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Figure 1: The proposed Creat3r progressively refines scene geometry and confidence field across
successive selection rounds. The top two rows respectively illustrate the progression of the confidence
maps of views a and b. The bottom row shows the exploration map of view c alongside the
reconstructed geometry, which becomes increasingly detailed as more images are incorporated. At
each iteration, the confidence and exploration maps jointly quantify the exploration measure of every
candidate view. The exploration map highlights unobserved or weakly constrained regions (bright)
to drive exploration, whereas the confidence map quantifies the reliability of reconstructed points,
enabling refinement in uncertain yet already observed areas.

ABSTRACT

We introduce Creat3r, an active view selection framework designed for efficient
and high-quality 3D reconstruction using a limited subset of image-pose pairs.
Given an initial set of selected views, our method iteratively identifies the most
informative candidate views to maximize reconstruction accuracy while adhering to
computational constraints. Our approach begins by generating an intermediate 3D
point cloud through dense pixel correspondences and stereo triangulation, refining
point estimates via the Direct Linear Transform (DLT). To assess reconstruction
reliability, we introduce a 3D confidence field that integrates camera support
and view consistency, enabling a quantitative evaluation of point quality. This
confidence information is then propagated to all candidate views using an efficient
Gaussian projection technique, generating 2D confidence and exploration maps
for each potential viewpoint. We define an exploration measure based on these
maps to evaluate and optimally select the next best view. By balancing exploration,
reconstruction accuracy, and computational efficiency, Creat3r is well-suited for
applications in autonomous 3D scanning, robotic vision, and multi-view scene
reconstruction. To demonstrate its effectiveness, our method is evaluated against
baselines using the standard 3DGS representation for 3D reconstruction from the
selected views. The experimental results show that our method excels in novel
view synthesis and surface reconstruction, achieving significant improvements in
SSIM and F1-score.
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1 INTRODUCTION

Recent advances in 3D Gaussian Splatting (3DGS) have enabled high-quality, real-time novel view
synthesis from multi-view images. By representing a scene with a set of differentiable 3D Gaussians,
3DGS has become a leading method for immersive and realistic scene rendering. However, its state-
of-the-art performance remains critically dependent on a dense set of input views, often requiring
hundreds of images for a single scene. This reliance creates a significant practical bottleneck, leading
to heavy computational costs, protracted optimization times, and intensive manual data acquisition,
particularly for large-scale environments.

To alleviate this data acquisition burden, active view selection has emerged as a promising solution,
aiming to intelligently choose a minimal yet informative subset of views/images. Existing methods
for neural rendering typically operate in an iterative loop: they optimize the scene representation with
a small set of known views, estimate uncertainty for unobserved regions, and select the “next best
view” to reduce this uncertainty. For example, methods like FisherRF (Jiang et al., 2024) and Lyu
et al. (2024) leverage Fisher information or variational inference to estimate model uncertainty.

While effective, these approaches suffer from two major limitations. First, they are fundamentally
tied to the iterative optimization of the underlying 3D representation. Each selection step requires
re-initializing and re-optimizing the Gaussian model, introducing computational redundancy and
inefficiency. Second, most existing pipelines initialize using Structure-from-Motion (SfM) methods
such as COLMAP, which are typically run over the entire candidate image pool. This practice leaks
information from views that are supposed to be “unseen” and biases the evaluation of selection
strategies. As a result, existing approaches do not fully respect the principle of active selection, since
they implicitly assume access to geometric priors derived from all candidate views.

To address these limitations, we introduce Creat3r, a novel active view selection framework designed
to be efficient, robust, and fully decoupled from costly 3DGS optimization. Instead of relying on a
resource-intensive, full Gaussian model, we propose a lightweight, proxy 3D model composed of
spherical Gaussians. This proxy model is not optimized iteratively but is instead built on a more
fundamental and robust geometric representation of the scene.

Creat3r operates through two key mechanisms. It incrementally estimates a robust geometry of
the scene by establishing pairwise correspondences between known and candidate views, then
triangulating them into 3D points via Direct Linear Transformation (DLT). This procedure produces
a dynamic scaffold that grows with each selection step, thereby avoiding both the leakage bias of
global SfM and the instability of random initialization in sparse-view settings. Building upon this
scaffold, Creat3r defines a novel exploration–exploitation criterion using two geometry-derived maps.
The confidence map encodes the reliability of reconstructed regions, guiding refinement in uncertain
but already observed areas, while the exploration map highlights regions that remain unobserved or
poorly constrained, directing the system toward novel content. (See Figure 1.) Together, these signals
balance local detail refinement with global scene expansion. The overall pipeline is illustrated in
Figure 2, where geometry and confidence are re-estimated each round to guide view selection.

Through successive selections, our method produces a compact set of images sufficient for high-
quality 3DGS reconstruction, while also generating a robust scene scaffold that can serve as an
effective initialization for downstream tasks. We demonstrate that Creat3r consistently outperforms
prior view-selection methods on both novel view synthesis and surface reconstruction tasks, achieving
superior performance while significantly reducing computational and data requirements.

Our key contributions can be summarized as follows:

1. We introduce Creat3r, a novel view selection approach for 3DGS that is fully decoupled
from the iterative optimization process, yielding substantial computational savings.

2. We present a robust, geometry-based initialization that incrementally builds a sparse 3D
scaffold using only the selected views, thereby avoiding leakage bias caused by global SfM
pipelines that are misapplied in existing approaches.

3. We propose a new exploration-exploitation selection measure that leverages a confidence
map and an exploration map to intelligently guide view selection.

4. We show that Creat3r achieves state-of-the-art results for both novel view synthesis and
surface reconstruction, demonstrating superior performance and data efficiency.
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Known views

NBV

(b) Creat3r(a) Baselines

Figure 2: (a) Baseline methods re-initialize and re-optimize Gaussian ellipsoids at every iteration.
Their initialization depends on the point cloud reconstructed with all the candidate views (orange
cones), leading to information leakage. (b) Creat3r estimates Gaussian spheres directly from pairwise
pixel correspondences. The resulting confidence field and geometry render confidence and exploration
maps for each candidate view. The view with the highest exploration measure (red cone) is then
selected as the next best view (NBV) and the newly acquired image is added to the known set.

2 RELATED WORK

3D reconstruction with classical structure-from-motion (SfM) (Schonberger & Frahm, 2016; Pan
et al., 2024) or multi-view stereo (MVS) (Schönberger et al., 2016; Yao et al., 2018) is experiencing
a renaissance with the advent of emerging radiance field (Mildenhall et al., 2021; Sun et al., 2022;
Fridovich-Keil et al., 2022; Müller et al., 2022), signed distance fields (Wang et al., 2021; 2023; Li
et al., 2023; Liu et al., 2023), and 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023; Huang et al.,
2024; Dai et al., 2024).

Active 3D reconstruction determines the next best view that will most significantly enhance the
quality of the reconstruction. ActiveNeRF (Pan et al., 2022) assumes parameters to be independent
and estimates the uncertainty. ActiveNeuS (Ichimaru et al., 2024) extends active selection to surface
reconstruction, but only for small objects. ActiveGAMER (Chen et al., 2025) uses 3DGS and RGBD
inputs for next best view selection, but only in a synthetic world. NARUTO (Feng et al., 2024) and
ActiveGS (Jin et al., 2024) also take RGBD inputs and extend to the real environment.

The method of Kopanas & Drettakis (2023) samples points in space and models the point camera
relationship to select new views. They have adopted InstantNGP (Müller et al., 2022) to reconstruct
the scene and place cameras in the empty space. FisherRF (Jiang et al., 2024) quantifies the uncertainty
of each candidate using Fisher information. It uses Laplace’s approximation and computes Jacobians
instead of the Hessian matrix. It modifies the rasterize function in 3DGS to speed up computation.
Similar to FisherRF, the method of Goli et al. (2024) also uses Laplace’s approximation for uncertainty
computation in NeRF. Like FisherRF, GauSS-MI (Xie et al., 2025) also uses information gains for
view selection. Their computation does not involve known views, resulting in constant search time.

The manifold sampling technique proposed by Lyu et al. (2024) takes a different approach and
uses variational inference to model the parameter distribution of Gaussian primitives. They find an
effective low-dimensional manifold that can speed up computation and a differentiable scheme to
optimize uncertainty. Also relying on variance, the method of Ewen et al. (2025) computes pixel-wise
higher moments for each candidate. For selection, they compute the variance for each candidate.

Unlike the methods mentioned above, we do not rely on optimization of 3DGS or NeRF during view
selection. Instead, we use 2D correspondence predictions (Lindenberger et al., 2023; Sarlin et al.,
2020; Sun et al., 2021; Leroy et al., 2024) to estimate robust geometry for active view selection.
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3 METHOD

Consider a collection of image–pose pairs S = {(I,W )} representing a given scene or object, where
each image I is associated with its corresponding camera pose W . Selecting a view therefore entails
including both its image and pose. Our goal is to develop an active view selection framework that
enables high-quality 3D reconstruction while relying on only a limited subset of these pairs.

We initialize with a small set of known views, SK = {(IK ,WK)}, which serve as the starting point
for reconstruction. The remaining candidate views form the set SC , such that the entire dataset
is partitioned as S = SK∪̇SC . The objective is to iteratively select the most “informative” views
from SC to expand SK , while respecting constraints on the number of views and optimization steps
allowed for active 3D reconstruction.

3.1 ROBUST POINT ESTIMATION

During active view selection, performing 3D reconstruction using the known views SK yields an
intermediate estimate of 3D point cloud P̃ , providing insight into the expected quality of the final
reconstruction. However, reconstruction quality is not just the goal of our method—it also plays a
critical role in shaping the effectiveness of the view selection criteria, as elaborated later.

Given the known set SK = {(IK ,WK)}, we leverage correspondence networks such as Light-
Glue (Lindenberger et al., 2023) to extract pixel correspondences between all pairwise views in SK .
These correspondences are triangulated to recover 3D points, explicitly incorporating stereo geometry
for accurate predictions. More formally, consider two images Ia and Ib in SK , captured by cameras
a and b, respectively. The network identifies a set of corresponding pixels, denoted as

{(ua, va) ↔ (ub, vb)}. (1)

For camera a with projection matrix Pa, the 3D-to-2D projection equation can be expressed as

κa ·

[
ua

va
1

]
=

[
Pa

11 Pa
12 Pa

13 Pa
14

Pa
21 Pa

22 Pa
23 Pa

24
Pa

31 Pa
32 Pa

33 Pa
34

]xyz
1

 . (2)

where κa is a scalar depth factor. The same formulation applies to camera b by substituting its
corresponding projection matrix Pb.

To eliminate the depth scale factor κ, we construct a linear system by multiplying the third row by u
and v, and subtracting it from the first and second rows, respectively, for both cameras. This results
in the following system: A[x, y, z]T = b, where

A =

uaP
a
31 −Pa

11 uaP
a
32 −Pa

12 uaP
a
33 −Pa

13
vaP

a
31 −Pa

21 vaP
a
32 −Pa

22 vaP
a
33 −Pa

23

ubP
b
31 −Pb

11 ubP
b
32 −Pb

12 ubP
b
33 −Pb

13

vbP
b
31 −Pb

21 vbP
b
32 −Pb

22 vbP
b
33 −Pb

23

 and b =

P
a
14 − uaP

a
34

Pa
24 − vaP

a
34

Pb
14 − ubP

b
34

Pb
24 − vbP

b
34

 . (3)

We solve for [x, y, z]T using the Direct Linear Transform (DLT): [x, y, z]T = (ATA)−1ATb.
Applying this to all pixel correspondences across view pairs in SK yields co-visible points whose 3D
coordinates are refined under stereo geometry, ensuring robust and accurate predictions for active
view selection.

3.2 CONFIDENCE FIELD VIA REAGGREGATION

Given the intermediate 3D reconstruction P̃ , we assign each point a confidence value to guide the
selection of the next best view from SC . Specifically, for each predicted point p ∈ P̃ with color c
and position p, we evaluate its visibility and consistency across the known cameras in SK .

For every camera a ∈ SK , point p can be projected onto the image plane if it lies within the camera
frustum. We define the binary support of camera a for point p as

g(a, p) ∈ {0, 1}, g(a, p) = 1 iff p is visible in camera a. (4)
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Visibility alone does not guarantee reliability, as points may suffer from occlusions, clutter, or false
correspondences. To capture photometric consistency, we project p onto all supporting cameras and
measure its color agreement with the corresponding pixels. We define the viewing consistency by

H(p) = exp

(
− 1∑

a∈SK g(a, p)
×

∑|SK |

n=1
g(an, p) ∥cn − c∥2

)
, (5)

where c is the color of p, and cn is the observed pixel color in camera an. If p is not supported by
any camera, we set H(p)=0.

Finally, we define the 3D confidence field MConf by weighting H(p) with ḡ(p), the fraction of
known cameras in which p is visible:

MConf(p) = H(p)× ḡ(p) = H(p)× 1

|SK |
∑

a∈SK
g(a, p). (6)

After each round of active view selection, we update the confidence field MConf for the newly
constructed P̃ by pointwise reaggregating the support and reevaluating the color consistency from all
relevant cameras in SK .

3.3 VIEW-SPECIFIC CONFIDENCE AND EXPLORATION MAPS

Thus far, we have leveraged stereo geometry to improve the quality of the intermediate 3D reconstruc-
tion P̃ and to compute its confidence field MConf . The next step is to propagate this information to
each candidate camera view in SC , generating corresponding 2D confidence and exploration maps.
These maps provide a quantitative basis for assessing which candidate views will contribute most
effectively to the next iteration of active view selection.

Inspired by 3D Gaussian Splatting (3DGS), we adopt a simplified projection scheme to transfer
3D point information to candidate views. Each point p ∈ P̃ is modeled as a sphere centered at p
with radius r denoting its influence region. For an arbitrary position x ∈ R3, the influence of p is
approximated using an isotropic Gaussian function:

G(x) = o · exp
(
− 1

2r2
||x− p||2

)
, (7)

where o is a constant opacity. Compared to the full 3DGS formulation, the isotropic case simplifies
projection: the projected radius in the image plane is r2D = r · f/λ, where f is the focal length and
λ denotes the depth of the Gaussian. Projected Gaussians are depth-sorted and alpha-composited
to obtain the final pixel value. Leveraging this projection formulation, we determine the influence
region r by constraining the projected radius r2D in the source view to correspond to exactly one
pixel.

Using P̃ and MConf , we generate the 2D exploration map MExp and 2D confidence map MConf

for each candidate view. For MExp, we assign each point a grayscale value of one, project it, and
then invert the rendered image to emphasize unexplored or weakly constrained regions. For MConf ,
we set the intensity of each point to its confidence value in [0, 1]. In both cases, we fix the opacity in
Equation (7) to o = 0.8.

More concretely, these maps are generated for each candidate view by rendering from a simplified
3DGS model. For the exploration map, reconstructed points are modeled as small spheres, projected
with maximum grayscale intensity (white), and blurred by the Gaussian kernel in Equation (7). The
rendered image is then inverted so that unobserved or weakly constrained regions appear bright. The
confidence map is produced analogously, except each point is colored by its confidence score rather
than a uniform white value, thereby encoding the reliability of observed regions.

Exploration measure The exploration and confidence maps, MExp and MConf , provide a quanti-
tative way to evaluate the contribution of each candidate view in SC , given the set of already selected
views SK . Intuitively, selecting a new view reduces the unexplored content of nearby candidates due
to overlapping coverage, while views observing disjoint regions remain more valuable for selection.
Building on this intuition, we define the exploration measure for a candidate view (I,W ) ∈ SC as

Exploration(W ) =
∑

MExp(W )− τ ·MConf(W ), (8)
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Table 1: Novel view synthesis evaluation on Mip-NeRF 360 dataset. We present the evaluations of
3DGS optimized with 10 and 20 selected views. (∗) denotes methods initialized with COLMAP-
induced subsampled points. (‡) indicates methods initialized with Creat3r-LightGlue points, and (†)
indicates methods initialized with Creat3r-MASt3R. Best and second-best results are highlighted.

Method 10 cameras 20 cameras

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
FPS∗ 12.529 0.261 0.613 14.918 0.389 0.528
FPS† 13.560 0.362 0.555 14.940 0.439 0.514
FisherRF (Jiang et al., 2024)∗ 12.625 0.264 0.608 15.434 0.390 0.515
FisherRF (Jiang et al., 2024)† 14.196 0.392 0.546 16.028 0.474 0.491
Kopanas & Drettakis (2023)∗ 13.022 0.284 0.596 15.658 0.407 0.506
Kopanas & Drettakis (2023)† 13.677 0.383 0.546 15.727 0.470 0.499
Lyu et al. (2024)∗ 12.561 0.264 0.612 15.446 0.401 0.518
Lyu et al. (2024)† 14.282 0.377 0.547 16.264 0.503 0.480
Creat3r ‡ 16.040 0.449 0.536 19.637 0.567 0.443
Creat3r † 17.809 0.511 0.523 20.678 0.601 0.397

where the first term quantifies the total unexplored regions visible from W , the second term penalizes
views with high average confidence (i.e., already well-covered), and τ is a scaling factor that balances
the two terms. The next best view is then selected by maximizing this exploration measure:

(I∗,W ∗) = argmax
(I,W )∈SC

Exploration(W ). (9)

4 EXPERIMENT

To evaluate our method, we perform comprehensive comparisons on 3D reconstruction. The first
task is novel view synthesis. The experimental setting follows previous methods, and the results are
detailed in Section 4.2. The second task is surface reconstruction. This is a more severe task and has
not been discussed by previous active view-selection methods. It is shown that our method is capable
of reconstructing the surface under limited views. Further discussion is presented in Section 4.3.

4.1 IMPLEMENTATION DETAILS

Creat3r uses pixel correspondences to estimate robust geometry. Any correspondence estimation
method can be used in our framework. In the experiment, we report the evaluation with two different
correspondence estimation methods, LightGlue and MASt3R, for novel view synthesis. Note that we
simply treat MASt3R as a correspondence network for pixel matching. We do not use their point
estimate in the entire process of view selection. Our framework is 3D model agnostic, meaning
it can accept any 3D reconstruction technique. For a fair comparison, we use 3DGS as our 3D
representation method, following the baselines. Since Creat3r provides a reliable 3D scaffold, 3DGS
converges in a very short time: We finish 3DGS optimization in 5,000 iterations. Computational
efficiency is discussed in the appendix, and Table 5 shows the average selection time per iteration.

We compare Creat3r with the previous state of the arts. Specifically, we consider FisherRF (Jiang
et al., 2024), Lyu et al. (2024) and Kopanas & Drettakis (2023) as competitive counterparts. Since
the method of Kopanas & Drettakis (2023) is originally designed for NeRF, we adapt their method to
3DGS. We also use the 3DGS version of FisherRF in a single selection manner. All of the baseline
methods have unified searching and optimization iterations. We follow the setting of Lyu et al. (2024),
which takes 20,000 iterations for searching. They take another 10,000 iterations for final optimization.
In addition to the uncertainty estimation approaches, we construct a simple baseline through farthest
point sampling (FPS). This method only considers the position of each camera and collects the views
with the largest inner distances. Despite the absence of camera orientation, this strategy can be useful,
especially in an inward-captured dataset.
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(a) (b) (c) (d) (e)

Figure 3: Qualitative comparison of active view selection on the Mip-NeRF 360 dataset for 20
selected views. The results demonstrate novel view renderings produced by competing methods:
(a) FisherRF (Jiang et al., 2024), (b) Kopanas & Drettakis (2023), (c) Lyu et al. (2024), and (d)
our proposed method, Creat3r. Column (e) serves as the ground truth novel view reference. The
comparison highlights the superior ability of Creat3r to synthesize high-fidelity views with finer
details and fewer artifacts.

4.2 NOVEL VIEW SYNTHESIS

The evaluation process for novel view synthesis includes several steps. First, each method selects a
certain number of views for 3DGS optimization. The optimized model renders images in novel poses.
The evaluation compares the image quality between rendered and ground-truth images. Standard
metrics include peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and learned
perceptual image patch similarity (LPIPS). The three metrics reflect different perspectives of image
quality. When an image has better quality, it should have higher PSNR and SSIM, and also lower
LPIPS. In this task, we use the popular MipNeRF-360 dataset for evaluation. The dataset contains
nine real-world scenes, including indoor and outdoor captures. To fully expose the data efficiency of
each method, the number of selections is set to 10 and 20, respectively. In the original data split, each
scene has hundreds of views for optimization. Here, the training set is used as the candidate pool to
find the optimal selections.

In previous literature, the evaluation process includes the sparse reconstruction from SfM. As
mentioned earlier, the point cloud is reconstructed from hundreds of views that are actually treated
as candidates during the selection. Using this point cloud for 3DGS initialization would reveal
geometric information and lead to unfair/biased comparisons. To develop a fair comparison, we
provide three different kinds of initialization. The first one is subsampling initialization. To prevent
unlimited space sampling, we use the extreme values of the SfM point cloud coordinates (induced by
COLMAP) as boundaries and sample within them. We are also interested in the case where other
competing methods have the same initial points as ours. The second and third initializations share
the same point sets estimated with Creat3r and initial views. Each of them relates to LightGlue and
MASt3R-matching, respectively.

The evaluation results are listed in Table 1. A more complete comparison can be found in the
Table 6. We use (∗) to indicate that the methods use COLMAP-induced sampling initialization. (‡)
and (†) indicate the methods start with robust points generated with Creat3r and initial views. Each
baseline methods report two results with COLMAP-induced subsampling and Creat3r-MASt3R-
matching initialization. Due to space limit, we report the baseline results with Creat3r-LightGlue in

7
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Figure 4: Visualization of active view selection sequences on the ‘bonsai’ scene. The rows correspond
to (from top to bottom): Creat3r, Lyu et al. (2024), FisherRF (Jiang et al., 2024), and Kopanas &
Drettakis (2023). The first three columns display the fixed initial set, adopted from the ReconFusion
benchmark (Wu et al., 2024).

the appendix. Our Creat3r-MASt3R-matching initialization has consistent improvements in all the
baselines, compared to the COLMAP-induced subsampling counterpart.

For different active selection strategies, FPS shows basic performance as it only considers the
positions of the camera and ignores the orientations. FisherRF and Lyu et al. (2024) have similar
performance. FisherRF performs better when the view is sparse. The method finds a candidate
with the most information gain and achieves a significant improvement in the initial selections. The
manifold sampling method of Lyu et al. (2024) performs better when there are more views. They
use posterior to the scene, which is more accurate when there are more observations. The method of
Kopanas & Drettakis (2023) considers the visibility and viewing directions of sampled points. Their
method has better performance in indoor or area-constrained scenes. Interestingly, the method of
Kopanas & Drettakis (2023) outperforms FisherRF and Lyu et al. (2024) when the initialization is
COLMAP-induced subsampling, while FisherRF and Lyu et al. (2024) surpass Kopanas & Drettakis
(2023) when using Creat3r estimated points as initialization. This suggests that uncertainty estimation,
either with information gain or variational inference, is more beneficial from robust geometry, while
Kopanas & Drettakis (2023) is less dependent on geometry.

Creat3r outperforms all baselines in all metrics, regardless of the number of selections. Due to its
robust geometry, our 3D representation requires only half of the iterations for optimization. Note that
optimization is difficult due to sparse views and the absence of ground-truth points. Creat3r estimates
robust geometry, projects confidence and exploration maps to each candidate, and carefully selects
the next best view by exploration measure. All efforts significantly improve the novel view quality.
The comparison validates that our design is effective in various real-world scenes.

The qualitative results are illustrated in Figure 3. The figure demonstrates novel view renderings of
four independent scenes in Mip-NeRF 360 dataset. The comparison highlights the superior ability
of Creat3r to synthesize high-fidelity views with finer details and fewer artifacts. Other competing
methods render with some artifacts due to a suboptimal selection set. More qualitative comparisons
are shown in Figure 5 in the appendix.

The view selection sequences generated by different approaches are visualized in Figure 4. The
initial set, comprising the first three views, is adopted from the ReconFusion benchmark (Wu et al.,
2024). The top row of Figure 4 illustrates the selection process of Creat3r, which exhibits a spatially
diverse distribution and progressively achieves comprehensive scene exploration. In contrast, the
second and third rows—representing selections driven by the uncertainty estimates of Lyu et al.
and FisherRF—reveal that while these methods explore the scene, they suffer from intermittent
redundancy. Finally, the bottom row indicates that the approach of Kopanas & Drettakis results in a
highly repetitive selection pattern.

4.3 SURFACE RECONSTRUCTION

The task aims to reconstruct the actual surface of the scene. While 3DGS does not produce an actual
surface, we adopt the mesh extraction pipeline from 2DGS (Huang et al., 2024). After optimization,
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Table 2: Surface reconstruction evaluation on Tansks&Temples dataset. Best results are highlighted.

Precision(%) Recall(%) F1-score(%)

FisherRF (Jiang et al., 2024) 7.91 9.81 8.61
Kopanas & Drettakis (2023) 17.6 0.58 0.84
Lyu et al. (2024) 5.85 5.86 5.61
Creat3r 14.09 25.93 18.05

we render depth maps for selected views. The depths are then fused into a voxel grid using truncated
signed distance fusion Curless & Levoy (1996) and extracted via marching cubes Lorensen & Cline
(1998). The evaluation process densely samples the reconstructed surface and compares it against
the ground truth. The predicted point is considered valid if it is within a 5-millimeter distance from
the ground-truth points. The reported metrics are precision, recall, and F1-score. In this evaluation,
we use the popular Tanks&Temples dataset as the benchmark. Our setting is similar to GOF (Yu
et al., 2024), which samples three scenes for evaluation, including “Caterpillar”, “Ignatius”, and
“Truck”. The scenes are more difficult than Mip-NeRF 360 scenes and exhibit a wide variety of
lighting conditions, such as sunshine and reflective surfaces. Each scene provides the surface ground
truth of the foreground object. Only the foreground surface is evaluated. To reconstruct the surface,
all the competitors must find optimal view collections of 20 views that cover most of the appearance
and regional detail.

The results are shown in Table 2. Note that the numerical values are shown in percentages. Since
the three scenes are outdoors and have different exposures across views, it is challenging for 3DGS
to model the scene, as the optimization solely relies on appearance differences. While the methods
of FisherRF, Kopanas & Drettakis (2023), and Lyu et al. (2024) depend on optimized 3DGS for
view selection, they face challenges when the optimization fails. On the other hand, Creat3r is not
affected by 3DGS performance. Although our method yields lower precision compared to Kopanas
& Drettakis (2023), their approach suffers from extremely limited surface coverage (low recall),
resulting in a compromised F1-score. In contrast, Creat3r maintains a superior balance between
precision and recall.

The robust geometry enables view selection even in challenging scenes, especially for luminance
variation across views. To further validate the point, we compare Creat3r with the original 3DGS.
To prevent the influence of sparse views, the 3DGS optimization uses the entire training set, which
includes 200 to 400 images. The comparison is listed in Table 3. The result aligns with our point.
The scene “Caterpillar” is captured in the rural field. The images have severe exposure differences.
Our method is not affected by this adversary. On the other hand, “Ignatius” has a sculpture in the
foreground. The material of the sculpture reflects specular light, which leads to inconsistencies across
views. Creat3r has the same performance with 3DGS on the “Truck” scene, while 3DGS uses 11
times more images for training. It suggests that our selection criterion is effective and provides data
efficiency for 3DGS optimization.

4.4 ABLATION STUDY

In the ablation study, we focus on three components of Creat3r: namely, robust point estimate,
confidence reaggregation, and exploration. The study excludes one component at a time, evaluating

Table 3: F1-score comparison between Creat3r and original 3DGS. Creat3r only optimizes with 20
selected views. 3DGS uses all of the training set for optimization (more than 200.)

Caterpillar Ignatius Truck
3DGS (Kerbl et al., 2023) 0.08 0.04 0.19
Creat3r 0.10 0.25 0.19
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Table 4: Ablation study of Creat3r. Influence comparison of robust point estimate, exploration, and
confidence reaggregation. We use nine different scenes in Mip-NeRF 360 for evaluation.

Point Exploration Confidence PSNR↑ SSIM↑ LPIPS↓
✓ ✓ 16.479 0.458 0.574

✓ ✓ 17.022 0.507 0.525
✓ ✓ 17.457 0.502 0.543
✓ ✓ ✓ 17.809 0.511 0.523

the performance drop for the exclusion. The evaluation uses nine scenes in the Mip-NeRF 360, and
the number of selections is set to 10. The comparison is shown in Table 4. The first row excludes
the point estimate. Instead, we use MASt3R predicted points as an alternative. Compared to our
full model in the fourth row, the robust point estimate is the most effective technique, yielding an
improvement of 1.26 in PSNR. Exploration and confidence reaggregation provide different aspects
of improvement. While confidence reaggregation performs better in SSIM and LPIPS metrics,
the exploration has a higher performance in PSNR. In the experiment, we find that exploration
performs better in constrained scenes, such as indoor environments. On the other hand, confidence
performs better on outdoor scenes. With this in mind, we achieve the best of both worlds through
the exploration measure and obtain an overall better performance. The qualitative evaluation of
the ablated components is presented in Figure 6 (Appendix), clearly demonstrating their respective
functionalities.

5 LIMITATIONS AND DISCUSSION

A primary limitation of Creat3r stems from its reliance on geometric co-visibility between the
candidate views and the current reconstruction scaffold. While our approach proves highly effective
for inward-facing (object-centric) and forward-facing trajectories, outward-facing scenarios (e.g.,
the ‘room’ scene) present a distinct challenge. In such cases, candidate views often observe disjoint
regions of the scene and may share minimal overlap with the initial estimated geometry. Consequently,
these views yield null confidence maps and uniformly high-intensity exploration maps. This ambiguity
can inadvertently bias the exploration measure towards redundant sampling of unconstrained regions,
leading to suboptimal convergence. We emphasize that this vulnerability is inherent to the active
selection paradigm; all baseline methods similarly struggle to identify informative views in the
absence of initial geometric overlap. To mitigate this, we implement a regularization strategy
that temporarily masks such candidates from the selection pool. These views are subsequently
reintroduced as the confidence field expands and sufficient geometric connectivity is established to
meaningfully constrain them.

6 CONCLUSION

We introduced Creat3r, a novel active view selection framework for 3D reconstruction that is
computationally efficient and robust. Unlike prior methods that rely on iterative optimization of the
3D representation, Creat3r is fully decoupled from this process, leading to substantial computational
savings. Our method incrementally builds a robust 3D scaffold from only the selected views,
effectively avoiding the information leakage bias inherent in global SfM pipelines. Through the
use of confidence map and exploration map, Creat3r balances the need for local detail refinement
with global scene expansion. Our approach consistently achieves state-of-the-art results for both
novel view synthesis and surface reconstruction. By providing a reliable geometry, Creat3r also
significantly reduces the optimization time for downstream tasks, such as 3DGS, highlighting its
superior performance and data efficiency. This work represents a significant step forward in making
high-quality 3D reconstruction feasible with a minimal and informative set of images.
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or non-public data. We have carefully considered potential impacts and do not anticipate ethical risks
beyond those commonly encountered in computer vision and machine learning research.

REPRODUCIBILITY STATEMENT

We detail the training pipeline and evaluation protocols in both the main paper and the appendix,
providing explicit hyperparameters and dataset partitions to facilitate exact replication. Additionally,
we outline the implementation settings and reporting conventions to ensure our results can be
accurately reproduced. To further support reproducibility, we will release the complete training and
evaluation code, along with runnable scripts, in the camera-ready version.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to assist with (i) improving prose (grammar, flow, and clarity), (ii) reorganizing and
refining section structure, captions, and titles, and (iii) generating keywords and query strings to
explore related work.

For literature discovery, every citation in the paper was located through standard search engines
or digital libraries and then read and verified by the authors; we did not accept model–generated
references without inspection. Numerical results, comparisons, and quotes were cross–checked
against the original sources.

We reviewed all text suggested by the model to ensure that the writing aligns with our intentions,
thereby confirming accuracy and originality. No confidential or sensitive information was shared
with the model. The authors conducted a thorough review of the final manuscript, including all tables
and figures, to verify factual accuracy and completeness.
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A APPENDIX

A.1 EXPERIMENTAL DETAIL

For novel view synthesis, we use Mip-NeRF 360 dataset as the benchmark. For every scene, 1/8
of the views are split as novel views. The remaining views form the candidate set. Each scene has
three initial views as the known set. We collect the known set as described in ReconFusion (Wu
et al., 2024). Like Lyu et al. (2024), we set the active selection to gather 10 and 20 views for 3DGS
optimization.

For surface reconstruction, we use the Tanks&Temples dataset as the benchmark. We follow the
practice of GOF (Yu et al., 2024) and sample three scenes from the dataset’s training set for evaluation.
For each scene, 1/8 of the views are split as novel views. We assign three views in each scene as the
initial known set. The number of view collections is set to 20.

Creat3r is data and computational efficient. The efficiency stems from two aspects. The first one is
active selection efficiency. Since the selection does not include 3DGS optimization, it takes less time
to find the next best view. Average selection iteration costs of various methods are listed in Table 5.
Creat3r takes less than half time needed in other counterparts. The duration is measured with a single
NVIDIA V100 GPU. The second attribute is the optimization efficiency. Due to the robust geometry,
Creat3r only uses half of the optimization time to converge.
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Table 5: Average selection iteration duration.

Method Time(sec)

FisherRF (Jiang et al., 2024) 24.124
Kopanas & Drettakis (2023) 24.965
Lyu et al. (2024) 39.470
Creat3r 10.075

A.2 MORE QUANTITATIVE RESULTS

The complete evaluation of novel view synthesis is listed in Table 6. For each baseline method, we
evaluated with three different initialization strategies. For all the methods, initialization with Creat3r-
MASt3R-matching consistently performs best among all the initializations, and Creat3r-LightGlue
initialization performs better than COLMAP-induced subsampling initialization. We observe that
MASt3R produces larger amounts of 2D correspondences than LightGlue, as it estimates more 3D
points and is beneficial for active view selection. Creat3r ‡ and Creat3r † progressively estimate more
and more points during the selection, leading to improvement by a large margin compared to other
competitors.

Table 6: Complete novel view synthesis evaluation on Mip-NeRF 360 dataset. The left and right
columns show evaluations of 3DGS optimized with 10 and 20 selected views. (∗) denotes methods
initialized with COLMAP-induced subsampling points. (‡) indicates methods initialized with Creat3r-
LightGlue and (†) indicates methods initialized with Creat3r-MASt3R. Best and second-best
results are highlighted.

Method 10 cameras 20 cameras

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
FPS∗ 12.529 0.261 0.613 14.918 0.389 0.528
FPS‡ 12.687 0.318 0.591 14.409 0.413 0.539
FPS† 13.560 0.362 0.555 14.940 0.439 0.514
FisherRF (Jiang et al., 2024)∗ 12.625 0.264 0.608 15.434 0.390 0.515
FisherRF (Jiang et al., 2024)‡ 13.238 0.342 0.582 15.254 0.432 0.523
FisherRF (Jiang et al., 2024)† 14.196 0.392 0.546 16.028 0.474 0.491
Kopanas & Drettakis (2023)∗ 13.022 0.284 0.596 15.658 0.407 0.506
Kopanas & Drettakis (2023)‡ 13.039 0.332 0.585 15.771 0.458 0.509
Kopanas & Drettakis (2023)† 13.677 0.383 0.546 15.727 0.470 0.499
Lyu et al. (2024)∗ 12.561 0.264 0.612 15.446 0.401 0.518
Lyu et al. (2024)‡ 13.308 0.343 0.578 15.708 0.454 0.511
Lyu et al. (2024)† 14.282 0.377 0.547 16.264 0.503 0.480
Creat3r ‡ 16.040 0.449 0.536 19.637 0.567 0.443
Creat3r † 17.809 0.511 0.523 20.678 0.601 0.397

A.3 MORE QUALITATIVE RESULTS

Figure 5 presents more instances of novel view rendering with Creat3r and competing counterparts.
When the selection is suboptimal, the 3D model cannot correctly render the novel views due to less
exploration or a lack of finer detail. The renderings present artifacts or holes. Creat3r demonstrates
renderings closest to the ground truth. Other methods have different kinds of artifacts.

A.4 VISUALIZATION OF ABLATION STUDY

We visualize the qualitative impact of these design choices in Figure 6. Direct reliance on raw MASt3R
predictions introduces geometric scale inconsistencies, yielding noisy and blurred renderings. As
observed in Figure 6(b), relying solely on the confidence map biases the selection towards local detail
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(a) (b) (c) (d) (e)

Figure 5: More qualitative comparisons of active view selection on the Mip-NeRF 360 dataset for
20 selected views. The results demonstrate novel view renderings produced by competing methods:
(a) FisherRF (Jiang et al., 2024), (b) Kopanas & Drettakis (2023), (c) Lyu et al. (2024), and (d)
our proposed method, Creat3r. Column (e) serves as the ground truth novel view reference. The
comparison highlights the superior ability of Creat3r to synthesize high-fidelity views with finer
details and fewer artifacts.

refinement; this produces high-fidelity reconstruction in observed regions (e.g., the grass) but leaves
the background largely unexplored and degraded. Conversely, utilizing only the exploration map
ensures broader coverage of both foreground and background but fails to resolve high-frequency
details, resulting in noticeable blurring. Finally, Creat3r synergizes both exploration and confidence
objectives, achieving globally consistent and highly detailed reconstructions.
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Figure 6: Qualitative evaluation of ablation components on the ‘garden’ scene. The rendered novel
views illustrate the impact of distinct design choices: (a) substituting robust point estimation with raw
MASt3R predictions, (b) relying exclusively on confidence for selection, (c) relying exclusively on
exploration for selection, and (d) the full Creat3r framework. The ground truth is provided in (e). This
comparison highlights the specific contribution of each component and the superior reconstruction
fidelity achieved by our holistic approach.
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