action45

trajectories) within a small temporal window. This identification result implies that a small temporal46

block is sufficient to infer the latent factors in observational RL trajectories in an online manner.47

To answer the second question, we propose Ada-Diffuser, an autoregressive diffusion framework48

with latent identification from temporal blocks, designed to model the data generation process of RL49

trajectories influenced by latent factors. To reflect the autoregressive nature of sequential decision50

making, we introduce a causal denoising schedule that aligns the denoising steps with the underlying51

causal structure, drawing inspiration from recent advances in autoregressive diffusion models [47–52

50]. For temporal-block-wise latent identification, during training, we employ a denoise-then-refine53

procedure that iteratively alternates between denoising the observations and refining latent estimates.54

This enables Ada-Diffuser to jointly learn a structured representation of latent variables and the55

corresponding observational distribution. At inference time, Ada-Diffuser generates actions and56

states while estimating latent variables in an online fashion. Since states and actions are conditioned57

on the latent factors, we employ a zig-zag sampling scheme that alternates between sampling state-58

action pairs and updating latent variables, ensuring consistency between generated sequences and59

their underlying latent dynamics.60

Ada-Diffuser provides a unified generative framework for sequential decision-making from61

demonstrations. It is applicable to both planning and policy learning tasks by conditioning on differ-62

ent types of observations and adapting the conditional generative process accordingly. The framework63

is flexible and can accommodate various forms of latent, including ones that influence dynamics,64

rewards, or even represent high-level latent actions. Importantly, even in environments without ex-65

plicitly designed latent variables, the block-wise latent identification mechanism improves generative66

modeling by implicitly capturing structured temporal dependencies. This mechanism functions as67

a form of Bayesian filtering, enabling principled handling of uncertainty and temporal abstraction68

within the generative process. We demonstrate that Ada-Diffuser can be flexibly applied across69

a wide range of tasks, including simulated locomotion, robotic control and manipulation, accurately70

identifying latent factors and improving downstream policy learning and planning.71

In summary, our main contributions are threefold: (1) We establish sufficient conditions under which72

latent factors influencing environment dynamics and rewards can be identified from short temporal73

windows of RL trajectories, without requiring full trajectory access or multi-environment data. (2) We74

develop Ada-Diffuser, a generative model that integrates temporal block-wise latent inference75

with causal diffusion modeling to capture structured dependencies and enables joint modeling of76

latent variables and observable sequences in decision-making. (3) Ada-Diffuser can be adapted77

to a wide range of decision-making tasks by conditioning on different types of observation. We78

empirically show the improved performance on various planning and control tasks.79

2 Background and Related Work80

In this section, we provide background and related work on diffusion-based decision-making. Addi-81

tional discussions are provided in Appendix E, including related work on (1) learning latent belief82

states in POMDPs [1, 37–40, 51, 36, 30], particularly in the context of transfer, meta, and nonstation-83

ary RL/IL [28, 45, 43, 52, 53, 29, 45], and (2) autoregressive diffusion models [54–56, 47–50, 57].84

Recent advances use diffusion models as planners and policy for both RL and IL. I. Diffusion Planner:85

Diffusion-based planning leverages generative models to sample future state-action trajectories from a86

given state, using guidance techniques [58, 59] to encourage desirable properties such as high expected87

rewards. Taking Denoising Diffusion Probabilistic Models (DDPM [60])-based approaches as an ex-88

ample, these methods learn a generative model over expert trajectories τ = {(s0,a0), . . . , (sT ,aT)}89

by modeling a forward-noising process: q(xt | xt−1) = N (xt;
√
αt x

t−1, (1 − αt)I), and a pa-90

rameterized denoising model pθ(xt−1 | xt) to reverse the process. Here, the superscript t denotes91

diffusion steps, T denotes the planning horizon, x0 is a clean subsequence sampled from the expert92

2

trajectory τ , and αt controls the variance schedule at diffusion step t. During inference, trajectories93

are generated by starting from Gaussian noise and iteratively denoising through the learned reverse94

process. This generation can be optionally conditioned on the initial state or other guidance signals95

y (e.g., goals, rewards): τ̂ ∼ pθ(τ | s0,y). II. Diffusion Policy: In contrast to diffusion planners,96

Diffusion Policy methods directly parameterize the policy πθ(a | s) using diffusion models. For97

example, Diffusion Policy [7] uses a diffusion model to generate multi-step actions with expressive98

multimodal distributions. DPPO [8] extends this idea by modeling a two-layer MDP structure, which99

enables fine-tuning of diffusion-based policies in RL settings. Another line of work uses diffusion100

models to parameterize the policy networks for only the single current step [9–12]. Ada-Diffuser101

can generally accommodate both diffusion planner and policies within the same framework.102

3 Latent Identification in POMDP103

In this section, we seek to formally model the structure of the decision-making system by answering104

the following questions. First, where do the latent factors reside, and how do they influence the105

observable variables such as states, actions, and rewards? Second, can they be identified from demon-106

stration data alone? We model the system that extends the standard MDP to include unobservable,107

time-varying latent variables that affect both the transition dynamics and the reward function. This108

model generalizes the contextual MDP by allowing the context to evolve stochastically over time.109

We then formalize the data generation process under this model using structural causal models110

(SCMs) [61]. Finally, we present theoretical results that characterize the minimal observational111

requirements for identifying the latent variables.112

3.1 Latent Contextual POMDP with Time-Dependent Context113

We model the latent factors using a general contextual MDP framework, where the context itself114

evolves over time. Formally, we define a latent time-varying contextual MDP as a tuple M =115

(S,A, C, T ,R, γ), where S is the state space, A is the action space, C is the latent context space,116

T (st | st−1,at−1, ct) is the transition distribution,R(st,at, ct) is the reward function, and γ ∈ [0, 1)117

is the discount factor. The latent context ct ∈ C follows a time-dependent (possibly stochastic)118

process: ct ∼ p(ct | ct−1), and is unobserved during training and inference. The agent only observes119

trajectories τ = {(s0,a0), . . . , (sT ,aT)}, and infers the latent context ct from the observational120

data. This is naturally relevant to several MDP models, including (dynamic) hidden parameter121

MDPs [62, 63, 29], Bayes-adaptive MDPs [64, 65, 28], and factored MDPs [66]. A full comparison122

and analysis is given in Appendix C.123

Given trajectories generated under this model, we can describe the data generation process using the124

SCMs. Without the loss of generality, we consider the setting where an expert policy π is assumed to125

generate the actions, as is standard in learning from demonstration data. The data generation process126

can therefore be expressed as (l.h.s. Fig. 1):127

h1 h2 h3

a1 a2 a3

c2

π1 π2 π3

h1 h2 h3

a1 a2 a3

c2

π3πE πE

c1 c3

h1 h2 h3

a1 a2 a3

c

𝒯 𝒯
π3πE πE

s1 s2 s3

a1 a2 a3

c

𝒯 𝒯
πE πE πE

πE

h1 h2 h3

a1 a2 a3

c

𝒯 𝒯
π1 π2 π3

πE πE πE

c1 c3

s1 s2 s3

a1 a2 a3

c2 c3c1

s1 s2 s3

a1 a3

r1 r2 r3

c1 c2 c3

a2 s1 s2 s3

a1 a2 a3

problem by maximizing the likelihood of expert actions given observed states, i.e., learning a policy92

ω(a | s) that closely imitates the expert policy ωe(a | s).93

I. Diffusion Planner: Diffusion-based planning leverages generative models to sample future94

state-action trajectories from a given state, using guidance techniques [52, 53] to encourage95

desirable properties such as high expected rewards. Taking Denoising Diffusion Probabilistic96

Models (DDPM [54])-based approaches as an example, these methods learn a generative model97

over expert trajectories ε = {(s0,a0), . . . , (sT ,aT)} by modeling a forward-noising process:98

q(xt | xt→1) = N (xt;
→
ϑt x

t→1, (1↑ ϑt)I), and a parameterized denoising model pω(x
t→1 | xt) to99

reverse the process. Here, gray t denotes diffusion steps, T denotes the planning horizon, x0 is a clean100

subsequence sampled from the expert trajectory ε , and ϑt controls the variance schedule at diffusion101

step t. During inference, trajectories are generated by starting from Gaussian noise and iteratively102

denoising through the learned reverse process. This generation can be optionally conditioned on the103

initial state or other guidance signals y (e.g., goals, rewards): ε̂ ↓ pω(ε | s0,y).104

II. Diffusion Policy: In contrast to diffusion planners, Diffusion Policy methods directly parameterize105

the policy ωω(a | s) using diffusion models. For example, Diffusion Policy [55] uses a diffusion106

model to generate actions with expressive multimodal distributions. DPPO [56] extends this idea107

by modeling a two-layer MDP structure, which enables fine-tuning of diffusion-based policies in108

RL settings. Another line of work integrates diffusion models with value-based methods (e.g., Q-109

learning), to generate multimodal action distributions guided by learned value functions, such as110

Diffusion-QL [57], IDQL [58], CPQL [59], CEP [60], and DWM [61].111

3 Latent Identification in POMDP112

In this section, we seek to formally model the structure of the decision-making system by answering:113

(1). Where the latent factors reside and how they influence the observable variables such as states,114

actions, and rewards? and (2). Whether they can be identified from demonstration data alone?115

We model the system that extends the standard MDP to include unobservable, time-varying latent116

variables that affect both the transition dynamics and the reward function. This model generalizes the117

contextual MDP by allowing the context to evolve stochastically over time. We then formalize the118

data generation process under this model using structural causal models (SCMs) [62]. Finally, we119

present theoretical results that characterize the minimal observational requirements for identifying120

the latent variables.121

3.1 Latent Contextual POMDP with Time-dependent Context122

We model the latent factors using a general contextual MDP framework, where the context itself123

evolves over time. Formally, we define a latent time-varying contextual MDP as a tuple M =124

(S, A, C, T , R, ϖ), where S is the state space, A is the action space, C is the latent context space,125

T (st | st→1,at→1, ct) is the transition distribution, R(st,at, ct) is the reward function, and ϖ ↔ [0, 1)126

is the discount factor. The latent context ct ↔ C follows a time-dependent (possibly stochastic)127

process: ct ↓ p(ct | ct→1), and is unobserved during training and inference. The agent only observes128

trajectories ε = {(s0,a0), . . . , (sT ,aT)}, and infer the latent context ct from the observational129

data. This is naturally relevant to several MDP models, including (dynamic) hidden parameter130

MDPs [63, 64, 20], Bayes-adaptive MDPs [65, 66, 19], and factored MDPs [67]. A full comparison131

and analysis is given in Appendix B.132

Given trajectories generated under this model, we can describe the data generation process using an133

SCM. Without the loss of generality, we consider the setting where an expert policy ω is assumed to134

generate the actions, as is standard in learning from demonstration data. Although reward signals are135

typically unobserved in demonstration data, we include them in the structural model for completeness.136

The full data generation process can therefore be expressed as:137

Latent Dynamics: ct = h(ct→1, ϱt),

State Transitions: st = f(st→1,at→1, ct, ςt),

Action Generation: at = ω(st, ct),

Reward Function: rt = g(st,at, ct, φt),

where ϱt, ςt, and φt denote i.i.d. exogenous noise variables associated with the latent context, state138

dynamics, and reward, respectively.139

3

(b)

problem by maximizing the likelihood of expert actions given observed states, i.e., learning a policy92

ω(a | s) that closely imitates the expert policy ωe(a | s).93

I. Diffusion Planner: Diffusion-based planning leverages generative models to sample future94

state-action trajectories from a given state, using guidance techniques [52, 53] to encourage95

desirable properties such as high expected rewards. Taking Denoising Diffusion Probabilistic96

Models (DDPM [54])-based approaches as an example, these methods learn a generative model97

over expert trajectories ε = {(s0,a0), . . . , (sT ,aT)} by modeling a forward-noising process:98

q(xt | xt→1) = N (xt;
→
ϑt x

t→1, (1↑ ϑt)I), and a parameterized denoising model pω(x
t→1 | xt) to99

reverse the process. Here, gray t denotes diffusion steps, T denotes the planning horizon, x0 is a clean100

subsequence sampled from the expert trajectory ε , and ϑt controls the variance schedule at diffusion101

step t. During inference, trajectories are generated by starting from Gaussian noise and iteratively102

denoising through the learned reverse process. This generation can be optionally conditioned on the103

initial state or other guidance signals y (e.g., goals, rewards): ε̂ ↓ pω(ε | s0,y).104

II. Diffusion Policy: In contrast to diffusion planners, Diffusion Policy methods directly parameterize105

the policy ωω(a | s) using diffusion models. For example, Diffusion Policy [55] uses a diffusion106

model to generate actions with expressive multimodal distributions. DPPO [56] extends this idea107

by modeling a two-layer MDP structure, which enables fine-tuning of diffusion-based policies in108

RL settings. Another line of work integrates diffusion models with value-based methods (e.g., Q-109

learning), to generate multimodal action distributions guided by learned value functions, such as110

Diffusion-QL [57], IDQL [58], CPQL [59], CEP [60], and DWM [61].111

3 Latent Identification in POMDP112

In this section, we seek to formally model the structure of the decision-making system by answering:113

(1). Where the latent factors reside and how they influence the observable variables such as states,114

actions, and rewards? and (2). Whether they can be identified from demonstration data alone?115

We model the system that extends the standard MDP to include unobservable, time-varying latent116

variables that affect both the transition dynamics and the reward function. This model generalizes the117

contextual MDP by allowing the context to evolve stochastically over time. We then formalize the118

data generation process under this model using structural causal models (SCMs) [62]. Finally, we119

present theoretical results that characterize the minimal observational requirements for identifying120

the latent variables.121

3.1 Latent Contextual POMDP with Time-dependent Context122

We model the latent factors using a general contextual MDP framework, where the context itself123

evolves over time. Formally, we define a latent time-varying contextual MDP as a tuple M =124

(S, A, C, T , R, ϖ), where S is the state space, A is the action space, C is the latent context space,125

T (st | st→1,at→1, ct) is the transition distribution, R(st,at, ct) is the reward function, and ϖ ↔ [0, 1)126

is the discount factor. The latent context ct ↔ C follows a time-dependent (possibly stochastic)127

process: ct ↓ p(ct | ct→1), and is unobserved during training and inference. The agent only observes128

trajectories ε = {(s0,a0), . . . , (sT ,aT)}, and infer the latent context ct from the observational129

data. This is naturally relevant to several MDP models, including (dynamic) hidden parameter130

MDPs [63, 64, 20], Bayes-adaptive MDPs [65, 66, 19], and factored MDPs [67]. A full comparison131

and analysis is given in Appendix B.132

Given trajectories generated under this model, we can describe the data generation process using an133

SCM. Without the loss of generality, we consider the setting where an expert policy ω is assumed to134

generate the actions, as is standard in learning from demonstration data. Although reward signals are135

typically unobserved in demonstration data, we include them in the structural model for completeness.136

The full data generation process can therefore be expressed as:137

Latent Dynamics: ct = h(ct→1, ϱt),

State Transitions: st = f(st→1,at→1, ct, ςt),

Action Generation: at = ω(st, ct),

Reward Function: rt = g(st,at, ct, φt),

where ϱt, ςt, and φt denote i.i.d. exogenous noise variables associated with the latent context, state138

dynamics, and reward, respectively.139

3

(a)

Figure 1: (a) SCM of the Latent Contextual POMDP. Gray/white nodes are observed/latent variables;
green/red edges represent transitions driven by latents/expert policies, respectively. (b) Examples
where latents influence either dynamics or rewards (affecting optimal actions).

where ηt, ϵt, and δt denote i.i.d. exogenous noise variables. Fig. 1(a) shows the graphical model.128

Fig. 1(b) illustrates examples where latent factors on dynamics (e.g., external wind in locomotion)129

and rewards (e.g., varying target objects in robot control) influence optimal decisions.130

3.2 Identifiability of Latent Factors with Minimal Measurements131

To learn accurate dynamics and make reliable decisions, it is essential that the underlying latent factors132

influencing the environment are identifiable with observational data. We present theoretical results133

that characterize the minimal number of consecutive observations required for the identifiability of134

the latent variables, under a set of mild and natural assumptions.135

Assumption 1 (First-order Markov and limited feedback). We consider the following conditions:136

3

i. First-order Markov:137

P (st,at, rt, ct | st−1,at−1, ct−1,ω<t−1) = P (st,at, rt, ct | st−1,at−1, ct−1) ,

where ω<t−1 = {st−2, . . . , s1,at−2, . . . ,a1, ct−2, . . . , c1}.138

ii. Limited feedback: P (st,at, rt | st−1,at−1, ct, ct−1) = P (st,at, rt | st−1,at−1, ct).139

Assumption 1(i) is naturally satisfied under our setting described in Section 3.1. Assumption 1(ii)140

specifies that the latent variable has no delayed effect on the state or action, implying that its influence141

is immediate. For brevity, we define the temporal state-action pairs xt = [st,at] with the support Xt.142

Assumption 2 (Distributional Variability). There exist observed state and action variables xt such143

that for any xt ∈ Xt, there exists a corresponding xt−1 ∈ Xt−1 and a neighborhood N r around144

(xt,xt−1) satisfying that, for all xt−2 ∈ Xt−2, xt−1 ∈ Xt−1, xt ∈ Xt, and xt+1 ∈ Xt+1, the145

following conditional distribution operators are injective: (i) Lxt−2|xt+1
, (ii) Lxt+1|xt,ct , and (iii)146

Lxt|xt−2,xt−1
, where the conditional operator L represents transformations at the distribution level,147

that is, how one probability distribution is pushed forward to another [67].148

Assumption justification. Conceptually, the injectivity of these operator L implies that different
inputs induce different output distributions, thus imposing a minimal condition on distributional
variability. In RL systems, this condition is naturally satisfied in most stochastic environments
where transitions produce sufficient diversity across different states and actions. The assumption
also aligns with the standard conditions in identification theory, particularly in works that use
spectral methods and latent variable models [68, 69].

149

Assumption 3 (Uniqueness of Spectral Decomposition). For any xt ∈ Xt and any c̄t ̸= c̃t ∈ Ct,150

there exists a xt−1 ∈ Xt−1 and corresponding neighborhood N r satisfying Assumption 2 such that,151

for some (x̄t, x̄t−1) ∈ N r with x̄t ̸= xt, x̄t−1 ̸= xt−1:152

i. 0 < k(xt, x̄t,xt−1, x̄t−1, ct) < C <∞ for any ct ∈ Ct and some constant C;153

ii. k(xt, x̄t,xt−1, x̄t−1, c̄t) ̸= k(xt, x̄t,xt−1, x̄t−1, c̃t), where154

k(xt, x̄t,xt−1, x̄t−1, ct) =
pxt|xt−1,ct(xt | xt−1, ct)pxt|xt−1,ct(x̄t | x̄t−1, ct)

pxt|xt−1,ct(x̄t | xt−1, ct)pxt|xt−1,ct(xt | x̄t−1, ct)
. (1)

Assumption justification. Conceptually, Assumption 3 requires that k, which captures
second-order variations in transition dynamics at time t − 1 and t under the latent variable
c, yields distinct values for different c’s. This requirement is typically met in RL, as varied
latent dynamics or rewards often cause significant, observable shifts in behavior. Crucially, this
variability is precisely what motivates the need for the identification of the latent variable ct,
as it governs meaningful differences in learning underlying decision-making process.

155

Under these assumptions, we establish an identifiability theory that characterizes the conditions under156

which the latent factors can be recovered, and specifies the level of identifiability that can be achieved.157

Theorem 1 (Identifiability on Posterior Distribution). Under Assumptions 1-3, the posterior dis-158

tribution of latent factor with consecutive observations p(ct | xt−2:t+1) can be identifiable up to159

an invertible transformation on the latents ĉt = h(ct), where ĉt is estimated latents and h is an160

invertible function.161

The proof is in Appendix B.2. Theorem 1 indicates that a short temporal window of observations162

contains sufficient information to recover the posterior distribution over the true latent factors (up to163

an invertible transformation) in an online manner, without requiring access to the full trajectory.164

4 Latent-Aware Adaptive Diffusion Planner and Policy165

Building on Theorem 1, we introduce the Ada-Diffuser framework for learning and planning166

with latent identification. As illustrated in Fig. 2, Ada-Diffuser models the trajectory generation167

process via two modules: (1) latent factor identification block, which estimates the sequence of168

latent variables from the observable trajectories; and (2) causal diffusion model, which learns the169

underlying generative process of the RL trajectories. The learned model can then be used for both170

planning and policy learning by generating future trajectories or actions conditioned on the historical171

information, together with the inferred latent structure and task-specific demands.172

4

Latent Factor Identification

s0 a0 r0 sT aT rT

Sequential Encoder

Sequential Decoder

s0 a0 r0 sT aT rT

c0 cT

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

ct−1 ct ct+1 ct−1 ct ct+1

Causal Diffusion Model

st−2

at−2

ct−2

st−2

at−2

st−2

at−2

ct−2

st−2

at−2

st−2

at−2

ct−2

st−2

at−2

Diffusion I/O Inverse dynamics outputMask

Ada-Diffuser-Planning Ada-Diffuser-Policy

ct−1 ct ct+1

Figure 2: Overview of the Ada-Diffuser framework. The modular design consists of two main
stages: latent context identification (Stage 1, Section 4.2), followed by a causal diffusion model
(Stage 2, Section 4.3) that models the generative structure of the trajectories. The learned model is
then used for planning or policy learning conditioned on the inferred latent context.

In this section, we first present a general formulation of conditional diffusion modeling with latent173

variables. We then describe the two modules of Ada-Diffuser in detail (Fig. 2). The complete174

algorithmic pseudocode of the training and inference procedures are given in Appendix D.1.175

4.1 Latent-Augmented Diffusion Model for Planning and Policy Learning176

Without loss of generality, we denote the observable trajectory as τx, which may correspond to a177

state-action sequence τsa or a state-only sequence τs, depending on the task setting. To incorporate178

latent structure, we augment the observable trajectory with the estimated latent context, yielding the179

full trajectory representation τ = [τx, τc], where τc denotes the inferred sequence of latent variables.180

We train a conditional diffusion model [58, 59] to generate trajectories conditioned on desired181

attributes y(τ) (e.g., reward or goal specification) and the identified c. The denoising model182

ϵθ is trained to predict the noise added during the forward diffusion process via the objective:183

Ldiff = Eτ0,y,t,ϵ

[
∥ϵθ(τ t, t,y(τ), c)− ϵ∥2

]
, where τ 0 is a clean trajectory sample, ϵ ∼ N (0, I),184

and the noisy trajectory at diffusion step t is constructed as: τ t =
√
ᾱtτ

0 +
√
1− ᾱtϵ, where ᾱt185

denotes the cumulative product of the forward noise schedule. Here, the superscript t indexes diffusion186

steps, and should not be confused with the environment time step indices within the trajectory.187

Ada-Diffuser can flexibly adapt to generate different components of the trajectory depending on188

the task. In the planning setting, the model generates full trajectories τ = {xt,xt+1, . . . ,xt+Tp},189

where Tp denotes the planning horizon. Here, xt may have two cases: (i) xt = {st,at}, when both190

states and actions are generated, (ii) xt = {st}, when only states are generated. In the latter case, we191

train an inverse dynamics model (IDM) [70] to infer the corresponding actions from state transitions.192

In the policy learning setting, the model generates only actions, i.e., τ = {at+1,at+2, . . . ,at+Ta},193

where Ta is the action generation horizon. While multi-step action generation methods (e.g., DP [7])194

can also be viewed as a form of planning [71], for generality, we categorize such settings under195

the policy framework. Ada-Diffuser-Policy accommodates both variants: multi-step action196

generation (Ta > 1), as in DP, and single-step decision-making (Ta = 1), as in IDQL [10].197

4.2 Stage 1: Offline Latent Factor Identification198

Based on Theorem 1, we structure the latent inference process around temporal blocks, using short199

segments of trajectories to identify the latent context at each time step. We adopt a variational200

inference framework [72] in which the latent variable ct is inferred block-wise. The prior distribution201

is conditioned on the latent variable from the previous step and the in-block history, while the posterior202

additionally incorporates future observations. Specifically, given a trajectory block t− Tx : t+ 1,203

where Tx is the block size, we have prior pϕ(ct | ct−1), and posterior qψ(ct | xt−Tx:t+1), where x204

5

denotes the observed variables and may correspond to {s}, {s,a}, or {s,a, r}. We then optimize the205

evidence lower bound (ELBO) of the observed trajectories:206

LELBO,t = Eqψ(ct|xt−Tx:t+1) [− log pθ(xt | xt−1, ct)] +DKL (qψ(ct | xt−Tx:t+1) ∥ pϕ(ct | ct−1)) .

Here, the reconstruction term, − log pθ(xt | xt−1, ct) is instantiated based on the available observa-207

tion modalities. Specifically, (i) when only states are observed, the model reconstructs st conditioned208

on (st−1, ct); and (ii) when rewards are available, the model also reconstructs rt from (st,at, ct).209

The stage is learned through a sequential encoder and decoder (l.h.s., Fig. 2).210

4.3 Stage 2: Causal Diffusion Model211

We propose a causal diffusion model for learning the generative process described in Sec.3.1. By212

“causal,” we refer to the modeling of the true underlying data generation process, which incorporates213

two key desiderata: (1) the autoregressive process inherent in temporal sequential RL trajectories;214

and (2) the latent factor process, capturing the causal influence of the unobserved context variables215

ct on the observations (e.g., xt = [st,at, rt]). Thus, different from other diffusion-based planners or216

policies (Sec.2), we have the following designs.217

Autoregressive Denoising To model the autoregressive structure of trajectory generation, and fol-218

lowing the recent advances in autoregressive diffusion [48, 49, 57], we introduce a causal denoising219

schedule. Under this mechanism, each time step within a local temporal block is assigned a denoising220

schedule that depends both on its temporal distance from the conditioning anchor and on the inferred221

latent variables. This reflects the intuition that later time steps exhibit higher uncertainty. Specifically,222

for a trajectory of length T , we assign monotonically increasing noise levels {k1, . . . , kT }, sampled223

linearly as ki = i
TK where i ∈ {1, . . . , T} and K denotes the maximum diffusion step.224

Given the inferred latent context ĉ0:T , the model performs autoregressive denoising over the block in225

T steps. The overall denoising process is defined as:226

pθ

(
x0
0, . . . ,x

0
T−1 | xk10 , . . . ,xkTT−1, ĉ0:T

)
, (2)

where xkii denotes the noisy observation at time step i, and x0
i is the clean, denoised output.227

Specifically, the first denoising step is: pθ(x0
0,x

k1
1 , . . . ,x

kT−1

T−1 | xk10 , . . . ,xkTT−1, ĉ0:T), where the228

first observation x0 has been fully denoised and other observations are partially denoised, followed by229

the second step: pθ(x0
1,x

k1
2 , . . . ,x

kT−2

T−1 | x0
0,x

k1
1 , . . . ,x

kT−1

T−1 , ĉ0:T), and finally until all observations230

are denoised: pθ(x0
T−1 | x0

0, . . . ,x
0
T−2,x

k1
T−1, ĉ0:T).231

Denoise-and-refine Mechanism To obtain the latent context estimates ĉ0:T , one option is to use232

the pre-trained prior network pϕ from Stage 1. Theorem 1 indicates that both historical and future233

observations are required for recovering the latents. However, these future observations are not234

accessible during online inference, which results in a mismatch between identifiability requirements235

and available information. To address this challenge while preserving the causal structure of the236

generative process, we propose a denoise-and-refine mechanism that alternates between denoising237

the observable sequences and refining the latent estimates, and is applied consistently during both238

training and inference to ensure high-quality latent context modeling under partial observability.239

xK
txK

t−1

xk1
t−1

x0
t−1

x0
tx0

t−1

̂cpriort−1

̂cpostt−1

̂cpriort

̂cpriort

̂cpostt

xk2
t

xk1
t

Xk3
t+2

Xk3
t+2Xk4

t−1 Xk1
t Xk1

t+1

X0
t+2X0

t+1X0
tX0

t−1

Comparison with other autoregressive diffusion
model

• Better reflect the data generation process by

• Modelling the latent process

• Reflecting the uncertainty of
autoregressive generation

xK
t+2xK

t+1xK
txK

t−1

xk1
t−1

x0
t−1

x0
t

x0
t+1

x0
t−1

̂cpriort−1

̂cpostt−1

̂cpriort

̂cpriort

̂cpostt

̂cpriort+1

̂cpriort+1

̂cpriort+1

̂cpostt+1

̂cpostt+2

̂cpriort+2

̂cpriort+2

̂cpriort+2

̂cpriort+2

x0
t

x0
t+1

xk2
t xk3

t+1 xk4
t+2

xk1
t xk2

t+1

xk1
t+1

xk3
t+2

xk2
t+2

xk1
t+2x0

t−1

x0
t−1 x0

t x0
t+2

Figure 3: A 2-step
example of the zig-
zag sampling.

Training: Given a noisy input xktt with noise level kt, we first sample an initial240

latent context from the prior: ĉprior
t ∼ pϕ(ct | ct−1), and use it to denoise241

the observation: x̂(0)
t = ϵθ(x

kt
t , kt, ĉ

prior
t). Then we infer the latent using the242

posterior network, conditioned on a broader temporal window including future243

observations (accessible in offline data): ĉpost
t ∼ qψ(ct | xt−k:t+1), and obtain244

a refined denoised prediction: x̂(0)′
t = ϵθ(x

kt
t , kt, ĉ

post
t).245

We have two reconstruction losses: one from the prior-sampled latent, Lprior =246

∥x̂(0)
t − x0

t∥2, and one from the posterior-sampled latent, Lpost = ∥x̂(0)′
t −247

x0
t∥2. To encourage the posterior latent to produce better reconstructions,248

we introduce a contrastive improvement loss: Lcontrast = max{0,Lprior −249

Lpost}. The final objective for this denoise-and-refine step is: Ld-r = Lpost +250

λpriorLprior+λcontrastLcontrast, where λprior and λcontrast are weighting coefficients.251

Inference: During inference, future observations are not available, which prevents direct use of the252

posterior network for latent inference. To address this, we adopt a zig-zag sampling strategy that253

6

3 4 5 6 7 8 9 10 15 20 25 30 40 50100

Block Size

0.2

0.4

0.6

0.8

1.0

V
al

u
e

MSE

R2

Reward

3 4 5 6 7 8 9 10 15 20 25 30 40 50100

Block Size

0.2

0.4

0.6

0.8

1.0

V
al

u
e

MSE

R2

Reward

3 4 5 6 7 8 9 10 15 20 25 30 40 50100

Block Size

0.2

0.4

0.6

0.8

1.0

V
al

u
e

MSE

R2

Reward

3 4 5 6 7 8 9 10 15 20 25 30 40 50100

Block Size

0.2

0.4

0.6

0.8

1.0

Va
lu

e

（a） （b）

Figure 4: (a). Identification Results (i.e., Linear Probing MSE, R2) and normalized rewards on
the Cheetah environment with time-varying wind as the latent factor, evaluated across different
block sizes. (b). Results (i.e., average success rate) on planning with action-free demonstrations on
Robomimic benchmark. "AF" denotes Action-free.

combines autoregressive denoising with latent refinement. Specifically, we first sample the entire254

trajectory by applying the forward diffusion process with the maximum noise level K. We then255

perform autoregressive denoising across time.256

For each time step t, we begin by denoising xKt to an intermediate noise level k1 using ĉt sampled257

from the prior: ĉprior
t ∼ pϕ(ct | ct−1). We then obtain updated ĉt from the posterior latent distribution258

ĉpost
t ∼ qψ(ct | x0

t−k:t−1,x
k1
t ,x

k2
t+1), which is conditioned on the denoised history, the intermediate259

step with noise level k1, and the next step with noise level k2. We then use ĉpost
t as the input to further260

denoise xk1t to x0
t . An illustration of the zig-zag inference process is provided in Fig. 31.261

In summary, Ada-Diffuser provides a unified framework for planning and policy learning, which262

jointly models both observational and latent data components. It leverages autoregressive noise263

scheduling to reflect temporal structure, integrates latent context identification by the denoise-and-264

refine mechanism, and employs zig-zag sampling for online latent inference and state-action genera-265

tion. This framework accommodates a wide range of scenarios, including latent dynamics/rewards,266

learning from action-free data with latent actions, and both state- and image-based environments. All267

variants share the same core, with task-specific modifications to the model components and diffusion268

input/output (I/O). Details of these architectural and I/O variations are in Appendix H.269

5 Experiments270

In this section, we provide the empirical evaluation to answer the following questions: (1) Latent271

Identification: How well can Ada-Diffuser capture latent factors in the environment? (2)272

Learning with Latent Factors: How effective is Ada-Diffuser in planning and control when273

learning with the latent context on dynamics and reward? And can Ada-Diffuser infer latent274

actions from action-free demonstrations? (3) Learning with Environments w/o Explicit Latents: In275

environments without explicit latent factors, can modeling latent processes still bring performance276

gains? (4) Ablation Studies: What is the impact of key design choices in the framework?277

Benchmarks We consider a diverse set of benchmarks, including Mujoco-based locomotion tasks278

(Cheetah, Ant, Walker), a robot navigation task (Maze2D), and a robot arm control task279

(Franka-Kitchen) [73], all from the D4RL benchmark suite [74]. We also consider robotic280

manipulation tasks from RobotMimic [75] and LIBERO-10 [76]. A detailed description and281

illustration of these environments is provided in Appendix F. We introduce latent factors affecting282

both dynamics (cs) and reward functions (cr) in the Cheetah and Ant environments, considering two283

types of variations: episodic changes (E) and fine-grained, time-varying step-wise changes (S). The284

specific change functions for each setting are detailed in Appendix F.1. For evaluating latent action285

modeling, we follow the setup from LDP [77], using action-free, pixel-based demonstrations from286

the LIBERO benchmark [76].287

Baselines We compare Ada-Diffuser with a diverse set of baselines for fair and comprehensive288

evaluation. (1) Vanilla diffusion models: For planning, we consider Diffuser [5] and DD [6]. For289

policy learning, we include DP and IDQL [10]. We also evaluate LDCQ [78], which learns a290

latent skill space and optimizes a value function conditioned on both states and latent skills. (2)291

Latent context modeling: We include MetaDiffuser [53] that learns contextual representations from292

multiple environments. We also consider using LILAC [29] and DynaMITE [45] which models293

1A larger illustration with 4 steps are given in Appendix Fig. A2.

7

Figure 5: Results comparing Ada-Diffuser with baselines in environments without explicitly
designed latent factors. Complete results are provided in Appendix Table A5–A8. Our diffusion
planner/policy is based on the design choices of DD (Kitchen, Maze2D, Walker) or DP (LIBERO).

Environment Diffuser DF MetaDiffuser Diffuser
+ DynaMITE

Diffuser
+ LILAC Ours

Cheetah-Wind-E (cs) -120.4 ± 12.7 -105.8 ± 9.6 -89.7 ± 6.5 -79.2 ± 11.0 -95.3± 7.4 -68.9± 7.6
Cheetah-Wind-S (cs) -148.5± 9.8 -102.0± 10.2 -106.8± 11.4 -94.3± 9.6 -105.6± 14.5 -73.5± 8.7

Cheetah-Vel-E (cr) -102.4± 18.2 -85.6± 18.3 -69.2± 7.5 -76.3± 11.7 -62.6± 11.1 -45.8± 9.5
Ant-Dir-E (cr) 188.6± 39.2 195.4± 47.0 245.9± 41.0 262.8± 27.5 229.4± 32.6 285.3± 24.5

Table 1: Results on Ada-Diffuser-Planner with latent factors that affects dynamics and
rewards. cs and cs indicate the changes on dynamics and reward, E and S represent the episodic and
time-step changes. All results are averaged over 5 random seeds.

nonstationarity in RL through latent context learning using belief states. For a fair comparison, we294

integrate their context modules into diffusion planners and policies as plug-in components (detailed295

analysis in Appendix H.1). (3) Latent action modeling: We compare with LDP [77] with action-free296

demonstrations for planning.297

Architecture Choices For latent factor identification, we use GRU [79] embedding with MLP layers298

as both prior and posterior encoders to produce Gaussian distribution over latents. For decoders,299

we use MLP layers. For planning and policy learning, we use UNet [80] or Transformers [81] as300

denoising networks and use MLPs to learn the IDM. For image-based settings, we use VAE [72]301

pretrained on demonstrations. All detailed hyperparameters are given in Appendix D.2.302

Results on Latent Identification To verify our identification theory, we evaluate model performance303

under different block sizes that contain varying amounts of temporal context. We include settings304

where all blocks have sufficient observations, as well as a challenging case with insufficient obser-305

vations (i.e., without access to future observations). To quantify the quality of the learned latent306

representations, we adopt linear probing and the coefficient of determination R2 as the evaluation307

metric. The results, together with normalized results, are shown in Fig. 4(a). The yellow region308

indicates settings with insufficient observations, resulting in lower identification results. The purple309

region corresponds to sufficient observations and yields relatively strong performance, and the green310

region reflects larger block sizes, which lead to degraded results due to redundant information or311

inherent difficulty for optimization. Notably, the reward is positively associated with the accuracy of312

latent identification, validating the importance of identifying latent factors in RL trajectories.313

Results on Decision-making Group I: Latent factors on dynamics and reward: Table 1-2 presents314

the results of planning and policy learning under latent factors that affect dynamics and rewards315

in locomotion tasks. Additional results, including oracle variants and meta-learned versions of316

Ada-Diffuser that use ground-truth latents as input, are provided in Appendix Table A3–A4.317

From the results, we observe that Ada-Diffuser consistently achieves the best performance,318

with a significant margin over all baselines. In particular, it outperforms Diffusion planners and319

policies even when those models are enhanced with latent context modules such as DynaMITE and320

LILAC, which are most comparable to our setting. Furthermore, Ada-Diffuser outperforms DF,321

highlighting the effectiveness of our causal diffusion model coupled with latent context identification.322

323
Group II: Latent Actions: Following Xie et al. [77], we consider learning from action-free demonstra-324

tion data, where actions are treated as latent factors to be inferred. We adopt the same setup as in [77],325

using a pre-trained visual encoder obtained via a VAE to learn the latent space from pixel observations.326

8

Environment DP DP
+ DynaMITE

Ours
+ DP IDQL IDQL

+ DynaMITE
Ours

+ IDQL

Cheetah-Wind-E (cs) -104.8 ± 10.9 -72.2± 5.9 -58.5± 4.6 -97.5± 9.4 -59.0± 11.2 -48.5± 7.9
Cheetah-Wind-S (cs) -120.6± 11.5 -76.5± 15.6 -52.9± 9.8 -87.8± 12.2 -63.4± 6.7 -48.0± 7.2

Cheetah-Vel-E (cr) -87.9± 6.5 -72.7± 5.8 -41.0± 7.2 -80.2± 11.4 -59.4± 6.5 -38.6± 7.7
Ant-Dir-E (cr) 182.5± 41.2 275.2± 27.0 290.4± 49.4 204.6± 25.6 269.3± 29.5 295.8± 32.7

Table 2: Results on Ada-Diffuser-Policy with latent factors. All results are averaged over 5
random seeds.

We then train a latent planner and an IDM using a diffusion-based approach. Unlike prior work,327

our diffusion-based latent planner additionally incorporates latent factors c to model latent context.328

Importantly, we train only the planner using additional action-free demonstrations. Detailed training329

procedures are provided in Appendix G.1. Results on several tasks in Robomimic benchmark show330

that we can bring improvements on all tasks via modeling the latent process supplementary to the331

latent planner in [77]. Here, the IDM is trained solely on expert demonstrations. Complete results are332

provided in Appendix Table A2.333

Group III: Environments w/o Explicitly Designed Latents: Crucially, in this scenario, the latent334

variable c effectively serves as a form of Bayesian filtering over the observed trajectories, capturing335

the inherent stochasticity in the data (a more detailed discussion in Appendix D.3). Such variability336

commonly arises from system noise, expert action noise, or high-level unobserved factors. The337

results, shown in Fig. 5 (full results provided in Appendix Table A5–A8), support this interpretation.338

Even in environments without explicitly designed latent contexts, incorporating latent modeling339

allows Ada-Diffuser to achieve performance that is comparable to or better than these baselines.340

These findings suggest that our framework can consistently capture implicit latent process in the data,341

improving both trajectory modeling and downstream planning.342

Cases Cheetah (cs) LIBERO

Original -73.5 93.4
w/o refine -82.0 90.2
w/o zig-zag -91.6 91.6
same NS -89.7 85.2
random NS -84.6 88.5

Table 3: Ablation on Design
Choices on Cheetah-Wind-S (plan-
ner) and LIBERO (DP-policy).

Ablation Studies We conduct ablation studies to evaluate the343

contributions of key components in our framework. For latent344

factor identification, Fig. 4(a) shows the effect of different345

temporal block sizes, illustrating the benefit of incorporating346

future observations during inference. For the causal diffusion347

model, we examine the impact of the following design choices:348

(i) removing the refinement step using posterior samples of ĉ349

during training (w/o refine); (ii) removing zig-zag sampling350

and relying solely on ĉ (w/o zig-zag); (iii) replacing the causal351

noise schedule with a fixed noise level across time steps (vanilla352

diffusion) or with random noise scaling as in DF [48] (same NS, random NS). The results in Table 3353

demonstrate the effectiveness of these modules in our framework in both settings: with and without354

explicit latent factors. Additional ablations are provided in Appendix I.1, including further evaluations355

on each module and training/inference time.356

6 Conclusions357

In this work, we demonstrate that identifying latent factors from sequential observations is criti-358

cal for effective decision-making. We provide theoretical results that establish conditions under359

which latent variables can be identified using small temporal blocks of observations. This insight360

enables a principled integration of latent identification into a diffusion-based generative framework,361

allowing us to capture the underlying causal process while maintaining scalability. Our proposed362

Ada-Diffuser is broadly applicable to a variety of settings, including planning and control tasks363

with or without explicit latent structure, and even action-free demonstrations. Empirical results across364

diverse benchmarks show substantial improvements, validating the effectiveness of our method not365

only in environments with designed latent factors but also in general settings where latent structure is366

implicit but influential.367

Limitations and future work One current limitation of our approach is its relatively slow inference368

time, due to the iterative nature of the sampling process. This may be mitigated by applying369

acceleration techniques such as parallel sampling [82]. In future work, we aim to extend our370

framework to other decision-making foundation models, including vision-language-action (VLA)371

models [14–22].372

9

References373

[1] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in374

partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.375

[2] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter376

Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning377

via sequence modeling. Advances in neural information processing systems, 34:15084–15097,378

2021.379

[3] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international380

conference on machine learning, pages 27042–27059. PMLR, 2022.381

[4] Deqian Kong, Dehong Xu, Minglu Zhao, Bo Pang, Jianwen Xie, Andrew Lizarraga, Yuhao382

Huang, Sirui Xie, and Ying Nian Wu. Latent plan transformer for trajectory abstraction:383

Planning as latent space inference. Advances in Neural Information Processing Systems, 37:384

123379–123401, 2024.385

[5] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion386

for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.387

[6] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit388

Agrawal. Is conditional generative modeling all you need for decision-making? arXiv389

preprint arXiv:2211.15657, 2022.390

[7] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ391

Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.392

The International Journal of Robotics Research, page 02783649241273668, 2023.393

[8] Allen Z. Ren, Justin Lidard, Lars Lien Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha394

Majumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy395

optimization. In The Thirteenth International Conference on Learning Representations, 2025.396

URL https://openreview.net/forum?id=mEpqHvbD2h.397

[9] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive398

policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.399

[10] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey400

Levine. Idql: Implicit q-learning as an actor-critic method with diffusion policies, 2023.401

[11] Yuhui Chen, Haoran Li, and Dongbin Zhao. Boosting continuous control with consistency402

policy. arXiv preprint arXiv:2310.06343, 2023.403

[12] Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive404

energy prediction for exact energy-guided diffusion sampling in offline reinforcement learning.405

In International Conference on Machine Learning, pages 22825–22855. PMLR, 2023.406

[13] Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model:407

Future modeling beyond step-by-step rollout for offline reinforcement learning. arXiv preprint408

arXiv:2402.03570, 2024.409

[14] Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet,410

Tianhe Yu, Pieter Abbeel, Joshua B Tenenbaum, et al. Video language planning. arXiv preprint411

arXiv:2310.10625, 2023.412

[15] Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans,413

and Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in414

neural information processing systems, 36:9156–9172, 2023.415

[16] Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and416

Pieter Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114,417

2023.418

10

https://openreview.net/forum?id=mEpqHvbD2h

[17] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep419

Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot420

policy. arXiv preprint arXiv:2405.12213, 2024.421

[18] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,422

Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source423

vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.424

[19] Shuang Li, Yihuai Gao, Dorsa Sadigh, and Shuran Song. Unified video action model. arXiv425

preprint arXiv:2503.00200, 2025.426

[20] Chuning Zhu, Raymond Yu, Siyuan Feng, Benjamin Burchfiel, Paarth Shah, and Abhishek427

Gupta. Unified world models: Coupling video and action diffusion for pretraining on large428

robotic datasets. arXiv preprint arXiv:2504.02792, 2025.429

[21] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo430

Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0: A vision-language-action flow431

model for general robot control. arXiv preprint arXiv:2410.24164, 2024.432

[22] Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny433

Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π_{0.5}: a vision-434

language-action model with open-world generalization. arXiv preprint arXiv:2504.16054,435

2025.436

[23] Mikko Lauri, David Hsu, and Joni Pajarinen. Partially observable markov decision processes437

in robotics: A survey. IEEE Transactions on Robotics, 39(1):21–40, 2022.438

[24] Zhiyu Huang, Chen Tang, Chen Lv, Masayoshi Tomizuka, and Wei Zhan. Learning online439

belief prediction for efficient pomdp planning in autonomous driving. IEEE Robotics and440

Automation Letters, 2024.441

[25] Milos Hauskrecht and Hamish Fraser. Planning treatment of ischemic heart disease with442

partially observable markov decision processes. Artificial intelligence in medicine, 18(3):443

221–244, 2000.444

[26] Daniel E Ehrmann, Shalmali Joshi, Sebastian D Goodfellow, Mjaye L Mazwi, and Danny445

Eytan. Making machine learning matter to clinicians: model actionability in medical decision-446

making. NPJ Digital Medicine, 6(1):7, 2023.447

[27] Gianluca Brero, Alon Eden, Darshan Chakrabarti, Matthias Gerstgrasser, Amy Greenwald,448

Vincent Li, and David C Parkes. Stackelberg pomdp: A reinforcement learning approach for449

economic design. arXiv preprint arXiv:2210.03852, 2022.450

[28] Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis,451

Yarin Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep rl452

via meta-learning. Journal of Machine Learning Research, 22(289):1–39, 2021.453

[29] Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst continual454

structured non-stationarity. In Marina Meila and Tong Zhang, editors, Proceedings of the455

38th International Conference on Machine Learning, volume 139 of Proceedings of Machine456

Learning Research, pages 11393–11403. PMLR, 18–24 Jul 2021.457

[30] Gokul Swamy, Sanjiban Choudhury, J Bagnell, and Steven Z Wu. Sequence model imitation458

learning with unobserved contexts. Advances in Neural Information Processing Systems, 35:459

17665–17676, 2022.460

[31] Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Data quality in imitation learning. Advances461

in neural information processing systems, 36:80375–80395, 2023.462

[32] Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn. Decomposing the generalization gap in463

imitation learning for visual robotic manipulation. In 2024 IEEE International Conference on464

Robotics and Automation (ICRA), pages 3153–3160. IEEE, 2024.465

11

[33] Joey Hejna, Chethan Bhateja, Yichen Jiang, Karl Pertsch, and Dorsa Sadigh. Re-mix: Op-466

timizing data mixtures for large scale imitation learning. arXiv preprint arXiv:2408.14037,467

2024.468

[34] Jensen Gao, Annie Xie, Ted Xiao, Chelsea Finn, and Dorsa Sadigh. Efficient data collection469

for robotic manipulation via compositional generalization. arXiv preprint arXiv:2403.05110,470

2024.471

[35] Lirui Wang, Xinlei Chen, Jialiang Zhao, and Kaiming He. Scaling proprioceptive-visual learn-472

ing with heterogeneous pre-trained transformers. Advances in Neural Information Processing473

Systems, 37:124420–124450, 2024.474

[36] Tanmay Gangwani, Joel Lehman, Qiang Liu, and Jian Peng. Learning belief representations475

for imitation learning in pomdps. In uncertainty in artificial intelligence, pages 1061–1071.476

PMLR, 2020.477

[37] Milos Hauskrecht. Value-function approximations for partially observable markov decision478

processes. Journal of artificial intelligence research, 13:33–94, 2000.479

[38] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires, and Rémi480

Munos. Neural predictive belief representations. arXiv preprint arXiv:1811.06407, 2018.481

[39] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep482

variational reinforcement learning for pomdps. In International conference on machine483

learning, pages 2117–2126. PMLR, 2018.484

[40] Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and Theophane Weber.485

Temporal difference variational auto-encoder. arXiv preprint arXiv:1806.03107, 2018.486

[41] Arun Venkatraman, Nicholas Rhinehart, Wen Sun, Lerrel Pinto, Martial Hebert, Byron Boots,487

Kris Kitani, and J Bagnell. Predictive-state decoders: Encoding the future into recurrent488

networks. Advances in Neural Information Processing Systems, 30, 2017.489

[42] Nathanael Bosch, Jan Achterhold, Laura Leal-Taixé, and Jörg Stückler. Planning from images490

with deep latent gaussian process dynamics. In Learning for Dynamics and Control, pages491

640–650. PMLR, 2020.492

[43] Cuong C Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Probabilistic task modelling for493

meta-learning. In Uncertainty in Artificial Intelligence, pages 781–791. PMLR, 2021.494

[44] Andrew Wang, Andrew C Li, Toryn Q Klassen, Rodrigo Toro Icarte, and Sheila A McIlraith.495

Learning belief representations for partially observable deep rl. In International Conference496

on Machine Learning, pages 35970–35988. PMLR, 2023.497

[45] Anthony Liang, Guy Tennenholtz, Chih-wei Hsu, Yinlam Chow, Erdem Bıyık, and Craig498

Boutilier. Dynamite-rl: A dynamic model for improved temporal meta-reinforcement learning.499

arXiv preprint arXiv:2402.15957, 2024.500

[46] Minseung Lee, Hyeonseo Cho, and Sungjin Ahn. Pomdiffuser: Long-memory meets long-501

planning for pomdps.502

[47] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and503

David J Fleet. Video diffusion models. Advances in Neural Information Processing Systems,504

35:8633–8646, 2022.505

[48] Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent506

Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. Advances507

in Neural Information Processing Systems, 37:24081–24125, 2024.508

[49] Desai Xie, Zhan Xu, Yicong Hong, Hao Tan, Difan Liu, Feng Liu, Arie Kaufman, and Yang509

Zhou. Progressive autoregressive video diffusion models. arXiv preprint arXiv:2410.08151,510

2024.511

[50] Sand-AI. Magi-1: Autoregressive video generation at scale, 2025. URL https://static.512

magi.world/static/files/MAGI_1.pdf.513

12

https://static.magi.world/static/files/MAGI_1.pdf
https://static.magi.world/static/files/MAGI_1.pdf
https://static.magi.world/static/files/MAGI_1.pdf

[51] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua514

Bengio, and Bernhard Schölkopf. Recurrent independent mechanisms. In International515

Conference on Learning Representations (ICLR), 2021. URL https://openreview.516

net/forum?id=mLcmdlEUxy-.517

[52] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient518

off-policy meta-reinforcement learning via probabilistic context variables. In International519

conference on machine learning, pages 5331–5340. PMLR, 2019.520

[53] Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadif-521

fuser: Diffusion model as conditional planner for offline meta-rl. In International Conference522

on Machine Learning, pages 26087–26105. PMLR, 2023.523

[54] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun524

Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.525

arXiv preprint arXiv:2412.20404, 2024.526

[55] Kaifeng Gao, Jiaxin Shi, Hanwang Zhang, Chunping Wang, and Jun Xiao. Vid-gpt: In-527

troducing gpt-style autoregressive generation in video diffusion models. arXiv preprint528

arXiv:2406.10981, 2024.529

[56] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-530

minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:531

Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127,532

2023.533

[57] Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian534

Guo, Nan Duan, and Weizhu Chen. Ar-diffusion: Auto-regressive diffusion model for text535

generation. Advances in Neural Information Processing Systems, 36:39957–39974, 2023.536

[58] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.537

Advances in neural information processing systems, 34:8780–8794, 2021.538

[59] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint539

arXiv:2207.12598, 2022.540

[60] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances541

in neural information processing systems, 33:6840–6851, 2020.542

[61] Judea Pearl. Causal inference. Causality: objectives and assessment, pages 39–58, 2010.543

[62] Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes: A544

semiparametric regression approach for discovering latent task parametrizations. In IJCAI:545

proceedings of the conference, volume 2016, page 1432, 2016.546

[63] Christian Perez, Felipe Petroski Such, and Theofanis Karaletsos. Generalized hidden param-547

eter mdps: Transferable model-based rl in a handful of trials. In Proceedings of the AAAI548

Conference on Artificial Intelligence, volume 34, pages 5403–5411, 2020.549

[64] James John Martin. Some Bayesian decision problems in a Markov chain. PhD thesis,550

Massachusetts Institute of Technology, 1965.551

[65] Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive552

Markov decision processes. University of Massachusetts Amherst, 2002.553

[66] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution554

algorithms for factored mdps. Journal of Artificial Intelligence Research, 19:399–468, 2003.555

[67] Nelson Dunford and Jacob T. Schwartz. Linear Operators. John Wiley & Sons, New York,556

1971.557

[68] Yingyao Hu and Susanne M Schennach. Instrumental variable treatment of nonclassical558

measurement error models. Econometrica, 76(1):195–216, 2008.559

13

https://openreview.net/forum?id=mLcmdlEUxy-
https://openreview.net/forum?id=mLcmdlEUxy-
https://openreview.net/forum?id=mLcmdlEUxy-

[69] Yingyao Hu and Matthew Shum. Nonparametric identification of dynamic models with560

unobserved state variables. Journal of Econometrics, 171(1):32–44, 2012.561

[70] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit562

Agrawal. Is conditional generative modeling all you need for decision making? In The563

Eleventh International Conference on Learning Representations, 2023. URL https://564

openreview.net/forum?id=sP1fo2K9DFG.565

[71] Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo,566

Tingting Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey.567

arXiv preprint arXiv:2311.01223, 2023.568

[72] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. The International569

Conference on Learning Representations (ICLR), 2014.570

[73] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay571

policy learning: Solving long-horizon tasks via imitation and reinforcement learning. In572

Proceedings of the Conference on Robot Learning (CoRL). PMLR, 2020.573

[74] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for574

deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.575

[75] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,576

Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning577

from offline human demonstrations for robot manipulation. In Conference on Robot Learning578

(CoRL), 2021.579

[76] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone.580

Libero: Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural581

Information Processing Systems (NeurIPS), 36, 2023.582

[77] Amber Xie, Oleh Rybkin, Dorsa Sadigh, and Chelsea Finn. Latent diffusion planning for583

imitation learning. International Conference on Machine Learning (ICML), 2025.584

[78] Siddarth Venkatraman, Shivesh Khaitan, Ravi Tej Akella, John Dolan, Jeff Schneider, and585

Glen Berseth. Reasoning with latent diffusion in offline reinforcement learning. In The586

Twelfth International Conference on Learning Representations, 2024. URL https://587

openreview.net/forum?id=tGQirjzddO.588

[79] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,589

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–590

decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical591

Methods in Natural Language Processing (EMNLP), pages 1724–1734, 2014.592

[80] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks593

for biomedical image segmentation. In Medical image computing and computer-assisted594

intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,595

2015, proceedings, part III 18, pages 234–241. Springer, 2015.596

[81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,597

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information598

processing systems, 30, 2017.599

[82] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling600

of diffusion models. Advances in Neural Information Processing Systems, 36:4263–4276,601

2023.602

[83] Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model603

predictive control. arXiv preprint arXiv:2203.04955, 2022.604

[84] Raymond J Carroll, Xiaohong Chen, and Yingyao Hu. Identification and estimation of nonlin-605

ear models using two samples with nonclassical measurement errors. Journal of nonparametric606

statistics, 22(4):379–399, 2010.607

14

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=tGQirjzddO
https://openreview.net/forum?id=tGQirjzddO
https://openreview.net/forum?id=tGQirjzddO

[85] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes.608

arXiv preprint arXiv:1502.02259, 2015.609

[86] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with610

context-based representations. In International Conference on Machine Learning, pages611

9767–9779. PMLR, 2021.612

[87] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint613

arXiv:1412.6980, 2014.614

[88] Zhe Chen et al. Bayesian filtering: From kalman filters to particle filters, and beyond. Statistics,615

182(1):1–69, 2003.616

[89] Lawrence Rabiner and Biinghwang Juang. An introduction to hidden markov models. ieee617

assp magazine, 3(1):4–16, 1986.618

[90] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1.619

MIT press Cambridge, 1998.620

[91] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning:621

A survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.622

[92] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation.623

Neural computation, 3(1):88–97, 1991.624

[93] Wenhao Li. Efficient planning with latent diffusion. In The Twelfth International Conference625

on Learning Representations, 2024. URL https://openreview.net/forum?id=626

btpgDo4u4j.627

[94] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdif-628

fuser: Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877,629

2023.630

[95] Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao,631

and Xuelong Li. Diffusion model is an effective planner and data synthesizer for multi-task632

reinforcement learning. Advances in neural information processing systems, 36:64896–64917,633

2023.634

[96] Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, Ramin Hasani, Mathias Lechner, and Daniela635

Rus. Safediffuser: Safe planning with diffusion probabilistic models. In The Thirteenth In-636

ternational Conference on Learning Representations, 2025. URL https://openreview.637

net/forum?id=ig2wk7kK9J.638

[97] Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin Sapp, Yin Zhou, Dragomir Anguelov,639

et al. Motiondiffuser: Controllable multi-agent motion prediction using diffusion. In Pro-640

ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages641

9644–9653, 2023.642

[98] Anurag Ajay, Seungwook Han, Yilun Du, Shaung Li, Abhi Gupta, Tommi Jaakkola, Josh643

Tenenbaum, Leslie Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional founda-644

tion models for hierarchical planning. arXiv preprint arXiv:2309.08587, 2023.645

[99] Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo.646

Skilldiffuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task647

execution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern648

Recognition, pages 16467–16476, 2024.649

[100] Zibin Dong, Yifu Yuan, Jianye HAO, Fei Ni, Yao Mu, YAN ZHENG, Yujing Hu, Tangjie650

Lv, Changjie Fan, and Zhipeng Hu. Aligndiff: Aligning diverse human preferences via651

behavior-customisable diffusion model. In The Twelfth International Conference on Learning652

Representations, 2024. URL https://openreview.net/forum?id=bxfKIYfHyx.653

[101] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,654

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.655

15

https://openreview.net/forum?id=btpgDo4u4j
https://openreview.net/forum?id=btpgDo4u4j
https://openreview.net/forum?id=btpgDo4u4j
https://openreview.net/forum?id=ig2wk7kK9J
https://openreview.net/forum?id=ig2wk7kK9J
https://openreview.net/forum?id=ig2wk7kK9J
https://openreview.net/forum?id=bxfKIYfHyx

Appendix of Ada-Diffuser: Latent-Aware Adaptive1

Diffusion for Decision-Making2

A Discussions and Overview 23

A.1 Broader Impact . 24

A.2 Discussions on the Core Idea . 25

A.3 Discussions on the Theoretical Assumptions and Results 36

A.4 Discussions on the Model Design . 47

A.5 Overview . 58

B Theory 69

B.1 Notation List . 610

B.2 Proof of Theorem 1 . 711

B.3 Discussion on Assumptions . 1012

B.4 ELBO of Ada-Diffuser . 1013

C Summary on Different MDPs 1214

C.1 Contexutal MDPs . 1215

C.2 Hidden-Parameter MDPs . 1216

C.3 Discussions and Comparisons . 1317

D Details on Ada-Diffuser 1418

D.1 Full Algorithm and Results . 1419

D.2 Architecture Choices and Hyper-parameters . 1520

D.3 Connection to Bayesian Filtering . 1821

E Extended Related Works 1822

E.1 Diffusion Model-based Decision-making . 1823

E.2 Latent Belief State Learning in POMDP . 1924

E.3 Autoregressive Diffusion Models . 1925

F Benchmark Settings and Illustrations 2026

F.1 Latent Change Factors Design . 2027

F.2 Overview on Other Benchmarks . 2128

G Other Details on Ada-Diffuser 2229

G.1 Latent Action Planner . 2230

G.2 Noise Scheduling . 2231

H Specific Design Choices for Baselines 2232

1

H.1 Details on LILAC and DynaMITE . 2233

H.2 Details on Diffusion Forcing . 2334

I Ablation Analysis 2335

I.1 Ablation Results . 2336

I.2 Training/Inference Time Analysis . 2437

A Discussions and Overview38

In this section, we expand on the design and motivation behind Ada-Diffuser, including the39

rationale for modeling latent factors in decision-making, key architectural choices, and additional40

analysis of the experimental results presented in Section 5. We then provide an overview of the41

remaining contents of this appendix.42

A.1 Broader Impact43

Our work aims to identify and leverage latent processes in generative decision-making, with applica-44

tions in real-world domains such as robotics and healthcare. While these tasks may entail potential45

societal risks, we do not believe any specific concerns need to be highlighted here. Instead, by uncov-46

ering and modeling the underlying hidden processes, our approach promotes greater transparency in47

decision-making, which can ultimately lead to more reliable and trustworthy outcomes.48

A.2 Discussions on the Core Idea49

Q1: On Latent Modeling. Why is it necessary to model latent processes when we already have
access to a large amount of demonstration data?

50

In many decision-making systems, there exist unobservable variables that influence both the dynamics51

and the reward structure. More generally, these latent variables often evolve over time. Such scenarios52

are common in real-world settings, for example, in robotic control, system dynamics can be affected53

by external forces (e.g., wind, friction), or by varying user demands (e.g., different target positions).54

In these cases, learning an optimal policy requires conditioning on the latent factors, especially55

when they are non-stationary or when transferring to new domains. Prior work has demonstrated the56

importance of latent variable modeling in both reinforcement learning (RL) and imitation learning57

(IL) [28, 45, 43, 52, 53, 29].58

Even with access to large demonstration datasets, it remains difficult to ensure sufficient coverage59

over the full space of environmental or task-specific latent factors relevant to decision-making. This60

limitation has been widely acknowledged in recent efforts focused on analyzing data quality and61

designing data collection protocols to promote generalization [31–34]. However, most of these62

works target fixed or task-specific latent variables. In contrast, we consider a more general setting63

where latent factors evolve over time and are not predefined. Our framework provides theoretical64

guarantees for identifying such latent variables from partial observations and seamlessly integrates65

this identification process into diffusion models, enabling scalability across complex decision-making66

tasks.67

Q2: On the Scenarios w/o Explicit Latents. What does latent modeling represent when no
explicit latent factors are defined, and why can it still benefit decision-making?

68

Even in settings where all task-relevant observations are available, e.g., in locomotion tasks where full69

physical state information is provided, or in robotic manipulation with access to both proprioceptive70

and visual inputs, there may still exist underlying processes that are not directly observed. These71

2

include domain-specific factors such as external forces (e.g., wind) or dynamically changing task72

goals (e.g., target positions), which can be viewed as implicit latent variables.73

In the extreme case where such factors are also fully observed, latent modeling can still offer74

significant benefits. Specifically, it can capture residual stochasticity present in the environment or75

demonstration data, serving to explain variability not accounted for by observable features. The76

model can then identify meaningful structure from irrelevant or noisy variations, for instance, filtering77

out visual background artifacts that are not predictive of dynamics or optimal actions.78

Moreover, since both the dynamics and optimal action distributions are typically stochastic rather79

than deterministic functions of the observed states, modeling latent processes helps approximate these80

stochastic mappings more effectively. By doing so, latent modeling supports improved representation81

learning, generative modeling, and planning, similar to Bayesian filtering, by structuring uncertainty82

and capturing influential variation in the decision-making process.83

Q3: On the Identification Theory. What does the identification theory establish, and how does
it inform algorithm design?

84

The identification theory (Theorem 1) establishes that the distribution over latent variables can be85

provably recovered from observable trajectories using only a small temporal window, specifically, a86

small temporal block of four time steps. This provides a general non-parametric theoretical guarantee87

that latent factors can be identified without requiring strong inductive biases or restrictive assumptions88

on the model class or functional form.89

This “four-step” result has direct implications for algorithm design. It suggests that latent identification90

can be effectively performed using a short temporal block, which aligns naturally with block-wise91

generative modeling approaches such as diffusion models. These models operate over segments or92

chunks of data, and our theoretical results justify using local temporal blocks to infer latent variables93

in a principled and scalable manner.94

A.3 Discussions on the Theoretical Assumptions and Results95

Q4: On the Assumptions. What do Assumption 2 (Distributional Variability) and Assumption 3
(Uniqueness of Spectral Decomposition) mean, and why are they considered mild?

96

We expand on the intuition and practical relevance of these two assumptions below.97

Distributional Variability (Assumption 2) refers to the requirement that the conditional distributions98

p(xt−2 | xt+1), p(xt+1 | xt, ct), and p(xt | xt−2,xt−1)

are sufficiently sensitive to variations in their input. That is, for different input pairs within a local99

neighborhood, the output distributions differ meaningfully, ensuring the system exhibits enough100

variability for identification. This assumption aligns with real-world decision-making settings (e.g.,101

locomotion or robotic manipulation), where changes in inputs such as physical state, control policy,102

or reward function lead to observable changes in output distributions.103

Uniqueness of Spectral Decomposition (Assumption 3) builds on this by ensuring that changes in the104

latent variable ct induce distinct influences on the transition dynamics, specifically on the mapping105

from xt−1 to xt. To formalize this, we consider the operator k:106

k(xt, x̄t,xt−1, x̄t−1, ct) =
p(xt | xt−1, ct) · p(x̄t | x̄t−1, ct)

p(x̄t | xt−1, ct) · p(xt | x̄t−1, ct)
, (A1)

which separates into two multiplicative components:107

k1 =
p(xt | xt−1, ct)

p(xt | x̄t−1, ct)
, (A2)

k2 =
p(x̄t | x̄t−1, ct)

p(x̄t | xt−1, ct)
. (A3)

Here, k1 and k2 measure how changes in historical inputs affect the transition distribution at the108

current time step. The assumption requires that for any two distinct values of ct, the corresponding109

3

operator k is different, indicating that the latent variable has a sufficiently strong influence on the110

system dynamics.111

Since x̄ is in the neighborhood of x, this formulation effectively captures second-order changes112

in the transition dynamics with respect to the latent variable ct. This reflects many real-world RL113

systems, where even unobservable latent factors (e.g., wind speed or goal target) cause noticeable and114

structured changes in transition behavior over time, for instance, by considering velocity as states.115

In summary, these two assumptions are not only theoretically necessary for identification, but also116

naturally hold in many RL and control systems. They justify the need to explicitly model and identify117

latent variables, as such variables often induce meaningful and structured changes in both dynamics118

and optimal decision-making behavior.119

Q5: On the Identification of Posterior Distribution and up to the Invertible Function
(Theorem 1). Why do we aim to identify the posterior distribution over latent variables, and
what is the role of the invertible function h between the estimated and true latents?

120

Theorem 1 establishes that the posterior distribution over latent factors given surrounding observations,121

p(ct | xt−2:t+1), is identifiable up to an invertible transformation. That is, the estimated latent ĉt122

satisfies ĉt = h(ct) for some invertible function h.123

This form of identifiability is sufficient for downstream tasks such as dynamics modeling, planning,124

and control. Specifically, the learned dynamics or policy can be composed with h−1 without loss125

of expressiveness or utility. Since we only need to condition on the inferred latent ĉt to perform126

these tasks, any invertible transformation of the latent space preserves the representational capacity127

required for decision-making. In other words, although we may not recover the true latent variable ct128

exactly, the recovered representation ĉt contains the same information and can be used equivalently129

in practice.130

Therefore, identifying the posterior distribution (up to an invertible transformation) is both theo-131

retically meaningful and practically sufficient for learning accurate dynamics models and optimal132

policies.133

A.4 Discussions on the Model Design134

Q6: On Different Settings (Planning and Policy). How is Ada-Diffuser applied to both
planning and policy learning settings?

135

Ada-Diffuser is designed as a unified and generic framework that accommodates different types136

of inputs x (e.g., states, state-action pairs) and outputs (e.g., actions, trajectories, or state sequences).137

This flexibility allows it to support a wide range of planning and policy learning paradigms. We138

summarize four representative settings below:139

• Planning with state-action generation: The model generates both states and actions, with140

latent variables influencing dynamics or rewards. This setting aligns with prior work such as141

Diffuser [5].142

• Planning with state-only generation: The model generates future states, and an inverse143

dynamics model is used to recover the corresponding actions. This setup follows Decision144

Diffuser [70].145

• Planning from action-free demonstrations: Only state sequences are available, and latent146

variables are assumed to capture high-level behaviors or skills. This setting extends latent147

diffusion planning [77].148

• Policy learning: The model generates actions conditioned on the current or recent history149

of states. This includes multi-step action generation (as in Diffusion Policy [7]) and one-step150

action generation (as in Implicit Diffusion Q-Learning, IDQL [83]). In both cases, latent151

factors may affect the underlying dynamics or rewards.152

These diverse settings demonstrate the universality of our framework and highlight that uncovering153

latent structure is a broadly applicable and critical problem in generative decision-making.154

4

Q7: On the Latent Identification. How is Stage 1 (Latent Identification) trained, and does it
introduce additional computational overhead?

155

In Stage 1, we train the latent identification module using an offline dataset, as commonly done in156

offline RL and imitation learning tasks. Specifically, we employ a lightweight variational autoencoder157

(VAE) to optimize the ELBO defined in Section 4.2. Empirically, this stage introduces minimal158

computational overhead (Appendix I.2). We further provide an ablation study in Appendix I.2159

showing the impact of the number of training samples on the effectiveness of the latent identification160

module.161

Q8: On the Temporal Block Design. How does this reflect Theorem 1, and why do we not use
exactly four steps in practice?

162

Our approach reflects the theoretical result in Theorem 1 by identifying latent variables using small163

temporal blocks in both Stage 1 and Stage 2. In Stage 1, we segment trajectories into local blocks164

and optimize the ELBO to learn the posterior over latent variables. In Stage 2, we apply block-wise165

refinement to improve the posterior estimates using both past and one-step future observations,166

making a more accurate identification than using the prior alone.167

While Theorem 1 shows that four consecutive time steps are sufficient for identifiability in principle,168

we do not strictly limit the block size to four in practice. Empirically, we find that using slightly larger169

blocks (typically between 6 and 20 steps) leads to more stable optimization and better performance.170

Our ablations in Appendix I.1 show that without access to future observations, identifiability degrades,171

aligning with the theory.172

We treat the "four-step" condition not as a strict architectural constraint but as a theoretical justification173

(sufficient condition) for using small temporal blocks. The optimal number of steps in practice may174

vary depending on data properties, task complexity, and model capacity.175

Q9: On the Refinement Step. Why is the refinement step necessary, how does it work, and does
it introduce additional computational overhead?

176

The refinement step is motivated by the identification theory, which suggests that incorporating the177

current and future observations (other than only using historical ones) allows the model to infer178

a more informative posterior over latent variables than relying on the prior alone. This posterior179

refinement helps the model better capture latent dynamics by leveraging richer temporal context.180

During training, the refinement step encourages the model to extract meaningful information from the181

posterior. Since Stage 1 optimizes the ELBO, the learned prior is already aligned with the posterior182

to some extent. This prevents the prior from collapsing into a trivial solution. The refinement step183

builds on this by using the pre-trained prior while further improving inference through contrastive184

learning between prior and posterior samples.185

Importantly, this procedure does not introduce significant computational overhead. As shown in186

Appendix I.1, the refinement uses the same denoising network with different latent inputs (c) and187

adds only a lightweight contrastive loss, making it efficient in practice.188

A.5 Overview189

In this appendix, we first present the theoretical analysis in Section B, including the proof of Theorem 1190

and accompanying discussion, followed by the ELBO derivation for Ada-Diffuser. In Section C,191

we provide an in-depth analysis of different types of MDPs and their interconnections. Section H192

details the full Ada-Diffuser algorithm, model architectures, and its relation to Bayesian filtering.193

Section E expands on related work, covering diffusion-based decision-making, latent state estimation194

via belief learning, and autoregressive diffusion models. Finally, Sections F, G, H, and I provide195

additional details on benchmarks, baseline implementations, and complete experimental results.196

5

B Theory197

B.1 Notation List198

We summarize the key notations used throughout the paper in Table A1, including variables for199

observed and latent states, temporal indices, and relevant mappings. These notations are used200

consistently in our theoretical analysis and algorithmic framework.

Index Explanation Support

xt [st,at], observed trajectories including state and action at time step t Xt ⊆ Rda+ds
dx dimension of observed variables da + ds
st state variable at time t st ∈ St
at action variable at time t at ∈ At
rt reward received at time t rt ∈ R
ct latent context variable at time t ct ∈ Ct
τ trajectory sequence of (st,at) {(s0,a0), . . . , (sT ,aT)}
τx observable trajectory (states or state-actions) τsa or τs
τc sequence of latent contexts {c0, . . . , cT }
τ augmented trajectory with context [τx, τc]

Function
T transition dynamics conditioned on ct T (st | st−1,at−1, ct)
R reward function conditioned on state, action, and context R(st,at, ct)
πE expert policy used for generating demonstrations πE(st, ct)
qψ variational posterior for latent inference qψ(ct | xt−Tx:t+1)
pϕ latent prior distribution pϕ(ct | ct−1)
pθ generative model for transitions pθ(xt | xt−1, ct)
ϵθ denoising network in diffusion process ϵθ(·)

Symbol
ηt, ϵt, δt exogenous noise in latent dynamics, state transitions, and reward i.i.d. samples from noise distributions
La|b distribution operator from b to a defined in Dunford and Schwartz [67]
k(·) ratio of joint probabilities used in uniqueness assumption defined in Eq. 1
ᾱt cumulative noise schedule in diffusion product of forward noise factors
K maximum number of diffusion steps K ∈ N

Tp, Ta planning and action generation horizons Tp, Ta ∈ N
Tx temporal block size for latent inference Tx ∈ N

Table A1: List of notations, explanations, and corresponding definitions.

201

Also, we formally define the operators used in the following.202

Definition 1 (Linear Operator [67]). Let a and b be random variables with supports A and B,203

respectively. The linear operator Lb|a is defined as a mapping from a probability function pa ∈ F(A)204

to a probability function pb ∈ F(B), given by205

F(A) → F(B) : pb = Lb|a ◦ pa =

∫
A
pb|a(· | a) pa(a) da. (A4)

Intuitively, this operator characterizes the transformation of probability distributions induced by the206

conditional distribution pb|a. It provides a general representation of distributional change from a to207

b, without imposing any parametric assumptions on the underlying distributions.208

Definition 2 (Diagonal Operator). Let a and b be random variables with associated density209

functions pa and pb defined on supportsA and B, respectively. For a fixed value b ∈ B, the diagonal210

operator Db|a is defined as a linear operator that maps a density function pa ∈ F(A) to a function211

in F(A) via pointwise multiplication:212

Db|a ◦ pa = pb|a(b | ·) · pa, (A5)

where Db|a = pb|a(b | ·) acts as a multiplication operator indexed by b.213

6

B.2 Proof of Theorem 1214

Proof. By the definition of data generation process (Fig. 1), the observed density is represented by:215

pxt+1,xt,xt−1,xt−2

=

∫
Ct

∫
Ct−1

pxt+1,xt,ct,ct−1,xt−1,xt−2 dctdct−1

=

∫
Ct

∫
Ct−1

pxt+1|xt,xt−1,xt−2,ct,ct−1
pxt,ct|xt−1,xt−2,ct−1

pct−1,xt−1,xt−2
dctdct−1

=

∫
Ct

∫
Ct−1

pxt+1|xt,ctpxt,ct|xt−1,ct−1
pct−1,xt−1,xt−2

dctdct−1

=

∫
Ct

∫
Ct−1

pxt+1|xt,ctpxt|xt−1,ct,ct−1
pct|xt−1,xt−2,ct−1

pxt−1,xt−2,ct−1
dctdct−1.

=

∫
Ct

∫
Ct−1

pxt+1|xt,ctpxt|xt−1,ct,ct−1
pct,xt−1,xt−2,ct−1

dctdct−1.

Subsequently, the property of Markov process presents conditional independence, which is organized216

as follows:217

pxt+1,xt,xt−1,xt−2
=

∫
Ct
pxt+1|xt,ctpxt|xt−1,ct

(∫
Ct−1

pct,ct−1,xt−1,xt−2
dct−1

)
dct

=

∫
Ct
pxt+1|xt,ctpxt|xt−1,ctpct,xt−1,xt−2

dct. (A6)

Eq. A6 can be denoted in terms of operators: given values of (xt,xt−1) ∈ Xt ×Xt−1, this is218

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctDxt|xt−1,ctLct,xt−1,xt−2

. (A7)

Eq. A7 is the operator representation of the observed density function in 4 measurements.219

Furthermore, the structure of Markov process implies the following two equalities:220

pxt+1,xt,xt−1,xt−2 =

∫
Ct
pxt+1|xt,ctpxt,ct,xt−1,xt−2 dct,

pxt,ct,xt−1,xt−2
=

∫
Ct−1

pxt,ct|xt−1,ct−1
pct−1,xt−1,xt−2

dct−1. (A8)

For any fixed (xt,xt−1) ∈ Xt ×Xt−1, we notate Eq. A8 in terms of operators as follows:221

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctLxt,ct,xt−1,xt−2

,

Lxt,ct,xt−1,xt−2 = Lxt,ct|xt−1,ct−1
Lct−1,xt−1,xt−2 . (A9)

Substituting the second line in Eq. A9 into R.H.S. of the first equation, we obtain222

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctLxt,ct|xt−1,ct−1

Lct−1,xt−1,xt−2

⇔ Lxt,ct|xt−1,ct−1
Lct−1,xt−1,xt−2 = L−1

xt+1|xt,ctLxt+1,xt,xt−1,xt−2 . (A10)

The second line above uses Assumption 2 that L−1
xt+1|xt,ct is injective. Next, we show how to223

eliminate Lct−1,xt−1,xt−2
from the above. Consider 3 measurements {xt,xt−1,xt−2}, we have224

pxt,xt−1,xt−2 =

∫
Ct−1

pxt|xt−1,ct−1
pct−1,xt−1,xt−2 dct−1, (A11)

which, in operator notation (for fixed xt−1), is denoted as225

Lxt,xt−1,xt−2
= Lxt|xt−1,ct−1

Lct−1,xt−1,xt−2
,

⇒ Lct−1,xt−1,xt−2 = L−1
xt|xt−1,ct−1

Lxt,xt−1,xt−2 . (A12)

7

The R.H.S. applies Assumption 2. Hence, substituting the above into Eq. A10, we obtain the desired226

representation:227

Lxt,ct|xt−1,ct−1
L−1
xt|xt−1,ct−1

Lxt,xt−1,xt−2
= L−1

xt+1|xt,ctLxt+1,xt,xt−1,xt−2

⇒ Lxt,ct|xt−1,ct−1
= L−1

xt+1|xt,ctLxt+1,xt,xt−1,xt−2
L−1
xt,xt−1,xt−2

Lxt,xt−1,ct−1
. (A13)

The second line applies Assumption 2 to post-multiply by L−1
xt,xt−1,xt−2

, while in the third line, we228

postmultiply both sides by Lxt|xt−1,ct−1
.229

For each xt, choose a xt−1 and a neighborhood N r around (xt,xt−1) to satisfy Assumption 2, and230

pick a (x̄t, x̄t−1) within the neighborhood N r to satisfy Assumption 2. Because (x̄t, x̄t−1) ∈ N r,231

we also know that (xt, x̄t−1), (x̄t,xt−1) ∈ N r. The joint distribution of of observations can be232

represented by Eq. A7:233

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctDxt|xt−1,ctLct,xt−1,xt−2

. (A14)
The first term on the R.H.S., Lxt+1|xt,ct , does not depend on xt−1, and the last term Lct,xt−1,xt−2

234

does not depend on xt. This feature suggests that, by evaluating Eq. A7 at the four pairs of points235

(xt,xt−1), (x̄t,xt−1), (xt, x̄t−1), (x̄t, x̄t−1), each pair of equations will share the same operator236

representation in common. Specifically:237

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctDxt|xt−1,ctLct,xt−1,xt−2

, (A15)

Lxt+1,x̄t,xt−1,xt−2 = Lxt+1|x̄t,ctDx̄t|xt−1,ctLct,xt−1,xt−2 , (A16)

Lxt+1,xt,x̄t−1,xt−2
= Lxt+1|xt,ctDxt|x̄t−1,ctLct,x̄t−1,xt−2

, (A17)

Lxt+1,x̄t,x̄t−1,xt−2
= Lxt+1|x̄t,ctDx̄t|x̄t−1,ctLct,x̄t−1,xt−2

. (A18)

Assumption 2 implies that Lxt+1|x̄t,ct is injective. Moreover, Assumption 3 implies pxt|xt−1,ct(xt |238

xt−1, ct) > 0 for all ct, so that Dx̄t|xt−1,ct is invertible. We can then solve for Lct,xt−1,xt−2 from239

Eq. A16 as240

D−1
x̄t|xt−1,ct

L−1
xt+1|x̄t,ctLxt+1,x̄t,xt−1,xt−2

= Lct,xt−1,xt−2
. (A19)

Plugging this expression into Eq. A15 leads to241

Lxt+1,xt,xt−1,xt−2
= Lxt+1|xt,ctDxt|xt−1,ctD

−1
x̄t|xt−1,ct

L−1
xt+1|x̄t,ctLxt+1,x̄t,xt−1,xt−2

. (A20)

At this point, we have decomposed the observable joint operator and expressed it in terms of latent-242

conditioned transitions, enabling spectral analysis for identifying latent structure.243

Lemma 1 of [68] shows that, given the injectivity of Lxt−2,x̄t−1,xt,xt+1
as in Assumption 2, we can244

postmultiply by L−1
xt+1,xt,xt−1,xt−2

to obtain:245

M ≡ Lxt+1,xt,xt−1,xt−2
L−1
xt+1,xt,xt−1,xt−2

= Lxt+1|xt,ctDxt|xt−1,ctD
−1
x̄t|xt−1,ct

L−1
xt+1|x̄t,ct .

(A21)

Similarly, manipulations of Eq. A17 and A18 lead to246

N ≡ Lxt+1,x̄t,xt−1,xt−2
L−1
xt+1,xt,x̄t−1,xt−2

= Lxt+1|x̄t,ctDx̄t|x̄t−1,ctD
−1
xt|x̄t−1,ct

L−1
xt+1|xt,ct . (A22)

Assumption 2 guarantees that, for any xt, (x̄t,xt−1, x̄t−1) exist so that Eq. A21 and Eq. A22 are247

valid operations. Finally, we postmultiply Eq. A21 by Eq. A22 to obtain:248

MN = Lxt+1|xt,ctDxt|xt−1,ctD
−1
x̄t|xt−1,ct

(
Lxt+1|x̄t,ctLxt+1|x̄t,ct

)
×Dx̄t|x̄t−1,ctD

−1
xt|x̄t−1,ct

L−1
xt+1|xt,ct

= Lxt+1|xt,ct

(
Dxt|xt−1,ctD

−1
x̄t|xt−1,ct

Dx̄t|x̄t−1,ctD
−1
xt|x̄t−1,ct

)
L−1
xt+1|xt,ct

≡ Lxt+1|xt,ctDxt,x̄t,xt−1,x̄t−1,ctL
−1
xt+1|xt,ct , (A23)

where249 (
Dxt,x̄t,xt−1,x̄t−1,cth

)
(ct) =

(
Dxt|xt−1,ctD

−1
x̄t|xt−1,ct

Dx̄t|x̄t−1,ctD
−1
xt|x̄t−1,ct

h
)
(ct)

=
pxt|xt−1,ct(xt | xt−1, ct)pxt|xt−1,ct(x̄t | x̄t−1, ct)

pxt|xt−1,ct(x̄t | xt−1, ct)pxt|xt−1,ct(xt | x̄t−1, ct)
h(ct)

≡ k(xt, x̄t,xt−1, x̄t−1, ct)h(ct). (A24)

8

This equation implies that the observed operator MN on the L.H.S. of Eq. A25 has an inher-250

ent eigenvalue–eigenfunction decomposition, with the eigenvalues corresponding to the function251

k(xt, x̄t,xt−1, x̄t−1, ct) and the eigenfunctions corresponding to the density pxt+1|xt,ct(· | xt, ct).252

The decomposition in Eq. A25 is similar to the decomposition in nonparametric identification [68, 84].253

First, Assumption 3 ensures this decomposition is unique. Second, the operator MN on the L.H.S.254

has the same spectrum as the diagonal operator Dxt,x̄t,xt−1,x̄t−1,ct . Assumption 3 guarantees that the255

spectrum of the diagonal operator is bounded. Since an operator is bounded by the largest element of256

its spectrum, Assumption 3 also implies that the operator MN is bounded, whence we can apply257

Theorem XV.4.3.5 from [67] to show the uniqueness of the spectral decomposition of bounded linear258

operators:259

Lxt+1|xt,ct = CLxt+1|xt,ctP
−1. Dxt,x̄t,xt−1,x̄t−1,ct = PDxt,x̄t,xt−1,x̄t−1,ctP

−1 (A25)

where C is a scalar accounting for scaling indeterminacy and P is a permutation on the order of260

elements in Dx̂t|ĉt , as discussed in [67]. These forms of indeterminacy are analogous to those in261

eigendecomposition, which can be viewed as a finite-dimensional special case.262

We will show why the uniqueness of spectral decomposition is informative. First, since the normaliz-263

ing condition,264 ∫
X̂t+1

px̂t+1|x̂t,ĉt dx̂t+1 = 1 (A26)

must hold for every ĉt, one only solution is to set C = 1.265

Second, Assumption 3 implies that Eq. A25 imply that the eigenvalues k(xt, x̄t,xt−1, x̄t−1, ct) are266

distinct for different values ct. When the eigenvalues are the same for multiple values of ct, the267

corresponding eigenfunctions are only determined up to an arbitrary linear combination, implying268

that they are not identified. It also implies that for each xt, we can find values x̄t,xt−1, x̄t−1 such269

that the eigenvalues are distinct across all ct.270

Ultimately, the unorder of eigenvalues/eigenfunctions is left. The operator, Lxt+1|xt,ct , corresponding271

to the set {pxt+1|xt,ct(· | xt, ct)} for all xt, ct, admits a unique solution (orderibng ambiguity of272

eigendecomposition only changes the entry position):273

{pxt+1|xt,ct(· | xt, ct)} = {pxt+1|x̂t,ĉt(xt+1 | x̂t, ĉt)}, for all xt, ct, x̂t, ĉt (A27)

Due to the set is unorder, the only way to match the R.H.S. with the L.H.S. in a consistent order is to274

exchange the conditioning variables, that is,275

{pxt+1|xt,ct(· | x
(1)
t , c

(1)
t), pxt+1|xt,ct(· | x

(2)
t , c

(2)
t), . . .}

= {pxt+1|x̂t,ĉt(· | x̂
(1)
t , ĉ

(1)
t), pxt+1|x̂t,ĉt(· | x̂

(2)
t , ĉ

(2)
t), . . .}

(A28)

⇒ [pxt+1|xt,ct(· | x
(π(1))
t , c

(π(1))
t), pxt+1|xt,ct(· | x

(π(2))
t , c

(π(2))
t), . . .]

= [pxt+1|x̂t,ĉt(· | x̂
(π(1))
t , ĉ

(π(1))
t), pxt+1|x̂t,ĉt(· | x̂

(π(2))
t , ĉ

(π(2))
t), . . .]

where superscript (·) denotes the index of the conditioning variables [xt, ct], and π is reindexing the276

conditioning variables. We use a relabeling map H to represent its corresponding value mapping:277

pxt+1|xt,ct(· | H(xt, ct)) = pxt+1|x̂t,ĉt(· | x̂t, ĉt), for all xt, ct, x̂t, ĉt (A29)

By Assumption 3, different x∗ corresponds to different pxt+1|xt,ct(· | H(xt, ct)), there is no repeated278

element in {pxt+1|xt,ct(· | H(xt, ct))} (and {pxt+1|x̂t,ĉt(· | x̂t, ĉt)}). Hence, the relabelling map H279

is one-to-one.280

Furthermore, Assumption 3 implies that pxt+1,|xt,ct(· | H(xt, ct)) determines a unique H(xt, ct).281

The same holds for the pxt+1|x̂t,ĉt(· | x̂t, ĉt), implying that282

pxt+1|xt,ct(· | H(xt, ct)) = pxt+1|x̂t,ĉt(· | x̂t, ĉt) =⇒ x̂t, ĉt = H(xt, ct) (A30)

Since the observation xt is known and suppose x̂t = xt, this relationship indeed represents an283

invertible transformation between ĉt and ct as284

ĉt = h(ct). (A31)

which ensures that p(ct | xt−2:t+1) can be identifiable up to an invertible transformation on the latent285

variables ĉt = h(ct)286

9

B.3 Discussion on Assumptions287

Assumption 2. The assumption of the injectivity of a linear operator is commonly employed in the288

nonparametric identification [68, 84, 69]. Intuitively, it means that different input distributions of a289

linear operator correspond to different output distributions of that operator. For a better understanding290

of this assumption, we provide several examples that describe the mapping from pa ⇒ pb, where a291

and b are random variables:292

Example 1 (Inverse Nonlinear Transformation). b = g(a), where g is an invertible function.293

Example 2 (Additive Transformation). b = a+ ϵ, where p(ϵ) must not vanish everywhere after the294

Fourier transform.295

Example 3 (Nonlinear Additive Transformation). b = g(a) + ϵ, where the same conditions from296

Examples 1 and 2 are required.297

Example 4 (Post-linear Transformation). b = g1(g2(a) + ϵ), a post-nonlinear model with invertible298

nonlinear functions g1, g2, combining the assumptions in Examples 1-3.299

Example 5 (Nonlinear Transformation with Exponential Family). b = g(a, ϵ), where the joint300

distribution p(a, b) follows an exponential family.301

Example 6 (General Nonlinear Transformation). b = g(a, ϵ), a general nonlinear formulation.302

Certain deviations from the nonlinear additive model (Example 3), e.g., polynomial perturbations,303

can still be tractable.304

B.4 ELBO of Ada-Diffuser305

In this section, we provide analysis on the x0-prediction Mean Squared Error (MSE) loss objectives306

used in the Denoise-and-Refine Mechanism of Ada-Diffuser. Our main argument establishes307

that minimizing the reconstruction losses Lprior and Lpost corresponds to optimizing an ELBO on the308

conditional log-likelihood of the clean observation x0
t , given a noisy observation xkt and an inferred309

latent context ct.310

Let x0
t ∼ q(x0

t) be a clean data sample from the true data distribution at sequence time step t. Let ct311

be the inferred latent context relevant to x0
t .312

The forward diffusion process gradually adds Gaussian noise to x0
t over K diffusion steps:

q(xkt |xk−1
t) = N (xkt ;

√
αkx

k−1
t , (1− αk)I)

for k ∈ {1, ...,K}, where αk ∈ (0, 1) are predefined noise schedule parameters. This process allows
sampling xkt directly from x0

t :

xkt =
√
ᾱkx

0
t +
√
1− ᾱkϵ, where ϵ ∼ N (0, I), and ᾱk =

k∏
i=1

αi.

The reverse process pθ(xk−1
t |xkt , ct) that parameterized by θ aims to denoise xkt to xk−1

t conditioned313

on ct.314

The derivation of the ELBO for diffusion models is standard following DDPM related derivations [60,
48]. The conditional log-likelihood log pθ(x

0
t |ct) can be lower-bounded using the ELBO:

log pθ(x
0
t |ct) ≥ Eq(x1:K

t |x0
t)

[
log pθ(x

K
t |ct) +

K∑
k=1

log
pθ(x

k−1
t |xkt , ct)

q(xk−1
t |xkt ,x0

t)

]
Assuming pθ satisfies Markov Property (i.e., pθ(xk−1

t |xkt , . . . ,xKt , ct) = pθ(x
k−1
t |xkt , ct)), which315

is a standard structural assumption for diffusion models, the ELBO can be rewritten as:316

log pθ(x
0
t |ct) ≥Eq(x1

t |x0
t)
[log pθ(x

0
t |x1

t , ct)]︸ ︷︷ ︸
L0

−
K∑
k=2

Eq(xkt |x0
t)
[DKL(q(x

k−1
t |xkt ,x0

t)||pθ(xk−1
t |xkt , ct))]︸ ︷︷ ︸

Lk−1

−DKL(q(x
K
t |x0

t)||pθ(xKt |ct))︸ ︷︷ ︸
LK

,

10

This inequality holds with equality if and only if the model’s true posterior over the latent diffusion317

path, pθ(x1:K
t |x0

t , ct), is identical to the approximate posterior used to derive the ELBO, which is318

the forward noising process q(x1:K
t |x0

t). This bound can also include an additive constant C(x0
t , ct)319

which does not depend on the model parameters θ and is thus typically omitted when focusing on320

terms relevant to parameter optimization.321

To maximize log pθ(x0
t |ct), we aim to maximize this lower bound by optimizing L0 (i.e., maximizing322

this term) and each Lk−1 term (i.e., minimizing these DKL terms, as they appear with a negative323

sign). The term LK is often treated as a constant (or absorbed into C(x0
t , ct)) if pθ(xKt |ct) is set to a324

standard Gaussian N (0, I) and ᾱK ≈ 0.325

We parameterize the reverse process pθ(xk−1
t |xkt , ct) as a Gaussian:

pθ(x
k−1
t |xkt , ct) = N (xk−1

t ;µθ(x
k
t , k, ct), σ

2
kI)

The true posterior step q(xk−1
t |xkt ,x0

t) is also Gaussian:

q(xk−1
t |xkt ,x0

t) = N (xk−1
t ; µ̃k(x

k
t ,x

0
t), σ̃

2
kI)

where µ̃k(x
k
t ,x

0
t) =

√
ᾱk−1(1−αk)

1−ᾱk x0
t +

√
αk(1−ᾱk−1)

1−ᾱk xkt and σ̃2
k = 1−ᾱk−1

1−ᾱk (1− αk) is the variance.326

For an x0-prediction model, denoted as ϵθ(xkt , k, ct) in the main paper, that aims to predict x0
t from

the noisy input xkt and context ct, the mean of the reverse model µθ can be expressed as:

µθ(x
k
t , k, ct) =

√
ᾱk−1(1− αk)

1− ᾱk
ϵθ(x

k
t , k, ct) +

√
αk(1− ᾱk−1)

1− ᾱk
xkt

Choosing σ2
k = σ̃2

k, the KL divergence term Lk−1 simplifies to:327

Lk−1 = Eq(xkt |x0
t)

[
1

2σ2
k

∥∥µ̃k(xkt ,x0
t)− µθ(x

k
t , k, ct)

∥∥2]+ C ′
k

= Ex0
t ,ϵ

[
1

2σ2
k

(√
ᾱk−1(1− αk)

1− ᾱk

)2 ∥∥x0
t − ϵθ(

√
ᾱkx

0
t +
√
1− ᾱkϵ, k, ct)

∥∥2]+ C ′
k

where C ′
k are constants not depending on θ. The expectation Ex0

t ,ϵ
denotes averaging over clean data328

x0
t and the noise ϵ used to construct xkt . Thus, maximizing the ELBO contribution from −Lk−1 is329

equivalent to minimizing the following weighted MSE term:330

Ex0
t ,ϵ,ct

[
w(k)

∥∥x0
t − ϵθ(

√
ᾱkx

0
t +
√
1− ᾱkϵ, k, ct)

∥∥2] (A32)

where w(k) = 1
2σ2
k

(√
ᾱk−1(1−αk)

1−ᾱk

)2
is a positive weighting factor.331

The termL0 = Eq(x1
t |x0

t)
[log pθ(x

0
t |x1

t , ct)] can also be made proportional to an MSE if pθ(x0
t |x1

t , ct)

is a Gaussian centered at ϵθ(x1
t , 1, ct):

log pθ(x
0
t |x1

t , ct) = −
1

2σ2
1

∥∥x0
t − ϵθ(x1

t , 1, ct)
∥∥2 + const

Maximizing L0 is then equivalent to minimizing this MSE.332

The diffusion model ϵθ is typically trained by minimizing a simplified objective (e.g., [60]), often an
unweighted or equally weighted sum of these MSE terms over uniformly sampled diffusion steps
k ∈ [1,K] and data x0

t :

Lsimple(θ) = Ek∼U [1,K],x0
t ,ϵ,ct

[∥∥x0
t − ϵθ(

√
ᾱkx

0
t +
√
1− ᾱkϵ, k, ct)

∥∥2]
This simplification is justified by arguing that reweighting terms w(k) in Equation A32 can be333

absorbed into the network or do not significantly alter the optimal solution for expressive models,334

allowing w(k) to be effectively set to 1.335

The Denoise-and-Refine losses are:

Lprior = Ex0
t ,ϵ,ĉ

prior
t

[∥∥∥x0
t − ϵθ(xkit , ki, ĉprior

t)
∥∥∥2]

11

Lpost = Ex0
t ,ϵ,ĉ

post
t

[∥∥∥x0
t − ϵθ(xkit , ki, ĉpost

t)
∥∥∥2]

where xkit =
√
ᾱkix

0
t +
√
1− ᾱkiϵ, and ki is the specific input noise level for the observation xt336

determined by the causal denoising schedule ki = i
TK. These losses, Lprior and Lpost, are specific337

instances of the simplified MSE loss objective in equation A32 with w(ki) ≈ 1, conditioned on the338

inferred contexts ĉprior
t and ĉpost

t respectively. Consequently, minimizing these MSE losses directly339

optimizes the corresponding terms in the ELBO for log pθ(x0
t |ct).340

Therefore, we have proven that minimizingLprior andLpost as defined in the Denoise-and-Refine mech-341

anism serves to maximize a variational lower bound on the conditional log-likelihood log pθ(x
0
t |ct).342

The underlying diffusion model ϵθ(·, k, ·) is trained to be proficient at denoising from a range of343

noise levels k, as captured by objectives such as Lsimple. The specific monotonically increasing344

noise schedule ki used in Lprior and Lpost represents a particular instance from this range of noise345

levels. Thus, these objectives are theoretically grounded in the principles of variational inference for346

diffusion models, adapted to conditioning on the inferred latent context ct and applied at specific347

noise levels relevant to the autoregressive denoising process of Ada-Diffuser.348

C Summary on Different MDPs349

Our work considers a contextual POMDP setting with an evolving latent process, which naturally350

relates to several established MDP formulations, including contextual MDPs [85], hidden-parameter351

MDPs (HiP-MDPs) [62], and their variants. In this section, we provide formal definitions of these352

models and discuss their relationships and distinctions.353

C.1 Contexutal MDPs354

A contextual Markov decision process (CMDP) [85] is defined by the tuple ⟨C,S,A,M⟩, where C is355

the context space, S is the state space, and A is the action space. The mappingM assigns to each356

context c ∈ C a set of MDP parametersM(c) = {Rc, T c}, where Rc and T c are the reward and357

transition functions associated with context c.358

Sodhani et al. [86] and Liang et al. [45] extend the CMDP framework to settings in which the context359

variable c evolves according to its own Markovian dynamics p(ct+1 | ct), closely aligning with our360

formulation of a latent process evolving over time.361

C.2 Hidden-Parameter MDPs362

Hidden-Parameter MDPs (HiP-MDPs) [62] are defined by the tupleM = ⟨S,A,Θ, T ,R, γ, PΘ⟩,363

where S is the state space, A is the action space, and Θ is the space of task-specific latent parameters.364

For each θ ∈ Θ, the transition and reward functions are given by Tθ : S × A → P(S) and365

Rθ : S × A → R, respectively. The parameter θ is sampled from a prior distribution PΘ at the366

beginning of an episode and remains fixed during the episode. The discount factor is denoted by367

γ ∈ [0, 1). This framework defines a family of MDPs indexed by the latent parameter θ, with each368

θ inducing a different set of dynamics and reward functions. It can be seen as a special case of a369

contextual MDP where the context is latent and fixed per episode.Xie et al. [29] further generalize370

this framework by allowing the task parameter θ to evolve dynamically across episodes, rather than371

being fixed.372

Bayes-Adaptive MDPs (BAMDPs) are closely related to both HiP-MDPs and contextual MDPs373

(CMDPs). In BAMDPs, the agent maintains a posterior distribution over MDPs based on its374

interaction history. Specifically, it maintains a belief bt(R, T) = p(R, T | τ:t), where τ:t =375

{s0,a0, r0, . . . , st} denotes the trajectory observed up to time t. This belief captures the agent’s376

uncertainty about the underlying transition and reward functions.377

The transition and reward functions can then be defined in expectation over this posterior, effectively378

conditioning decision-making on the belief bt. When the environment is driven by hidden contextual379

variables or latent task parameters, such as in CMDPs or HiP-MDPs—this belief can be interpreted as380

a distribution over these latent variables. In this view, BAMDPs provide a non-parametric framework381

for reasoning over hidden structure, while approaches like ours explicitly model such latent variables382

12

Latent Factor Identification

s0 a0 r0 sT aT rT

Sequential Encoder

Sequential Decoder

s0 a0 r0 sT aT rT

c0 cT

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

st−1 st st+1

at−1 at at+1

ct−1 ct ct+1 ct−1 ct ct+1

Causal Diffusion Model

st−2

at−2

ct−2

st−2

at−2

st−2

at−2

ct−2

st−2

at−2

st−2

at−2

ct−2

st−2

at−2

Diffusion I/O Inverse dynamics outputMask

Ada-Diffuser-Planning Ada-Diffuser-Policy

ct−1 ct ct+1

Figure A1: Overview of the Ada-Diffuser framework. The modular design consists of two
main stages: latent context identification (Stage 1, Section 4.2), followed by a causal diffusion process
(Stage 2, Section 4.3) that models the generative structure of the trajectories. The learned model is
then used for planning or policy learning conditioned on the inferred latent context.

and infer their posterior distributions using amortized inference. Both aim to enable adaptive planning383

and learning under uncertainty, but differ in how latent structure is represented and inferred.384

C.3 Discussions and Comparisons385

The key distinction between contextual MDPs and hidden-parameter MDPs lies in how the latent386

factors are represented: contextual MDPs explicitly treat them as latent variables, while HiP-MDPs387

model them implicitly as parameters governing the transition and reward functions. In our work, we388

adopt the contextual MDP perspective, where the latent process is modeled as a random variable that389

evolves over time.390

However, our identification theory, focused on recovering the posterior distribution over latent391

variables, also applies to the HiP-MDP setting. Once the posterior over the hidden parameters is392

identified, the corresponding transition and reward functions can be recovered as well.393

Additionally, our framework, which models a factorization over observed states and latent variables,394

is conceptually related to factored MDPs [66]. In a factored MDP, the state space S is represented as395

a set of variables S = {s(1), s(2), . . . , s(n)}, and the transition and reward functions are decomposed396

over these factors:397

T (s′ | s,a) =
n∏
i=1

Ti

(
s′(i) | Pa(i)T (s,a)

)
, R(s,a) =

m∑
j=1

Rj

(
Pa(j)R (s,a)

)
,

where Pa(i)T and Pa(j)R denote the parent variables (i.e., dependencies) for each transition and reward398

component, respectively. our framework, while not relying on an explicit graphical structure, shares399

conceptual similarities with factored MDPs [66] through its coarse-grained factorization over observed400

states and latent variables. Specifically, we distinguish between latent variables that affect the401

transition dynamics and those that affect the reward function. Formally, we express the generative402

process as:403

T (st+1 | st,at, cs
t), R(rt | st,at, cr

t),

where cs
t and cr

t are distinct (or potentially overlapping) latent factors that influence transitions and404

rewards, respectively. This separation enables flexible modeling of partially observable environments405

where different unobserved processes govern the dynamics and task objectives.406

13

xK
txK

t−1

xk1
t−1

x0
t−1

x0
tx0

t−1

̂cpriort−1

̂cpostt−1

̂cpriort

̂cpriort

̂cpostt

xk2
t

xk1
t

Xk3
t+2

Xk3
t+2Xk4

t−1 Xk1
t Xk1

t+1

X0
t+2X0

t+1X0
tX0

t−1

Comparison with other autoregressive diffusion
model

• Better reflect the data generation process by

• Modelling the latent process

• Reflecting the uncertainty of
autoregressive generation

xK
t+2xK

t+1xK
txK

t−1

xk1
t−1

x0
t−1

x0
t

x0
t+1

x0
t−1

̂cpriort−1

̂cpostt−1

̂cpriort

̂cpriort

̂cpostt

̂cpriort+1

̂cpriort+1

̂cpriort+1

̂cpostt+1

̂cpostt+2

̂cpriort+2

̂cpriort+2

̂cpriort+2

̂cpriort+2

x0
t

x0
t+1

xk2
t xk3

t+1 xk4
t+2

xk1
t xk2

t+1

xk1
t+1

xk3
t+2

xk2
t+2

xk1
t+2x0

t−1

x0
t−1 x0

t x0
t+2

Figure A2: An illustration of the zig-zag sampling process with a block of 4 time steps. ↓ and |
indicate denoising and identity mapping, respectively.

D Details on Ada-Diffuser407

D.1 Full Algorithm and Results408

As illustrated in Fig. A1, our framework consists of two stages: latent factor identification and409

diffusion-based planning or policy learning. Below, we provide the algorithmic pseudocode for both410

stages. Specifically, Algorithm A1 describes Stage 1: latent factor identification, while Algorithms A2411

and A3 correspond to Ada-Diffuser-Planner and Ada-Diffuser-Policy, respectively.412

For clarity, we omit the detailed step-by-step procedures for denoise-and-refine and zig-zag sampling413

(Lines 7–8, 11, and 19–22 in Algorithm A2; Lines 6–7 and 13 in Algorithm A3), as these are fully414

described in Section 4.3. For Ada-Diffuser-Policy, we show a Diffusion Policy (DP)-based415

algorithm, which provides a general framework for multi-step action generation. In the IDQL-based416

variant, both the action execution horizon and observation horizon are set to 1, corresponding to417

single-step policy inference conditioned only on the current observation.418

Algorithm A1: Latent Factor Identification.
1: Input: offline dataset D
2: Randomly initialize decoder pθ(st+1, rt | s,a, c),

encoder qψ(ct | st−Tx:t+1,at−Tx:t+1, rt−Tx:t+1) and prior network pϕ(ct | ct−1),
3: while not done do
4: Sample batches of trajectories from D
5: Compute ELBO and update θ, ψ, ϕ
6: end while

Additionally, we provide the full results for all experiments: Table A2 reports results for the action-419

free setting; Tables A3 and A4 present results for environments with latent factors affecting dynamics420

and rewards; and Tables A5, A6, A7, and A8 summarize results for environments without explicitly421

modeled latent factors.422

14

Algorithm A2: Ada-Diffuser-Planner.
1: Input: Env, offline dataset D, pre-trained encoder qψ and prior network pϕ

observation horizon To, planning horizon Tp, action execution horizon Ta, condition y
// Training

2: Initialize noise predictor ϵθ, inverse dynamics model fϕ
3: while not done do
4: Sample xt−To:t+Tp from D
5: Sample ĉprior

t:t+Tp
and ĉpost

t:t+Tp−2 from pϕ and qψ
6: if using inverse dynamics model then
7: Train Causal Diffusion Model (noise predictor ϵθ) with xt−To:t, ĉ

prior
t−To:t, and ĉpost

t−To:t and
other conditions y, target outputs are st+1:t+Tp

8: Train encoder qψ with the contrastive improvement loss Lcontrast
9: Train Inverse Dynamics Model fϕ to generate actions at+1:t+Tp

10: else
11: Train Causal Diffusion Model (noise predictor ϵθ) with xt−To:t, ĉ

prior
t−To:t, and ĉpost

t−To:t and
other conditions y, target outputs are {st+1:t+Tp ,at+1:t+Tp}

12: Train encoder qψ with the contrastive improvement loss Lcontrast
13: end if
14: end while

// Execution
15: Initialize environment: s0 ∼ Env.reset(), set t← 0
16: while not done do

// Observe and infer latent factors
17: Observe recent trajectory xt−To:t
18: Sample latent variables ĉprior

t:t+Tp
from pϕ

// Generate candidate trajectory
19: if using inverse dynamics model then
20: Generate future states (zig-zag sampling) ŝt+1:t+Tp conditioned on xt−To:t, ĉ

prior
t:t+Tp

, and y

via learned noise predictor ϵθ
21: Generate actions ât+1:t+Tp ← fϕ(ŝt+1:t+Tp , ŝt:t+Tp−1)
22: else
23: Generate future trajectory {ŝt+1:t+Tp , ât+1:t+Tp} conditioned on xt−To:t, ĉ

prior
t:t+Tp

, and y

via learned noise predictor ϵθ
24: end if

// Execute action(s) in environment
25: for each step i = 1 to Ta do
26: Execute ât+i in Env, observe st+i+1, rt+i
27: Append (st+i, ât+i, rt+i) to trajectory buffer
28: end for
29: Update t← t+ Ta
30: end while

D.2 Architecture Choices and Hyper-parameters423

We detail the architectural design choices and hyperparameter settings used for model components,424

loss functions, and training procedures across all Ada-Diffuser variants under different environ-425

ments and benchmarks.426

D.2.1 Latent Factor Identification427

Architectures We use a variational autoencoder (VAE) [72] to optimize the evidence lower bound428

(ELBO). The same architectural design is used across all variants of Ada-Diffuser and all429

benchmark settings.430

For the encoder, we first embed states, actions, and rewards using separate MLPs with ReLU431

activations. The resulting embeddings are concatenated and passed through a two-layer MLP (each432

15

Algorithm A3: Ada-Diffuser-Policy (DP-based)

1: Input: Env, offline dataset D, pre-trained encoder qψ and prior network pϕ
observation horizon To, action generation horizon Tp, action execution horizon Ta, condition y
// Training

2: Initialize noise predictor ϵθ
3: while not done do
4: Sample xt−To:t+Tp from D
5: Sample latent variables ĉprior

t:t+Tp
∼ pϕ, ĉpost

t:t+Tp−2 ∼ qψ
6: Train causal diffusion model (noise predictor ϵθ) to generate actions at+1:t+Tp , conditioned

on xt−To:t, ĉ
prior
t:t+Tp

, ĉpost
t:t+Tp−2, and y

7: Train encoder qψ with the contrastive improvement loss Lcontrast
8: end while

// Execution
9: Initialize environment: s0 ∼ Env.reset(), set t← 0

10: while not done do
// Observe and infer latent factors

11: Observe recent trajectory xt−To:t
12: Sample latent variables ĉprior

t:t+Tp
∼ pϕ

// Generate actions using causal diffusion model
13: Generate actions (zig-zag sampling) ât+1:t+Tp conditioned on xt−To:t, ĉt:t+Tp , and y via

learned noise predictor ϵθ
// Execute action(s) in environment

14: for each step i = 1 to Ta do
15: Execute ât+i in Env, observe st+i+1, rt+i
16: Append (st+i, ât+i, rt+i) to trajectory buffer
17: end for
18: Update t← t+ Ta
19: end while

Environment LDP (AF) Ours (AF) LDP (AF, SubOpt) Ours (AF, SubOpt)

Lift 0.67± 0.01 0.78± 0.05 1.00± 0.00 0.98± 0.02

Can 0.78± 0.04 0.85± 0.07 0.98± 0.00 0.98± 0.02

Square 0.47± 0.03 0.54± 0.05 0.83± 0.01 0.89± 0.03

Table A2: Results (success rate) on action-free demonstrations. Here, AF and SubOpt indicate
using Action-free and suboptimal demonstrations on Robomimic tasks, respectively (following the
settings in LDP [77]).

layer of size 64) followed by a GRU. The GRU output is used to parameterize a Gaussian distribution433

from which the latent variables are sampled.434

The state and reward decoders are implemented as separate MLPs, each consisting of two fully435

connected layers of size 64 with ReLU activations. For the prior network, we use the output of the436

previous step’s latent distribution embedding (shared GRU) and feed it into a two-layer MLP (each437

layer of size 32) to predict the parameters of the prior distribution.438

Loss Function At each time step t, we optimize the following losses:439

LELBO,t = Eqψ(ct|xt−Tx:t+1) [− log pθ(xt | xt−1, ct)]︸ ︷︷ ︸
Reconstruction loss

+DKL (qψ(ct | xt−Tx:t+1) ∥ pϕ(ct | ct−1))︸ ︷︷ ︸
KL regularization

.

Here, xt may include different components depending on the setting (e.g., xt = {st,at} or xt = st),440

and ct denotes the latent context variable inferred from a temporal block of observations. The first441

16

term encourages accurate reconstruction of the current observation xt conditioned on its immediate442

past and the latent ct, while the second term regularizes the posterior to remain close to the learned443

prior pϕ(ct | ct−1).444

We implement the ELBO loss as a weighted combination of the reconstruction loss and the KL445

divergence:446

LELBO =

T−2∑
t=1

[
∥x̂t − xt∥22 + λKL ·DKL (qψ(ct | xt−Tx:t+1) ∥ pϕ(ct | ct−1))

]
,

where x̂t is the model’s reconstruction of the observation xt, and λKL is weighting coefficient. The447

reconstruction is computed using mean squared error (MSE), and the KL divergence is computed448

in closed form for Gaussian posteriors and priors. The hyperparameter λKL is set to be 0.1 and the449

learning rate is set to be 3e− 4.450

D.2.2 Planner451

For the planner, we consider two scenarios: (i) generating both states and actions, and (ii) generating452

states only. For the former, we build upon the Diffuser framework [5], which directly models full453

trajectories. For the latter, we adopt the Decision Diffuser (DD) framework [6], where the model454

generates future states and uses an inverse dynamics model to recover the corresponding actions via455

inverse dynamics model.456

For type (i) (full state-action trajectory generation), we apply our method to the Cheetah and Ant457

environments. For the noise predictor, we use a 1D U-Net [80] with a kernel size of 5, channel458

multipliers set to (1, 2, 2, 2), and a base channel width of 32. The model is trained using the Adam459

optimizer [87] with a learning rate of 3× 10−4, a batch size of 64, and for 1 million training steps.460

The number of diffusion timesteps is 1000. We adopt classifier guidance (CG) [60] with gradient461

guidance on computed return, with a guidance scale ω = 1.5. The observation horizon is set to 10462

for both environments. The planning horizon Tp is set to 16 for Cheetah and 32 for Ant, with an463

action execution horizon of 1. These hyperparameters are kept consistent across baselines including464

Diffuser, DF, MetaDiffuser, and Diffuser combined with LILAC and DynaMITE for the Cheetah and465

Ant experiments (those in Table 1 and Appendix Table A3). For other components (e.g., VAE) in466

LDCQ, we employ all the hyperparameters in their original implementation [78].467

For type (ii) (state-only generation with inverse dynamics), we use a Transformer-based noise468

predictor with a hidden dimension of 256 and a head dimension of 32. The architecture includes 2469

DiT blocks for Walker, Kitchen, and Maze2D, and 8 DiT blocks for LIBERO.The model is trained470

using the Adam optimizer [87] with a learning rate of 3× 10−4, a batch size of 128, and for 1 million471

training steps. The number of diffusion timesteps is 500. The observation horizon is set to 4 for472

Kitchen, 2 for LIBERO, and 10 for the other environments. The planning horizon Tp is set to 16 for473

Kitchen, 10 for LIBERO, and 32 for the others. The action execution horizon is 8 for both Kitchen474

and LIBERO, and 10 for the remaining environments. For the inverse dynamics model, we use an475

MLP-based diffusion model consisting of a 3-layer MLP with 128 hidden units, preceded by a 2-layer476

embedding module with 64 hidden units. This model is trained for 1 million gradient steps.477

For both cases, we set the coefficient of the contrastive improvement loss Lcontrast = max{0,Lprior −478

Lpost} to 0.1. The key hyper-parameters are summarized in Table A9.479

D.2.3 Policy480

For the DP-based policy, we adopt the same architecture as the planner described earlier for Cheetah,481

Maze2D, Kitchen, Ant, and Walker. For LIBERO, we use a Transformer-based noise predictor with a482

decoder architecture comprising 12 layers, 12 attention heads, and a hidden embedding dimension of483

768. Following DP [7], we apply dropout with a rate of 0.1 to both the input embeddings and attention484

weights. The number of diffusion timesteps is 500. When conditioning is used, we incorporate a485

Transformer encoder with 4 layers to encode the condition tokens, which include a sinusoidal timestep486

embedding and projected observed trajectory tokens (all mapped to the same embedding dimension).487

In this encoder-decoder setup, causal masking is applied to ensure autoregressive generation. In the488

unconditioned case, we prepend the sinusoidal timestep embedding to the input sequence and use a489

BERT-style encoder-only Transformer. All environments (Cheetah, Ant, Kitchen, Maze2D, Walker,490

and LIBERO) are trained using the AdamW optimizer with a learning rate of 10−4, weight decay491

17

10−3, β1 = 0.9, and β2 = 0.95. Layer normalization is applied before each Transformer block for492

stability. The observation, planning, and action horizons follow the same settings used for the planner493

in each environment.494

For the IDQL-based policy, we align all hyperparameters for Cheetah and Ant with the original IDQL495

implementation, using an observation, planning, and action horizon of 1. Hence, in IDQL-based ones,496

we do not consider autoregressive modeling. Similarly, for both cases, we use consider the coefficient497

before the contrastive improvement loss as 0.1.498

D.3 Connection to Bayesian Filtering499

In the absence of explicitly designed latent variables, our model can be interpreted as a form of500

Bayesian filtering [88]. Under a general formulation of the hidden Markov model (HMM) [89]501

with an additional latent dependency on observation (c→ x), the latent process over c captures the502

underlying stochasticity present in the demonstration data, which arises from both the environment503

dynamics and the behavior policy. In this view, the latent variable acts as a compact and expressive504

representation that summarizes the uncertainty in past observations, thereby improving the prediction505

of future observations. This, in turn, facilitates more robust policy learning and planning in the506

general settings.507

E Extended Related Works508

E.1 Diffusion Model-based Decision-making509

Recent advances use diffusion models as the planner and policy for both reinforcement learning510

(RL) and imitation learning (IL). RL agent aims to learn a policy that maximizes cumulative re-511

wards through interaction with an environment [90]. The agent observes a sequence of transitions512

(st,at, rt, st+1), where st ∈ S denotes the state, at ∈ A the action, rt ∈ R the received reward,513

and st+1 the next state. The goal is to learn a policy π(a | s) that maximizes the expected return:514

π∗ = argmaxπ Eπ [
∑∞
t=0 γ

trt] , where γ ∈ [0, 1) is the discount factor. In contrast, IL [91] focuses515

on learning policies from expert demonstrations, often without access to the reward signal. A common516

approach is behavior cloning (BC) [92], which formulates IL as a supervised learning problem by517

maximizing the likelihood of expert actions given observed states, i.e., learning a policy π(a | s) that518

closely imitates the expert policy πe(a | s).519

Diffusion Planner Diffusion-based planning methods are commonly used to approximate the se-520

quence of future states and actions from a given current state. By leveraging the conditional generation521

capabilities of diffusion models—such as guidance techniques [58, 59]—these methods can generate522

plans (i.e., state trajectories) that satisfy desired properties, such as maximizing expected rewards.523

Taking Denoising Diffusion Probabilistic Models (DDPM [60])-based approaches as an example,524

these methods learn a generative model over expert trajectories τ = {(s0,a0), . . . , (sT ,aT)} by525

modeling a forward-noising process: q(xk | xk−1) = N (xk;
√
αk x

k−1, (1− αk)I), and a parame-526

terized denoising model pθ(xk−1 | xk) to reverse the process. Here, k denotes the diffusion step, x0527

is a clean sub-sequence sampled from the expert trajectory τ , and αk controls the variance schedule528

at step k.529

During inference, trajectories are generated by starting from Gaussian noise and iteratively denoising530

through the learned reverse process. This generation can be optionally conditioned on the initial state531

or other guidance signals y, such as rewards, goals, or other constraints: τ̂ ∼ pθ(τ | s0,y).532

These methods generally fall into two main categories: (1) learning a joint distribution over state-533

action trajectories, as in Diffuser [5], or (2) learning only state trajectories via diffusion and using an534

inverse dynamics model to recover actions, as in Decision Diffuser (DD) [6]. Beyond these, several535

variants extend diffusion-based planning in different directions. For example, Latent Diffuser [93]536

plans in a high-level latent skill space to improve generalization and LDP [77] plans with high-537

level latent actions directly from high-dimensional action-free demonstrations. Other approaches538

incorporate multi-task context to enhance adaptation and performance in unseen tasks, including539

MetaDiffuser [53], AdaptDiffuser [94], and MTDiff-p [95]. In addition, recent efforts have explored540

various extensions of diffusion planning, such as ensuring safety during generation [96], handling541

18

multi-agent scenarios [97, 98], learning skills [99], and application in RL from human feedback542

(RLHF) [100].543

Diffusion Policy In contrast to diffusion-based planners, Diffusion Policy methods directly parame-544

terize the policy πθ(a | s) using diffusion models. For example, Diffusion Policy [7] uses a diffusion545

model to generate actions with expressive, multimodal distributions. DPPO [8] extends this idea by546

modeling a two-layer MDP structure, where the inner MDP represents the denoising process and the547

outer MDP corresponds to the environment. This framework enables fine-tuning of diffusion-based548

policies in RL settings. Another line of work integrates diffusion models with model-free methods549

for offline RL by using diffusion models as to model the action distributions [9–12].550

Recent explorations have also aimed to unify diffusion-based planning and policy learning within a sin-551

gle framework. For example, the Unified Video Action model (UVA) [19] and Unified World Models552

(UWM) [20] leverage diffusion models to jointly model planning and action generation, demonstrat-553

ing scalability on large-scale robotic tasks with pre-training. In a similar spirit, Ada-Diffuser554

provides a general framework that can be integrated into both diffusion planners and diffusion-based555

policies. However, Ada-Diffuser differs in its explicit modeling of latent factors that influence556

the data generation process. By incorporating latent identification directly into the diffusion process,557

Ada-Diffuser enables more structured, context-aware decision-making in partially observable558

and dynamically changing environments.559

E.2 Latent Belief State Learning in POMDP560

In partially observable Markov decision processes (POMDPs), single-step observations are typically561

insufficient for making optimal decisions. A common strategy to overcome this limitation involves562

encoding an agent’s history, encoding past observations and actions into a belief state that captures563

a distribution over latent environmental states. Although such belief representations can, in theory,564

support optimal policy derivation [1, 37, 36], their exact computation depends on full knowledge of the565

transition and observation models. This requirement quickly becomes intractable in high-dimensional566

settings.567

To address this, recent work has focused on learning approximate belief representations directly from568

data. Notable approaches include those using recurrent neural networks [38] and variational inference569

methods [39, 40], which enable agents to encode temporal structure and uncertainty into compact570

latent embeddings. These representations are then used to inform downstream policy learning,571

optimizing for cumulative rewards.572

This direction also aligns with developments in meta-reinforcement learning and non-stationarity,573

where belief states or Bayesian embeddings are used to capture hidden task contexts. Agents trained574

across a distribution of tasks can use these latent variables to infer new environments and adapt575

quickly [28, 45, 43, 52, 29]. For example, MetaDiffuser [53] incorporates task context as conditioning576

input to diffusion-based decision models.577

Our approach diverges from these by offering theoretical guarantees on the identifiability of latent578

factors from minimal temporal observations. Rather than depending on diverse multi-environment579

data, we introduce a framework that captures the full data generation process in RL using diffusion580

models. In contrast to MetaDiffuser, which assumes static task-level context, our model treats the581

latent context as a dynamic, time-evolving process that governs both environment transitions and582

agent behavior, capturing the underlying temporal structure of RL trajectories more faithfully.583

E.3 Autoregressive Diffusion Models584

To model temporal consistency and dynamics in sequential data such as videos and audios, recent585

work has incorporated autoregressive structures into diffusion models. These approaches differ in how586

they condition on prior time steps during generation and can be categorized into two main categories.587

(1) Conditioning on clean (denoised) inputs ([54–56]). At each time step t, the denoising model588

is conditioned on the previously denoised outputs {x0
<t}: pθ(xk−1

t | xkt ,x0
<t), where xkt is the589

current noisy input, and x0
<t denotes the clean (fully denoised) observations from earlier time steps.590

(2) Conditioning on noisy inputs ([47–50]). These methods instead condition on previous time591

steps at their corresponding noise levels. This setting can be further divided into two cases: (a)592

fully noisy conditioning [47]: the model conditions on all prior time steps at the same noise level593

19

k: pθ(xk−1
<t ,x

k−1
t | xkt ,xk<t,). (b) partially noisy conditioning: each previous time step i < t is594

conditioned at its own noise level ki, which may vary over time: pθ(xk0−1
0 ,xk1−1

1 , . . . ,xkT−1
T |595

xk00 ,x
k1
1 , . . . ,x

kT
T). Specifically, Diffusion Forcing (DF) [48] proposes a general framework in which596

each time step xt assigns an independent noise level. In contrast, other works adopt time-dependent597

noise schedules that vary with the temporal index [49, 50, 57].598

To model the causal generative process of RL trajectories, our approach also employs time-dependent599

noise scheduling to capture temporal dynamics. However, unlike prior work, we further integrate600

the identification of latent factors directly into the denoising process. This is achieved through a601

structured reinforcement step during training and a zig-zag inference procedure at test time, enabling602

our model to more faithfully recover the underlying causal structure in sequential decision-making.603

F Benchmark Settings and Illustrations604

F.1 Latent Change Factors Design605

We consider the latent change factors on dynamics and rewards. We consider the Half-Cheetah606

and Ant environments from the OpenAI Gym suite, which are widely used MuJoCo locomotion607

benchmarks [101] for evaluating continuous control algorithms. In Half-Cheetah, the agent is608

a planar bipedal robot with a 17-dimensional state space and a 6-dimensional continuous action609

space, where the goal is to move forward by applying torques to six actuated joints. In Ant, a610

quadrupedal robot operates in a 3D space with a 111-dimensional state space and an 8-dimensional611

action space, requiring more complex coordination across its four legs. In both environments, the612

reward encourages forward velocity while penalizing excessive control inputs and, in the case of Ant,613

also promotes stable contact with the ground. We consider variants of the Half-Cheetah environment614

to study changes in dynamics, specifically Cheetah-Wind-E and Cheetah-Wind-S, which introduce615

external wind forces applied to the agent. In Cheetah-Wind-E, an opposing wind force is applied at616

the beginning of each episode and remains constant throughout, defined as fw = 10 + 5 sin(0.8i),617

where i is the episode index. For this case, since c change over episode, we use data from several618

consecutive episodes to estimate it. In Cheetah-Wind-S, the wind force varies at every time step619

according to the same formula fw = 5 + 5 sin(0.5t), with t now representing the time step in620

each episode. We also consider variations in the reward function. In Cheetah-Dir-E, the reward621

depends on a time-varying goal direction, requiring the agent to alternate between moving forward622

and backward. Specifically, the reward at episode t is defined as623

rt = dt · vt − 0.1∥at∥2,
where vt is the agent’s forward velocity, at is the action vector (torques applied), and dt ∈ {−1,+1}624

indicates the target direction at time t. The direction signal dt changes, giving a non-stationary reward625

function that challenges the policy to adapt to shifting goals. Specifically, we consider626

dt = σ(5 · sin(2πt/200)),
where σ(·) denotes the sigmoid function, α controls the sharpness of the transition, and T determines627

the switching period. This formulation induces a smooth periodic change in the preferred direction of628

movement, requiring the policy to adapt to gradually shifting objectives.629

We also consider a directional reward variant for the Ant environment, denoted as Ant-Dir-E, where630

the agent is required to alternate its movement direction over time. The reward function at time step t631

is defined as632

rt = (2dt − 1) · vxt − 0.1∥at∥2,
where vxt is the velocity of the agent’s torso along the x-axis (forward direction), at is the 8-633

dimensional action vector, and dt ∈ [0, 1] is a smooth directional signal. Similarly, we define dt634

as:635

dt = σ(5 · sin(2πt/200)),
where σ(·) denotes the sigmoid function. This formulation causes the preferred movement direction636

to alternate approximately every 100 steps. Notably, for these settings with periodic changes (i.e.,637

where latent factors do not evolve at every timestep), we estimate the latent variables periodically and638

perform refinement in the causal diffusion model only when changes are detected. This follows the639

same overall framework, but operates at a coarser temporal resolution aligned with the latent change640

frequency.641

20

Figure A3: Illustrations of the Benchmarks. From left to right: Half-Cheetah, Ant, Walker, Franka-
Kitchen, Maze2D, and LIBERO.

Figure A4: Illustrations of RoboMimic Benchmark.

F.2 Overview on Other Benchmarks642

Fig. A3-A4 give the illustrations on the used benchmarks. Specifically, other than Cheetah and Ant643

we introduced before, for others, we consider the basic settings in offline RL. Specifically,644

Maze2D. Maze2D tasks focus on goal-directed navigation in a 2D plane, where the agent must645

traverse a maze-like environment to reach specified targets. These settings are designed to evaluate646

an agent’s ability to reason spatially and follow optimal trajectories based solely on positional and647

velocity observations.648

Franka-Kitchen. The Franka-Kitchen environment [73] involves a robotic arm interacting with a649

series of articulated objects in a realistic kitchen setting. Tasks are composed of multiple stages, such650

as opening doors or toggling switches, and are intended to assess an agent’s capability in handling651

long-horizon, multi-step manipulation.652

Walker. The Walker2D environment features a two-legged robot that must learn to walk and balance653

using continuous torque control. The agent’s objective is to maintain forward motion while remaining654

upright, which requires learning dynamic stability and coordination.655

LIBERO [76]. The Libero benchmark offers a diverse set of continual learning tasks focused on656

object manipulation and generalization:657

• LIBERO-Object: The robot is required to manipulate a variety of novel objects through658

pick-and-place operations. Each task introduces previously unseen objects, encouraging the659

agent to incrementally build knowledge about object-specific properties and behaviors.660

• LIBERO-Goal: All tasks share a common object set and spatial layout, but vary in goal661

specifications. This setup tests the agent’s ability to continually adapt to new task intents662

and motion targets without changes in the visual scene.663

• LIBERO-Spatial: Tasks involve repositioning a bowl onto different plate locations. Al-664

though the objects remain fixed, the spatial configurations vary across tasks, requiring the665

robot to incrementally acquire relational spatial understanding.666

RoboMimic. RoboMimic [75] provides a set of manipulation tasks based on human teleoperation667

demonstrations, varying in difficulty and required precision:668

• Lift: The robot arm is tasked with lifting a small cube off the table. This task serves as a669

foundational manipulation scenario focused on grasping and vertical motion.670

21

• Can: The robot must retrieve a cylindrical can from a cluttered bin and place it into a671

designated smaller container. This task introduces greater complexity due to object shape672

and the need for accurate placement.673

• Square: A fine-grained insertion task where the robot picks up a square nut and places it674

onto a vertical rod. This is the most challenging of the three, requiring precise alignment675

and control for successful completion.676

G Other Details on Ada-Diffuser677

G.1 Latent Action Planner678

For the latent action planner, we align our settings with those used in LDP [77], specifically focusing679

on learning directly from image-based demonstrations. We first use a variational autoencoder (VAE)680

to extract latent representations z from raw images via image encoders. An inverse dynamics model681

is then trained to recover actions at from pairs of latent states (zt, zt+1). A planner is subsequently682

trained to forecast future latents z.683

In our framework, we treat the latent factors c as high-level latent actions that influence the evolution684

of z. These latent factors are jointly used with z to perform both inverse dynamics modeling and685

latent forecasting, enabling structured planning in the latent space.686

We follow the experimental settings established in LDP [77]. Specifically, we use expert demonstra-687

tions alongside action-free and suboptimal demonstrations. All hyperparameters and architectural688

choices for the diffusion models are kept identical to those used in the original LDP implementation.689

We also directly utilize the pre-trained image encoder provided by LDP. The only modification in our690

framework is the introduction of an additional latent factor c trained by our latent factor identification691

stage, which is incorporated into the model to enhance latent action planning.692

G.2 Noise Scheduling693

In the autoregressive setting, we consider a monotonic increasing denoising schedule {k1, . . . , kT }.694

In practice, we use a linear schedule where ki = i
TK, with K denoting the maximum diffusion695

step used in both training and sampling. We segment the sequence into temporal blocks of length696

Tx + 1 (Tx = To in all settings), and slide the time window forward by one step at a time. This697

design ensures that the denoising steps progressively increase across the block, aligning the diffusion698

process with the underlying temporal structure. Such a schedule encourages early steps to rely more699

on strong priors and later steps to refine based on more contextual information. Additionally, for700

better illustration, Fig. A2 provides a detailed illustration of the zig-zag sampling process within a701

temporal block of 4 timesteps.702

H Specific Design Choices for Baselines703

For all baselines, unless otherwise specified, we use the same set of diffusion parameters detailed in704

Appendix D.2.2–D.2.3. Below, we provide additional details on how specific methods are evaluated.705

While their diffusion backbones remain consistent as in Appendix D.2.2–D.2.3, these methods include706

custom design choices and method-specific hyperparameters that are evaluated accordingly.707

H.1 Details on LILAC and DynaMITE708

In these settings, we extend both LILAC and DynaMITE by incorporating a context encoder to709

infer latent context variables ct, following their respective designs. Both methods learn belief710

state embeddings from historical observations. For a fair comparison, we use the same latent711

identification network architecture as in our framework, but modify the inputs according to each712

method’s assumptions.713

Specifically, LILAC and DynaMITE condition their inference networks solely on the historical714

trajectory x1:t, without access to current and future information. Additionally, consistent with715

their original implementations, we do not include a separate prior head on top of the GRU; both716

methods share the encoder for posterior inference and prior prediction. And the primary difference717

22

(in implementation) between these two methods lies in the temporal context used: LILAC maintains718

the full belief over the entire history, i.e., it conditions on x1:t to infer ct+1, while DynaMITE uses719

only the most recent context, i.e., it infers ct+1 based solely on xt.720

All other hyperparameters are aligned with those used in our Stage 1 training. The estimated context721

variables are then provided as additional conditioning inputs to the diffusion-based models.722

H.2 Details on Diffusion Forcing723

For Diffusion Forcing, we adopt the same autoregressive noise schedule as in our method, which724

accounts for causal uncertainty, similarly to the formulation in Eq. D.1 of [48], to ensure a fair725

comparison. Additionally, we use the Monte Carlo Guidance (MCG) mechanism introduced in [48]726

for Maze2D, following the original setup. For all other environments, we use the same classifier727

guidance scheme as the other baselines to maintain consistency in evaluation.728

I Ablation Analysis729

I.1 Ablation Results730

I.1.1 Full Results Supplement to Table 3731

Table A10 presents the full ablation results across all environments, as a supplement to Table 3.732

Overall, the results highlight the importance of the two key components in causal diffusion modeling:733

latent identification and autoregressive diffusion, both of which are critical for performance.734

I.1.2 Effect of Temporal Block Length on Latent Identification735

We further analyze the impact of temporal block length on latent identification. As shown in Fig. A5,736

the results are consistent with findings reported in the main paper. When the number of observations737

is insufficient (e.g., ≤ 4), identification performance degrades. Performance improves when the block738

length is in a moderate range (5–20), indicating that sufficient temporal context is beneficial. However,739

using overly long blocks (> 20) introduces redundancy and increases optimization difficulty, which740

in turn harms performance.

3 4 5 6 7 8 9 10 15 20 25 30 40 50100

Size

0.2

0.4

0.6

0.8

MSE

R2

3 4 5 6 7 8 9 10 15 20 25 30 40 50100

Size

0.2

0.4

0.6

0.8
MSE

R2

Figure A5: Identification results (MSE of linear probing and R2) versus the length of temporal
blocks. Left: Cheetah with time-varying wind; Right: Cheetah with time-varying rewards.

741

I.1.3 On the Effect of Planning and Execution Horizons: Long-horizon Planning742

We study the robustness of our approach under increased planning and execution horizons (Tp743

and Ta). Specifically, we evaluate on two challenging tasks—Franka-Kitchen-Partial and Libero-744

Long, where the original settings are Kitchen (Tp = 16, Ta = 8) and Libero (Tp = 10, Ta = 8).745

Results are in Fig. A6. When we increase these horizons, we observe that the baselines, DP and746

DF, suffer significant performance drops. In contrast, Ada-Diffusermaintains relatively high747

performance. This demonstrates that modeling the underlying causal generative process, through748

autoregressive structure and latent representations, enables better long-horizon planning. Although749

we do not explicitly impose latent variables, our model implicitly learns representations that can track750

stochasticity and support smooth control.751

23

8 10 20 32

Execution Horizon

45

50

55

60

65

70

S
u
cc

es
s

R
at

e

Kitchen-partial

Ours

DF

8 10 20 32

Planning Horizon

50

55

60

65

70

S
u
cc

es
s

R
at

e

Kitchen-partial

Ours

DF

8 10 20 32

Execution Horizon

30

40

50

60

S
u
cc

es
s

R
at

e

Libero-Long

Ours

DP

8 10 20 32

Planning Horizon

40

50

60

S
u
cc

es
s

R
at

e

Libero-Long

Ours

DP

Figure A6: Results with different planning and execution horizons. We evaluate on Kitchen-partial
and Libero-Long experiments.

I.2 Training/Inference Time Analysis752

We conduct all experiments on 4x NVIDIA A100 or 8× RTX 4090 GPUs, depending on the model753

scale and environment requirements. The main sources of computational overhead in our framework754

arise from two components: (i) the latent factor identification network, and (ii) the denoise-and-refine755

steps in the diffusion model. During sampling, the overhead comes from both zig-zag sampling and756

latent variable sampling. However, these additions do not introduce significant overhead in either757

training or inference time. To quantify this, we report the training and testing speed of our method758

compared to the base models DD and DP, across all environments. As shown in Table A11, our759

method introduces only a moderate computational overhead, typically around 20–30% more training760

and inference time compared to baseline methods. We believe this overhead can be further optimized761

through techniques such as parallel latent sampling, more lightweight context encoders, or only762

inference-time refinement. Moreover, as demonstrated in prior sections, Ada-Diffuser is capable763

of handling long-horizon tasks, offering a favorable trade-off between long-horizon planning and764

inference efficiency.765

24

E
nv

ir
on

m
en

t
D

iff
us

er
D

F
M

et
aD

iff
us

er
D

iff
us

er
+

D
yn

aM
IT

E
D

iff
us

er
+

L
IL

A
C

O
ur

s
O

ur
s

+
M

et
a

O
ra

cl
e

C
he

et
ah

-W
in

d-
E

(c
s
)

-1
20

.4
±

12
.7

-1
05

.8
±

9.
6

-8
9.

7
±

6.
5

-7
9.

2
±

11
.0

-9
5.

3±
7.

4
-6

8.
9±

7.
6
−
6
2
.4

±
3.

9
−
5
7
.8

±
6.

7

C
he

et
ah

-W
in

d-
S

(c
s
)

-1
48

.5
±

9.
8

-1
02

.0
±

10
.2

-1
06

.8
±

11
.4

-9
4.

3±
9.

6
-1

05
.6

±
14

.5
-7

3.
5±

8.
7

-6
5.

3±
11

.2
-5

8.
1±

9.
0

C
he

et
ah

-D
ir-

E
(c
r
)

85
0.

8
±

54
.2

90
2.

1
±

45
.8

91
2.

5±
37

.9
93

0.
4±

29
.5

90
8.

5±
37

.6
94

3.
3±

25
.6

94
9.

8±
24

.1
96

2.
1±

21
.9

C
he

et
ah

-V
el

-E
(c
r
)

-1
02

.4
±

18
.2

-8
5.

6±
18

.3
-6

9.
2±

7.
5

-7
6.

3±
11

.7
-6

2.
6±

11
.1

-4
5.

8±
9.

5
-3

9.
2±

7.
6

-3
8.

3±
8.

9

A
nt

-D
ir-

E
(c
r
)

18
8.

6±
39

.2
19

5.
4±

47
.0

24
5.

9±
41

.0
26

2.
8±

27
.5

22
9.

4±
32

.6
28

5.
3±

24
.5

29
6.

4±
22

.2
30

0.
7±

23
.6

Table A3: Results (average returns) on Ada-Diffuser-Planner with latent factors that affects
dynamics and rewards. cs and cr indicate the changes on dynamics and reward, E and S represent
the episodic and time-step changes. The results are with 5 random seeds. The bold ones are the
best-performing ones, excluding meta-learning and oracle ones.

25

E
nv

ir
on

m
en

t
D

P
D

P
+

D
yn

aM
IT

E
O

ur
s

+
D

P
O

ur
s

+
D

P
(O

ra
cl

e)
ID

Q
L

ID
Q

L
+

D
yn

aM
IT

E
O

ur
s

+
ID

Q
L

O
ur

s
+

ID
Q

L
(O

ra
cl

e)

C
he

et
ah

-W
in

d-
E

(c
s
)

-1
04

.8
±

10
.9

-7
2.

2±
5.

9
-5

8.
5±

4.
6

-5
2.

0±
3.

5
-9

7.
5±

9.
4

-5
9.

0±
11

.2
-4

8.
5±

7.
9

-4
1.

6±
6.

2

C
he

et
ah

-W
in

d-
S

(c
s
)

-1
20

.6
±

11
.5

-7
6.

5±
15

.6
-5

2.
9±

9.
8

-4
2.

3±
6.

7
-8

7.
8±

12
.2

-6
3.

4±
6.

7
-4

8.
0±

7.
2

-4
4.

7±
6.

1

C
he

et
ah

-D
ir-

E
(c
r
)

89
2.

5±
60

.8
94

9.
6±

36
.1

96
0.

7±
40

.2
97

2.
4±

37
.5

90
2.

4±
45

.2
93

8.
6±

49
.4

96
5.

0±
37

.5
96

9.
8±

39
.2

C
he

et
ah

-V
el

-E
(c
r
)

-8
7.

9±
6.

5
-7

2.
7±

5.
8

-4
1.

0±
7.

2
-3

9.
8±

6.
7

-8
0.

2±
11

.4
-5

9.
4±

6.
5

-3
8.

6±
7.

7
-3

3.
8±

6.
5

A
nt

-D
ir-

E
(c
r
)

18
2.

5±
41

.2
27

5.
2±

27
.0

29
0.

4±
49

.4
31

2.
5±

37
.2

20
4.

6±
25

.6
26

9.
3±

29
.5

29
5.

8±
32

.7
30

9.
6±

25
.4

Table A4: Results (average returns) on Ada-Diffuser-Policy with latent factors. cs and
cr indicate the changes on dynamics and reward, E and S represent the episodic and time-step
changes. The results are with 5 random seeds. The bold ones are the best-performing ones, excluding
meta-learning and oracle ones.

26

Environment Diffuser DD DF LDCQ Ours (DD)

Mixed 52.6 ± 2.3 75.2 ± 1.4 73.7 ± 1.9 73.3 ± 0.5 74.6± 1.6

Partial 55.8± 1.9 57.3± 1.2 68.6± 2.4 67.8± 0.8 70.1± 1.3

Table A5: Results (success rate (%)) on Ada-Diffuser-Planner without explicit latent factors
on Franka-kitchen environment. The results are with 5 random seeds.

Environment Diffuser DD DF LDCQ Ours (DD)

umaze 113.5 ± 2.8 114.8 ± 3.2 116.7 ± 2.0 134.2 ± 4.1 148.6± 3.7

medium 121.5 ± 5.6 129.6 ± 2.9 149.4± 7.5 125.3± 2.5 148.6± 3.1

large 123.0± 4.8 131.5± 4.2 159.0± 2.7 150.1± 2.9 161.4± 3.2

Table A6: Results on Ada-Diffuser-Planner without explicit latent factors on Maze-2D
environment. The results are averaged across 5 random seeds.

Environment Diffuser DD DF LDCQ Ours (DD)

medium-expert 106.2 ± 0.7 108.8 ± 2.0 105.4 ± 3.2 109.3 ± 0.4 115.7 ± 2.1

medium 79.6± 9.8 82.5± 1.6 66.2± 1.9 69.4± 2.4 83.6± 3.5

medium-replay 70.6± 0.6 75.0 ± 3.2 72.2± 2.6 68.5± 4.3 74.3± 2.8

Table A7: Results on Ada-Diffuser-Planner without explicit latent factors on Walker envi-
ronment. The results are averaged across 5 random seeds.

Environment DP Ours (DP)

Spatial 78.3 ± 3.9 79.2 ± 4.2

Object 92.5± 2.6 93.4± 2.8

Long 50.5 ± 7.2 62.6 ± 4.9

Table A8: Results on Ada-Diffuser-Policy without explicit latent factors on Libero environ-
ment. The results are averaged across 5 random seeds.

Component Type (i): Full Trajectory Type (ii): State-Only

Model Backbone 1D U-Net [80] Transformer (DiT)
Architecture Kernel size: 5; channels: (1,2,2,2); base: 32 Hidden dim: 256; head dim: 32
DiT Blocks – 2 (Walker, Kitchen, Maze2D), 8 (LIBERO)
Optimizer Adam, lr = 3 × 10−4 Adam, lr = 3 × 10−4

Batch Size 64 128
Training Steps 1M 1M
Diffusion Timesteps 1000 500
Observation Horizon To 10 4 (Kitchen), 2 (LIBERO), 10 (others)
Planning Horizon Tp 16 (Cheetah), 32 (Ant) 16 (Kitchen), 10 (LIBERO), 32 (others)
Execution Horizon To 1 8 (Kitchen, LIBERO), 10 (others)
Guidance CG, ω = 1.5 CFG
Inverse Dynamics Model – 2-layer embed (64), 3-layer MLP (128), 1M steps
Refinement Loss Cofficient 0.1 0.1

Table A9: Planner configurations for type (i): full trajectory generation and type (ii): state-only
generation with inverse dynamics.

27

Cases Cheetah-1 Cheetah-2 Ant Maze2D Walker Kitchen RoboMimic LIBERO

Original -73.5 -52.9 295.8 161.4 115.7 0.70 0.85 93.4
w/o refine -82.0 -60.7 261.2 156.5 107.4 0.63 0.78 90.2
w/o zig-zag -91.6 -56.1 258.3 147.6 107.9 0.59 0.75 91.6
same NS -89.7 -62.4 259.7 140.1 105.8 0.56 0.72 85.2
random NS -84.6 -62.9 266.4 146.3 109.1 0.61 0.76 88.5

Table A10: Ablation on Design Choices. We conduct ablation studies across a diverse set of tasks,
including: Cheetah-Wind-S with a planner-based approach (denoted as Cheetah-1 in the table),
Cheetah-Wind-S with a diffusion policy (Cheetah-2), Ant-Dir-E (policy, IDQL-based), Maze2D-
Large (planner), Walker2D-Medium-Expert (planner), Kitchen-Partial (planner), LIBERO-Object
(diffusion policy), and RoboMimic-Can.

Environment Training Time (sec/epoch) Inference Time (sec/rollout)
Ours vs DD Ours vs DP Ours vs DD Ours vs DP

Cheetah 72.1 / 60.1 (1.20) 69.8 / 58.4 (1.20) 1.51 / 1.26 (1.20) 1.57 / 1.22 (1.29)
Ant 79.5 / 64.3 (1.24) 76.0 / 62.0 (1.23) 1.67 / 1.36 (1.23) 1.72 / 1.32 (1.30)
Walker 85.3 / 67.1 (1.27) 81.5 / 64.2 (1.27) 1.83 / 1.45 (1.26) 1.88 / 1.38 (1.36)
Maze2D 90.2 / 72.0 (1.25) 88.3 / 69.2 (1.28) 1.94 / 1.54 (1.26) 2.01 / 1.46 (1.38)
Libero 104.0 / 81.0 (1.28) 102.1 / 78.0 (1.31) 2.18 / 1.72 (1.27) 2.31 / 1.64 (1.41)
Kitchen 117.8 / 88.1 (1.34) 115.3 / 85.0 (1.36) 2.45 / 1.83 (1.34) 2.55 / 1.73 (1.47)

Table A11: Training and inference time comparison for Ada-Diffuser-planning and
Ada-Diffuser-policy variants. We report absolute times (in seconds per epoch/rollout) and
relative overheads.

28

	Introduction
	Background and Related Work
	Latent Identification in POMDP
	Latent Contextual POMDP with Time-Dependent Context
	Identifiability of Latent Factors with Minimal Measurements

	Latent-Aware Adaptive Diffusion Planner and Policy
	Latent-Augmented Diffusion Model for Planning and Policy Learning
	Stage 1: Offline Latent Factor Identification
	Stage 2: Causal Diffusion Model

	Experiments
	Conclusions
	Discussions and Overview
	Broader Impact
	Discussions on the Core Idea
	Discussions on the Theoretical Assumptions and Results
	Discussions on the Model Design
	Overview

	Theory
	Notation List
	Proof of Theorem 1
	Discussion on Assumptions
	ELBO of Ada-Diffuser

	Summary on Different MDPs
	Contexutal MDPs
	 Hidden-Parameter MDPs
	Discussions and Comparisons

	Details on Ada-Diffuser
	Full Algorithm and Results
	Architecture Choices and Hyper-parameters
	Connection to Bayesian Filtering

	Extended Related Works
	Diffusion Model-based Decision-making
	Latent Belief State Learning in POMDP
	Autoregressive Diffusion Models

	Benchmark Settings and Illustrations
	Latent Change Factors Design
	Overview on Other Benchmarks

	Other Details on Ada-Diffuser
	Latent Action Planner
	Noise Scheduling

	Specific Design Choices for Baselines
	Details on LILAC and DynaMITE
	Details on Diffusion Forcing

	Ablation Analysis
	Ablation Results
	Training/Inference Time Analysis

