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Synergizing Large Language Models and Knowledge-based
Reasoning for Interpretable Feature Engineering

Anonymous Author(s)

Abstract
Feature engineering stands as a pivotal step in enhancing the perfor-
mance of machine learning (ML) models, particularly with tabular
data. However, traditional feature engineering methods are often
time-consuming and requires case-by-case domain knowledge. In
addition, as ML systems become more common, interpretability
becomes increasingly important, especially among domain experts.
To this end, we propose ReaGen, an automated feature engineering
(AutoFE) approach that combines knowledge graphs (KGs) with
large language models (LLMs) to generate interpretable features.
ReaGen begins by symbolic REAsoning over KG to extract relevant
information based on datasets description. Then, it uses an LLM
to iteratively GENerate meaningful features based on the retrieved
information and the datasets description. Finally, to overcome chal-
lenges such as hallucinations and handling long contexts typical in
LLMs, our model performs logical reasoning on the KG to ensure
that the generated features maintain interpretability. ReaGen pro-
vides Python code for automatic feature generation and detailed
explanations of feature utility. It leverages both LLM’s internal
knowledge and retrieved information from KGs. Experiments on
public datasets demonstrate that ReaGen significantly improves
prediction accuracy while ensuring high interpretability through
human-like explanations for each feature. This work highlights
the potential of integrating LLMs and KGs in feature engineering,
paving the way for interpretable ML models.
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Figure 1: An overview of AutoML pipeline on tabular data.

1 Introduction
In today’s computational environments, the majority of web appli-
cations rely heavily on the analysis and mining of tabular data1,
aka structured data. Over the past decades, ML has demonstrated
impressive results with structured data in various domains, such as
e-commerce, recommendation, marketing, risk management and
more [7, 17, 43]. This success is often attributed to the experience
of data scientists who leverage domain knowledge to extract mean-
ingful patterns from data. This crucial yet tedious task is commonly
referred to as Feature Engineering (FE). We illustrate in Figure
1, the different steps involved in ML pipeline. Arguably, feature
engineering remains a significant bottleneck in the data science
workflow, requiring up to 80% of the total time [14], as reported in
the State of Data Science report2. Given the increasing computa-
tional capabilities and the rapid advancements in automated ML
(AutoML), AutoFE has received an increasing interest, as it may
reduce data scientists workload for quicker decision-making.

1.1 Main Challenges
Recently, several approaches of AutoFE have been proposed [2, 8–
10, 12]. However, these approaches have several drawbacks. We
categorize these challenges from 4 main perspectives: effectiveness,
efficiency, applicability, and interpretability.

1.1.1 Effectiveness. (1) Lack of High-Order Features: AutoFE ap-
proaches, particularly learning-based methods, often fail to discover
high-order transformations, focusing instead on simple, linear fea-
tures, which can limit model performance. (2) Missing Feature In-
teractions: Existing approaches fail to explore interactions between

1https://db-engines.com/en/ranking
2https://www.anaconda.com/state-of-data-science-report-2023
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features, missing out on potentially powerful feature combinations
that could improve accuracy.

1.1.2 Interpretability. (1) Lack of Feature Semantics: AutoFE sys-
tems often fail to incorporate domain-specific knowledge, leading
to features that lack meaning in their context, making them hard
to interpret or justify to domain experts. (2) Lack of Feature Inter-
pretability: Complex features generated by advanced methods are
often difficult for humans to understand, compromising the trans-
parency of the resulting models. In real-world applications, the
ability to interpret the features driving model decisions is crucial.

1.1.3 Efficiency. (1) High Sample Complexity: Many existing meth-
ods operate at the level of individual features. While this approach
makes the implementation straightforward, it tends to increase the
complexity and overall runtime, making it impractical for large-
scale applications. (2) Feature Explosion: Many prior works suffer
from the feature explosion problem due to the number of candidates,
escalating computational costs and raising the risk of overfitting.

1.1.4 Applicability. (1) Scalability: Existing frameworks are often
tested on small datasets and struggle to handle larger datasets due
to high resource demands. As a result, there is a significant gap
between research-level AutoFE frameworks and their ability to
handle real-world datasets. (2) Generalization: Features generated
by existing approaches, especially reinforcement learning-based
(RL) approaches, often fail to perform well on truly unseen datasets,
raising concerns about their robustness in real-world applications.

Recently, Large Language Models (LLMs) have demonstrated
fruitful progress across many applications, particularly when en-
hanced with sophisticated prompting strategies such as chain-
of-thought (CoT) [37]. These models, trained on extensive web-
crawled data across diverse tasks, offer the unique capability of
adaptation to new tasks without necessitating task-specific fine-
tuning. Consequently, LLMs have the potential to extend traditional
AutoML tools by automating additional steps of the data science
pipeline, particularly those involving contextual information such
as FE. However, several challenges hinder their effective application
in FE, including concerns regarding interpretability, possible hallu-
cinations in model responses [4], and difficulties in handling tasks
requiringmulti-step and context-aware reasoning. These challenges
stem from their reliance on internal representations to generate
answers, which lack grounding in the external world and restrict
their ability to reason reactively or update their knowledge.

1.2 Our proposed solution
To this end, we introduce ReaGen, an AutoFE approach that com-
bines LLMs with knowledge-based reasoning to generate inter-
pretable features. ReaGen begins by using the dataset’s description
as input to infer new relationships and relevant information from
external KGs, which are then used as additional context. Leverag-
ing the retrieved information and the dataset description, ReaGen
employs LLMs to automatically generate Python code that creates
meaningful features in order to improve the performance of down-
stream prediction tasks. To ensure feature interpretability and to
reduce factual inaccuracies and hallucinations, our model includes
a knowledge-based discriminator to discard non-interpretable fea-
tures. ReaGen operates iteratively, providing feedback at each step

based on the performance improvement and interpretability of
the generated features (details in Section 4). Additionally, it offers
human-like explanations for each generated feature, ensuring high
interpretability for the end user.

In comparison with existing AutoFE approaches, ReaGen offers
several advantages:

• High-Order Features. ReaGen extends beyond the limita-
tions of learning-based methods [2, 9, 44] and approaches
relying on pre-defined operators [10, 11], by supporting
a broad range of operators. Through its operator-guided
prompts, ReaGen enables the generation of complex and
diverse feature transformations, moving past simple, lin-
ear constructions. Additionally, by incorporating exter-
nal knowledge alongside the LLM’s internal knowledge,
ReaGen uncovers a richer set of high-order transformations,
facilitating deeper exploration of feature interactions.

• Leveraging external data. ReaGen enhances performance
by leveraging external knowledge. This capability addresses
the challenge of feature semantics by incorporating mean-
ingful domain-specific information, ensuring that gener-
ated features are contextually relevant and generalizable.

• Improved Interpretability. ReaGen enhances feature in-
terpretability by using domain knowledge during feature
generation. Unlike traditional AutoFE approaches that ig-
nore context, our approach applies relevant operators to
create features that are both meaningful and easier to inter-
pret. Additionally, to avoid inaccuracies common in LLMs,
we use a knowledge-based reasoning technique to filter out
non-interpretable features, ensuring the generated features
are clear and understandable for domain experts.

• Generalization:Our approach incorporates a broader range
of contextual and external knowledge sources, allowing it
to adapt feature engineering to different data environments.
ReaGen ensures that generated features are robust and ap-
plicable across varying datasets, thereby enhancing their
generalization capability in real-world applications.

Through extensive experiments on a wide range of datasets,
ReaGen consistently achieves SOTA performance, significantly out-
performing prior work. Additionally, several analytical experiments
have demonstrated that our approach not only enhances inter-
pretability but also improves scalability, validating its effectiveness
in practical applications.

2 Related work
Existing AutoFE methods can be classified into 03 main classes.

Expansion-Reduction. This technique applies a large set of
transformations to generate numerous features followed by fea-
ture selection and pruning. For instance, FICUS [20] and TFC [25]
iteratively generate and select features using beam search and in-
formation gain, respectively. Deep Feature Synthesis [10] and One
Button Machine [15] explore relational DBs to generate large feature
sets. Cognito [13] improves search efficiency using BFS and DFS,
while AutoFeat [8] uses down-sampling to focus searches in smaller
regions. SAFE [31] enhances scalability with heuristic metrics, and
OpenFE [40] uses a two-stage advanced pruning process to filter gen-
erated features. Despite these optimizations, expansion-reduction

2
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suffers from high computational costs, feature space explosion, and
lack of convergence guarantees, making it less efficient for large
datasets.

Learning-based. These approaches provide an efficient alter-
native to expansion-reduction by combining feature generation
and selection into one process. They generate small batches of fea-
tures and assess their usefulness through training and evaluation.
ExplorKit [11] employs a learned ranking function to prioritize
features but can be time-consuming. LFE [22] uses multi-layer per-
ceptrons for transformation suggestions, but it is limited to classifi-
cation. To explore more complex features, [12] apply Q-learning
[35] on a transformation graph, and [9] use Monte Carlo tree search.
NFS [2] employs RNNs to generate transformation sequences but
incurs high computational costs due to the need for multiple RNNs.
On the other hand, DIFER [44] uses evolutionary frameworks but of-
ten explores limited action spaces, reducing real-world applicability.
Additionally, both focus on individual feature impacts, overlooking
interactions between features. FETCH [16] improves upon this by
learning a neural policy to generate feature pipelines tailored to
specific datasets. However, learning-based methods still face chal-
lenges like heavy training requirements, limited interpretability,
and scalability issues for large datasets.

AutoML-based. These approaches aim to reconstruct the fea-
ture space of original data, streamlining ML workflow from pre-
processing to model selection. For instance, [1] introduced a hier-
archical RL framework that classifies features and employs agents
to select operations and features, assessing their quality through
statistical interaction tests. This method rewards successful feature
combinations but is computationally intensive due to the training of
multiple agents. Another example is AutoDS [32], a web application
that automates various ML tasks, allowing data scientists to upload
datasets and receive suggestions for ML configurations, prepro-
cessing, algorithm selection, and model training via user-friendly
interfaces.

3 Problem Definition
In this work, we address the problem of engineering interpretable
features by combining LLMs with knowledge-based reasoning.

3.1 Feature Interpretability
Building a model to generate interpretable features requires a clear
definition of interpretability. While literature has acknowledged
the importance of feature interpretability [3, 30, 45], there is now
clear definition of what constitutes an interpretable feature. Since
a formal definition could be elusive, we have sought insights from
the field of psychology.

Definition 3.1. (Interpretability). In general, to interpret means
"to explain the meaning" or "to present in understandable terms".

In psychology, interperetability refers to the ability to under-
stand and make sense of an observation [18]. It involves making
psychological theories and concepts comprehensible.

In logics, an interpretation I = (ΔI , .I ) consists of a nonempty
set ΔI (the domain) and a function .I (the interpretation function)
that maps every concept to a subset of ΔI , every role to a relation
over ΔI × ΔI , and every individual to an element of 𝑎I ∈ ΔI .

In the context of ML, "interpretability is the ability to explain or
to present in understandable terms to a human".

By incorporating these insights, we propose the following defi-
nition of feature interpretability.

Definition 3.2. (Feature Interpretability). It is the ability of do-
main experts to comprehend and connect the generated features to
relevant concepts and entities within their domain knowledge. This
implies mapping every new feature to relevant intensional and exten-
sional knowledge within the domain of interest

From the definition above, we define the following properties
that an interpretable feature should meet.

(1) Readable:A feature is readable when it is expressed in clear
and human-friendly language that is easily understood by
domain experts, avoiding obscure codes and acronyms.

(2) Meaningful: Features must refer to real-world entities that
experts can reason about, depending on their context and
expertise, excluding overly complex engineered features
that lack intuitive understanding.

(3) Traceable: Features should have a clear connection to their
original data sources, allowing users to track their lineage
and ensuring transparency in feature creation.

(4) Useful: Features must have a meaningful relationship with
the target variable, contributing to the model’s performance
by reflecting genuine patterns rather than spurious correla-
tions, thereby enhancing model generalization.

The quality of ML models strongly depends on the quality of
input features. Even simple and interpretable models, like regres-
sion, become difficult to understand with non-interpretable features.
When ML models are deployed in real-world applications, their pre-
dictions are communicated through the language of their features.
Whether through feature importance, visualizations of decision
boundaries, or examples that represent how decisions are made,
features serve as the foundation for explaining the model’s behavior
to users. If the features are difficult to understand, any attempts to
explain the model would fail.

3.2 Feature Engineering
Given a predictive problem on a tabular dataset 𝐷 = (𝑋,𝑦) consist-
ing of: (i) a set of features 𝑋 = {𝑥1, .., 𝑥𝑝 } ∈ R𝑛×𝑝 , where 𝑛 and 𝑝
are the number of instances and features respectively; (ii) a target
vector 𝑦; (iii) an applicable ML algorithm 𝐿 (e.g. XGBoost); and
(iv) a corresponding cross-validation performance metric P (e.g.
F1-score). We define a FE pipeline T = {𝑡1, ..., 𝑡𝑚} as a sequence
of𝑚 transformations applied to 𝑋 . The set of generated features
from 𝑋 using T is denoted as 𝑋T . Based on definition 3.2, we de-
fine I𝐾𝐺 : X → {0, 1} as an interpretability function that returns
1 if a feature is interpretable based on domain knowledge, and 0
otherwise.

The goal of AutoFE is to find the optimal FE pipeline T that
generates 𝑋T which maximizes the performance P(𝐿(𝑋T , 𝑦)) for
a given algorithm 𝐿 and a metric P, as shown in Equation 1:

3
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Figure 2: An overview of ReaGen architecture.

T = argmax
T

P(L(X̂T , y))

𝑠 .𝑡 .∏
x̂i∈X̂T

IKG (x̂i) = 1

IKG (x̂i) ∈ {0, 1},∀𝑥𝑖 ∈ 𝑋T

(1)

Note that ReaGen aims at generating features that maximize
performance while ensuring that the generated features remain, as
far as possible, close to the concepts known by domain experts.

4 Proposed approach
In this section, we present ReaGen, an AutoFE approach that com-
bines the use of LLMs and knowledge-based reasoning techniques
to engineer interpretable features, as outlined in Figure 2. ReaGen
bridges the gap between ML and symbolic AI, offering a promising
direction for interpretable AutoML tools.

4.1 Overview
ReaGen follows an iterative search process that takes a dataset, its
description, and, if available, external knowledge sources as inputs.
Initially, it leverages the external knowledge to extract additional
information (see Figure 2.a). This knowledge can come in various
forms, such as ontologies, KGs, and metadata. Using a predefined
template, ReaGen generates a prompt that includes the dataset
description, the FE task, and the information retrieved from the
external knowledge (illustrated in Figure 2.b, with further details in
Section 4.2). This generated prompt is then used to query multiple
LLMs to identify the optimal set of transformations needed to create
new features, as depicted in Figure 2.c (Section 4.3). After the new
features are generated, their interpretability is assessed in relation to
the concepts and entities within the domain knowledge embedded
in the KG, using a logic-based reasoning algorithm. Features that
lack relevance to the domain knowledge are discarded, ensuring
that only relevant and interpretable features are retained, as shown
in Figure 2.d (details in Section 4.4). Following the interpretability
assessment, the resulting dataset is evaluated using a downstream
model and a performance metric to gauge the effectiveness of the
newly generated features for the given task (see Figure 2.e).

Figure 3: Application ofReaGen on the NYC taxi trip duration
dataset. The dataset description provided is highlighted in
blue, and the model performance evaluation is shown in red.
The LLM-generated Python code follows a template from the
prompt, resulting in an RMSE improvement of 0.121 over
two iterations on the validation set.

This iterative process continues until a predefined budget is
reached (e.g., number of iterations), as shown in Figure 2.f. Conse-
quently, ReaGen helps improve the quality of the generated features
and facilitates the automatic construction of interpretable and high-
performing models. Figure 3 shows a simplified version of one such
run on the NYC taxi trip duration dataset.

4.2 Prompting LLMs for AutoFE
To leverage LLMs for AutoFE, ReaGen uses a template to create a
prompt that guides the generation of interpretable features. Template-
based prompting is a common technique to improve the quality of
LLM responses [33]. Essentially, the LLMs are instructed to propose
meaningful features for a prediction task, justifying their useful-
ness, and to drop unnecessary features. Additionally, they are tasked
to provide Python code to automatically generate and drop these
features. This prompt incorporates the following elements.

4.2.1 Dataset Description. Dataset Information: This includes a
description of the dataset and the target variable to be predicted,
along with feature names and their context, data types (e.g., float,
int, categorical), and, where applicable, the domains of categorical
features. For open-source datasets from platforms like Kaggle 3

and OpenML4, much of this information can often be extracted
automatically. Our model enhances this description by providing a
3https://www.kaggle.com/
4https://www.openml.org/
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summary of descriptive statistics, such as the percentage of missing
values, minimum and maximum values, and the count of unique
values, along with 10 random records from the dataset. This contex-
tual information offers insights into the dataset’s scale and feature
encoding, enabling LLMs to generate semantically meaningful fea-
tures and process them effectively.

4.2.2 External Knowledge. Users can provide external knowledge
bases, such as libraries or publicly available ontologies, to enrich the
dataset with additional information. For example, these resources
can be used to derive relevant context, such as population density
from a city feature or weather data based on a city and a date.
This additional information adds context and enriches the prompt,
allowing for the generation of context-aware features.

4.2.3 Feature Generation. LLMs are prompted to generate new
features by applying a variety of transformations. We categorize
these transformations into three types: (i) Arithmetic functions;
which can be unary or binary functions, (ii) Aggregation functions
(e.g., GroupByThenAvg), which are applied based on the feature
type (numerical or categorical), (iii) Customized functions, which
generate new features that cannot be derived from the previous
transformations, such as extracting Day, Month, Year, Is_Weekend,
or Is_Rush_Hour from a date feature. More details on these trans-
formations are provided in Appendix A.

We used two different prompt strategies, depending on the type
of transformations: proposal strategy and sampling strategy [38, 39].
The former is used for unary functions, where LLMs are prompted
to suggest all relevant transformations for a given feature along
with confidence levels (high, medium, low). ReaGen then selects
the transformations with high confidence. This approach is most
effective when the search space is small. For the sampling strategy,
LLMs are prompted to provide candidate features for a specific
transformation. This is particularly useful when the number of
possible operands for a transformation is large. For example, a
GroupByThenAgg transformation requires both a grouping feature
and a context feature (an aggregation column) along with an aggre-
gation function. In datasets with many categorical features, even
one grouping column can generate various feature candidates. In
such cases, LLMs are tasked with identifying the most relevant ag-
gregation columns and functions for the selected groupby column.

To maintain readability and traceability, LLMs are prompted to
name the generated features in the format Function_Name(operands),
where Function_Name is the name of the proposed transformation
(e.g., GroupByThenAvg), and operands is the list of features involved.
For example, applying GroupByThenAvg on the features Revenue
and sex would result in a new feature namedGroupByThenAvg(Revenue,
sex), representing the average revenue grouped by sex.

4.2.4 Expected Output. A template for the desired output is pro-
vided using Chain-of-Thought (CoT) prompting, as described in
[37], which includes intermediate reasoning steps. The output con-
sists of several key components: the proposed feature’s name, a
description of the feature, an explanation of its relevance to the task,
the names and examples of the features used, ensuring traceability,
and the Python code to generate or remove the feature.

4.2.5 Error Handling. LLMs are also used to handle exceptions. If
the generated code produces an error, the error is passed back to
the LLMs in the next iteration, instructing them to correct it.

The datasets used in our experiments are described in Appendix
E, and the fully-formed prompt is shown in Figure 9 in Appendix
D. We found that this prompt design enables ReaGen to generate
interpretable and meaningful features.

4.3 Feature Generator
The prompt described above is used by multiple LLMs to propose
transformations for creating new features (Figure 2.c). Each LLM 𝑖

produces Python code to generate features for the current dataset
𝐷 . To mitigate risks associated with the automatic execution of AI-
generated code, such as malicious code, we established an allowlist
of permitted transformations. The generated code is parsed and
checked against this allowlist. If a transformation is not allowed,
ReaGen raises an exception and passes it to the next LLM 𝑖 + 1.
Similarly, if the proposed operands are invalid or the code generates
an error, the issue is passed to another LLM for resolution.

Once validated, the code from each LLM is executed on a copy
of dataset 𝐷 , resulting in a new dataset 𝐷𝑖 . These datasets are then
combined using a union operation, creating an updated dataset
𝐷′. Additionally, the LLMs provide explanations for each proposed
feature, using both internal knowledge and retrieved external infor-
mation to justify its utility. In cases where the proposed transfor-
mations cannot generate suitable features due to missing data, the
LLMs are tasked with suggesting potential data sources to assist
users in generating the necessary features.

4.4 Knowledge-based discriminator
Traditional approaches often combine transformations to gener-
ate new features, testing their effectiveness without considering
the interpretability of the results. In contrast, ReaGen emphasizes
interpretability by integrating domain knowledge into the feature
generation process. Initially, we attempted to use LLMs to gen-
erate interpretable features with high predictive power, without
additional interpretability assessments. However, we discovered
that LLM-generated features were not consistently interpretable by
our standards. While LLMs can suggest features that are related to
domain knowledge, they often produce arbitrary combinations of
transformations that lack a clear semantic connection to the domain.
For example, LLMs may suggest adding or subtracting raw features
with different units of measurement or representing different quan-
tities, which domain experts find unreasonsable. Even when such
features improve model performance, they fail to meet the inter-
pretability criteria necessary for experts to trust and understand
the outputs. Moreover, we observed that LLMs sometimes handle
specific types of features, like dates, in unintelligent ways. For in-
stance, in a dataset of monthly warehouse inventory (stocks), LLMs
incorrectly aggregated stock values over a quarter by summing or
averaging them, rather than selecting the "last value," which is the
appropriate aggregation. Similarly, LLMs struggle with dynamic
units like prices, often incorrectly suggesting that different curren-
cies (e.g., euros and dollars) be summed, which lacks contextual
meaning.When features involve multiple layers of aggregation (e.g.,
over time and location), LLMs frequently fail to respect the correct
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order. Through collaboration with domain experts, we identified
several such inconsistencies in LLM-generated features.

To address these shortcomings, we introduced an additional inter-
pretability check for features proposed by LLMs. To reduce factual
inaccuracies typical in LLMs [27, 42], we designed a knowledge-
based discriminator to assess the semantic distance between pro-
posed features and domain concepts embedded in KGs or knowl-
edge bases. We began by constructing a KG5 using a description
logics-based language. The KG leverages two types of knowledge: (i)
Domain-agnostic knowledge which includes knowledge about units
of measurement and the class non-interpretable; (ii) Domain-specific
knowledge using several publicly available Knowledge sources from
various domains, further details in Appendix B. Then, we applied a
reasoning algorithm to filter out non-interpretable features. Using
the Hermit reasoner [29], we checked if a feature 𝑥 ′ ∈ 𝐷′ could be
subsumed under the concept of non-interpretable (e.i., 𝐾𝐺 |= 𝑥 ′ ⊏
non-interpretable). Features identified as non-interpretable were
removed (Figure 2.d). If a feature lacked sufficient information, its
unit was used as a secondary discriminator (𝐾𝐺 |= 𝑈𝑛𝑖𝑡𝑠 (𝑢)), and
features with unknown units were discarded. This process ensures
that the generated features and transformations are aligned with
domain knowledge and interpretable to domain experts. As a result,
ReaGen not only enhances trust in the model’s outputs but also
reduces bias.

4.5 Performance Evaluation
Post-interpretability assessment, the current dataset 𝐷 and its ex-
tension 𝐷′ are split into training and validation sets, respectively
designated as 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙𝑖𝑑 , 𝐷′

𝑡𝑟𝑎𝑖𝑛
and 𝐷′

𝑣𝑎𝑙𝑖𝑑
. An ML algorithm,

𝐿, is then trained on 𝐷′
𝑡𝑟𝑎𝑖𝑛

and evaluated on 𝐷′
𝑣𝑎𝑙𝑖𝑑

to obtain its
performance P′. If P′ exceeds the performance P obtained in the
previous iteration using 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑 , the new features are
retained and 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑 are updated to 𝐷′

𝑡𝑟𝑎𝑖𝑛
and 𝐷′

𝑣𝑎𝑙𝑖𝑑
.

Otherwise, the new features are rejected and 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑
remain unchanged as shown in Figure 2.e.

Given that evaluation relies heavily on cross-validation results
from downstream tasks, the focus on performance metrics can
substantially increase the time required for validating proposed
transformations. By leveraging our discriminator to pre-filter non-
interpretable features, we address this challenge. These features
are discarded early, removing the need for unnecessary model eval-
uations. This reduces wasted computation, optimizing time com-
plexity and boosting the overall efficiency of the process.

5 Experiments
5.1 Experimental setup
5.1.1 Datasets. We use 30 public datasets collected from the In-
ternet, including 18 academic datasets and 10 large-scale indus-
trial datasets, all available on Kaggle, OpenML, and UCIrvine6.
Since LLMs are trained on public data, including potentially these
datasets if released before their knowledge cutoff, evaluating on
these datasets could introduce bias. To address this, we used amix of
datasets: those released before September 2021, potentially known

5https://cutt.ly/bex8C2Cc
6https://archive.ics.uci.edu/

to GPT-3.5-turbo and GPT-4, and newer datasets from Kaggle com-
petitions released after September 2021, which are less likely to
have been accessed by these models, since they are only accessible
through specific agreements.

5.1.2 AutoFE Methods. We compared ReaGen with several meth-
ods. (1) Base: The original dataset without FE; (2) Random: Apply
random transformations on row features; (3) DFS [10] for which
we set its 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 3; (4) AutoFeat [8]: a python library for
AutoFE; (5) mCAFE [9]: uses Monte Carlo Search; (6) NFS [2]:uses
neural search for FE; (7) DIFER [44]: an evolutionary framework;
and (8) OpenFE [41]. Additionally, we campared ReaGen with two
AutoML methods. (9) AutoSklearn [6]: A popular AutoML frame-
work based on Bayesian optimization; and (10) AutoGluon [5]: A
famous AutoML framework developed by Amazon Inc. All methods
were used with default settings and limited to 50 new features.

5.1.3 Evaluation metrics. We used the metrics 1 - rae (relative
absolute error) [28] and F1-score, for regression and classification
tasks respectively. Both evaluation metrics are that the higher the
score, the better the performance. 5-fold cross-validation protocol
is used to evaluate the effectiveness of the generated features.

5.1.4 Evaluation setup. The datasets are loaded into memory as
Pandas dataframes [21]. We use OpenAI’s GPT-3.5-turbo and GPT-4
[23] as LLMs in our architecture to generate Python code, that is au-
tomatically executed. To avoid information leakage and overfitting,
we combined the three-way split and cross validation techniques
with most datasets. First, the dataset is separated into three dis-
tinct parts: training, validation, and testing sets. Then we apply
cross-validation on the training set. Performance is measured on the
current dataset with 5 random validation splits using Random Forest
[34], while the testing sets remain unseen until the final experimen-
tal evaluation. Features are retained if their average improvement in
evaluation metrics over 5 splits is positive. The selected features are
then evaluated using 5 commonly used ML models: Random Forest
(RF), Decision Tree (DT), Logistic/Linear Regression (LR), Support
Vector Machines (SVM), and XGBoost (XGB). All parameters are
set to default values in scikit-learn [24].

5.2 Effectiveness of ReaGen
We report in Table 1 the evaluation results on 18 datasets (due to
lack of space) compared to AutoFE methods. ReaGen outperforms
the methods in most cases (16/18 datasets). Compared to raw data,
the features generated by ReaGen can improve the performance
by an average of 19.73%. Compared with OpenFE, NFS and mCAFE,
ReaGen achieves an average improvement of 3.83%, 5.36% and 6.84%
respectively.

The superior performance of ReaGen can be attributed to several
key factors: (i) Leveraging External Knowledge: Our model uses
domain knowledge to generate features grounded in domain under-
standing and that better explain the target variable. This external
knowledge enriches the dataset with contextual features and meta-
data, which goes beyond the capabilities of baselines that primarily
rely on raw data transformations. (ii) Leveraging LLMs: By utilizing
the capabilities of LLMs, our approach generates semantically mean-
ingful features based on dataset descriptions. This aligns with the
core concept of feature engineering, which involves using domain
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Table 1: Comparing the effectiveness of ReaGen with the baselines. Inst. is short for Intstances, Feat. is short for Features.

Datasets Task #Inst./#Feat Base ReaGen
Expansion-Reduction Learning-based Methods AutoML Approaches

Random DFS AutoFeat OpenFE NFS mCAFE DIFER AutoSklearn AutoGluon

Fertility C 100 / 9 0.870 0.932 0.795 0.790 0.890 0.920 0.916 0.856 0.880 0.840 0.880
Hipatitis C 155 / 19 0.832 0.972 0.845 0.850 0.868 0.932 0.870 0.877 0.883 0.810 0.780

Megawatt1 C 253 /37 0.870 0.928 0.815 0.890 0.889 0.902 0.920 0.896 0.910 0.885 0.885
Credit-a C 690 / 15 0.840 0.900 0.705 0.821 0.859 0.867 0.866 0.846 0.863 0.864 0.842
Diabetes C 768 / 8 0.740 0.853 0.670 0.737 0.767 0.842 0.786 0.813 0.798 0.801 0.788

Wine Quality Red C 999 / 12 0.531 0.707 0.506 0.547 0.524 0.594 0.584 0.674 0.582 0.580 0.572
German C 1001 / 24 0.742 0.827 0.655 0.780 0.796 0.813 0.805 0.795 0.777 0.746 0.750

SVMGuide3 C 1243 / 21 0.740 0.859 0.721 0.711 0.789 0.858 0.856 0.829 0.834 0.807 0.798
Spam Base C 4601 / 57 0.939 0.956 0.939 0.919 0.943 0.952 0.939 0.937 0.942 0.925 0.900

Wine Quality White C 4900 / 12 0.494 0.607 0.504 0.488 0.502 0.569 0.516 0.502 0.515 0.537 0.525
Home Credit Default Risk C 30000 / 25 0.797 0.837 0.789 0.802 0.806 0.810 0.799 0.801 0.810 0.820 0.821

Amazon Employee C 32769 / 9 0.712 0.932 0.740 0.744 0.739 0.909 0.945 0.897 0.909 0.947 0.949
Higgs Boson C 50000 / 28 0.718 0.739 0.699 0.682 0.468 0.730 0.731 0.739 0.738 0.716 0.709

Openml_637 R 500 / 50 0.516 0.700 0.511 0.510 0.576 0.680 0.537 0.543 0.600 0.641 0.674
Openml_620 R 1000 / 25 0.630 0.748 0.608 0.652 0.657 0.669 0.694 0.643 0.726 0.720 0.776
Openml_618 R 1000 / 50 0.428 0.740 0.411 0.411 0.632 0.732 0.640 0.738 0.660 0.720 0.740

Airfoil R 1503 / 5 0.753 0.808 0.752 0.771 0.595 0.789 0.696 0.616 0.624 0.516 0.510
Bikeshare DC R 10886 / 11 0.393 0.988 0.381 0.693 0.849 0.981 0.974 0.906 0.981 0.981 0.967

Table 2: Comparison of ReaGen with learning-based ap-
proaches on large-scale datasets. T is the runtime inminutes.

Dataset Task #Inst./#Feat Base NFS DIFER ReaGen 𝑇𝑁𝐹𝑆 𝑇𝐷𝐼𝐹𝐸𝑅 𝑇𝑅𝑒𝑎𝐺𝑒𝑛

AP Ovary C 275/10936 0.829 0.836 0.850 0.859 100 112 21
Gisette C 6000/5000 0.946 0.950 0.954 0.956 203 153 25
Medical Appointment C 110527/13 0.492 0.650 0.799 0.855 503 120 24
Accelerometer C 153000/5 0.702 0.705 0.704 0.704 567 491 24
Medical Charges C 163065/11 0.883 0.893 0.897 0.899 501 597 35
Covtype C 581012/55 0.943 0.967 0.964 0.973 > 3000 2756 55
Poker Hand C 1025010/11 0.711 0.890 0.940 0.928 > 3000 > 3000 72

Table 3: Evaluating ReaGen in Kaggle competitions.

Competition #Inst./#Feat Metric NFS DIFER ReaGen

Restaurant Revenue 137/42 RMSE ↓ 0.347 0.398 0.300
House Prices 1461/80 RMSE↓ 0.141 0.135 0.130
Tabular Playground Series 250000/102 RMSE↓ 7.90 7.92 0.788
NYC Taxi Ride Duration 2702376 AUC↑ 0.551 0.563 0.581

knowledge to create features that enhance model performance. (iii)
High-Order Feature Generation: ReaGen’s ability to generate high-
order features plays a crucial role in its performance. In fact, as the
maximum order of features increases, the accuracy of ReaGen im-
proves (as shown in Appendix C.2). This indicates the effectiveness
of generating high-order features, as the composition of transfor-
mations is crucial for discovering complex relationships between
features that simpler methods may miss. (vi) Diverse Transforma-
tions: Unlike most baselines that rely on basic arithmetic functions,
ReaGen utilizes a wider range of transformations, including ag-
gregations and logical operators on binary features. This diversity
allows the model to generate more promising features, ultimately
leading to better performance. Our experiments highlighted that
aggregation functions, in particular, were effective in discovering
patterns over time periods and space vectors, giving ReaGen an
advantage.

In addition, to evaluate the robustness of our model, we used a
range of classifiers, including XGBoost, SVM, and Decision Tree.

The results, shown in Table 8 in Appendix C.1, indicate that fea-
tures generated by ReaGen consistently outperform those from
other techniques across different ML models, showing a superior
robustness.

5.3 Efficiency and Scalability
5.3.1 Efficiency. The execution time of ReaGen depends on the
dataset size, prediction task, and ML model used for evaluation. For
a 5-fold cross-validation, using Random Forest with 10 iterations,
the running time varies from 6 minutes to 70 minutes depending
on the dataset. For smaller datasets like German credit dataset, it
required around 5:43 minutes, while larger datasets like the Poker
Hand dataset took approximately 70 minutes. On average, 65% of
the time is spent on code generation, over 30% on interpretability
evaluation, and less than 5% on evaluating the generated features.
We compare the runtime of different methods on a benchmark
datasets, and show the results in Table 2. One can see that ReaGen
is significantly more efficient than baselines. ReaGen only runs a
few minutes to generate features on most medium-scale datasets.

5.3.2 Scalability. To demonstrate ReaGen’s performance on large-
scale industrial datasets, we conducted comparative experiments
using 7 such datasets. The results, shown in Table 2, reveal that
ReaGen required minimal computation time across all datasets and
still managed to achieve significant performance improvements.

5.3.3 Generalization. : One of the challenges in FE is the risk of
overfitting, which can lead to a significant drop in performance on
unseen test data. To address this, we used k-fold cross-validation to
improve generalization ability. To further validate ReaGen’s general-
izability, we conducted an additional experiment by participating in
several Kaggle competitions. These competitions provide training
datasets and unlabeled test sets, with final evaluations performed by
Kaggle itself to prevent artificial predictions. The results, presented
in Table 3, demonstrate ReaGen’s strong generalization capabilities.
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Table 4: Illustrations of features generated by ReaGen. Us-
ing dataset descriptions, ReaGen automatically generates
meaningful features through feature combinations, binning,
removing unnecessary and non-interpretable features.

Description Generated code

Retrieved
informa-
tion
(NYC taxi
trip
duration
dataset)

Binning
(NYC taxi
trip
duration
dataset)

Meaning
-ful
features
(Medical
appoint-
ment
dataset)

Remove
features
(German
credit
dataset)

Drop
non-
interpret
-able
features
(Kidney
stone
urine
dataset)

5.4 Feature Importance
Our work aims at generating useful and interpretable features for
domain experts. In this experiment, we use SHAP (SHapley Ad-
ditive exPlanations) [19] to compare the importance of ReaGen’s
generated features with raw features. We start by creating a new
dataset combining the 𝑛 raw features with the top-ranked 𝑛 fea-
tures generated by ReaGen. We then use SHAP to score feature
importance in the model’s predictions. Figure 4 showcases the re-
sults for 4 different datasets. Notably, the features generated by
ReaGen (shown in blue) are more important compared to raw fea-
tures (shown in orange) across all datasets, thereby validating the
effectiveness of our model in generating meaningful features.

Wind German Credit

NYC taxi trip duration Spam Base

Figure 4: Comparing feature importance of raw features (in
orange) and generated features with ReaGen (in blue).

Furthermore, in Table 4, we illustrate examples of ReaGen’s gen-
erated features. These features are readable, easily traceable to raw
data, and semantically relevant, allowing domain experts to align
them with their knowledge for easier interpretation. For instance,
the feature distance in Figure 3 is clear and interpretable, allowing
experts to understand what is being referred to and which raw
features were used. This feature is meaningful due to its direct
correlation with the target variable, given the evident relationship
between pickup-to-dropoff distance and taxi ride duration. In addi-
tion, the logical reasoner maintains interpretability by excluding
features that violate rules in the KG. For example, the feature grav-
ity_osmo_difference in Table 4 was discarded because subtracting
features with different units results in a non-interpretable feature.
These explanations provide transparency. Further experiments on
feature interpretability are presented in Appendix C.3.

6 Conclusion
Our work presents a novel approach that combines the use of
knowledge-based reasoning with large language models to auto-
mate feature engineering for structured data. By incorporating
external knowledge, ReaGen enhances the factual accuracy and
grounding on LLMs, thereby reducing the occurrence of halluci-
nated thoughts. Our experiments demonstrate the effectiveness
of our approach and the interpretability of the generated features.
As generative models continue to evolve, we expect that the per-
formance of ReaGen will further improve. In this work, we bridge
the gap between ML and symbolic AI, highlighting the importance
of incorporating domain knowledge and context-aware solutions
in AutoML tools. Specifically, we showcase the use of LLMs to
automate FE. We also foresee the potential of LLMs to automate
other steps in the data science workflow, such as model selection
for tabular data.
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Table 5: Arithmetic functions

Unary Binary
Log, Abs, square, sqrt, + , −, ÷, ×
Sin, Cos, Tanh, sigmoid, ∧, ∨

min-max normlaization, residual
Residual, One-Hot-Encoding

Table 6: Aggregation functions: N refers to Numerical and C
refers to Categorical

N × N N × C C × C
min, max GroupByThenMin, GroupByThenMax Combine

GroupByThenStd, GroupByThenMedian CombineThenFrequency
GroupByThenSum, GroupByThenMean GroupByThenCountDistinct

A Feature Transformations
In our work, we used three (03) categories of transformations: arith-
metic functions, aggregation functions and customized operators.

(1) Arithmetic functions act on features and are divided into
two categories: unary and binary. Unary transformations
act on a single feature, while binary transformations oper-
ate on two features (Table 5).

(2) Aggregation functions are categorized based on the type
of features they work with (i.e, numerical or categorical),
as shown in Table 6. For instance, the GroupByThenMean
operator requires a categorical and a numerical feature,
while Min operates on two numerical features.

(3) Customized functions: we designed some peculiar functions
to extract important information from dates such as Day,
Month, Year, Season, Is_Weekend, Is_Holiday, Is_Rush_Hour...etc,
Duration to calculate the duration between two date fea-
tures, and Haversine to calculate the distance between two
points given their longitudes and latitudes.

In public datasets, features are classified as numerical, categori-
cal, or ordinal. The key distinction between ordinal and categorical
features is that ordinal features have a defined order of categories
(e.g., "Age"). When applying feature transformations, ordinal fea-
tures can be treated as both numerical and categorical. For example,
we can compute GroupByThenMax(Gender, Age), which gives the
average age for each gender, or GroupByThenMean(Age,Income),
which provides the average income for different age groups. When
feature names are anonymized, we consider string-based features
as categorical, discrete features (with less than 30 unique values) as
ordinal, while continuous features are considered numerical.

B Knowledge representation
Since we defined feature interpretability based on domain knowl-
edge, for our experiments, we constructed a comprehensive knowl-
edge graph (KG7) that captures information across multiple do-
mains using a description logic-based language. The KG, displayed
in Figure 5, contains two types of knowledge:

7https://cutt.ly/bex8C2Cc

Figure 5: A sample of the KG.

(1) Domain-agnostic knowledge includes the classes unitsOfMea-
surement, Function and nonInterpretable. The former pro-
vides a broad range of measures and quantities from var-
ious domains, such as the International System of Units
(e.g. Physics, Geometry, the International System of Units);
The second class defines the vocabulary and semantics of
transformations that we described in the previous section;
nonInterpretable contains concepts and individuals that are
considered as non-interpretable for domain experts. In ad-
dition, we used SWRL (Semantic Web Rule Language) to
define specific rules to determine whether a feature is in-
terpretable. We show an example below. For instance, the
first rule states that adding two features with different units
would result in a non-interpretable feature and that periodic
inventory totals are not summable. Similar explanations
could be given to the other rules.

(1) 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑥) ∧ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑦) ∧ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑧) ∧𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(?𝑓 )
∧ ℎ𝑎𝑠𝑈𝑛𝑖𝑡 (?𝑥, ?𝑢) ∧ ℎ𝑎𝑠𝑈𝑛𝑖𝑡 (?𝑦, ?𝑣) ∧ 𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 (?𝑢, ?𝑣)∧
ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (?𝑓 , ?𝑥) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (?𝑓 , ?𝑦) ∧ ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 (?𝑓 , ?𝑧)
→ 𝑛𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒 (?𝑧)

(2) 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚(?𝑓 ) ∧ 𝑆𝑡𝑜𝑐𝑘 (?𝑥) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (?𝑓 , ?𝑥)∧
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑧) ∧ ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 (?𝑓 , ?𝑧) → 𝑛𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒 (?𝑧)

(3) 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(?𝑓 ) ∧𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (?𝑥) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (?𝑓 , ?𝑥)∧
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑧) ∧ ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 (?𝑓 , ?𝑧) → 𝑛𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒 (?𝑧)

(2) Domain-specific knowledge which is represented by the
class Feature. This class covers concepts from various do-
main applications, such as Healthcare, Banking, Retail, E-
commerce, Finance, and others. The knowledge graph is
also linked to public knowledge graphs and ontologies from
different domains, (e.g., DBpedia8, INSEE9). This part of the
knowledge can be expanded over time to cover additional
application areas using knowledge base integration tools
(e.g. RDFLib 10, Apache Jena 11).

These concepts and rules form the TBox and ABox of our knowl-
edge base. We display in Table 7 an example of such TBox.

ReaGen exploits the KG to generate new domain-specific features
through symbolic reasoning. More specifically, we use HermiT [29],
a DL-based reasoner, to extract additional knowledge. Due to space

8https://mappings.dbpedia.org/
9https://rdf.insee.fr/geo/index.html
10https://rdflib.readthedocs.io/en/stable/
11https://jena.apache.org/
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Table 7: Sample of the TBox.

Function ⊑ ≥ 1 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑈𝑛𝑖𝑡𝑠) ⊓
≥ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑈𝑛𝑖𝑡𝑠)

Arithmetic ⊑ Function ⊓ ≤ 2 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡
⊓ ≤ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡

Addition ⊑ Arithmetic ⊓
≥ 2 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑈𝑛𝑖𝑡 )
⊓ ≤ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑈𝑛𝑖𝑡 )

Cos ⊑ ≤ 1 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑎𝑛𝑔𝑙𝑒𝑈 ) ⊓
≤ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 .𝐷𝑜𝑢𝑏𝑙𝑒

Sin ⊑ ≤ 1 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑎𝑛𝑔𝑙𝑒𝑈 ) ⊓
≤ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 .𝐷𝑜𝑢𝑏𝑙𝑒

...
⊥ ⊐ Feature ⊓ Function
Date ⊑ ∃ℎ𝑎𝑠𝐷𝑎𝑦.𝐷𝑎𝑦 ⊓ ∃ℎ𝑎𝑠𝑀𝑜𝑛𝑡ℎ.𝑀𝑜𝑛𝑡ℎ ⊓

∃ℎ𝑎𝑠𝑌𝑒𝑎𝑟 .𝑌𝑒𝑎𝑟
Location ⊑ ∃ℎ𝑎𝑠𝐶𝑜𝑢𝑛𝑡𝑟𝑦.𝐶𝑜𝑢𝑛𝑡𝑟𝑦 ⊓ ∃ℎ𝑎𝑠𝐶𝑖𝑡𝑦.𝐶𝑖𝑡𝑦
Energy ⊑ ∃ℎ𝑎𝑠𝑀𝑎𝑠𝑠.𝑀𝑎𝑠𝑠 ⊓

∃ℎ𝑎𝑠𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦.𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
LoanApproval ⊑ Customer ⊓ ∃ℎ𝑎𝑠𝐼𝑛𝑐𝑜𝑚𝑒.𝐼𝑛𝑐𝑜𝑚𝑒 ⊓

∃ℎ𝑎𝑠𝐺𝑜𝑜𝑑𝐶𝑟𝑒𝑑𝑖𝑡𝑆𝑐𝑜𝑟𝑒.𝑆𝑐𝑜𝑟𝑒
PremiumInsured ⊑ Customer ⊓ ∃ℎ𝑎𝑠𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ.𝐻𝑒𝑎𝑙𝑡ℎ

∃ℎ𝑎𝑠𝐴𝑔𝑒.𝐴𝑔𝑒 ⊓ 𝐴𝑔𝑒 (𝑦𝑜𝑢𝑛𝑔)
...

limitation, we display in Table 7 an overview of the TBox used in our
experiments. For instance, if our dataset has a feature Date, we can
use the following rule to infer three new features: Day, Month, and
Year. We also can infer Population Total from Location or from City
features. Furthermore, we use the relationships between entities in
the KG to extract new features, by looking at the relations where
a feature participates as a subject or an object, i.e. incoming and
outgoing edges in the KG. For example, using the feature City and
relation locatedIn, we can generate features for the entities that
are located in this city, such as Universities, Companies or even
important Events. These features may have a significant impact on
the ML model.

C Additional results
C.1 Performance on different models
This experiment aims to answer the question: Is ReaGen robust
across various machine learning models? We conducted the experi-
ment on 10 different datasets from classification regression tasks.
To evaluate robustness of our model, we used a range of classifiers,
including Random Forest (RF), XGBoost (XGB), Logistic Regres-
sion for classification tasks and Linear Regression for regression
tasks (LR), SVM (SVM), and Decision Tree (DT). Performance was
measured using the same evaluation metrics of the previous ex-
periments, i.e, F1-score and 1-rae. The results, shown in Table 8,
indicate that features generated by ReaGen consistently outperform
those from other techniques across different ML models, showing
a superior robustness of our model.

Figure 6: Effect of high-order features on accuracy
improvement.

C.2 Effect of high-order features
Figure 6 illustrates the impact of generating high-order features,
which involve composing multiple transformations to create a fea-
ture, on the improvement of prediction accuracy. Remarkably, the
ability of ReaGen to generate high-order features significantly con-
tributes to its performance. Specifically, we demonstrate that as the
maximum order of features increases, the accuracy of ReaGen also
improves. This observation underscores the effectiveness of gener-
ating high-order features, as the composition of transformations
is pivotal for unveiling intricate relationships between features. In
essence, the ability to synthesize complex features enhances the
model’s predictive power by capturing insightful patterns within
the data. However, high-order features could become more chal-
lenging for domain expert to understand. So in practice, it would be
reasonable to set an order of 2 to 3 to have a good trade-off between
model’s accuracy and feature interpretability.

C.3 Feature Interpretability
C.3.1 Feature Importance. In this experiment, we use SHAP (SHap-
leyAdditive exPlanations) [19] to compare the importance of ReaGen’s
generated features with raw features. We start by creating a new
dataset combining the 𝑛 raw features with the top-ranked 𝑛 fea-
tures generated by ReaGen. We then use SHAP to score feature
importance in the model’s predictions. Figure 7 showcases the re-
sults for 9 different datasets. Notably, the features generated by
ReaGen (shown in blue) are more important compared to raw fea-
tures (shown in orange) across all datasets, thereby validating the
effectiveness of our model in generating interpretable and relevant
features.

C.3.2 Model-agnostic Interpretability. Despite the agreement on
the importance of feature interpretability, traditional AutoFE meth-
ods often neglect interpretability and focus on performance. To this
end, in our work, we focus on feature interpretability for domain
experts. We use in this experiments SHAP to quantify the contri-
bution of input features to the model prediction, i.e., to attribute
the predictions to specific parts of the input features. For a more in-
depth analysis, we display in Figure 8 the top 10 features generated
by our model across three different datasets from different domains.
It can be seen that, compared to the baselines, the features are easily
readable and trackable, enabling users to understand their meaning,
and more interpretable, aligning with the domain knowledge.
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Table 8: Comparing the effectiveness ofReaGenwith AutoFEmethods on benchmark datasets. ± indicates the standard deviation
across 5 splits.

Dataset ALG Base DFS AutoFeat NFS OpenFE mCAFE ReaGen Dataset ALG Base DFS AutoFeat NFS OpenFE mCAFE ReaGen

Diabetes

RF 0.740 ±.04 0.737±.05 0.767±.06 0.786±.10 0.842±.05 0.813±.04 0.853±.03

Medical

RF 0.491±.05 0.499±.11 0.790±.05 0.650±.02 0.824±.04 0.786±.05 0.853±.01
DT 0.732±.05 0.732±.08 0.741±.02 0.770±.05 0.830±.0 0.798±.05 0.849±.02 DT 0.478±.01 0.487±.05 0.780±.05 0.634±.05 0.824±.02 0.753±.04 0.851±.03
LR 0.753±.05 0.748±.05 0.780±.08 0.792±.05 0.837±.04 0.819±.06 0.857±.01 LR 0.502±.10 0.517±.08 0.803±.02 0.702±.04 0.839±.02 0.753±.08 0.870±.05
SVM 0.742±.05 0.719±.04 0.756±.05 0.762±.05 0.827±.05 0.788±.05 0.850±.04 appoin SVM 0.480±.07 0.491±.04 0.782±.07 0.641±.08 0.819±.05 0.764±.10 0.861±.03
XGB 0.755±.06 0.750±.04 0.788±.06 0.792±.05 0.823±.04 0.819±.05 0.863±.01 -tment XGB 0.503±.04 0.515±.04 0.801±.04 0.713±.05 0.860±.03 0.838±.08 0.892±.03

German

RF 0.742±.04 0.780±.08 0.796±.05 0.805±.06 0.813 ±.01 0.795±.04 0.827±.04

Credit

RF 0.797±.01 0.802±.01 0.806±.01 0.799±.04 0.810±.03 0.801±.04 0.837±.07
DT 0.720±.10 0.722±.02 0.752±.05 0.791±.08 0.803±.05 0.765±.06 0.809±.03 DT 0.782±.08 0.789±.01 0.7.92±.01 0.792±.01 0.802±.03 0.789±.02 0.822±.04
LR 0.770±.05 0.792±.01 0.807±.06 0.808±.09 0.812±.01 0.782±.01 0.825±.05 LR 0.801±.09 0.804±.10 0.805±.07 0.807±.06 0.811±.06 0.805±.06 0.829±.01

Credit SVM 0.755±.01 0.779±.01 0.794±.01 0.811±.01 0.809±.03 0.792±.05 0.817±.03 Default SVM 0.789±.05 0.793±.01 0.790±.03 0.801±.0 0.806±.10 0.803±.05 0.818±.04
XGB 0.790±.07 0.795±.07 0.801±.08 0.814±.01 0.815±.11 0.808 ±.03 0.832±.03 Risk XGB 0.802±.04 0.804±.04 0.811±.09 0.819±.01 0.814±.07 0.809±.02 0.825±.02

Kidney

RF 0.504±.01 0.550±.01 0.578±.01 0.620±.10 0.662±.11 0.632±.07 0.683±.02

Openml

RF 0.428±.04 0.411±.02 0.632±.05 0.640±.01 0.732±.07 0.738±.01 0.740±.01
DT 0.495±.01 0.559±.11 0.562±.01 0.613±.03 0.649±.04 0.607±.09 0.672±.02 DT 0.425±.01 0.408±.05 0.630±.08 0.629±.07 0.715±.02 0.725±.10 0.729±.02
LR 0.529±.01 0.590±.09 0.605±.05 0.619±.02 0.667±.11 0.609±.07 0.693±.07 LR 0.432±.07 0.412±.05 0.645±.05 0.642±.04 0.736±.09 0.740±.06 0.749±.03

Stone SVM 0.480±.07 0.508±.05 0.593±.09 0.621 ±.05 0.615±.01 0.599±.21 0.667±.02 _681 SVM 0.423 ±.05 0.405 ±.01 0.635±.05 0.632±.01 0.735±.04 0.720±.07 0.733±.01
XGB 0.509±.05 0.593±.05 0.608±.10 0.658±.01 0.684 ±.05 0.661±.08 0.698±.04 XGB 0.430±.08 0.413 ±.07 0.642±.02 0.645±.04 0.739±.08 0.735 ±.07 0.743±.02

Amazon

RF 0.712±.09 0.744±.07 0.739±.02 0.945±.11 0.909±.01 0.897±.02 0.932±.01

Bikeshare

RF 0.393±.07 0.693±.15 0.849±.04 0.974±.02 0.981±.09 0.906±.07 0.988±.04
DT 0.701±.02 0.738±.10 0.732±.02 0.932±.07 0.903±.02 0.878±.14 0.928±.02 DT 0.378±.05 0.682±.02 0.840±.09 0.965±.02 0.959±.01 0.896±.10 0.975±.02
LR 0.715±.11 0.750±.05 0.742±.05 0.935±.02 0.913±.05 0.905±.04 0.941±.05 LR 0.401±.02 0.702±.02 0.853±.02 0.975±.02 0.981±.15 0.921±.05 0.990±.01

Employee SVM 0.710±.05 0.740±.09 0.735±.02 0.936±.02 0.910±.05 0.906±.07 0.928±.04 DC SVM 0.380±.14 0.695±.04 0.845±.01 0.978±.06 0.978±.03 0.922±.21 0.982±.02
XGB 0.719±.04 0.755±.02 0.745±.15 0.945±.09 0.915±.02 0.908±.02 0.945±.01 XGB 0.405±.06 0.712±.07 0.855±.03 0.980±.03 0.982±.05 0.932±.06 0.993±.03

airlines

RF 0.620±.03 0.612±.06 0.618±.01 0.621±.03 0.628±.06 0.622±.06 0.625±.02

NYC

RF 0.425±.05 0.505±.03 - 0.551±.01 0.501±.03 0.446±.07 0.589±.01
DT 0.604±.15 0.601±.07 0.604±.02 0.615±.03 0.618 ±.03 0.619±.07 0.619±.09 DT 0.419 ±.05 0.489±.03 - 0.539±.23 0.487±.15 0.426±.01 0.580±.03
LR 0.622±.05 0.621±.11 0.617±.09 0.634 ±.11 0.642±.03 0.635±.07 0.639±.15 LR 0.430±.17 0.513±.02 0.458 ±.07 0.559±.03 0.515±.01 0.452±.07 0.604±.03
SVM 0.611 ±.09 0.609±.03 0.615±.08 0.626±.07 0.624±.03 0.622±.08 0.626±.01 Taxi Ride SVM 0.423 ±.08 0.499±.04 - 0.545±.08 0.492±.03 0.459±.17 0.589±.02
XGB 0.625±.03 0.626±.07 0.607±.07 0.639±.03 0.638±.03 0.635±.17 0.635±.01 XGB 0.432±.07 0.515±.03 - 0.562±.07 0.523±.03 0.486±.02 0.613±.01

Amazon Employee Wind Diabete

German Credit NYC taxi trip duration Spam Base

Bikeshare DC Medical Appointment Ailerons

Figure 7: Comparing feature importance of raw features (in orange) and generated features with ReaGen (in blue).
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(a) NYC Taxi Ride Duration (b) Medical Appointment (c) German Credit

Figure 8: Top-10 features of ReaGen on 3 different datasets.

For instance, in the NYC Taxi Ride dataset, our model generated
10 out of the top 10 features, including crucial indicators like Dis-
tance and Duration between pickup and dropoff locations and times,
directly correlating with taxi ride duration. Moreover, it incorpo-
rates temporal aggregations such as Is_Rush_Hour and Is_Weekend,
reflecting their significant impact on traffic conditions.

In the Medical Appointment dataset, ReaGen generates insightful
features such as Duration in days between appointment scheduling
and the actual appointment, indicating a correlation with appoint-
ment no-shows. Additionally, it captures factors likeWeekday. A
thorough analysis of this dataset showed that patients have a higher
tendency to miss their appointments on weekdays rather than on
weekends or holidays.

D Full LLM Prompt
We show in Figure 9 the full prompt generated by ourmodel for NYC
taxi trip duration dataset. The corresponding code is a response of
the LLM to this prompt.

E Datasets Description
Our model leverage datasets description to automatically generate
a prompt for feature generation. The dataset descriptions used in
our experiments were extracted from the datasets respective source.
We show in Figures 10 - 18 the description of some of the datasets
used in our experiments.

F Broader Impact Statement
F.1 Limitations
ReaGen has some limitations. Its effectiveness relies on the quality
of the dataset descriptions. If users provide inaccurate descriptions,
the performance may drop significantly. However, in real world
applications, this is less likely to be an issue since detailed descrip-
tions of the data are typically available and of a good quality. In
addition, handling datasets with a large number of features can
result in very large prompts, which can be challenging for LLMs to
process effectively. Likewise, incorporating additional information
from external knowledge bases can increase the size of the prompts,
especially when dealing with substantial amounts of knowledge. Fi-
nally, the use of LLMs involves broader societal impacts and ethical
considerations, as detailed bellow.

Figure 9: Full LLM Prompt for the NYC taxi trip duration
dataset.

F.2 Social Impact of automated feature
engineering

Traditional feature engineering is typically carried out manually by
data scientists, consuming significant time and effort. Automating
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Figure 10: Description of Bikeshare DC dataset.

Figure 11: Description of NYC taxi trip duration dataset.

Figure 12: Description of medical appointment no-show
dataset.

Figure 13: Description of Kidney Stone dataset.

this process can greatly reduce the workload of data scientists, en-
abling them to make faster decisions at lower costs. In this context,
ReaGen streamlines the process of data preparation and feature ex-
traction, reducing the time and effort required for data scientists to
build and refine models. This increased efficiency allows organiza-
tions to analyze larger datasets and iterate on models more quickly,
ultimately leading to greater productivity. ReaGen also empowers
data scientists to explore a wider range of feature combinations and

Figure 14: Description of Home Credit Default Risk dataset.

Figure 15: Description of German Credit dataset.

Figure 16: Description of Breast cancer-w dataset.

Figure 17: Description of airlines dataset.

transformations, uncovering valuable insights and patterns that
may not be immediately apparent.

F.3 Interpretable Machine Learning
As the use of advanced AI techniques becomes more common,
understanding and interpreting their results becomes crucial. Our
approach focuses on feature interpretability for domain experts,
using knowledge-based reasoning mechanisms. Our main goal is to
simplify automate the feature engineering process by generating
simple code and provide clear explanations about the proposed
features using large languagemodels. To reduce factual inaccuracies
and hallucinations, typical in LLMs [27, 42], we combine LLMs
with knowledge-based reasoning mechanisms, ensuring that the
generated features and transformations are not only accurate, but
also understandable to domain experts. Our focus on interpretability
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Figure 18: Description of diabetes dataset.

helps bridge the gap between complex ML methods and symbolic
AI, enabling collaboration between AI systems and experts and
allowing them to confidently understand and validate the results.
Additionally, by explaining the reasoning behind each generation,
we enhance transparency and build trust in the AI-driven decision-
making process.

F.4 Ethical Considerations
In light of observed ethical concerns replicated by AI technologies,
including data privacy, bias, and transparency, it’s crucial to address
the potential bias implications within our approach, ReaGen, which
uses GPT-3.5-turbo and GPT-4 trained on web-crawled data embed-
ding societal biases. Notably, several studies have exemplified the
presence of such biases in web-crawled data [26, 36].

Given this, when using data containing demographic or discrim-
inative information, caution is advised in employing our approach.
We advocate for meticulous scrutiny of generated features to miti-
gate these biases. Nevertheless, it is important to note that through
the integration of domain knowledge and logical reasoning tech-
niques, we aim to ensure that selected features are not only accu-
rate but also understandable and interpretable by domain experts
due to the way our method is set up, i.e. the features retained by
our model are interpretable based on the semantics embedded in
domain knowledge, and relevant leading to improvement in cross-
validation. Additionally, in our approach, we allow for the possibil-
ity of introducing ’human in the loop’, seeking explicit confirmation
from experts before executing code especially when dealing with
high-risk and critical domains.
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