
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Synergizing Large Language Models and Knowledge-based
Reasoning for Interpretable Feature Engineering

Anonymous Author(s)

Abstract
Feature engineering stands as a pivotal step in enhancing the perfor-
mance of machine learning (ML) models, particularly with tabular
data. However, traditional feature engineering methods are often
time-consuming and requires case-by-case domain knowledge. In
addition, as ML systems become more common, interpretability
becomes increasingly important, especially among domain experts.
To this end, we propose ReaGen, an automated feature engineering
(AutoFE) approach that combines knowledge graphs (KGs) with
large language models (LLMs) to generate interpretable features.
ReaGen begins by symbolic REAsoning over KG to extract relevant
information based on datasets description. Then, it uses an LLM
to iteratively GENerate meaningful features based on the retrieved
information and the datasets description. Finally, to overcome chal-
lenges such as hallucinations and handling long contexts typical in
LLMs, our model performs logical reasoning on the KG to ensure
that the generated features maintain interpretability. ReaGen pro-
vides Python code for automatic feature generation and detailed
explanations of feature utility. It leverages both LLM’s internal
knowledge and retrieved information from KGs. Experiments on
public datasets demonstrate that ReaGen significantly improves
prediction accuracy while ensuring high interpretability through
human-like explanations for each feature. This work highlights
the potential of integrating LLMs and KGs in feature engineering,
paving the way for interpretable ML models.

CCS Concepts
•Computingmethodologies→Machine learning algorithms;
• Information systems→ Semanticweb description languages;
Data mining.

Keywords
Automated Feature Engineering, Tabular Data, Data Mining, Inter-
pretable Feature Engineering

ACM Reference Format:
Anonymous Author(s). 2018. Synergizing Large Language Models and
Knowledge-based Reasoning for Interpretable Feature Engineering. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,
16 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: An overview of AutoML pipeline on tabular data.

1 Introduction
In today’s computational environments, the majority of web appli-
cations rely heavily on the analysis and mining of tabular data1,
aka structured data. Over the past decades, ML has demonstrated
impressive results with structured data in various domains, such as
e-commerce, recommendation, marketing, risk management and
more [7, 17, 43]. This success is often attributed to the experience
of data scientists who leverage domain knowledge to extract mean-
ingful patterns from data. This crucial yet tedious task is commonly
referred to as Feature Engineering (FE). We illustrate in Figure
1, the different steps involved in ML pipeline. Arguably, feature
engineering remains a significant bottleneck in the data science
workflow, requiring up to 80% of the total time [14], as reported in
the State of Data Science report2. Given the increasing computa-
tional capabilities and the rapid advancements in automated ML
(AutoML), AutoFE has received an increasing interest, as it may
reduce data scientists workload for quicker decision-making.

1.1 Main Challenges
Recently, several approaches of AutoFE have been proposed [2, 8–
10, 12]. However, these approaches have several drawbacks. We
categorize these challenges from 4 main perspectives: effectiveness,
efficiency, applicability, and interpretability.

1.1.1 Effectiveness. (1) Lack of High-Order Features: AutoFE ap-
proaches, particularly learning-based methods, often fail to discover
high-order transformations, focusing instead on simple, linear fea-
tures, which can limit model performance. (2) Missing Feature In-
teractions: Existing approaches fail to explore interactions between

1https://db-engines.com/en/ranking
2https://www.anaconda.com/state-of-data-science-report-2023

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

features, missing out on potentially powerful feature combinations
that could improve accuracy.

1.1.2 Interpretability. (1) Lack of Feature Semantics: AutoFE sys-
tems often fail to incorporate domain-specific knowledge, leading
to features that lack meaning in their context, making them hard
to interpret or justify to domain experts. (2) Lack of Feature Inter-
pretability: Complex features generated by advanced methods are
often difficult for humans to understand, compromising the trans-
parency of the resulting models. In real-world applications, the
ability to interpret the features driving model decisions is crucial.

1.1.3 Efficiency. (1) High Sample Complexity: Many existing meth-
ods operate at the level of individual features. While this approach
makes the implementation straightforward, it tends to increase the
complexity and overall runtime, making it impractical for large-
scale applications. (2) Feature Explosion: Many prior works suffer
from the feature explosion problem due to the number of candidates,
escalating computational costs and raising the risk of overfitting.

1.1.4 Applicability. (1) Scalability: Existing frameworks are often
tested on small datasets and struggle to handle larger datasets due
to high resource demands. As a result, there is a significant gap
between research-level AutoFE frameworks and their ability to
handle real-world datasets. (2) Generalization: Features generated
by existing approaches, especially reinforcement learning-based
(RL) approaches, often fail to perform well on truly unseen datasets,
raising concerns about their robustness in real-world applications.

Recently, Large Language Models (LLMs) have demonstrated
fruitful progress across many applications, particularly when en-
hanced with sophisticated prompting strategies such as chain-
of-thought (CoT) [37]. These models, trained on extensive web-
crawled data across diverse tasks, offer the unique capability of
adaptation to new tasks without necessitating task-specific fine-
tuning. Consequently, LLMs have the potential to extend traditional
AutoML tools by automating additional steps of the data science
pipeline, particularly those involving contextual information such
as FE. However, several challenges hinder their effective application
in FE, including concerns regarding interpretability, possible hallu-
cinations in model responses [4], and difficulties in handling tasks
requiringmulti-step and context-aware reasoning. These challenges
stem from their reliance on internal representations to generate
answers, which lack grounding in the external world and restrict
their ability to reason reactively or update their knowledge.

1.2 Our proposed solution
To this end, we introduce ReaGen, an AutoFE approach that com-
bines LLMs with knowledge-based reasoning to generate inter-
pretable features. ReaGen begins by using the dataset’s description
as input to infer new relationships and relevant information from
external KGs, which are then used as additional context. Leverag-
ing the retrieved information and the dataset description, ReaGen
employs LLMs to automatically generate Python code that creates
meaningful features in order to improve the performance of down-
stream prediction tasks. To ensure feature interpretability and to
reduce factual inaccuracies and hallucinations, our model includes
a knowledge-based discriminator to discard non-interpretable fea-
tures. ReaGen operates iteratively, providing feedback at each step

based on the performance improvement and interpretability of
the generated features (details in Section 4). Additionally, it offers
human-like explanations for each generated feature, ensuring high
interpretability for the end user.

In comparison with existing AutoFE approaches, ReaGen offers
several advantages:

• High-Order Features. ReaGen extends beyond the limita-
tions of learning-based methods [2, 9, 44] and approaches
relying on pre-defined operators [10, 11], by supporting
a broad range of operators. Through its operator-guided
prompts, ReaGen enables the generation of complex and
diverse feature transformations, moving past simple, lin-
ear constructions. Additionally, by incorporating exter-
nal knowledge alongside the LLM’s internal knowledge,
ReaGen uncovers a richer set of high-order transformations,
facilitating deeper exploration of feature interactions.

• Leveraging external data. ReaGen enhances performance
by leveraging external knowledge. This capability addresses
the challenge of feature semantics by incorporating mean-
ingful domain-specific information, ensuring that gener-
ated features are contextually relevant and generalizable.

• Improved Interpretability. ReaGen enhances feature in-
terpretability by using domain knowledge during feature
generation. Unlike traditional AutoFE approaches that ig-
nore context, our approach applies relevant operators to
create features that are both meaningful and easier to inter-
pret. Additionally, to avoid inaccuracies common in LLMs,
we use a knowledge-based reasoning technique to filter out
non-interpretable features, ensuring the generated features
are clear and understandable for domain experts.

• Generalization:Our approach incorporates a broader range
of contextual and external knowledge sources, allowing it
to adapt feature engineering to different data environments.
ReaGen ensures that generated features are robust and ap-
plicable across varying datasets, thereby enhancing their
generalization capability in real-world applications.

Through extensive experiments on a wide range of datasets,
ReaGen consistently achieves SOTA performance, significantly out-
performing prior work. Additionally, several analytical experiments
have demonstrated that our approach not only enhances inter-
pretability but also improves scalability, validating its effectiveness
in practical applications.

2 Related work
Existing AutoFE methods can be classified into 03 main classes.

Expansion-Reduction. This technique applies a large set of
transformations to generate numerous features followed by fea-
ture selection and pruning. For instance, FICUS [20] and TFC [25]
iteratively generate and select features using beam search and in-
formation gain, respectively. Deep Feature Synthesis [10] and One
Button Machine [15] explore relational DBs to generate large feature
sets. Cognito [13] improves search efficiency using BFS and DFS,
while AutoFeat [8] uses down-sampling to focus searches in smaller
regions. SAFE [31] enhances scalability with heuristic metrics, and
OpenFE [40] uses a two-stage advanced pruning process to filter gen-
erated features. Despite these optimizations, expansion-reduction

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Synergizing Large Language Models and Knowledge-based Reasoning for Interpretable Feature Engineering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

suffers from high computational costs, feature space explosion, and
lack of convergence guarantees, making it less efficient for large
datasets.

Learning-based. These approaches provide an efficient alter-
native to expansion-reduction by combining feature generation
and selection into one process. They generate small batches of fea-
tures and assess their usefulness through training and evaluation.
ExplorKit [11] employs a learned ranking function to prioritize
features but can be time-consuming. LFE [22] uses multi-layer per-
ceptrons for transformation suggestions, but it is limited to classifi-
cation. To explore more complex features, [12] apply Q-learning
[35] on a transformation graph, and [9] use Monte Carlo tree search.
NFS [2] employs RNNs to generate transformation sequences but
incurs high computational costs due to the need for multiple RNNs.
On the other hand, DIFER [44] uses evolutionary frameworks but of-
ten explores limited action spaces, reducing real-world applicability.
Additionally, both focus on individual feature impacts, overlooking
interactions between features. FETCH [16] improves upon this by
learning a neural policy to generate feature pipelines tailored to
specific datasets. However, learning-based methods still face chal-
lenges like heavy training requirements, limited interpretability,
and scalability issues for large datasets.

AutoML-based. These approaches aim to reconstruct the fea-
ture space of original data, streamlining ML workflow from pre-
processing to model selection. For instance, [1] introduced a hier-
archical RL framework that classifies features and employs agents
to select operations and features, assessing their quality through
statistical interaction tests. This method rewards successful feature
combinations but is computationally intensive due to the training of
multiple agents. Another example is AutoDS [32], a web application
that automates various ML tasks, allowing data scientists to upload
datasets and receive suggestions for ML configurations, prepro-
cessing, algorithm selection, and model training via user-friendly
interfaces.

3 Problem Definition
In this work, we address the problem of engineering interpretable
features by combining LLMs with knowledge-based reasoning.

3.1 Feature Interpretability
Building a model to generate interpretable features requires a clear
definition of interpretability. While literature has acknowledged
the importance of feature interpretability [3, 30, 45], there is now
clear definition of what constitutes an interpretable feature. Since
a formal definition could be elusive, we have sought insights from
the field of psychology.

Definition 3.1. (Interpretability). In general, to interpret means
"to explain the meaning" or "to present in understandable terms".

In psychology, interperetability refers to the ability to under-
stand and make sense of an observation [18]. It involves making
psychological theories and concepts comprehensible.

In logics, an interpretation I = (ΔI , .I ) consists of a nonempty
set ΔI (the domain) and a function .I (the interpretation function)
that maps every concept to a subset of ΔI , every role to a relation
over ΔI × ΔI , and every individual to an element of 𝑎I ∈ ΔI .

In the context of ML, "interpretability is the ability to explain or
to present in understandable terms to a human".

By incorporating these insights, we propose the following defi-
nition of feature interpretability.

Definition 3.2. (Feature Interpretability). It is the ability of do-
main experts to comprehend and connect the generated features to
relevant concepts and entities within their domain knowledge. This
implies mapping every new feature to relevant intensional and exten-
sional knowledge within the domain of interest

From the definition above, we define the following properties
that an interpretable feature should meet.

(1) Readable:A feature is readable when it is expressed in clear
and human-friendly language that is easily understood by
domain experts, avoiding obscure codes and acronyms.

(2) Meaningful: Features must refer to real-world entities that
experts can reason about, depending on their context and
expertise, excluding overly complex engineered features
that lack intuitive understanding.

(3) Traceable: Features should have a clear connection to their
original data sources, allowing users to track their lineage
and ensuring transparency in feature creation.

(4) Useful: Features must have a meaningful relationship with
the target variable, contributing to the model’s performance
by reflecting genuine patterns rather than spurious correla-
tions, thereby enhancing model generalization.

The quality of ML models strongly depends on the quality of
input features. Even simple and interpretable models, like regres-
sion, become difficult to understand with non-interpretable features.
When ML models are deployed in real-world applications, their pre-
dictions are communicated through the language of their features.
Whether through feature importance, visualizations of decision
boundaries, or examples that represent how decisions are made,
features serve as the foundation for explaining the model’s behavior
to users. If the features are difficult to understand, any attempts to
explain the model would fail.

3.2 Feature Engineering
Given a predictive problem on a tabular dataset 𝐷 = (𝑋,𝑦) consist-
ing of: (i) a set of features 𝑋 = {𝑥1, .., 𝑥𝑝 } ∈ R𝑛×𝑝 , where 𝑛 and 𝑝
are the number of instances and features respectively; (ii) a target
vector 𝑦; (iii) an applicable ML algorithm 𝐿 (e.g. XGBoost); and
(iv) a corresponding cross-validation performance metric P (e.g.
F1-score). We define a FE pipeline T = {𝑡1, ..., 𝑡𝑚} as a sequence
of𝑚 transformations applied to 𝑋 . The set of generated features
from 𝑋 using T is denoted as 𝑋T . Based on definition 3.2, we de-
fine I𝐾𝐺 : X → {0, 1} as an interpretability function that returns
1 if a feature is interpretable based on domain knowledge, and 0
otherwise.

The goal of AutoFE is to find the optimal FE pipeline T that
generates 𝑋T which maximizes the performance P(𝐿(𝑋T , 𝑦)) for
a given algorithm 𝐿 and a metric P, as shown in Equation 1:

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: An overview of ReaGen architecture.

T = argmax
T

P(L(X̂T , y))

𝑠 .𝑡 .∏
x̂i∈X̂T

IKG (x̂i) = 1

IKG (x̂i) ∈ {0, 1},∀𝑥𝑖 ∈ 𝑋T

(1)

Note that ReaGen aims at generating features that maximize
performance while ensuring that the generated features remain, as
far as possible, close to the concepts known by domain experts.

4 Proposed approach
In this section, we present ReaGen, an AutoFE approach that com-
bines the use of LLMs and knowledge-based reasoning techniques
to engineer interpretable features, as outlined in Figure 2. ReaGen
bridges the gap between ML and symbolic AI, offering a promising
direction for interpretable AutoML tools.

4.1 Overview
ReaGen follows an iterative search process that takes a dataset, its
description, and, if available, external knowledge sources as inputs.
Initially, it leverages the external knowledge to extract additional
information (see Figure 2.a). This knowledge can come in various
forms, such as ontologies, KGs, and metadata. Using a predefined
template, ReaGen generates a prompt that includes the dataset
description, the FE task, and the information retrieved from the
external knowledge (illustrated in Figure 2.b, with further details in
Section 4.2). This generated prompt is then used to query multiple
LLMs to identify the optimal set of transformations needed to create
new features, as depicted in Figure 2.c (Section 4.3). After the new
features are generated, their interpretability is assessed in relation to
the concepts and entities within the domain knowledge embedded
in the KG, using a logic-based reasoning algorithm. Features that
lack relevance to the domain knowledge are discarded, ensuring
that only relevant and interpretable features are retained, as shown
in Figure 2.d (details in Section 4.4). Following the interpretability
assessment, the resulting dataset is evaluated using a downstream
model and a performance metric to gauge the effectiveness of the
newly generated features for the given task (see Figure 2.e).

Figure 3: Application ofReaGen on the NYC taxi trip duration
dataset. The dataset description provided is highlighted in
blue, and the model performance evaluation is shown in red.
The LLM-generated Python code follows a template from the
prompt, resulting in an RMSE improvement of 0.121 over
two iterations on the validation set.

This iterative process continues until a predefined budget is
reached (e.g., number of iterations), as shown in Figure 2.f. Conse-
quently, ReaGen helps improve the quality of the generated features
and facilitates the automatic construction of interpretable and high-
performing models. Figure 3 shows a simplified version of one such
run on the NYC taxi trip duration dataset.

4.2 Prompting LLMs for AutoFE
To leverage LLMs for AutoFE, ReaGen uses a template to create a
prompt that guides the generation of interpretable features. Template-
based prompting is a common technique to improve the quality of
LLM responses [33]. Essentially, the LLMs are instructed to propose
meaningful features for a prediction task, justifying their useful-
ness, and to drop unnecessary features. Additionally, they are tasked
to provide Python code to automatically generate and drop these
features. This prompt incorporates the following elements.

4.2.1 Dataset Description. Dataset Information: This includes a
description of the dataset and the target variable to be predicted,
along with feature names and their context, data types (e.g., float,
int, categorical), and, where applicable, the domains of categorical
features. For open-source datasets from platforms like Kaggle 3

and OpenML4, much of this information can often be extracted
automatically. Our model enhances this description by providing a
3https://www.kaggle.com/
4https://www.openml.org/

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Synergizing Large Language Models and Knowledge-based Reasoning for Interpretable Feature Engineering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

summary of descriptive statistics, such as the percentage of missing
values, minimum and maximum values, and the count of unique
values, along with 10 random records from the dataset. This contex-
tual information offers insights into the dataset’s scale and feature
encoding, enabling LLMs to generate semantically meaningful fea-
tures and process them effectively.

4.2.2 External Knowledge. Users can provide external knowledge
bases, such as libraries or publicly available ontologies, to enrich the
dataset with additional information. For example, these resources
can be used to derive relevant context, such as population density
from a city feature or weather data based on a city and a date.
This additional information adds context and enriches the prompt,
allowing for the generation of context-aware features.

4.2.3 Feature Generation. LLMs are prompted to generate new
features by applying a variety of transformations. We categorize
these transformations into three types: (i) Arithmetic functions;
which can be unary or binary functions, (ii) Aggregation functions
(e.g., GroupByThenAvg), which are applied based on the feature
type (numerical or categorical), (iii) Customized functions, which
generate new features that cannot be derived from the previous
transformations, such as extracting Day, Month, Year, Is_Weekend,
or Is_Rush_Hour from a date feature. More details on these trans-
formations are provided in Appendix A.

We used two different prompt strategies, depending on the type
of transformations: proposal strategy and sampling strategy [38, 39].
The former is used for unary functions, where LLMs are prompted
to suggest all relevant transformations for a given feature along
with confidence levels (high, medium, low). ReaGen then selects
the transformations with high confidence. This approach is most
effective when the search space is small. For the sampling strategy,
LLMs are prompted to provide candidate features for a specific
transformation. This is particularly useful when the number of
possible operands for a transformation is large. For example, a
GroupByThenAgg transformation requires both a grouping feature
and a context feature (an aggregation column) along with an aggre-
gation function. In datasets with many categorical features, even
one grouping column can generate various feature candidates. In
such cases, LLMs are tasked with identifying the most relevant ag-
gregation columns and functions for the selected groupby column.

To maintain readability and traceability, LLMs are prompted to
name the generated features in the format Function_Name(operands),
where Function_Name is the name of the proposed transformation
(e.g., GroupByThenAvg), and operands is the list of features involved.
For example, applying GroupByThenAvg on the features Revenue
and sex would result in a new feature namedGroupByThenAvg(Revenue,
sex), representing the average revenue grouped by sex.

4.2.4 Expected Output. A template for the desired output is pro-
vided using Chain-of-Thought (CoT) prompting, as described in
[37], which includes intermediate reasoning steps. The output con-
sists of several key components: the proposed feature’s name, a
description of the feature, an explanation of its relevance to the task,
the names and examples of the features used, ensuring traceability,
and the Python code to generate or remove the feature.

4.2.5 Error Handling. LLMs are also used to handle exceptions. If
the generated code produces an error, the error is passed back to
the LLMs in the next iteration, instructing them to correct it.

The datasets used in our experiments are described in Appendix
E, and the fully-formed prompt is shown in Figure 9 in Appendix
D. We found that this prompt design enables ReaGen to generate
interpretable and meaningful features.

4.3 Feature Generator
The prompt described above is used by multiple LLMs to propose
transformations for creating new features (Figure 2.c). Each LLM 𝑖

produces Python code to generate features for the current dataset
𝐷 . To mitigate risks associated with the automatic execution of AI-
generated code, such as malicious code, we established an allowlist
of permitted transformations. The generated code is parsed and
checked against this allowlist. If a transformation is not allowed,
ReaGen raises an exception and passes it to the next LLM 𝑖 + 1.
Similarly, if the proposed operands are invalid or the code generates
an error, the issue is passed to another LLM for resolution.

Once validated, the code from each LLM is executed on a copy
of dataset 𝐷 , resulting in a new dataset 𝐷𝑖 . These datasets are then
combined using a union operation, creating an updated dataset
𝐷′. Additionally, the LLMs provide explanations for each proposed
feature, using both internal knowledge and retrieved external infor-
mation to justify its utility. In cases where the proposed transfor-
mations cannot generate suitable features due to missing data, the
LLMs are tasked with suggesting potential data sources to assist
users in generating the necessary features.

4.4 Knowledge-based discriminator
Traditional approaches often combine transformations to gener-
ate new features, testing their effectiveness without considering
the interpretability of the results. In contrast, ReaGen emphasizes
interpretability by integrating domain knowledge into the feature
generation process. Initially, we attempted to use LLMs to gen-
erate interpretable features with high predictive power, without
additional interpretability assessments. However, we discovered
that LLM-generated features were not consistently interpretable by
our standards. While LLMs can suggest features that are related to
domain knowledge, they often produce arbitrary combinations of
transformations that lack a clear semantic connection to the domain.
For example, LLMs may suggest adding or subtracting raw features
with different units of measurement or representing different quan-
tities, which domain experts find unreasonsable. Even when such
features improve model performance, they fail to meet the inter-
pretability criteria necessary for experts to trust and understand
the outputs. Moreover, we observed that LLMs sometimes handle
specific types of features, like dates, in unintelligent ways. For in-
stance, in a dataset of monthly warehouse inventory (stocks), LLMs
incorrectly aggregated stock values over a quarter by summing or
averaging them, rather than selecting the "last value," which is the
appropriate aggregation. Similarly, LLMs struggle with dynamic
units like prices, often incorrectly suggesting that different curren-
cies (e.g., euros and dollars) be summed, which lacks contextual
meaning.When features involve multiple layers of aggregation (e.g.,
over time and location), LLMs frequently fail to respect the correct

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

order. Through collaboration with domain experts, we identified
several such inconsistencies in LLM-generated features.

To address these shortcomings, we introduced an additional inter-
pretability check for features proposed by LLMs. To reduce factual
inaccuracies typical in LLMs [27, 42], we designed a knowledge-
based discriminator to assess the semantic distance between pro-
posed features and domain concepts embedded in KGs or knowl-
edge bases. We began by constructing a KG5 using a description
logics-based language. The KG leverages two types of knowledge: (i)
Domain-agnostic knowledge which includes knowledge about units
of measurement and the class non-interpretable; (ii) Domain-specific
knowledge using several publicly available Knowledge sources from
various domains, further details in Appendix B. Then, we applied a
reasoning algorithm to filter out non-interpretable features. Using
the Hermit reasoner [29], we checked if a feature 𝑥 ′ ∈ 𝐷′ could be
subsumed under the concept of non-interpretable (e.i., 𝐾𝐺 |= 𝑥 ′ ⊏
non-interpretable). Features identified as non-interpretable were
removed (Figure 2.d). If a feature lacked sufficient information, its
unit was used as a secondary discriminator (𝐾𝐺 |= 𝑈𝑛𝑖𝑡𝑠 (𝑢)), and
features with unknown units were discarded. This process ensures
that the generated features and transformations are aligned with
domain knowledge and interpretable to domain experts. As a result,
ReaGen not only enhances trust in the model’s outputs but also
reduces bias.

4.5 Performance Evaluation
Post-interpretability assessment, the current dataset 𝐷 and its ex-
tension 𝐷′ are split into training and validation sets, respectively
designated as 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙𝑖𝑑 , 𝐷′

𝑡𝑟𝑎𝑖𝑛
and 𝐷′

𝑣𝑎𝑙𝑖𝑑
. An ML algorithm,

𝐿, is then trained on 𝐷′
𝑡𝑟𝑎𝑖𝑛

and evaluated on 𝐷′
𝑣𝑎𝑙𝑖𝑑

to obtain its
performance P′. If P′ exceeds the performance P obtained in the
previous iteration using 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑 , the new features are
retained and 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑 are updated to 𝐷′

𝑡𝑟𝑎𝑖𝑛
and 𝐷′

𝑣𝑎𝑙𝑖𝑑
.

Otherwise, the new features are rejected and 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑
remain unchanged as shown in Figure 2.e.

Given that evaluation relies heavily on cross-validation results
from downstream tasks, the focus on performance metrics can
substantially increase the time required for validating proposed
transformations. By leveraging our discriminator to pre-filter non-
interpretable features, we address this challenge. These features
are discarded early, removing the need for unnecessary model eval-
uations. This reduces wasted computation, optimizing time com-
plexity and boosting the overall efficiency of the process.

5 Experiments
5.1 Experimental setup
5.1.1 Datasets. We use 30 public datasets collected from the In-
ternet, including 18 academic datasets and 10 large-scale indus-
trial datasets, all available on Kaggle, OpenML, and UCIrvine6.
Since LLMs are trained on public data, including potentially these
datasets if released before their knowledge cutoff, evaluating on
these datasets could introduce bias. To address this, we used amix of
datasets: those released before September 2021, potentially known

5https://cutt.ly/bex8C2Cc
6https://archive.ics.uci.edu/

to GPT-3.5-turbo and GPT-4, and newer datasets from Kaggle com-
petitions released after September 2021, which are less likely to
have been accessed by these models, since they are only accessible
through specific agreements.

5.1.2 AutoFE Methods. We compared ReaGen with several meth-
ods. (1) Base: The original dataset without FE; (2) Random: Apply
random transformations on row features; (3) DFS [10] for which
we set its 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 3; (4) AutoFeat [8]: a python library for
AutoFE; (5) mCAFE [9]: uses Monte Carlo Search; (6) NFS [2]:uses
neural search for FE; (7) DIFER [44]: an evolutionary framework;
and (8) OpenFE [41]. Additionally, we campared ReaGen with two
AutoML methods. (9) AutoSklearn [6]: A popular AutoML frame-
work based on Bayesian optimization; and (10) AutoGluon [5]: A
famous AutoML framework developed by Amazon Inc. All methods
were used with default settings and limited to 50 new features.

5.1.3 Evaluation metrics. We used the metrics 1 - rae (relative
absolute error) [28] and F1-score, for regression and classification
tasks respectively. Both evaluation metrics are that the higher the
score, the better the performance. 5-fold cross-validation protocol
is used to evaluate the effectiveness of the generated features.

5.1.4 Evaluation setup. The datasets are loaded into memory as
Pandas dataframes [21]. We use OpenAI’s GPT-3.5-turbo and GPT-4
[23] as LLMs in our architecture to generate Python code, that is au-
tomatically executed. To avoid information leakage and overfitting,
we combined the three-way split and cross validation techniques
with most datasets. First, the dataset is separated into three dis-
tinct parts: training, validation, and testing sets. Then we apply
cross-validation on the training set. Performance is measured on the
current dataset with 5 random validation splits using Random Forest
[34], while the testing sets remain unseen until the final experimen-
tal evaluation. Features are retained if their average improvement in
evaluation metrics over 5 splits is positive. The selected features are
then evaluated using 5 commonly used ML models: Random Forest
(RF), Decision Tree (DT), Logistic/Linear Regression (LR), Support
Vector Machines (SVM), and XGBoost (XGB). All parameters are
set to default values in scikit-learn [24].

5.2 Effectiveness of ReaGen
We report in Table 1 the evaluation results on 18 datasets (due to
lack of space) compared to AutoFE methods. ReaGen outperforms
the methods in most cases (16/18 datasets). Compared to raw data,
the features generated by ReaGen can improve the performance
by an average of 19.73%. Compared with OpenFE, NFS and mCAFE,
ReaGen achieves an average improvement of 3.83%, 5.36% and 6.84%
respectively.

The superior performance of ReaGen can be attributed to several
key factors: (i) Leveraging External Knowledge: Our model uses
domain knowledge to generate features grounded in domain under-
standing and that better explain the target variable. This external
knowledge enriches the dataset with contextual features and meta-
data, which goes beyond the capabilities of baselines that primarily
rely on raw data transformations. (ii) Leveraging LLMs: By utilizing
the capabilities of LLMs, our approach generates semantically mean-
ingful features based on dataset descriptions. This aligns with the
core concept of feature engineering, which involves using domain

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Synergizing Large Language Models and Knowledge-based Reasoning for Interpretable Feature Engineering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Comparing the effectiveness of ReaGen with the baselines. Inst. is short for Intstances, Feat. is short for Features.

Datasets Task #Inst./#Feat Base ReaGen
Expansion-Reduction Learning-based Methods AutoML Approaches

Random DFS AutoFeat OpenFE NFS mCAFE DIFER AutoSklearn AutoGluon

Fertility C 100 / 9 0.870 0.932 0.795 0.790 0.890 0.920 0.916 0.856 0.880 0.840 0.880
Hipatitis C 155 / 19 0.832 0.972 0.845 0.850 0.868 0.932 0.870 0.877 0.883 0.810 0.780

Megawatt1 C 253 /37 0.870 0.928 0.815 0.890 0.889 0.902 0.920 0.896 0.910 0.885 0.885
Credit-a C 690 / 15 0.840 0.900 0.705 0.821 0.859 0.867 0.866 0.846 0.863 0.864 0.842
Diabetes C 768 / 8 0.740 0.853 0.670 0.737 0.767 0.842 0.786 0.813 0.798 0.801 0.788

Wine Quality Red C 999 / 12 0.531 0.707 0.506 0.547 0.524 0.594 0.584 0.674 0.582 0.580 0.572
German C 1001 / 24 0.742 0.827 0.655 0.780 0.796 0.813 0.805 0.795 0.777 0.746 0.750

SVMGuide3 C 1243 / 21 0.740 0.859 0.721 0.711 0.789 0.858 0.856 0.829 0.834 0.807 0.798
Spam Base C 4601 / 57 0.939 0.956 0.939 0.919 0.943 0.952 0.939 0.937 0.942 0.925 0.900

Wine Quality White C 4900 / 12 0.494 0.607 0.504 0.488 0.502 0.569 0.516 0.502 0.515 0.537 0.525
Home Credit Default Risk C 30000 / 25 0.797 0.837 0.789 0.802 0.806 0.810 0.799 0.801 0.810 0.820 0.821

Amazon Employee C 32769 / 9 0.712 0.932 0.740 0.744 0.739 0.909 0.945 0.897 0.909 0.947 0.949
Higgs Boson C 50000 / 28 0.718 0.739 0.699 0.682 0.468 0.730 0.731 0.739 0.738 0.716 0.709

Openml_637 R 500 / 50 0.516 0.700 0.511 0.510 0.576 0.680 0.537 0.543 0.600 0.641 0.674
Openml_620 R 1000 / 25 0.630 0.748 0.608 0.652 0.657 0.669 0.694 0.643 0.726 0.720 0.776
Openml_618 R 1000 / 50 0.428 0.740 0.411 0.411 0.632 0.732 0.640 0.738 0.660 0.720 0.740

Airfoil R 1503 / 5 0.753 0.808 0.752 0.771 0.595 0.789 0.696 0.616 0.624 0.516 0.510
Bikeshare DC R 10886 / 11 0.393 0.988 0.381 0.693 0.849 0.981 0.974 0.906 0.981 0.981 0.967

Table 2: Comparison of ReaGen with learning-based ap-
proaches on large-scale datasets. T is the runtime inminutes.

Dataset Task #Inst./#Feat Base NFS DIFER ReaGen 𝑇𝑁𝐹𝑆 𝑇𝐷𝐼𝐹𝐸𝑅 𝑇𝑅𝑒𝑎𝐺𝑒𝑛

AP Ovary C 275/10936 0.829 0.836 0.850 0.859 100 112 21
Gisette C 6000/5000 0.946 0.950 0.954 0.956 203 153 25
Medical Appointment C 110527/13 0.492 0.650 0.799 0.855 503 120 24
Accelerometer C 153000/5 0.702 0.705 0.704 0.704 567 491 24
Medical Charges C 163065/11 0.883 0.893 0.897 0.899 501 597 35
Covtype C 581012/55 0.943 0.967 0.964 0.973 > 3000 2756 55
Poker Hand C 1025010/11 0.711 0.890 0.940 0.928 > 3000 > 3000 72

Table 3: Evaluating ReaGen in Kaggle competitions.

Competition #Inst./#Feat Metric NFS DIFER ReaGen

Restaurant Revenue 137/42 RMSE ↓ 0.347 0.398 0.300
House Prices 1461/80 RMSE↓ 0.141 0.135 0.130
Tabular Playground Series 250000/102 RMSE↓ 7.90 7.92 0.788
NYC Taxi Ride Duration 2702376 AUC↑ 0.551 0.563 0.581

knowledge to create features that enhance model performance. (iii)
High-Order Feature Generation: ReaGen’s ability to generate high-
order features plays a crucial role in its performance. In fact, as the
maximum order of features increases, the accuracy of ReaGen im-
proves (as shown in Appendix C.2). This indicates the effectiveness
of generating high-order features, as the composition of transfor-
mations is crucial for discovering complex relationships between
features that simpler methods may miss. (vi) Diverse Transforma-
tions: Unlike most baselines that rely on basic arithmetic functions,
ReaGen utilizes a wider range of transformations, including ag-
gregations and logical operators on binary features. This diversity
allows the model to generate more promising features, ultimately
leading to better performance. Our experiments highlighted that
aggregation functions, in particular, were effective in discovering
patterns over time periods and space vectors, giving ReaGen an
advantage.

In addition, to evaluate the robustness of our model, we used a
range of classifiers, including XGBoost, SVM, and Decision Tree.

The results, shown in Table 8 in Appendix C.1, indicate that fea-
tures generated by ReaGen consistently outperform those from
other techniques across different ML models, showing a superior
robustness.

5.3 Efficiency and Scalability
5.3.1 Efficiency. The execution time of ReaGen depends on the
dataset size, prediction task, and ML model used for evaluation. For
a 5-fold cross-validation, using Random Forest with 10 iterations,
the running time varies from 6 minutes to 70 minutes depending
on the dataset. For smaller datasets like German credit dataset, it
required around 5:43 minutes, while larger datasets like the Poker
Hand dataset took approximately 70 minutes. On average, 65% of
the time is spent on code generation, over 30% on interpretability
evaluation, and less than 5% on evaluating the generated features.
We compare the runtime of different methods on a benchmark
datasets, and show the results in Table 2. One can see that ReaGen
is significantly more efficient than baselines. ReaGen only runs a
few minutes to generate features on most medium-scale datasets.

5.3.2 Scalability. To demonstrate ReaGen’s performance on large-
scale industrial datasets, we conducted comparative experiments
using 7 such datasets. The results, shown in Table 2, reveal that
ReaGen required minimal computation time across all datasets and
still managed to achieve significant performance improvements.

5.3.3 Generalization. : One of the challenges in FE is the risk of
overfitting, which can lead to a significant drop in performance on
unseen test data. To address this, we used k-fold cross-validation to
improve generalization ability. To further validate ReaGen’s general-
izability, we conducted an additional experiment by participating in
several Kaggle competitions. These competitions provide training
datasets and unlabeled test sets, with final evaluations performed by
Kaggle itself to prevent artificial predictions. The results, presented
in Table 3, demonstrate ReaGen’s strong generalization capabilities.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Illustrations of features generated by ReaGen. Us-
ing dataset descriptions, ReaGen automatically generates
meaningful features through feature combinations, binning,
removing unnecessary and non-interpretable features.

Description Generated code

Retrieved
informa-
tion
(NYC taxi
trip
duration
dataset)

Binning
(NYC taxi
trip
duration
dataset)

Meaning
-ful
features
(Medical
appoint-
ment
dataset)

Remove
features
(German
credit
dataset)

Drop
non-
interpret
-able
features
(Kidney
stone
urine
dataset)

5.4 Feature Importance
Our work aims at generating useful and interpretable features for
domain experts. In this experiment, we use SHAP (SHapley Ad-
ditive exPlanations) [19] to compare the importance of ReaGen’s
generated features with raw features. We start by creating a new
dataset combining the 𝑛 raw features with the top-ranked 𝑛 fea-
tures generated by ReaGen. We then use SHAP to score feature
importance in the model’s predictions. Figure 4 showcases the re-
sults for 4 different datasets. Notably, the features generated by
ReaGen (shown in blue) are more important compared to raw fea-
tures (shown in orange) across all datasets, thereby validating the
effectiveness of our model in generating meaningful features.

Wind German Credit

NYC taxi trip duration Spam Base

Figure 4: Comparing feature importance of raw features (in
orange) and generated features with ReaGen (in blue).

Furthermore, in Table 4, we illustrate examples of ReaGen’s gen-
erated features. These features are readable, easily traceable to raw
data, and semantically relevant, allowing domain experts to align
them with their knowledge for easier interpretation. For instance,
the feature distance in Figure 3 is clear and interpretable, allowing
experts to understand what is being referred to and which raw
features were used. This feature is meaningful due to its direct
correlation with the target variable, given the evident relationship
between pickup-to-dropoff distance and taxi ride duration. In addi-
tion, the logical reasoner maintains interpretability by excluding
features that violate rules in the KG. For example, the feature grav-
ity_osmo_difference in Table 4 was discarded because subtracting
features with different units results in a non-interpretable feature.
These explanations provide transparency. Further experiments on
feature interpretability are presented in Appendix C.3.

6 Conclusion
Our work presents a novel approach that combines the use of
knowledge-based reasoning with large language models to auto-
mate feature engineering for structured data. By incorporating
external knowledge, ReaGen enhances the factual accuracy and
grounding on LLMs, thereby reducing the occurrence of halluci-
nated thoughts. Our experiments demonstrate the effectiveness
of our approach and the interpretability of the generated features.
As generative models continue to evolve, we expect that the per-
formance of ReaGen will further improve. In this work, we bridge
the gap between ML and symbolic AI, highlighting the importance
of incorporating domain knowledge and context-aware solutions
in AutoML tools. Specifically, we showcase the use of LLMs to
automate FE. We also foresee the potential of LLMs to automate
other steps in the data science workflow, such as model selection
for tabular data.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Synergizing Large Language Models and Knowledge-based Reasoning for Interpretable Feature Engineering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Ehtesamul Azim, Dongjie Wang, Kunpeng Liu, Wei Zhang, and Yanjie Fu. 2024.

Feature Interaction Aware Automated Data Representation Transformation. In
Proceedings of the 2024 SIAM International Conference on Data Mining, SDM 2024,
Houston, TX, USA, April 18-20, 2024, Shashi Shekhar, Vagelis Papalexakis, Jing
Gao, Zhe Jiang, and Matteo Riondato (Eds.). SIAM, 878–886. https://doi.org/10.
1137/1.9781611978032.100

[2] Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong
Xu, Yingnong Dang, Kaixin Sui, Xu Zhang, Bo Qiao, et al. 2019. Neural feature
search: A neural architecture for automated feature engineering. In 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 71–80.

[3] Minje Choi, Luca Maria Aiello, Krisztián Zsolt Varga, and Daniele Quercia. 2020.
Ten Social Dimensions of Conversations and Relationships. InWWW ’20: The
Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun Huang, Irwin
King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 1514–1525.
https://doi.org/10.1145/3366423.3380224

[4] Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li,
Asli Celikyilmaz, and Jason Weston. 2023. Chain-of-Verification Reduces Hal-
lucination in Large Language Models. CoRR abs/2309.11495 (2023). https:
//doi.org/10.48550/ARXIV.2309.11495 arXiv:2309.11495

[5] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,
Mu Li, and Alexander J. Smola. 2020. AutoGluon-Tabular: Robust and Accurate
AutoML for Structured Data. CoRR abs/2003.06505 (2020). arXiv:2003.06505
https://arxiv.org/abs/2003.06505

[6] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. 2019. Auto-sklearn: Efficient and Robust Auto-
mated Machine Learning. In Automated Machine Learning - Methods, Systems,
Challenges, Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). Springer,
113–134. https://doi.org/10.1007/978-3-030-05318-5_6

[7] Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, ZhengWang, and ShengWang. 2023.
The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial Data. Proc.
ACM Manag. Data 1, 1 (2023), 63:1–63:26.

[8] Franziska Horn, Robert Pack, and Michael Rieger. 2019. The autofeat python
library for automated feature engineering and selection. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases. Springer,
111–120.

[9] Yiran Huang, Yexu Zhou, Michael Hefenbrock, Till Riedel, Likun Fang, and
Michael Beigl. 2022. Automatic Feature Engineering Through Monte Carlo
Tree Search. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 581–598.

[10] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis:
Towards automating data science endeavors. In 2015 IEEE international conference
on data science and advanced analytics (DSAA). IEEE, 1–10.

[11] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. 2016. Explorekit: Automatic
feature generation and selection. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 979–984.

[12] Udayan Khurana, Horst Samulowitz, and Deepak Turaga. 2018. Feature engi-
neering for predictive modeling using reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 32.

[13] Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthas-
rathy. 2016. Cognito: Automated feature engineering for supervised learning.
In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).
IEEE, 1304–1307.

[14] Hoang Thanh Lam, Beat Buesser, Hong Min, Tran Ngoc Minh, Martin Wistuba,
Udayan Khurana, Gregory Bramble, Theodoros Salonidis, Dakuo Wang, and
Horst Samulowitz. 2021. Automated Data Science for Relational Data. In 2021
IEEE 37th International Conference on Data Engineering (ICDE). 2689–2692. https:
//doi.org/10.1109/ICDE51399.2021.00305

[15] Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai,
and Oznur Alkan. 2017. One button machine for automating feature engineering
in relational databases. arXiv preprint arXiv:1706.00327 (2017).

[16] Liyao Li, Haobo Wang, Liangyu Zha, Qingyi Huang, Sai Wu, Gang Chen, and
Junbo Zhao. 2023. Learning a Data-Driven Policy Network for Pre-Training
Automated Feature Engineering. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net. https://openreview.net/forum?id=688hNNMigVX

[17] Yiming Li, Yanyan Shen, and Lei Chen. 2022. Camel: Managing Data for Effi-
cient Stream Learning. In Proceedings of the 2022 International Conference on
Management of Data. 1271–1285.

[18] Tania Lombrozo. 2006. The structure and function of explanations. Trends in
cognitive sciences 10, 10 (2006), 464–470.

[19] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. Advances in neural information processing systems 30 (2017).

[20] Shaul Markovitch and Dan Rosenstein. 2002. Feature Generation Using General
Constructor Functions. Mach. Learn. 49, 1 (2002), 59–98. https://doi.org/10.1023/
A:1014046307775

[21] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference 2010 (SciPy 2010), Austin, Texas,
June 28 - July 3, 2010, Stéfan van der Walt and Jarrod Millman (Eds.). scipy.org,
56–61. https://doi.org/10.25080/MAJORA-92BF1922-00A

[22] Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and
Deepak S Turaga. 2017. Learning Feature Engineering for Classification.. In Ijcai.
2529–2535.

[23] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:
//doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774

[24] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[25] Selwyn Piramuthu and Riyaz T. Sikora. 2009. Iterative feature construction
for improving inductive learning algorithms. Expert Syst. Appl. 36, 2 (2009),
3401–3406. https://doi.org/10.1016/J.ESWA.2008.02.010

[26] Vinay Uday Prabhu and Abeba Birhane. 2020. Large image datasets: A pyrrhic
win for computer vision? CoRR abs/2006.16923 (2020). arXiv:2006.16923 https:
//arxiv.org/abs/2006.16923

[27] Vipula Rawte, Amit P. Sheth, and Amitava Das. 2023. A Survey of Hallucination
in Large Foundation Models. CoRR abs/2309.05922 (2023). https://doi.org/10.
48550/ARXIV.2309.05922 arXiv:2309.05922

[28] Maxim Vladimirovich Shcherbakov, Adriaan Brebels, Nataliya Lvovna
Shcherbakova, Anton Pavlovich Tyukov, Timur Alexandrovich Janovsky, Va-
leriy Anatol’evich Kamaev, et al. 2013. A survey of forecast error measures.
World applied sciences journal 24, 24 (2013), 171–176.

[29] Robert DC Shearer, Boris Motik, and Ian Horrocks. 2008. Hermit: A highly-
efficient OWL reasoner.. In Owled, Vol. 432. 91.

[30] Ying Sheng, Sandeep Tata, James B. Wendt, Jing Xie, Qi Zhao, and Marc Najork.
2018. Anatomy of a Privacy-Safe Large-Scale Information Extraction System
Over Email. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23,
2018, Yike Guo and Faisal Farooq (Eds.). ACM, 734–743. https://doi.org/10.1145/
3219819.3219901

[31] Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou. 2020.
Safe: Scalable automatic feature engineering framework for industrial tasks.
In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
1645–1656.

[32] Dakuo Wang, Josh Andres, Justin D. Weisz, Erick Oduor, and Casey Dugan. 2021.
AutoDS: Towards Human-Centered Automation of Data Science. In CHI ’21: CHI
Conference on Human Factors in Computing Systems, Virtual Event / Yokohama,
Japan, May 8-13, 2021, Yoshifumi Kitamura, Aaron Quigley, Katherine Isbister,
Takeo Igarashi, Pernille Bjørn, and Steven Mark Drucker (Eds.). ACM, 79:1–79:12.
https://doi.org/10.1145/3411764.3445526

[33] XuezhiWang, JasonWei, Dale Schuurmans, Quoc V. Le, EdH. Chi, SharanNarang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net. https://openreview.net/pdf?id=1PL1NIMMrw

[34] Yan Wang, Huaiqing Wu, and Dan Nettleton. 2023. Stability of Random Forests
and Coverage of Random-Forest Prediction Intervals. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/
6452474601429509f3035dc81c233226-Abstract-Conference.html

[35] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8 (1992), 279–292.

[36] Hilde J. P. Weerts, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger,
Edward Bergman, Noor H. Awad, Joaquin Vanschoren, Mykola Pechenizkiy,
Bernd Bischl, and Frank Hutter. 2024. Can Fairness be Automated? Guidelines
and Opportunities for Fairness-aware AutoML. J. Artif. Intell. Res. 79 (2024),
639–677. https://doi.org/10.1613/JAIR.1.14747

[37] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[38] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solv-
ing with Large Language Models. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/
271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html

[39] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang,
Jiwei Li, Runyi Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. 2023. Instruction
Tuning for Large Language Models: A Survey. CoRR abs/2308.10792 (2023).

9

https://doi.org/10.1137/1.9781611978032.100
https://doi.org/10.1137/1.9781611978032.100
https://doi.org/10.1145/3366423.3380224
https://doi.org/10.48550/ARXIV.2309.11495
https://doi.org/10.48550/ARXIV.2309.11495
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1109/ICDE51399.2021.00305
https://doi.org/10.1109/ICDE51399.2021.00305
https://openreview.net/forum?id=688hNNMigVX
https://doi.org/10.1023/A:1014046307775
https://doi.org/10.1023/A:1014046307775
https://doi.org/10.25080/MAJORA-92BF1922-00A
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1016/J.ESWA.2008.02.010
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://arxiv.org/abs/2006.16923
https://doi.org/10.48550/ARXIV.2309.05922
https://doi.org/10.48550/ARXIV.2309.05922
https://arxiv.org/abs/2309.05922
https://doi.org/10.1145/3219819.3219901
https://doi.org/10.1145/3219819.3219901
https://doi.org/10.1145/3411764.3445526
https://openreview.net/pdf?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2023/hash/6452474601429509f3035dc81c233226-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6452474601429509f3035dc81c233226-Abstract-Conference.html
https://doi.org/10.1613/JAIR.1.14747
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

https://doi.org/10.48550/ARXIV.2308.10792 arXiv:2308.10792
[40] Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu,

Qian Liu, Wei Cao, and Li Jian. 2023. OpenFE: Automated Feature Generation
with Expert-level Performance. In International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA (Proceedings of Machine
Learning Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 41880–
41901. https://proceedings.mlr.press/v202/zhang23ay.html

[41] Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu,
Qian Liu, Wei Cao, and Li Jian. 2023. OpenFE: Automated Feature Generation
with Expert-level Performance. In International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA (Proceedings of Machine
Learning Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 41880–
41901. https://proceedings.mlr.press/v202/zhang23ay.html

[42] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting
Huang, Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu,
Wei Bi, Freda Shi, and Shuming Shi. 2023. Siren’s Song in the AI Ocean: A
Survey on Hallucination in Large Language Models. CoRR abs/2309.01219 (2023).
https://doi.org/10.48550/ARXIV.2309.01219 arXiv:2309.01219

[43] Yuhao Zhang, Frank Mcquillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna,
Orhan Kislal, Domino Valdano, and Arun Kumar. 2021. Distributed Deep Learn-
ing on Data Systems: A Comparative Analysis of Approaches. Proc. VLDB Endow.
14, 10 (2021), 1769–1782.

[44] Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. 2022. DIFER:
differentiable automated feature engineering. In International Conference on
Automated Machine Learning. PMLR, 17–1.

[45] Alexandra Zytek, Ignacio Arnaldo, Dongyu Liu, Laure Berti-Equille, and Kalyan
Veeramachaneni. 2022. The need for interpretable features: motivation and
taxonomy. ACM SIGKDD Explorations Newsletter 24, 1 (2022), 1–13.

10

https://doi.org/10.48550/ARXIV.2308.10792
https://arxiv.org/abs/2308.10792
https://proceedings.mlr.press/v202/zhang23ay.html
https://proceedings.mlr.press/v202/zhang23ay.html
https://doi.org/10.48550/ARXIV.2309.01219
https://arxiv.org/abs/2309.01219


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Synergizing Large Language Models and Knowledge-based Reasoning for Interpretable Feature Engineering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 5: Arithmetic functions

Unary Binary
Log, Abs, square, sqrt, + , −, ÷, ×
Sin, Cos, Tanh, sigmoid, ∧, ∨

min-max normlaization, residual
Residual, One-Hot-Encoding

Table 6: Aggregation functions: N refers to Numerical and C
refers to Categorical

N × N N × C C × C
min, max GroupByThenMin, GroupByThenMax Combine

GroupByThenStd, GroupByThenMedian CombineThenFrequency
GroupByThenSum, GroupByThenMean GroupByThenCountDistinct

A Feature Transformations
In our work, we used three (03) categories of transformations: arith-
metic functions, aggregation functions and customized operators.

(1) Arithmetic functions act on features and are divided into
two categories: unary and binary. Unary transformations
act on a single feature, while binary transformations oper-
ate on two features (Table 5).

(2) Aggregation functions are categorized based on the type
of features they work with (i.e, numerical or categorical),
as shown in Table 6. For instance, the GroupByThenMean
operator requires a categorical and a numerical feature,
while Min operates on two numerical features.

(3) Customized functions: we designed some peculiar functions
to extract important information from dates such as Day,
Month, Year, Season, Is_Weekend, Is_Holiday, Is_Rush_Hour...etc,
Duration to calculate the duration between two date fea-
tures, and Haversine to calculate the distance between two
points given their longitudes and latitudes.

In public datasets, features are classified as numerical, categori-
cal, or ordinal. The key distinction between ordinal and categorical
features is that ordinal features have a defined order of categories
(e.g., "Age"). When applying feature transformations, ordinal fea-
tures can be treated as both numerical and categorical. For example,
we can compute GroupByThenMax(Gender, Age), which gives the
average age for each gender, or GroupByThenMean(Age,Income),
which provides the average income for different age groups. When
feature names are anonymized, we consider string-based features
as categorical, discrete features (with less than 30 unique values) as
ordinal, while continuous features are considered numerical.

B Knowledge representation
Since we defined feature interpretability based on domain knowl-
edge, for our experiments, we constructed a comprehensive knowl-
edge graph (KG7) that captures information across multiple do-
mains using a description logic-based language. The KG, displayed
in Figure 5, contains two types of knowledge:

7https://cutt.ly/bex8C2Cc

Figure 5: A sample of the KG.

(1) Domain-agnostic knowledge includes the classes unitsOfMea-
surement, Function and nonInterpretable. The former pro-
vides a broad range of measures and quantities from var-
ious domains, such as the International System of Units
(e.g. Physics, Geometry, the International System of Units);
The second class defines the vocabulary and semantics of
transformations that we described in the previous section;
nonInterpretable contains concepts and individuals that are
considered as non-interpretable for domain experts. In ad-
dition, we used SWRL (Semantic Web Rule Language) to
define specific rules to determine whether a feature is in-
terpretable. We show an example below. For instance, the
first rule states that adding two features with different units
would result in a non-interpretable feature and that periodic
inventory totals are not summable. Similar explanations
could be given to the other rules.

(1) 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑥) ∧ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑦) ∧ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑧) ∧𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(?𝑓 )
∧ ℎ𝑎𝑠𝑈𝑛𝑖𝑡 (?𝑥, ?𝑢) ∧ ℎ𝑎𝑠𝑈𝑛𝑖𝑡 (?𝑦, ?𝑣) ∧ 𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑡 (?𝑢, ?𝑣)∧
ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (?𝑓 , ?𝑥) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (?𝑓 , ?𝑦) ∧ ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 (?𝑓 , ?𝑧)
→ 𝑛𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒 (?𝑧)

(2) 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑢𝑚(?𝑓 ) ∧ 𝑆𝑡𝑜𝑐𝑘 (?𝑥) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (?𝑓 , ?𝑥)∧
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑧) ∧ ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 (?𝑓 , ?𝑧) → 𝑛𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒 (?𝑧)

(3) 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(?𝑓 ) ∧𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (?𝑥) ∧ ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 (?𝑓 , ?𝑥)∧
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 (?𝑧) ∧ ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 (?𝑓 , ?𝑧) → 𝑛𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒 (?𝑧)

(2) Domain-specific knowledge which is represented by the
class Feature. This class covers concepts from various do-
main applications, such as Healthcare, Banking, Retail, E-
commerce, Finance, and others. The knowledge graph is
also linked to public knowledge graphs and ontologies from
different domains, (e.g., DBpedia8, INSEE9). This part of the
knowledge can be expanded over time to cover additional
application areas using knowledge base integration tools
(e.g. RDFLib 10, Apache Jena 11).

These concepts and rules form the TBox and ABox of our knowl-
edge base. We display in Table 7 an example of such TBox.

ReaGen exploits the KG to generate new domain-specific features
through symbolic reasoning. More specifically, we use HermiT [29],
a DL-based reasoner, to extract additional knowledge. Due to space

8https://mappings.dbpedia.org/
9https://rdf.insee.fr/geo/index.html
10https://rdflib.readthedocs.io/en/stable/
11https://jena.apache.org/

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 7: Sample of the TBox.

Function ⊑ ≥ 1 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑈𝑛𝑖𝑡𝑠) ⊓
≥ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑈𝑛𝑖𝑡𝑠)

Arithmetic ⊑ Function ⊓ ≤ 2 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡
⊓ ≤ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡

Addition ⊑ Arithmetic ⊓
≥ 2 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑈𝑛𝑖𝑡 )
⊓ ≤ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑈𝑛𝑖𝑡 )

Cos ⊑ ≤ 1 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑎𝑛𝑔𝑙𝑒𝑈 ) ⊓
≤ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 .𝐷𝑜𝑢𝑏𝑙𝑒

Sin ⊑ ≤ 1 ℎ𝑎𝑠𝐼𝑛𝑝𝑢𝑡 .(∀ℎ𝑎𝑠𝑈𝑛𝑖𝑡 .𝑎𝑛𝑔𝑙𝑒𝑈 ) ⊓
≤ 1 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡 .𝐷𝑜𝑢𝑏𝑙𝑒

...
⊥ ⊐ Feature ⊓ Function
Date ⊑ ∃ℎ𝑎𝑠𝐷𝑎𝑦.𝐷𝑎𝑦 ⊓ ∃ℎ𝑎𝑠𝑀𝑜𝑛𝑡ℎ.𝑀𝑜𝑛𝑡ℎ ⊓

∃ℎ𝑎𝑠𝑌𝑒𝑎𝑟 .𝑌𝑒𝑎𝑟
Location ⊑ ∃ℎ𝑎𝑠𝐶𝑜𝑢𝑛𝑡𝑟𝑦.𝐶𝑜𝑢𝑛𝑡𝑟𝑦 ⊓ ∃ℎ𝑎𝑠𝐶𝑖𝑡𝑦.𝐶𝑖𝑡𝑦
Energy ⊑ ∃ℎ𝑎𝑠𝑀𝑎𝑠𝑠.𝑀𝑎𝑠𝑠 ⊓

∃ℎ𝑎𝑠𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦.𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
LoanApproval ⊑ Customer ⊓ ∃ℎ𝑎𝑠𝐼𝑛𝑐𝑜𝑚𝑒.𝐼𝑛𝑐𝑜𝑚𝑒 ⊓

∃ℎ𝑎𝑠𝐺𝑜𝑜𝑑𝐶𝑟𝑒𝑑𝑖𝑡𝑆𝑐𝑜𝑟𝑒.𝑆𝑐𝑜𝑟𝑒
PremiumInsured ⊑ Customer ⊓ ∃ℎ𝑎𝑠𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ.𝐻𝑒𝑎𝑙𝑡ℎ

∃ℎ𝑎𝑠𝐴𝑔𝑒.𝐴𝑔𝑒 ⊓ 𝐴𝑔𝑒 (𝑦𝑜𝑢𝑛𝑔)
...

limitation, we display in Table 7 an overview of the TBox used in our
experiments. For instance, if our dataset has a feature Date, we can
use the following rule to infer three new features: Day, Month, and
Year. We also can infer Population Total from Location or from City
features. Furthermore, we use the relationships between entities in
the KG to extract new features, by looking at the relations where
a feature participates as a subject or an object, i.e. incoming and
outgoing edges in the KG. For example, using the feature City and
relation locatedIn, we can generate features for the entities that
are located in this city, such as Universities, Companies or even
important Events. These features may have a significant impact on
the ML model.

C Additional results
C.1 Performance on different models
This experiment aims to answer the question: Is ReaGen robust
across various machine learning models? We conducted the experi-
ment on 10 different datasets from classification regression tasks.
To evaluate robustness of our model, we used a range of classifiers,
including Random Forest (RF), XGBoost (XGB), Logistic Regres-
sion for classification tasks and Linear Regression for regression
tasks (LR), SVM (SVM), and Decision Tree (DT). Performance was
measured using the same evaluation metrics of the previous ex-
periments, i.e, F1-score and 1-rae. The results, shown in Table 8,
indicate that features generated by ReaGen consistently outperform
those from other techniques across different ML models, showing
a superior robustness of our model.

Figure 6: Effect of high-order features on accuracy
improvement.

C.2 Effect of high-order features
Figure 6 illustrates the impact of generating high-order features,
which involve composing multiple transformations to create a fea-
ture, on the improvement of prediction accuracy. Remarkably, the
ability of ReaGen to generate high-order features significantly con-
tributes to its performance. Specifically, we demonstrate that as the
maximum order of features increases, the accuracy of ReaGen also
improves. This observation underscores the effectiveness of gener-
ating high-order features, as the composition of transformations
is pivotal for unveiling intricate relationships between features. In
essence, the ability to synthesize complex features enhances the
model’s predictive power by capturing insightful patterns within
the data. However, high-order features could become more chal-
lenging for domain expert to understand. So in practice, it would be
reasonable to set an order of 2 to 3 to have a good trade-off between
model’s accuracy and feature interpretability.

C.3 Feature Interpretability
C.3.1 Feature Importance. In this experiment, we use SHAP (SHap-
leyAdditive exPlanations) [19] to compare the importance of ReaGen’s
generated features with raw features. We start by creating a new
dataset combining the 𝑛 raw features with the top-ranked 𝑛 fea-
tures generated by ReaGen. We then use SHAP to score feature
importance in the model’s predictions. Figure 7 showcases the re-
sults for 9 different datasets. Notably, the features generated by
ReaGen (shown in blue) are more important compared to raw fea-
tures (shown in orange) across all datasets, thereby validating the
effectiveness of our model in generating interpretable and relevant
features.

C.3.2 Model-agnostic Interpretability. Despite the agreement on
the importance of feature interpretability, traditional AutoFE meth-
ods often neglect interpretability and focus on performance. To this
end, in our work, we focus on feature interpretability for domain
experts. We use in this experiments SHAP to quantify the contri-
bution of input features to the model prediction, i.e., to attribute
the predictions to specific parts of the input features. For a more in-
depth analysis, we display in Figure 8 the top 10 features generated
by our model across three different datasets from different domains.
It can be seen that, compared to the baselines, the features are easily
readable and trackable, enabling users to understand their meaning,
and more interpretable, aligning with the domain knowledge.

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Synergizing Large Language Models and Knowledge-based Reasoning for Interpretable Feature Engineering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 8: Comparing the effectiveness ofReaGenwith AutoFEmethods on benchmark datasets. ± indicates the standard deviation
across 5 splits.

Dataset ALG Base DFS AutoFeat NFS OpenFE mCAFE ReaGen Dataset ALG Base DFS AutoFeat NFS OpenFE mCAFE ReaGen

Diabetes

RF 0.740 ±.04 0.737±.05 0.767±.06 0.786±.10 0.842±.05 0.813±.04 0.853±.03

Medical

RF 0.491±.05 0.499±.11 0.790±.05 0.650±.02 0.824±.04 0.786±.05 0.853±.01
DT 0.732±.05 0.732±.08 0.741±.02 0.770±.05 0.830±.0 0.798±.05 0.849±.02 DT 0.478±.01 0.487±.05 0.780±.05 0.634±.05 0.824±.02 0.753±.04 0.851±.03
LR 0.753±.05 0.748±.05 0.780±.08 0.792±.05 0.837±.04 0.819±.06 0.857±.01 LR 0.502±.10 0.517±.08 0.803±.02 0.702±.04 0.839±.02 0.753±.08 0.870±.05
SVM 0.742±.05 0.719±.04 0.756±.05 0.762±.05 0.827±.05 0.788±.05 0.850±.04 appoin SVM 0.480±.07 0.491±.04 0.782±.07 0.641±.08 0.819±.05 0.764±.10 0.861±.03
XGB 0.755±.06 0.750±.04 0.788±.06 0.792±.05 0.823±.04 0.819±.05 0.863±.01 -tment XGB 0.503±.04 0.515±.04 0.801±.04 0.713±.05 0.860±.03 0.838±.08 0.892±.03

German

RF 0.742±.04 0.780±.08 0.796±.05 0.805±.06 0.813 ±.01 0.795±.04 0.827±.04

Credit

RF 0.797±.01 0.802±.01 0.806±.01 0.799±.04 0.810±.03 0.801±.04 0.837±.07
DT 0.720±.10 0.722±.02 0.752±.05 0.791±.08 0.803±.05 0.765±.06 0.809±.03 DT 0.782±.08 0.789±.01 0.7.92±.01 0.792±.01 0.802±.03 0.789±.02 0.822±.04
LR 0.770±.05 0.792±.01 0.807±.06 0.808±.09 0.812±.01 0.782±.01 0.825±.05 LR 0.801±.09 0.804±.10 0.805±.07 0.807±.06 0.811±.06 0.805±.06 0.829±.01

Credit SVM 0.755±.01 0.779±.01 0.794±.01 0.811±.01 0.809±.03 0.792±.05 0.817±.03 Default SVM 0.789±.05 0.793±.01 0.790±.03 0.801±.0 0.806±.10 0.803±.05 0.818±.04
XGB 0.790±.07 0.795±.07 0.801±.08 0.814±.01 0.815±.11 0.808 ±.03 0.832±.03 Risk XGB 0.802±.04 0.804±.04 0.811±.09 0.819±.01 0.814±.07 0.809±.02 0.825±.02

Kidney

RF 0.504±.01 0.550±.01 0.578±.01 0.620±.10 0.662±.11 0.632±.07 0.683±.02

Openml

RF 0.428±.04 0.411±.02 0.632±.05 0.640±.01 0.732±.07 0.738±.01 0.740±.01
DT 0.495±.01 0.559±.11 0.562±.01 0.613±.03 0.649±.04 0.607±.09 0.672±.02 DT 0.425±.01 0.408±.05 0.630±.08 0.629±.07 0.715±.02 0.725±.10 0.729±.02
LR 0.529±.01 0.590±.09 0.605±.05 0.619±.02 0.667±.11 0.609±.07 0.693±.07 LR 0.432±.07 0.412±.05 0.645±.05 0.642±.04 0.736±.09 0.740±.06 0.749±.03

Stone SVM 0.480±.07 0.508±.05 0.593±.09 0.621 ±.05 0.615±.01 0.599±.21 0.667±.02 _681 SVM 0.423 ±.05 0.405 ±.01 0.635±.05 0.632±.01 0.735±.04 0.720±.07 0.733±.01
XGB 0.509±.05 0.593±.05 0.608±.10 0.658±.01 0.684 ±.05 0.661±.08 0.698±.04 XGB 0.430±.08 0.413 ±.07 0.642±.02 0.645±.04 0.739±.08 0.735 ±.07 0.743±.02

Amazon

RF 0.712±.09 0.744±.07 0.739±.02 0.945±.11 0.909±.01 0.897±.02 0.932±.01

Bikeshare

RF 0.393±.07 0.693±.15 0.849±.04 0.974±.02 0.981±.09 0.906±.07 0.988±.04
DT 0.701±.02 0.738±.10 0.732±.02 0.932±.07 0.903±.02 0.878±.14 0.928±.02 DT 0.378±.05 0.682±.02 0.840±.09 0.965±.02 0.959±.01 0.896±.10 0.975±.02
LR 0.715±.11 0.750±.05 0.742±.05 0.935±.02 0.913±.05 0.905±.04 0.941±.05 LR 0.401±.02 0.702±.02 0.853±.02 0.975±.02 0.981±.15 0.921±.05 0.990±.01

Employee SVM 0.710±.05 0.740±.09 0.735±.02 0.936±.02 0.910±.05 0.906±.07 0.928±.04 DC SVM 0.380±.14 0.695±.04 0.845±.01 0.978±.06 0.978±.03 0.922±.21 0.982±.02
XGB 0.719±.04 0.755±.02 0.745±.15 0.945±.09 0.915±.02 0.908±.02 0.945±.01 XGB 0.405±.06 0.712±.07 0.855±.03 0.980±.03 0.982±.05 0.932±.06 0.993±.03

airlines

RF 0.620±.03 0.612±.06 0.618±.01 0.621±.03 0.628±.06 0.622±.06 0.625±.02

NYC

RF 0.425±.05 0.505±.03 - 0.551±.01 0.501±.03 0.446±.07 0.589±.01
DT 0.604±.15 0.601±.07 0.604±.02 0.615±.03 0.618 ±.03 0.619±.07 0.619±.09 DT 0.419 ±.05 0.489±.03 - 0.539±.23 0.487±.15 0.426±.01 0.580±.03
LR 0.622±.05 0.621±.11 0.617±.09 0.634 ±.11 0.642±.03 0.635±.07 0.639±.15 LR 0.430±.17 0.513±.02 0.458 ±.07 0.559±.03 0.515±.01 0.452±.07 0.604±.03
SVM 0.611 ±.09 0.609±.03 0.615±.08 0.626±.07 0.624±.03 0.622±.08 0.626±.01 Taxi Ride SVM 0.423 ±.08 0.499±.04 - 0.545±.08 0.492±.03 0.459±.17 0.589±.02
XGB 0.625±.03 0.626±.07 0.607±.07 0.639±.03 0.638±.03 0.635±.17 0.635±.01 XGB 0.432±.07 0.515±.03 - 0.562±.07 0.523±.03 0.486±.02 0.613±.01

Amazon Employee Wind Diabete

German Credit NYC taxi trip duration Spam Base

Bikeshare DC Medical Appointment Ailerons

Figure 7: Comparing feature importance of raw features (in orange) and generated features with ReaGen (in blue).

13



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

(a) NYC Taxi Ride Duration (b) Medical Appointment (c) German Credit

Figure 8: Top-10 features of ReaGen on 3 different datasets.

For instance, in the NYC Taxi Ride dataset, our model generated
10 out of the top 10 features, including crucial indicators like Dis-
tance and Duration between pickup and dropoff locations and times,
directly correlating with taxi ride duration. Moreover, it incorpo-
rates temporal aggregations such as Is_Rush_Hour and Is_Weekend,
reflecting their significant impact on traffic conditions.

In the Medical Appointment dataset, ReaGen generates insightful
features such as Duration in days between appointment scheduling
and the actual appointment, indicating a correlation with appoint-
ment no-shows. Additionally, it captures factors likeWeekday. A
thorough analysis of this dataset showed that patients have a higher
tendency to miss their appointments on weekdays rather than on
weekends or holidays.

D Full LLM Prompt
We show in Figure 9 the full prompt generated by ourmodel for NYC
taxi trip duration dataset. The corresponding code is a response of
the LLM to this prompt.

E Datasets Description
Our model leverage datasets description to automatically generate
a prompt for feature generation. The dataset descriptions used in
our experiments were extracted from the datasets respective source.
We show in Figures 10 - 18 the description of some of the datasets
used in our experiments.

F Broader Impact Statement
F.1 Limitations
ReaGen has some limitations. Its effectiveness relies on the quality
of the dataset descriptions. If users provide inaccurate descriptions,
the performance may drop significantly. However, in real world
applications, this is less likely to be an issue since detailed descrip-
tions of the data are typically available and of a good quality. In
addition, handling datasets with a large number of features can
result in very large prompts, which can be challenging for LLMs to
process effectively. Likewise, incorporating additional information
from external knowledge bases can increase the size of the prompts,
especially when dealing with substantial amounts of knowledge. Fi-
nally, the use of LLMs involves broader societal impacts and ethical
considerations, as detailed bellow.

Figure 9: Full LLM Prompt for the NYC taxi trip duration
dataset.

F.2 Social Impact of automated feature
engineering

Traditional feature engineering is typically carried out manually by
data scientists, consuming significant time and effort. Automating

14



1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Synergizing Large Language Models and Knowledge-based Reasoning for Interpretable Feature Engineering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Figure 10: Description of Bikeshare DC dataset.

Figure 11: Description of NYC taxi trip duration dataset.

Figure 12: Description of medical appointment no-show
dataset.

Figure 13: Description of Kidney Stone dataset.

this process can greatly reduce the workload of data scientists, en-
abling them to make faster decisions at lower costs. In this context,
ReaGen streamlines the process of data preparation and feature ex-
traction, reducing the time and effort required for data scientists to
build and refine models. This increased efficiency allows organiza-
tions to analyze larger datasets and iterate on models more quickly,
ultimately leading to greater productivity. ReaGen also empowers
data scientists to explore a wider range of feature combinations and

Figure 14: Description of Home Credit Default Risk dataset.

Figure 15: Description of German Credit dataset.

Figure 16: Description of Breast cancer-w dataset.

Figure 17: Description of airlines dataset.

transformations, uncovering valuable insights and patterns that
may not be immediately apparent.

F.3 Interpretable Machine Learning
As the use of advanced AI techniques becomes more common,
understanding and interpreting their results becomes crucial. Our
approach focuses on feature interpretability for domain experts,
using knowledge-based reasoning mechanisms. Our main goal is to
simplify automate the feature engineering process by generating
simple code and provide clear explanations about the proposed
features using large languagemodels. To reduce factual inaccuracies
and hallucinations, typical in LLMs [27, 42], we combine LLMs
with knowledge-based reasoning mechanisms, ensuring that the
generated features and transformations are not only accurate, but
also understandable to domain experts. Our focus on interpretability

15



1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Figure 18: Description of diabetes dataset.

helps bridge the gap between complex ML methods and symbolic
AI, enabling collaboration between AI systems and experts and
allowing them to confidently understand and validate the results.
Additionally, by explaining the reasoning behind each generation,
we enhance transparency and build trust in the AI-driven decision-
making process.

F.4 Ethical Considerations
In light of observed ethical concerns replicated by AI technologies,
including data privacy, bias, and transparency, it’s crucial to address
the potential bias implications within our approach, ReaGen, which
uses GPT-3.5-turbo and GPT-4 trained on web-crawled data embed-
ding societal biases. Notably, several studies have exemplified the
presence of such biases in web-crawled data [26, 36].

Given this, when using data containing demographic or discrim-
inative information, caution is advised in employing our approach.
We advocate for meticulous scrutiny of generated features to miti-
gate these biases. Nevertheless, it is important to note that through
the integration of domain knowledge and logical reasoning tech-
niques, we aim to ensure that selected features are not only accu-
rate but also understandable and interpretable by domain experts
due to the way our method is set up, i.e. the features retained by
our model are interpretable based on the semantics embedded in
domain knowledge, and relevant leading to improvement in cross-
validation. Additionally, in our approach, we allow for the possibil-
ity of introducing ’human in the loop’, seeking explicit confirmation
from experts before executing code especially when dealing with
high-risk and critical domains.

16


	Abstract
	1 Introduction
	1.1 Main Challenges
	1.2 Our proposed solution

	2 Related work
	3 Problem Definition
	3.1 Feature Interpretability
	3.2 Feature Engineering

	4 Proposed approach
	4.1 Overview
	4.2 Prompting LLMs for AutoFE
	4.3 Feature Generator
	4.4 Knowledge-based discriminator
	4.5 Performance Evaluation

	5 Experiments
	5.1 Experimental setup
	5.2 Effectiveness of ReaGen
	5.3 Efficiency and Scalability
	5.4 Feature Importance

	6 Conclusion
	References
	A Feature Transformations
	B Knowledge representation
	C Additional results
	C.1 Performance on different models
	C.2 Effect of high-order features
	C.3 Feature Interpretability

	D Full LLM Prompt
	E Datasets Description
	F Broader Impact Statement
	F.1 Limitations
	F.2 Social Impact of automated feature engineering
	F.3 Interpretable Machine Learning
	F.4 Ethical Considerations


