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Abstract
This paper shifts focus to the often-overlooked001
input embeddings – the initial representations002
fed into transformer blocks. Using fuzzy graph,003
k-nearest neighbor (k-NN), and community de-004
tection, we analyze embeddings from diverse005
LLMs, finding significant categorical commu-006
nity structure aligned with predefined concepts007
and categories aligned with humans. We ob-008
serve these groupings exhibit within-cluster009
organization (such as hierarchies, topological010
ordering, etc.), hypothesizing a fundamental011
structure that precedes contextual processing.012
To further investigate the conceptual nature of013
these groupings, we explore cross-model align-014
ments across different LLM categories within015
their input embeddings, observing a medium016
to high degree of alignment. Furthermore, pro-017
vide evidence that manipulating these group-018
ings can play a functional role in mitigating019
ethnicity bias in LLM tasks.020

1 Introduction021

Large Language models (LLMs) are rapidly ap-022

proaching human-level language abilities. How-023

ever, these advancements raise important concerns024

- despite their immense potential, language mod-025

els are susceptible to unexpected and potentially026

harmful behaviors such as hallucination (Ji et al.,027

2023), stereotyping (Liang et al., 2021), misinfor-028

mation (Pan et al., 2023), and leakage of sensitive029

training data (Lukas et al., 2023). Moreover, the030

extent of their capabilities and the nature of their031

understanding is not yet known, thus capturing the032

attention of diverse groups, from policymakers to033

academics (Gu et al., 2023; Peng et al., 2022; Ben-034

der et al., 2021; Gurnee and Tegmark, 2024). While035

these issues may seem orthogonal, they stem from036

a common concern - the "black box" nature of large037

language models. The limited ability to understand038

how they reach their outputs raises doubts about039

their true capabilities, potential biases, and unin-040

tended consequences.041

A crucial step towards addressing these chal- 042

lenges lies in understanding how LLMs internally 043

represent and manipulate semantic concepts, the 044

building blocks of human language and thought. 045

Unraveling these internal representations is essen- 046

tial for not only improving LLM performance and 047

robustness, but also for building trustworthy ma- 048

chine learning systems. 049

In the realm of contextual representations, some 050

studies (Patel and Pavlick, 2021; Gurnee and 051

Tegmark, 2024; Abdou et al., 2021) have inves- 052

tigated the ability of transformer-based models to 053

learn representations of color, spatial, and temporal 054

information. These studies often rely on analyzing 055

contextual embeddings, which are intermediate out- 056

puts of LLMs. Moreover, contextual embeddings 057

are inherently tied to the specific input context, 058

making them highly variable, less generalizable, 059

and less controllable/manipulatable. 060

In our work, we explore this critical area by in- 061

vestigating the emergence of conceptual structures 062

within the input embedding space of LLMs. We 063

aim to explore if these conceptual formations form 064

independent of the context, and if such groupings 065

are in alignment across LLMs, if these clusters 066

exhibit internal organization, and if these patterns 067

have functional implications for model behavior. 068

Specifically, we examine: 069

• RQ1: Whether semantically related words and 070

phrases are grouped together, forming identifi- 071

able conceptual clusters that are aligned with 072

external world concepts and categories. 073

• RQ2: Do these groupings exhibit intra-cluster 074

organization such as hierarchies, topological or- 075

dering, etc., thereby suggesting the formation of 076

structured concepts. 077

• RQ3: Is there an inter-model alignment in se- 078

mantic organization, across diverse transformer- 079

based LLMs (Albert (Lan et al., 2019), T5 (Raffel 080

et al., 2020), Llama3 (met, 2024)) irrespective of 081

architecture, size, or pretraining data. 082
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• RQ4: Whether these groupings play a functional083

role in LLMs. We test this by a case study that084

tries to mitigate ethnicity bias through cluster085

modification.086

To uncover conceptual structures within the in-087

put embedding space of LLMs, we employ fuzzy088

graph construction (McInnes et al., 2020). Then,089

the fuzzy graph is analyzed using a community de-090

tection algorithm (Blondel et al., 2008) to reveal091

conceptual groupings and their categorical orga-092

nization. We use Louvain community detection,093

which is effective at revealing hierarchical commu-094

nity structures (Blondel et al., 2008) in conjunction095

with multiple k choices (for k-nearest neighbors)096

in our approach. This systemic approach allows us097

to investigate both the existence and the hierarchi-098

cal organization of conceptual clusters, directly ad-099

dressing our research questions. Quantitative eval-100

uation on external datasets (named entities (Remy,101

2021; Gada, 2018), numerical tokens, and social102

structures) demonstrates that token embeddings ex-103

hibit significant categorical community structure104

aligned with real-world concepts.105

The structure of this paper is as follows: We106

first establish necessary background on embed-107

dings, semantic representations, and evaluation108

strategies (Section 2), followed by a description109

of our methodological approach (Section 3). We110

then present our core findings, starting with LLM-111

human alignment (Section 4), with a focus on112

within-cluster properties and hierarchical structure.113

Then, we explore LLM-LLM alignment within114

their input embedding space (Section 5). Section 6115

demonstrates the practical implications of our work116

through embedding engineering and bias mitiga-117

tion. Finally, we conclude in Section 7.118

2 Preliminaries119

2.1 Static, Contextual and Base Embeddings120

In this section, we clarify the distinctions between121

static, contextual, and base embeddings, which are122

crucial for understanding modern language models.123

• Static embeddings (e.g., Word2Vec(Mikolov124

et al., 2013), GloVe (Pennington et al., 2014))125

are context-independent vector representations126

of words, meaning each word has a fixed em-127

bedding regardless of its surrounding text. This128

limits their ability to handle polysemy (words129

with multiple meanings). These embeddings are130

typically pre-trained on large corpora and can be131

used in various downstream tasks. Critically, for132

the context of this work, static embeddings are 133

product of legacy LM models and not used as 134

the input representations of modern transformer- 135

based LLMs. They are not inputs to transformer 136

blocks and thus have limited significance when 137

it comes to applications such as mitigation tech- 138

niques (e.g. embedding engineering) in LLMs. 139

• Contextual embeddings These are dynamic, 140

context-dependent vectors. The embedding of 141

a token is a function of its surrounding text, en- 142

abling the representation of nuanced meaning 143

and resolving polysemy (e.g., Bert (Devlin et al., 144

2018), Albert (Lan et al., 2019), GPT variants 145

(Raffel et al., 2020; met, 2024)). Different model 146

layers capture different levels of contextual con- 147

ditioning. However, this context-dependence lim- 148

its direct interpretability and generalizability of 149

individual token embeddings outside of specific 150

contexts. 151

• Base Embeddings: The process of generating 152

contextual embeddings starts with base embed- 153

dings, which provide the initial vector represen- 154

tation for each input token. These differ from 155

static embeddings such as GloVe and Word2Vec 156

from the following perspectives. (1) Generation: 157

Base embeddings are learned parameters within 158

the LLM, as compared to separately trained static 159

embeddings. (2) Usage: They are the direct input 160

to the transformer blocks, forming the basis upon 161

which contextualized representations are built 162

through the model’s subsequent layers. These 163

embeddings are the focus of our study. 164

2.2 Previous Works on Embedding 165

Interpretability 166

Previous research on interpretability in LLMs has 167

primarily focused on analyzing either contextual 168

embeddings (for modern LLMs) or static embed- 169

dings (for legacy language models which are not 170

directly applicable to LLMs due to the architectural 171

difference). 172

In the realm of contextual representations, initial 173

research focused on the learning dynamics of lin- 174

guistic features within LLMs (Tenney et al., 2018; 175

Liu et al., 2019), the scope has expanded to explore 176

how these models acquire and represent knowledge 177

about the world. Some studies (Patel and Pavlick, 178

2021; Gurnee and Tegmark, 2024; Abdou et al., 179

2021) have investigated the ability of transformer- 180

based models to learn representations of color, spa- 181

tial, and temporal information. These studies often 182

rely on analyzing contextual embeddings, which 183
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are intermediate outputs of LLMs. Moreover, con-184

textual embeddings are inherently tied to the spe-185

cific input context, making them highly variable186

and less generalizable.187

The closest work to our knowledge that focuses188

on context agnostic embeddings within the modern189

LLMs is (Bommasani et al., 2020) where the au-190

thors propose a method to create context agnostic191

word embeddings from contextualized word repre-192

sentations using (sub)-word pooling as well as con-193

text combination techniques, and tested on seman-194

tic similarity datasets. Furthermore, (Li et al., 2021)195

proposes a method for creating context-agnostic196

word representations by averaging the contextual197

embeddings derived from BERT, given a set of in-198

ferences on a masked target token within a corpus.199

In this methodology, the context is seen as a form200

of Gaussian noise that can be averaged out and201

hence produces a context-agnostic semantic repre-202

sentation. They observed such embedding repre-203

sent richer semantic information than static word204

embedding counterparts (Word2Vec and GloVe) in205

intrinsic evaluation tasks. However, these works206

lack rigorous and extensive analysis of base em-207

beddings of the LLMs to explores the intrinsic se-208

mantic organization within input embeddings of209

LLMs, possbile conceptual groupings and their210

alignments.211

3 Concept Extraction212

To investigate RQ1 and RQ2, we study the Human-213

LLM alignment of the input representations. To214

this end, we develop a method to first extract possi-215

ble formed concepts within that space (refer to ap-216

pendix A.1 for the discussion of conceptual group-217

ings and semantic memory), and then to evaluate218

them against external datasets.219

Our methodology consists of building the se-220

mantic graph, then using community detection221

to extract possible conceptual groupings.1 Note222

that differentiable embedding functions guarantee223

a smooth, optimizable embedding space, but do224

not ensure a uniform distribution of concept in-225

stances. This unevenness, arising from factors like226

varying concept complexity and instance frequency,227

1Note that we favor community detection over traditional
clustering for identifying the conceptual clusters due to (1)
its ability to align with the network-like structure of semantic
representations, (2) its independence from the need for a
predetermined number of clusters, and (3) its effectiveness
in managing high-dimensional data by transforming it into a
graph.

Algorithm 1: Concept Extraction
Data: All tokens in the input embeddings.
Result: A set of hierarchical communities.

1 Create a community list. The initial
community is the entire space;

2 for k=[different neighbor sizes] do
3 for all communities do
4 - Generate knn graph from the input

embedding weights;
5 - Compute the edge weights of the graph

using fuzzy simplex;
6 - Apply Louvain community detection;
7 - Add the identified communities to the list;

implies that while conceptual groupings may be lo- 228

cally uniform, the overall embedding space can be 229

unevenly distributed. Therefore, effectively identi- 230

fying these groupings requires mitigating this un- 231

evenness, which we address using a UMAP-based 232

fuzzy graph construction. 233

3.1 Graph Construction 234

The first step in the Uniform Manifold Approx- 235

imation and Projection (UMAP) algorithm is to 236

approximate the manifold by constructing a fuzzy 237

topological representation of the embeddings using 238

nearest neighbor descent (McInnes et al., 2020). 239

Inspired by that, we use the same nearest neighbor 240

descent method to find the K nearest neighbors for 241

every token embedding in the embedding space and 242

then use the same equations used in UMAP’s fuzzy 243

graph construction to define the weight function 244

of the edge between xi and xj nodes in the K-NN 245

graph (McInnes et al., 2020): 246

ω(xi, xj) = exp

(
−max(0, d(xi, xj)− ρi)

σi

)
(1) 247

where d(·, ·) is the distance function (cosine in our 248

case) and ρi is calculated as: 249

ρi = min{d(xi, xj) | 1 ≤ j ≤ k, d(xi, xj) > 0}
(2) 250

where k is the number of neighbors of node i. Fi- 251

nally, σi is calculated by setting the summation of 252

weights of a node to be equal to a constant (i.e., 253

log2(k)): 254

k∑
j=1

ω(xi, xj) = log2(k). (3) 255

Building upon our theoretical arguments, the con- 256

ceptual/categorical representations (if they exist), 257
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should form fuzzy partitions that can be detected258

by the community detection algorithms. Note that259

since UMAP dimensionality reduction process can260

lead to information loss (Geiger and Kubin, 2012;261

Wang et al., 2021), potentially obscuring important262

nuances in the representations, we perform com-263

munity detection in the high-dimensional space.264

3.2 Louvain Community Detection265

The Louvain method is a widely used algorithm for266

community detection in large networks. It finds the267

communities by optimizing a metric called mod-268

ularity. The modularity of a partition is a scalar269

value between -1 and 1 that measures how much270

more densely connected the nodes within a com-271

munity are compared to how connected they would272

be in a random network. (Blondel et al., 2008). For273

a weighted graph, modularity is defined as:274

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (4)275

where Aij represents the weight of the edge be-276

tween i and j; ki is the sum of the weights of the277

edges attached to vertex i; m is the sum of all of the278

edge weights in the graph; the δ-function δ(ci, ci)279

is 1 if u = v and 0 otherwise; ci is the community280

to which the nodes i belongs to.281

Then, it aggregates the communities to identify282

possible hierarchical structures. In this phase, each283

community is considered as a single node and the284

links between the new nodes are calculated as the285

sum of the weight of the links between nodes in the286

corresponding two communities. More details are287

given in appendix C, algorithm 2.288

3.3 Concept Extraction Algorithm289

For our concept extraction algorithm, as the first290

step, we create and weight the adjacency graph us-291

ing K-NN, UMAP-based weighing formula (men-292

tioned in section 3.1), and then use Louvain algo-293

rithm. Algorithm 1 describes the concept extraction294

process (see appendix E for details on the algorithm295

methodology and considerations). We configured296

our algorithms to create k-NN graph iteratively for297

different values of k. This enables us to observe the298

communities/concepts formation at various gran-299

ularities. Table 1 shows the number of identified300

clusters for k = [100, 75, 50, 25, 12, 6].301

Hierarchy Formation. When examining the302

broader perspective (i.e., k=100), the model pri-303

marily found groups of named entities (names of304

Table 1: Number of communities with different granu-
larities of nearest neighbors for Albert, T5, Glove, and
Llama3. For Glove, we only used the subset of GloVe
that present in Albert vocabulary

K settings Vocab
Models 100 75 50 25 12 6 Size
T5 1 115 1203 4551 8137 9407 32000
Albert 8 133 1058 4442 7718 8626 30000
GloVe 9 207 1157 3521 6237 7200 25869
Llama-3 7 23 844 6044 18644 32535 128256

Figure 1: The identified name and location communities
for different k granularity for Albert model. At the left-
side the average precision score for the extracted graph
within each granularity is given. For the more detailed
tables, see H (Note that the results for other models are
also available in appendix I).

people and places), adverbs, sub-words, some num- 305

ber symbols, and etc. (appendix J, Figure 5 shows 306

the overall concept hierarchies of the Albert vocab). 307

Zooming in further (e.g., k=75), these communi- 308

ties revealed more specific clusters that are relat- 309

able to the real world. For instance, within named 310

entities, clusters formed for personal vs. location 311

names, even further pinpointing locations by coun- 312

try. As the granularity level increases (approaching 313

a smaller k value), clusters exhibit a stronger asso- 314

ciation with word forms. 315

4 Evaluation: Alignment with External 316

Knowledge 317

We extracted several meaningful conceptual com- 318

munities, ranging from symbo-numerical groups, 319

to concrete objects and Named-Entities (such as 320

plant groups, animals, car brands, names, and loca- 321

tions), to more abstract groupings such as colors, 322

social roles and structures, currencies, etc. (more 323
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Figure 2: Visualization of the identified name and location communities of size larger than 10 entities. UMAP
projection along with Seaborn (Waskom, 2021) is used for the visualization.

details in appendix J).324

To evaluate RQ1 and RQ2, we selected named en-325

tities as well as numbers, primarily because the326

existence of external evaluation datasets for NE327

as well as the well defined nature of numbers al-328

low us to examine (1) the alignment with external329

world knowledge, and (2) to observe within group330

properties of the conceptual communities. To as-331

sess the consistency of conceptual groupings across332

different LLMs, we applied our method to the em-333

bedding spaces of GloVe (Pennington et al., 2014),334

Albert (Lan et al., 2019), T5 (Raffel et al., 2020),335

and Llama-3 (met, 2024) (See Appendix F). For336

brevity, we present the overview of the results for337

Albert in the main section (for more detailed table338

for the all aforementioned models please refer to339

Appendix H and I)340

4.1 Named Entities341

To evaluate the quality and the alignment of the342

extracted conceptual grouping with the external343

world, we used we leveraged the name-dataset344

(Remy, 2021) and the country-state-city database345

(Gada, 2018). These datasets provide comprehen-346

sive information on names (including gender and347

country-specific popularity) and locations (includ-348

ing hierarchical relationships between countries, 349

states, and cities), enabling a rigorous assessment 350

of the conceptual groupings (see appendix H for 351

more details). 352

The granularity of observed clusters was in- 353

fluenced by both the number of constituent sam- 354

ples and conceptual attributes. For instance, En- 355

glish/American named entities and locations tended 356

to form distinct clusters at higher levels of granu- 357

larity (k values) due to their high frequency within 358

the vocabulary. However, upon further increasing 359

granularity (higher k values), hierarchical struc- 360

ture emerged within these clusters. The conceptual 361

attributes contributing to this hierarchical organiza- 362

tion within named entities included (1) entity type 363

(human name or location), (2) name part (first or 364

last), gender, and (3) regional/national origin. 365

Note that since there’s no one-to-one mapping 366

between names/locations in LLM vocabulary and 367

external datasets (e.g., a name may appear in mul- 368

tiple countries, the external dataset is also a super- 369

set), recall is less relevant. We prioritize precision 370

to evaluate accuracy, as it better reflects our abil- 371

ity to identify correct matches. We observe high 372

precision score across the identifies name entity 373

cluster. Figure, 1 shows the main groupings for Al- 374
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bert Model. We got average precision score of 0.81375

for K=75 and 0.76 for K=50/25. Appendix H.1376

contains the detailed tables for different models.377

Furthermore, we observed a degree of geographic378

ordering within the identified communities. As il-379

lustrated in Figure 2, there appears to be a general380

trend from east to west as we move across the com-381

munities from bottom-left to top-right. The left-382

most communities are predominantly associated383

with Japanese locations and names, while those384

on the rightmost side are primarily linked to Eu-385

rope and the United States. This suggests that the386

model’s internal representations in the input em-387

bedding layer may inherently capture geographical388

relationships.389

Table 2: Topological ordering score of different com-
munities of the numbers. Years refer to the cluster of
numbers between 1816 - 2021. Support refers to the
number of samples within the cluster.

Category k-1 k-3 k-5 Support
0-100 0.68 0.89 0.92 100
100-262 0.75 0.94 1.0 115
263-300 0.46 0.78 0.89 37
300-400 0.42 0.71 0.84 82
400+ 0.53 0.75 0.83 110
Years 0.86 0.96 0.98 203

4.2 Symbols-Numbers390

At a high level, symbols and numbers are dis-391

tinctly separated from other tokens in the embed-392

ding space. Within their own domain they form393

communities according to (i) years, (ii) integer val-394

ues, (iii) tokens indicating monetary values (e.g.,395

$1), (iv) ratio/time (e.g., 2:1, 3:30), (v) fractions396

(e.g., ’/8’), (vi) large values (e.g., ‘100,000’), and397

(vii) percentages (e.g., 42%). In these communi-398

ties, integers create sub-communities based on their399

hundreds.400

To align with the human notion of numbers, it is401

essential to identify a topological ordering within402

the numerical embeddings. As the embedding man-403

ifold may not conform to a Euclidean structure404

(Law et al., 2019; Chen et al., 2021; Cai et al.,405

2020), conventional distance-based order measures406

were inapplicable. Lemma 5 formulates the local407

ordering of embeddings within a embedding mani-408

fold.409

Lemma 1. Local Ordering on a Manifold: Let M410

be a manifold and let d(a, b) denote the distance411

between points a and b on M. For a given positive412

integer k, we say that a point x on M is locally413

ordered if and only if: 414

x ∈ topk(x+ 1) ∩ topk(x− 1) (5) 415

where topk(a) denotes the set of k-nearest neigh- 416

bors of point a on M. 417

This localized approach captures the intuitive con- 418

cept of topological ordering within a small neigh- 419

borhood, rather than relying on a global ranking. 420

Topological Ordering Score is defined as: 421

S =
1

n

n∑
i=0

fk(xi) (6) 422

where n indicates the number of embeddings in the 423

given cluster, k is an integer that controls the strict- 424

ness of ordering, and fk(xi) is boolean function 425

that returns 1 if xi hold lemma 5 condition. 426

Table 2 presents the topological ordering scores 427

of the communities identified by our algorithm. 428

The "k-1" score represents strict topological order- 429

ing, where x+1 lies exactly between x and x+2 in 430

the embedding space. The "k-3" and "k-5" scores 431

measure relaxed topological ordering, where x+ 1 432

falls within the 3 or 5 nearest neighbors of both 433

x and x+ 2, respectively. As the results indicate, 434

all detected communities exhibit a high degree of 435

local topological ordering, regardless of the cho- 436

sen level of strictness. This finding is significant 437

because it suggests that LLMs may possess not 438

only the ability to categorize heterogeneous input 439

entities but also the capacity to construct mean- 440

ing within smaller, internally consistent structures 441

(internally homogeneous sub-structures). This im- 442

plies the potential for LLMs to move beyond simply 443

classifying information to actively interpreting and 444

generating meaning within specific clusters. 445

5 LLM-LLM alignment 446

Investigating LLM-LLM alignment in the input 447

embedding layer is crucial to answer RQ3, because 448

it reveals how well different LLMs represent the 449

same concepts in their initial processing stages. 450

This analysis provides valuable insights into the 451

influence of model architecture, size, and training 452

regimes on the formation of language representa- 453

tions. To quantify this alignment, we defined an 454

alignment score that specifically captures the dis- 455

crete overlaps of nearest neighbors in embedding 456

spaces. This score offers a precise assessment of 457

how similarly the LLMs represent shared tokens, 458

enabling a more nuanced understanding of their 459
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Table 3: Pair-wise alignment score for various LLM
sizes, and training regimes. higher alignment score is
better.

Model-1 Model-2 k=3 k=5 k=10 k=50 Support

Albert-XXL Albert-base 0.501 0.490 0.472 0.438 30000
Albert-XXL Albert-L 0.56 0.54 0.52 0.48 30000
Albert-XXL Albert-XL 0.60 0.58 0.55 0.51 30000

T5-11B T5-small 0.61 0.577 0.52 0.38 32100
T5-11B T5-base 0.68 0.66 0.60 0.51 32100
T5-11B T5-large 0.74 0.71 0.66 0.61 32100
T5-11B T5-3B 0.79 0.76 0.71 0.63 32100

Llama3-70B Llama3-1B 0.57 0.55 0.50 0.31 128256
Llama3-70B Llama3-3B 0.56 0.53 0.48 0.27 128256
Llama3-70B Llama2-70B 0.65 0.61 0.56 0.47 22430

representational alignment.460

We define Alignment Score as:461

S =
1

n

j=n∑
j=0

|top_k(LLM1
j ) ∩ top_k(LLM2

j )|
k

(7)462

where LLM1 and LLM2 denote the two LLMs un-463

der investigation, n represents the number of shared464

tokens between the LLM pair, and top_k(LLM1
j )465

and top_k(LLM2
j ) represent the sets of the top k466

nearest neighbors of the j-th token in LLM1 and467

LLM2 respectively. The alignment score for two468

randomly chosen embeddings with the same vocab-469

ulary is 0 (assuming k << n).470

We calculated this alignment score across a471

range of LLMs, encompassing diverse architec-472

tures and training objectives. we first identify the473

set of tokens shared across the vocabularies of a474

given pair of LLMs. For each shared token, we475

compute its k nearest neighbors (k = 3, 5, 10, 50)476

in the embedding space of both models. We use477

pairwise cosine similarity measure to find top-k478

tokens within an LLM. This selection included Al-479

bert (encoder-based), T5 (encoder-decoder), Llama480

70B (decoder-only) to examine the impact of high-481

level model architecture. To investigate the effect482

of model size, we included T5 models of different483

scales: T5-small, T5-base, T5-large, T5-3B, and484

T5-11B. Analyzing results from tables 3 and 4, we485

observe:486

• Table 3 shows that model size is a contribut-487

ing factor in achieving higher alignment scores488

when comparing within the same architecture.489

Since larger models also demonstrate better per-490

formance on benchmark tasks, we can infer that491

the quality of the concepts formed in the input492

embedding layer is positively correlated with493

model size, assuming architecture and training494

Table 4: Cross architecture alignment score for various
LLM architectures, sizes, and training regimes. higher
alignment score is better. Support column indicates the
number of shared tokens between the LLM pair.

Model-1 Model-2 k=3 k=5 k=10 k=50 Support

Albert-XXL Llama3-3B 0.55 0.52 0.49 0.44 18640
Albert-XXL T5-3B 0.63 0.61 0.59 0.54 12307
Llama3-3B T5-3B 0.66 0.62 0.58 0.53 20603
Llama3-70B T5-11B 0.64 0.61 0.56 0.47 20603

regimes are held constant. 495

• Both tables 3 and 4 show that alignment scores 496

generally decrease as the value of k increases. 497

This trend suggests that while models share 498

a core understanding of semantic similarity at 499

smaller k values, they diverge when considering 500

more generic concepts at larger k values. The 501

alignment drop is larger in decoder-only models, 502

likely due to their unidirectional context 2. 503

• Interestingly, the alignment scores between 504

Llama2-70B and Llama3-70B are comparable 505

to those between Llama3-70B and T5-11B (refer 506

last rows of table 3 and table 4). There are min- 507

imal architectural differences between Llama2 508

and Llama3-70B (primarily in the context win- 509

dow size). This implies that factors such as train- 510

ing regimes (e.g., dataset size and composition) 511

and context window size are as influential as 512

model architecture in achieving strong alignment. 513

• Table 4 shows the cross-architecture alignment 514

scores for different LLMs, comparing models 515

of similar sizes but varying architectures. De- 516

spite architectural differences, models of similar 517

sizes exhibit moderate to high alignment scores 518

(mostly above 0.5), suggesting a consistent se- 519

mantic organization in LLMs. 520

Overall, we observed moderate to high alignment 521

across LLMs, regardless of their size, architecture, 522

or pretraining, indicating that the findings in Sec- 523

tion 4 may generalize to other LLMs. 524

6 Bias Mitigation: Case Study of Cluster 525

Modification 526

To investigate RQ4 and demonstrate the practical 527

impact of our findings, we conduct a case study on 528

modifying conceptual clusters to mitigate ethnicity 529

bias. A key challenge here is balancing bias reduc- 530

tion with the preservation of the model’s overall 531

2This is consistent with human studies showing that readers’
eye movements are bidirectional: forward to absorb new
information, and backward to resolve comprehension issues
or correct errors (Staub and Rayner, 2007).
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utility and linguistic integrity. Our approach fo-532

cuses on embedding engineering, targeting clusters533

of tokens associated with stereotype-prone identi-534

ties, such as proper nouns from the Indian subcon-535

tinent (e.g., Indian and Pakistani human names).536

We hypothesize that by modifying these token em-537

beddings, we can disrupt learned biases without538

sacrificing the tokens’ semantic roles within the lan-539

guage model. For example, we aim to investigate if540

the token “Sharma”, a member of the Indian proper541

nouns cluster, retains its identity as a proper noun542

after token engineering. To evaluate fairness score,543

we use Bias Benchmark for Question Answering544

(BBQ) dataset (Parrish et al., 2022), the fairness545

evaluation methodology is based on the WinoBias546

evaluation(Zhao et al., 2018). To assess the linguis-547

tic preservation, we chose the part-of-speech (POS)548

tagging task as a proxy indicator on CoNLL-2003549

dataset (Tjong Kim Sang and De Meulder, 2003) as550

well as a subset of Wikimedia dataset (Wikimedia)551

(Further evaluation on the robustness of embedding552

engineering on GLUE, SuperGLUE, and SQUAD553

(Wang et al., 2018, 2019) benchmarks is provided554

in Appendix D to provide a more comprehensive555

assessment of general language model quality after556

the token manipulations).557

Our approach begins by selecting a cluster of558

token embeddings from the original model. For559

this experiment, we used the communities associ-560

ated with Indian and Pakistani human names that561

was identified by our concept extraction algorithm.562

Then, we calculated the mean and standard de-563

viation of the joint cluster. Finally we modified564

these clusters to form a single cluster with Gaus-565

sian distribution of the joint cluster (i.e. samples566

from the Gaussian(µ, 0.7 ∗ σ)). Then, we fine-567

tuned the model for POS tagging task for CoNLL-568

2003 dataset fro 5 epochs (see Appendix B for569

more details). For the POS tagging task, we uti-570

lize the CoNLL-2003 dataset (Tjong Kim Sang and571

De Meulder, 2003), a widely-used benchmark for572

named entity recognition and POS tagging. Each573

model is fine-tuned using a standard supervised574

fine-tuning approach.575

As shown in Table 5, all token-engineered mod-576

els exhibit over 90% token overlap with their base577

counterparts. This high overlap (like the >90%578

reported) suggests that even though the embed-579

dings have been modified, they still largely rep-580

resent the same underlying POS tags. Furthermore,581

for those POS tags where the base and modified582

models show disagreement, we still observe the583

Table 5: Fairness and POS Tagging Performance of
Various Models. Fairness: higher score implies less

bias. POS: higher score implies better accuracy.

Fairness POS Tagging
Model Base Ours Base Our Overlap

Score Score Acc Acc %
Albert-base 0.26 0.74 0.91 0.91 0.90
Albert-xxl 0.28 0.72 0.93 0.91 0.92
T5-3b 0.28 0.72 0.92 0.91 0.94
T5-11b 0.24 0.76 0.94 0.93 0.94

same overall quality. This means that even where 584

the model does change its POS tag assignment, the 585

new assignment is just as likely to be correct as the 586

original. At the same time, we are able to mitigate 587

bias ranging from 44% for the Albert-xxl-large and 588

T5-3b models to 52% for the T5-11b model. These 589

highlight the potential of token engineering for bias 590

mitigation while keeping the general purpose utility 591

of the model intact. 592

7 Conclusion 593

In this paper, we propose a modular concept ex- 594

traction mechanism that uncovers the emergence of 595

distinct conceptual communities within the entire 596

input embedding space. Using our methodology, 597

we observe that LLMs form organized conceptual 598

structures within their input embedding spaces. We 599

demonstrate that the input embeddings of LLMs 600

form categorical semantic structures that align with 601

external world representations. We quantitatively 602

analyze several properties of these structures, with 603

a particular focus on categorical structures related 604

to named entities. Additionally, we observe that 605

numerical structures within the input embedding 606

layer align with human notion of numerical val- 607

ues, including a topological ordering of numbers. 608

We also discussed that LLMs inherently exhibit a 609

degree of alignment with one another, suggesting 610

the potential to extend the observed human-LLM 611

alignment to other models. This study opens new 612

avenues for further exploration and intervention in 613

LLMs, especially within the realm of embedding 614

engineering in several key areas, including bias 615

detection and mitigation. 616
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8 Limitations and Risks617

Limitations: The model forms the conceptual618

communities that are meaningful but its priority619

is not exactly the same as that of humans. The620

model vocabulary is a contributing factor to the621

way the model prioritizes the formation of concep-622

tual clusters in its embedding layer. For example,623

the number of English names is much higher than624

the other languages and this has caused the model625

to form high-level communities (e.g., k=75) spec-626

ified for names vs. less frequent names/locations627

a high-level community contains the combination628

of regions personal and location names. This lim-629

its our method to associate the KNN resolution630

with the abstraction level of the extracted con-631

cepts/categories.632

Risks: This work provides detailed information633

about (1) the formed clusters/concept in the input634

embedding layer, and (2) the separation of memory635

from reasoning in Albert. As the methodology can636

also be applied to other models, it can potentially637

facilitate more advanced adversarial attacks and638

content manipulation in LLMs.639
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A Semantic Representation Space938

A.1 conceptual groupings, Representation939

Learning and Semantic Memory940

A simplified model of human understanding can941

be described as a multi-step process in which the942

incoming sensory information is integrated and943

turned into a brain-constructed interpretation of944

external objects/stimuli. This results in a mental945

construct (or percept) (Goldstein, 2009). Then, the946

newly formed mental construct gets compared, inte-947

grated, and associated with the existing knowledge948

already retained in the semantic memory. These949

connections help us to conceptualize and under-950

stand the new information based on what we al-951

ready know (as shown in Figure 3). While diverse952

reasoning mechanisms exist, a common thread953

among them seems to be their reliance on and inter-954

action with the semantic memory. This interaction955

likely leaves enduring traces within such a memory956

(Binder and Desai, 2011). The integration of newly957

encountered mental constructs within an existing958

cognitive framework is often guided by their rela-959

tions to established internal constructs (Gärdenfors,960

2020). This process facilitates the creation, refine-961

ment, or expansion of semantically similar clusters962

(Love and Gureckis, 2007), implying a degree of963

inherent categorization3.964

Representation Learning and Conceptual965

roupings) Representation learning is a fundamen-966

tal aspect of language models, where the goal is967

to learn distributed representations (embeddings)968

for words or subword units that capture their se-969

mantic and syntactic relationships (Bengio et al.,970

2013). Early models like word2vec (Mikolov et al.,971

2013) utilized shallow neural networks to learn972

these embeddings from large text corpora. More973

recent models, such as Large Language Models974

(LLMs) like GPT-3 (Mann et al., 2020), employ975

transformer architectures with self-attention mech-976

anisms (Vaswani et al., 2017), enabling more accu-977

rate and dynamic representation learning. From the978

distributional hypothesis, models can form "con-979

cepts" by identifying patterns and relationships980

within data, particularly through recognizing the ap-981

proximate invariance of shared features across dif-982

ferent data instances (Gärdenfors, 2020). It should983

be noted that "conceptual groupings" is a byproduct984

of the learning process, not a guaranteed outcome.985

Furthermore, the formed "concepts" might not al-986

3This notion implies an interrelation between the recognition
and categorization.

ways align with human-defined concepts. Thus, 987

it is crucial to investigate and evaluate the nature 988

of conceptual groupings within models and their 989

alignment with human understanding. 990

A.2 Evaluation Methods 991

The analysis, measurement, and interpretability of 992

semantic representation learning in language mod- 993

els have been the subject of extensive research. 994

Various methods have been proposed to evaluate 995

how well these models capture semantic meaning. 996

Intrinsic evaluation methods, assess semantic 997

representations by measuring word embedding sim- 998

ilarity, comparing them to human judgments of 999

relatedness, (e.g. (Mikolov et al., 2013; Gurnani, 1000

2017; Thawani et al., 2019; Niven and Kao, 2019; 1001

Tenney et al., 2019)). While these methods pro- 1002

vide valuable insights, they often suffer from the 1003

limitations that probing techniques impose, and 1004

may not fully capture how well a model forms con- 1005

ceptual hierarchies or grasps the full spectrum of 1006

semantic relationships, as word embeddings typi- 1007

cally represent individual words rather than higher- 1008

level categories (Chiu et al., 2016). This limitation 1009

can hinder the evaluation of a model’s ability to 1010

understand broader semantic relationships and its 1011

capacity for abstract reasoning. 1012

Another approach is to use extrinsic evaluation 1013

methods, which measure the performance of lan- 1014

guage models on downstream tasks that rely on 1015

semantic understanding, such as sentiment analy- 1016

sis, question answering, and machine translation 1017

(Wang et al., 2018, 2019). The performance on 1018

these tasks can indirectly indicate the quality of 1019

the learned semantic representations. The main 1020

challenge with using such extrinsic evaluation met- 1021

rics to assess conceptual groupings in the embed- 1022

ding space is that they do not directly measure the 1023

quality of the concepts themselves. Instead, they 1024

measure how well the model performs on specific 1025

tasks that rely on those concepts, which does not 1026

necessarily prove that the model has formed robust, 1027

human-like concepts. For instance, a model might 1028

accurately classify sentiment without truly grasp- 1029

ing the nuances of emotions like sarcasm or irony 1030

(McCoy et al., 2019). 1031

In addition to evaluation metrics, researchers 1032

have also employed visualization methods to in- 1033

terpret learned representations. These methods 1034

often involve projecting high-dimensional embed- 1035

dings into lower-dimensional spaces for visualiza- 1036

tion (Sevastjanova et al., 2021; Rogers et al., 2021). 1037
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Figure 3: Simplified steps on how external information is understood and retained. Upon understanding a newly
encountered word/entity, it is typically stored in the semantic memory. The existence of semantic memory (on the
left) allows the previously encountered words/entities to have a form of meaning even without requiring an external
context. The scatter box on the right is the community (primarily associated with moving creatures) we extracted
from the Albert model (Lan et al., 2019).

However, several challenges arise with these ap-1038

proaches. Firstly, they offer indirect and subjec-1039

tive assessments of model understanding, lacking1040

a quantitative basis for evaluation. Secondly, the1041

dimensionality reduction process can lead to in-1042

formation loss (Geiger and Kubin, 2012; Wang1043

et al., 2021), potentially obscuring important nu-1044

ances in the representations. Finally, different visu-1045

alization techniques can produce conflicting results,1046

making it difficult to reach definitive conclusions1047

about the model’s true comprehension. To mit-1048

igate these shortcomings, we propose a concept1049

extraction mechanism that identifies communities1050

in higher-dimensional space. This approach en-1051

ables both quantitative evaluation and mitigation of1052

potential information loss incurred during dimen-1053

sionality reduction.1054

B Bias Mitigation details1055

We evaluated the models on subsets of the Wiki-1056

media dataset (Wikimedia), where we sample only1057

those sentences that contain the tokens from our1058

token-engineered cluster. For the fairness task, we1059

adopt the Bias Benchmark for Question Answering1060

(BBQ) dataset (Parrish et al., 2022), focusing on1061

the nationality split. We modify the data set for1062

masked language modeling (MLM) by replacing1063

the interrogative questions with a token ’[MASK]’.1064

To ensure the quality of evaluation, each sample is1065

manually checked for grammatical correctness fol- 1066

lowing this transformation. For evaluating fairness, 1067

we compare each base model with its correspond- 1068

ing token-engineered model that utilizes Gaussian- 1069

sampled embeddings. We first filter out the evalua- 1070

tion samples that pass the fairness test on the base 1071

model, thus isolating only the problematic cases. 1072

Our evaluation of fairness is inspired by the evalu- 1073

ation metrics used for the winobias dataset (Zhao 1074

et al., 2018).For the remaining biased samples, we 1075

calculate which model (base or token-engineered) 1076

is more likely to generate a biased output by exam- 1077

ining their output logit probability. 1078

C Lovain Algorithm 1079

Evaluation Metrics. conceptual groupings in- 1080

volves the creation of abstract internal represen- 1081

tations through the clustering of inputs with shared 1082

features. While numerous intrinsic clustering met- 1083

rics exist to assess cluster formation quality, their 1084

application to our use case is limited by two factors: 1085

• The formed clusters are not situated within Eu- 1086

clidean space (Law et al., 2019; Chen et al., 2021; 1087

Cai et al., 2020), rendering geometric properties 1088

such as cluster distances inadequate indicators of 1089

concept well-formedness and distinctiveness. 1090

• Concepts inherently possess a degree of vague- 1091

ness (Hampton, 2007), thus metrics like com- 1092

pactness or separation do not reliably reflect the 1093
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Algorithm 2: Louvain
Data: The initial input is a weighted

network of all the nodes exist in the
entire space.

Result: A set of hierarchical communities.
1 Community Detection;
2 Create a community list; assign a different

community id to each node of the network;
3 while a local maxima of the modularity is

not attained do
4 for each node i do
5 for each neighbor j do
6 evaluate the gain of modularity

if i moved to the community of
node j;

7 keep the maximum gain and
community id;

8 if the maximum gain is positive then
9 Move node i to the community

with maximum gain.

10 Community Aggregation;
11 if Number of Communities > 1 then
12 Reduce each community to a single

node;
13 go to 1

quality of formed concepts.1094

D Knowledge-Reasoning Separation1095

Thus far, we have demonstrated that the LM con-1096

structs a knowledge base (mental representation)1097

directly within its input embedding layer. Further-1098

more, we have established a degree of human-LM1099

alignment in both hierarchical structure and seman-1100

tic meaning. Now, we are interested to see the1101

extent to which the knowledge learned during pre-1102

training is modular and separable from the reason-1103

ing mechanisms employed by the language model1104

in downstream tasks. For example, can the knowl-1105

edge learned during the pretraining phase be selec-1106

tively removed or modified without significantly1107

impacting the model’s performance on finetuning?1108

The modularity can also impact the effectiveness1109

of Language Model Inversion (Morris et al., 2023;1110

Song and Raghunathan, 2020) techniques, which1111

aim to extract private information such as names1112

or other sensitive details learned during the pre-1113

training4. 1114

To investigate this, we selected GLUE, Super- 1115

GLUE, and SQUAD benchmarks as downstream 1116

tasks to assess language model performance. We 1117

then systematically removed within-community in- 1118

formation by calculating and assigning the embed- 1119

ding space center (mid-point value) of each com- 1120

munity to all its members. For example, in a com- 1121

munity of names like "James," "John," and "Alex," 1122

all members would share the same embedding. Ta- 1123

ble 6 shows the results on major LM benchmarks 1124

GLUE, SuperGLUE, and SQUAD for the Albert 1125

base model. Although our experiment does not 1126

prove the separation of knowledge and reasoning, 1127

it indicates that at least the granular information ac- 1128

quired during the pretraining is not required for the 1129

model’s performance on the aforementioned LM 1130

benchmarks. This is significant because it opens 1131

the door for embedding engineering of private or 1132

harmful information that is learned during the pre- 1133

training. 1134

E Hierarchical Community Extraction: 1135

Methodology and Considerations 1136

There are multiple viable strategies to extract hier- 1137

archical communities in our methodology; the first 1138

one is to use algorithms such as Louvain that in- 1139

herently generate hierarchical communities (Blon- 1140

del et al., 2008). However, the summation of the 1141

weights as a new weight in the community ag- 1142

gregation phase of Louvain algorithm skews the 1143

weighted graph in favor of merging smaller com- 1144

munities in the next phase. This detaches the com- 1145

munity detection from the actual values in the se- 1146

mantic representation space (i.e. graph weights 1147

higher in the Louvain hierarchy no longer reflect 1148

the geometrical affinity of the nodes). Thus, for 1149

our concept extraction algorithm, we use 1-2 com- 1150

munity aggregation and rather use KNN iteratively 1151

with different granularity for extracting hierarchical 1152

concepts (more details are described in Algorithm 1153

1). 1154

Note that we only use well-established meth- 1155

ods such as K-NN, UMAP-based weighing for- 1156

mula, as well as Louvain (Blondel et al., 2008) 1157

and label propagation (Zhu and Ghahramani, 2002) 1158

community detection algorithms to capitalize on 1159

4For example, if knowledge is found to be highly modular, it
may be possible to develop targeted interventions that obscure
or remove specific sensitive information without significantly
impacting the model’s overall performance on downstream
tasks.
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Table 6: Huggingface Albert base model on GLUE, SuperGLUE, and SQUAD tasks. For the baseline, the model
was finetuned without altering the embeddings. For the mid-point, the embedding layer entries are assigned the
mid-point embedding of their associated community. We used (Phang et al., 2020) repo for benchmarking.

mid-point GLUE
Method/Tasks mnli mrpc qnli qqp rte sst stsb wnli
baseline 0.827 0.841 0.902 0.858 0.765 0.915 0.872 0.549
mid-point 0.849 0.865 0.910 0.875 0.783 0.922 0.890 0.563
mid-point SuperGLUE SQUAD SQUAD
Method/Tasks boolq cb copa multirc record wic wsc v1 (f1) v2 (f1)
baseline 0.622 0.512 0.59 0.350 0.586 0.595 0.528 83.72 70.9
mid-point 0.621 0.478 0.55 0.372 0.588 0.626 0.634 84.4 74.9

the established generalizability of these algorithms.1160

Although, as we show in the next sections that1161

our method produces amazingly good categories,1162

it should be noted that we intend to focus our anal-1163

ysis on “if the language model forms concepts"1164

rather than creating the most optimal concept ex-1165

traction mechanism. Thus, as an extension to this1166

work, one can focus on further optimizing our pro-1167

posed method. Notably, our concept extraction is1168

algorithm-agnostic; alternatives could be readily1169

employed.1170

F Models Under Investigation1171

We used huggingface repository for all our models.1172

F.1 Albert1173

Albert (A Lite BERT) (Lan et al., 2019) is a1174

transformer-based model for language represen-1175

tation learning, designed to be more efficient than1176

its predecessor, BERT (Devlin et al., 2018). While1177

it shares the same basic architecture as BERT, it1178

incorporates two main key modifications:1179

• Factorized embedding parameterization. The1180

benefit of factorized embedding parameteriza-1181

tion in Albert is the significant reduction in the1182

number of parameters compared to models like1183

BERT. In BERT, the word embedding size (E)1184

is tied to the hidden layer size (H), leading to1185

a large embedding matrix as H increases. Al-1186

bert instead factorizes this embedding into two1187

smaller matrices, one projecting token ID vectors1188

to a lower-dimensional space (E) and another pro-1189

jecting from this space to the hidden layer (H).1190

This allows H to be much larger than E without1191

increasing the parameter count of the embedding1192

layer substantially, resulting in a more efficient1193

use of parameters. This is particularly beneficial1194

for large models, where memory limitations can1195

hinder training and deployment.1196

• Cross-layer parameter sharing. Parameter 1197

sharing acts as a form of regularization, prevent- 1198

ing the model from overfitting to specific layers 1199

or features in the data. This can lead to improved 1200

generalization performance on unseen data. 1201

Note that reducing the number of parameters and 1202

sharing information across layers can force the 1203

model to learn more general representations, thus 1204

indirectly contributing to better conceptual group- 1205

ings. datasets. Albert is pretrained on English text 1206

datasets, namely the English Wikipedia and Book- 1207

Corpus, using self-supervised learning objectives. 1208

Tokenization. It uses Sentencepiece tokenizer 1209

(Kudo and Richardson, 2018) on the uncased cor- 1210

pus with a vocabulary size limit of 30K tokens. 1211

F.2 T5 1212

T5, or Text-to-Text Transfer Transformer, is a 1213

transformer-based architecture that casts all natural 1214

language processing (NLP) tasks into a text-to-text 1215

format. This means the model takes text as input 1216

and generates text as output, regardless of the spe- 1217

cific task. At its core, T5 is an encoder-decoder 1218

model with the following key components: 1219

• Encoder: This component takes the input text 1220

and processes it into a sequence of hidden rep- 1221

resentations. It uses multiple transformer layers, 1222

each consisting of self-attention mechanisms and 1223

feedforward neural networks. 1224

• Decoder: This component generates the out- 1225

put text auto-regressively, conditioned on the en- 1226

coder’s hidden representations. It also uses mul- 1227

tiple transformer layers with self-attention and 1228

feedforward networks, as well as cross-attention 1229

mechanisms to attend to specific parts of the in- 1230

put sequence. 1231

Datasets. T5 is pre-trained on a massive dataset 1232

called C4 (Colossal Clean Crawled Corpus), which 1233

contains around 750 GB of clean English text. 1234
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Tokenization. It uses Sentencepiece tokenizer on1235

the cased corpus with a vocabulary size limit of1236

30K tokens.1237

F.3 GloVe1238

GloVe (Global Vectors for Word Representation)1239

is a method for obtaining vector representations1240

for words. Unlike context-based models like1241

transformer-based LM models, GloVe leverages1242

global word co-occurrence statistics across a cor-1243

pus to learn word vectors. The GitHub repository51244

provides an implementation of the GloVe model1245

for learning word representations (word vectors or1246

embeddings). We used the default embedding pro-1247

vided by the python API 6.1248

Tokenization. They used Stanford tokenizer 7, a1249

form of BPE tokenization scheme (Sennrich et al.,1250

2016; Gage, 1994) that constructs unigram counts1251

from a corpus, and optionally thresholds the re-1252

sulting vocabulary based on total vocabulary size1253

(2.2M 8 most frequent words in the case of GloVe1254

embeddings) or minimum frequency count (Pen-1255

nington et al., 2014).1256

F.4 Llama31257

LLaMA 3 (Large Language Model Meta AI) is1258

a decoder-only large language model (met, 2024),1259

which Grouped Query Attention (GQA) that allows1260

the model to effectively handle longer contexts.1261

The model is available in various sizes, including1262

1B, 3, and 70B parameters. The larger models1263

exhibit significantly improved capabilities in rea-1264

soning and complex language tasks.1265

Training Dataset. LLaMA 3 is pretrained on an1266

extensive dataset, including over 15 trillion tokens1267

sourced from diverse text corpora, such as books,1268

articles, and websites. This large-scale training1269

ensures comprehensive language understanding1270

across different domains .1271

G Case Sensitivity Analysis1272

The T5 model’s vocabulary preserves case informa-1273

tion, enabling us to examine how formed concepts1274

align with capitalization differences. We identified1275

4,328 tokens with varying case appearances (total1276

5https://github.com/stanfordnlp/GloVe
6Common Crawl (840B tokens, 2.2M vocab, cased, 300d
vectors, 2.03 GB download), and a context window size of
10.

7https://nlp.stanford.edu/software/tokenizer.
shtml

82196016 cased tokens

of 8,887 tokens). We found that for highly granular 1277

concepts (k=6), 80% of these tokens belong to the 1278

same community. This ratio increases to 85% for 1279

k=25 before plateauing, suggesting that case varia- 1280

tions generally do not drastically alter the semantic 1281

grouping of tokens. This finding supports the no- 1282

tion that the model learns to associate words with 1283

their meanings regardless of capitalization, particu- 1284

larly for more abstract or broader concepts (larger k 1285

values). However, the initial increase in alignment 1286

ratio with increasing k implies that case sensitiv- 1287

ity might still play a minor role in differentiating 1288

highly specific or nuanced concepts. 1289

H ALBERT Human-Model Aligment 1290

H.1 Names and Locations 1291

Figure 2 visualizes the major identified communi- 1292

ties of locations and human names. Generally, the 1293

formed clusters associate with specific regions or 1294

cultures and contain both location and personal 1295

names. Within these, even more granular sub- 1296

clusters emerge, characterized by distinct commu- 1297

nities of location and personal names. Interest- 1298

ingly, we observed a degree of geographic ordering 1299

within the identified communities. As illustrated 1300

in Figure 2, there appears to be a general trend 1301

from east to west as we move across the commu- 1302

nities from bottom-left to top-right. The leftmost 1303

communities are predominantly associated with 1304

Japanese locations and names, while those on the 1305

rightmost side are primarily linked to Europe and 1306

the United States. This suggests that the model’s in- 1307

ternal representations in the input embedding layer 1308

may inherently capture geographical relationships. 1309

To mitigate the subjectivity risk of assessing 1310

the semantic structure, we further used external 1311

datasets in our evaluations. For Names, we used 1312

name-dataset (Remy, 2021) which consists of a 1313

comprehensive set of names (730K first names 1314

and 983K last names), their associated genders, 1315

and their popularity rank for each country. For 1316

locations, we used the country-state-city database 1317

(Gada, 2018) which contains information on all 1318

countries, 5K+ states, and 150K+ cities. Table 1319

9 shows the high-level communities that our ap- 1320

proach detected. Most of the high-level communi- 1321

ties are a mix of names/locations associated with 1322

certain geographical/cultural regions. Within these 1323

clusters, names and locations form distinct sub- 1324

communities which we discuss in more detail in 1325

the following subsections. 1326
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Note that since there’s no one-to-one mapping be-1327

tween names/locations in LLM vocabulary and ex-1328

ternal datasets (e.g., a name may appear in multiple1329

countries, the external dataset is also a superset),1330

recall is less relevant. We prioritize precision to1331

evaluate accuracy, as it better reflects our ability to1332

identify correct matches.1333

Names. To determine whether the sub-clusters are1334

associated with names, we pre-filtered the clusters1335

that at least 70% of their tokens are in the top 10001336

names (of any country), with gender confidence1337

of above 0.8. We primarily use gender confidence1338

to distinguish between first-name from last-name1339

clusters. Then we cross-referenced all identified1340

name communities for all countries in the dataset1341

and assigned the country name with the highest1342

score 9 as the cluster names.1343

Table 8 shows the precision score of the identi-1344

fied granular communities. The first column shows1345

the ratio of the community members that are indeed1346

human names (overall precision), while the second1347

column shows the ratio with respect to specific1348

countries. It should be noted that the country-wise1349

scores of the countries with similar cultures and1350

languages were similar. The reported precision1351

score shows a high degree of categorization based1352

on the country/culture of origin. 101353

The formation of these clusters in the input em-1354

bedding space, particularly those containing ethnic1355

minority names, presents an opportunity for token1356

engineering to mitigate potential ethnicity biases.1357

(As our focus here is on interpretability and con-1358

ceptual groupings and alignment, we provide an1359

example of such a token engineering approach in1360

Appendix 6 for interested readers.)1361

Locations. It should be noted that, although the1362

dataset is majorly comprehensive, the LLM token1363

space associates only one token to each location,1364

leading to an artificial decrease in precision for1365

multi-token location names. Despite these limita-1366

tions, we were able to identify communities within1367

the input embedding space that are associated not1368

only with the location category but also with spe-1369

9For some clusters we picked the second highest country name
if the scores were similar. Due to the cosmopolitan nature
of countries like the USA, They tend result in a high score
across the board.

10It should be noted that we only included clusters with sizes
larger than 10 and country-wise precision of more than 0.5
due to space limitation. The list of identified cluster names
goes far beyond the aforementioned table. Clusters such
as character names from books, mythology, and car brand
names were also identified which were not included due to
space limitations.

Table 7: Precision of the largest identified name and
location communities with respect to name and location
databases. Note that these are at a higher level in the
cluster hierarchies. Table 8 shows the identified granular
sub-clusters and their associated precision.

Category Precision Support Note
US/UK/AUS/NZ 0.882 1011 Human & Location
Male 0.854 946 Human Names
Female 0.866 552 Human Names
West-Asia 0.684 390 Human & Location
Hispanic/Latino 0.685 282 Human & Location
US 0.720 267 Location Names
Europe 0.739 215 Human & Location
East-Asia 0.741 178 Human & Location

Table 8: Precision of communities based on the identi-
fied categories with respect to name-database. First and
last indicates category of first and last names.

Country Overall Country Sup- Note
Precision Precision port

USA/UK 0.857 0.725 211 First
UK/Canada 0.886 0.698 116 First
Saudi/Arabic 0.82 0.76 94 First
Spain/Mexico 0.977 0.78 87 First
USA/Hebrew 0.835 0.568 81 First
Italy/Swiss 0.887 0.625 80 First
Belgium/France 0.928 0.789 76 First
German/Sweden 1.0 0.709 55 First
German/Austria 0.962 0.717 53 First
India 0.82 0.56 39 First
Russian 0.896 0.724 29 First
France 0.9 0.737 76 Last
Mexico 0.951 0.855 83 Last
China 0.9 0.9 30 Last
Denmark 0.88 0.64 25 Last
Germany 0.95 0.95 20 Last
Japan 0.928 0.857 14 Last

Table 9: Precision of communities based on the identi-
fied categories with respect to the location database.

Country-Region Precision Support
United States 0.80 240
Germany 0.412 80
France 0.409 66
Africa 0.690 55
India 0.580 50
Italy 0.590 44
Mexico 0.424 33
Spain 0.592 27
China 0.500 20
Japan 0.736 19
Philippines 0.460 15
Pakistan 0.461 13
Netherlands 0.636 11
North-Africa 0.800 10
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cific regions/countries. The precision numbers in1370

Table 9 suggest that the model groups the loca-1371

tions with respect to the borders of the countries,1372

which, to a certain degree, implies a subjective per-1373

ception of geographical knowledge aligned with1374

the external world 11, wherein it approximates bor-1375

ders and associates nationalities with specific clus-1376

ters/communities. It should be noted that, due to1377

space constraints, we only present the communi-1378

ties containing more than 10 entities 12. Note that1379

dealing with multi-token location names is more1380

challenging. For instance, "Carolina" was correctly1381

clustered within the United States community by1382

the LLM, while our reference dataset misclassified1383

it as a city in Brazil. Additionally, not all location1384

names with English spellings are included in the1385

dataset; for example, ’Wurttemberg’ (or ’Nurem-1386

berg’), a region within Germany, is absent, leading1387

to an artificial decrease in precision.1388

H.2 Social Structures1389

Our methodology identifies a cluster of 903 mem-1390

bers with the theme of social structures. In order to1391

have a reference dataset, we annotated the dataset1392

using a combination of GPT-4 and human annota-1393

tors 13. Given the potential human subjectivity in1394

analyzing these concepts, we ask GPT-4 to iden-1395

tify the theme of each category in the datasets. (as1396

shown in Table 10) for mitigating such uncertainity.1397

In order to reduce subjectivity (we formed the class1398

names based on the GPT-4 recommendation. Then,1399

we asked GPT-4 and human annotator to classify1400

each word with respect to given class names (we1401

added another class named "Other" to avoid forcing1402

the annotators to miscalassify).1403

Then, we calculated the precision score of the1404

identified clusters with respect to our annotated1405

dataset. We see the precision scores shown in Table1406

10 as evidence that the model forms an idea on1407

different aspects of social structure in its semantic1408

memory. When it comes to more granular clusters1409

(k=25), the sub-clusters are mostly word-forms or1410

11We refer the definition of the mental map to American Psy-
chology Association dictionary. It is defined as “a men-
tal representation of the world or some part of it based on
subjective perceptions rather than objective geographical
knowledge.

12The complete set of clusters is included as the supplementary
material.

13A human annotator was used alongside GPT-4 to correct
GPT-4 misclassifications. Label correction by a human hap-
pens faster than the label suggestion task. We estimated our
approach is more time/cost-effective while resulting in the
same quality annotations.

Table 10: The precision score of community members
belonging to the identified categories.

Category Precision Support
Religious (Christianity) 0.818 258
Military and Law Enforcement 0.842 133
Administration and business 0.788 129
Political Ideologies/Movements 0.648 125
Monarchy and Aristocracy 0.64 107
Legislature and Election 0.736 80

Figure 4: Visualization of the social structure cluster
and its associated identified sub-clusters.

semantically similar words. 1411

Intriguingly, the vocabulary model grouped 1412

words like "God" and "divinity" within the same 1413

community as concepts and structures associated 1414

with Christianity. Conversely, terms like "Islam," 1415

"Judaism," and "Talmud" formed a distinct cluster. 1416

This finding warrants further investigation to deter- 1417

mine whether it reflects potential biases within the 1418

underlying semantic memory. 1419

I Human-LM Alignments For Glove, T5, 1420

Llama 1421

We performed our concept extraction algorithm on 1422

Glove, Albert, and T5 models. We observed that 1423

conceptual groupings happens in all the models, 1424

however, the quality of the formed concepts is bet- 1425

ter in Albert model. Glove embeddings contain 1426

more than 200K tokens, in order to enable apple- 1427

to-apple comparison with Albert, we found the 1428

intersection of these tokens with the huggingface 1429

Albert-base-v2 token set, and, applied our concept 1430

extraction algorithm. We the formed clusters have 1431

weak correlation with the concepts formed in Al- 1432

bert model 14 (they similarities are stronger for 1433

14if we assume Glove-Albert mapping exists between two
clusters if more than half of their members are equivalent,
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Table 11: Location communities founds in T5 tokens.
Note that most of the communities are member of 0_0_5,
and 0_0_13 super communities. SOAM stands for South
America.

Precision Support Cluster Name
USA 0.843 159 0_0_5_4
Britain/Ireland 0.843 118 0_0_5_5
Africa/SOAM 0.672 64 0_0_13_2
Germany 0.619 21 0_0_13_0_0
Australia 0.842 19 0_0_5_10
France 0.867 15 0_0_13_0_2
Canada 1.000 13 0_0_5_14
Balkan 0.833 12 0_0_13_1_1
Indochina 0.818 11 0_0_13_3_1
Benelux 0.700 10 0_0_13_0_3
Canada 0.778 9 0_0_5_24
India 0.750 8 0_0_13_4_0
Romania 0.714 7 0_0_22_1_4
Central Europe 0.800 5 0_0_13_0_5
Israel/Palestine 0.800 5 0_0_13_5_3
Arab Countries 0.800 5 0_0_13_5_5
Nordic 0.750 4 0_0_13_1_6
Baltic 1.000 4 0_0_13_1_8

concrete names/entities).1434

Tables 11 and 12 show the T5 location and name1435

communities detected by our algorithm. High pre-1436

cision numbers for these cluster indicate clear con-1437

ceptual groupings. However,since the pretrained1438

HuggingFace T5 uses cased token set for the pre-1439

training, the number of tokens in associated with1440

location and names are much smaller than Albert1441

and Glove. Table 13 shows the Llama3 name com-1442

munities detected by our algorithm. Tables 14 and1443

15 show the GloVe location and name communities1444

detected by our algorithm. Although, it shows the1445

categories are formed in GloVe embeddings as well,1446

the numbers suggests the quality of the formed cat-1447

egories have less quality than both Albert and T51448

counterpart.1449

Table 12: Name communities founds in T5 tokens. Note
that most of the communities are member of 0_0_5
super community.

Gender Overall Detected Country Support Cluster
Precision Country Precision Name

Male 0.942 United States 0.962 209 0_0_5_0
Female 0.888 United States 0.858 162 0_0_5_3
Last Name 0.904 United States 0.914 198 0_0_5_1
Male 0.837 France 0.612 49 0_0_5_7
Male 0.909 Peru 0.758 33 0_0_5_8
Mix 0.960 Germany 0.84 25 0_0_5_9
Male 0.846 Russian/Italy 0.615 13 0_0_5_15
Politicians 1.0 N/A N/A 14 0_0_5_13

%69 percent of the Glove clusters have a corresponding
Albert cluster for K=6.

J Extracted Concept Hierarchies 1450

Figure 5 shows the overall structure of hierarchical 1451

communities extracted by our proposed method. 1452

The cluster names were suggested by GPT-4 and 1453

corrected by a human supervisor. The green blocks 1454

are the ones that are discussed in this paper. 1455
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Table 13: Examples of Name Entity clusters with size greater than 25 tokens found in Llama3 input embedding size.
Note that we only evaluate against external datasets with English named entities.

Type Precision Support Note Cluster names
female 0.757 393 US/UK 0_0_0_0_0_0
male 0.811 291 US/UK 0_0_0_0_0_2
male 0.6639 171 US/UK 0_0_0_0_0_3
male 0.495 105 Saudi/UAE 0_0_0_0_0_5
male 0.6875 53 US/South Africa 0_0_0_0_0_11
male 0.5588 46 UK/Canada 0_0_0_0_0_12
female 0.571 41 US/UK 0_0_0_0_0_13
male 0.551 37 Mexico 0_0_0_0_0_14
male 0.619 30 Netherlands/US 0_0_0_0_0_16
male 0.666 30 US/UK 0_0_0_0_0_17
male 0.653 27 Biblical 0_0_0_0_0_18
last names 0.724 340 US/UK 0_0_0_0_0_1
last names 0.528 135 Canada/US 0_0_0_0_0_4
last names 0.509 65 UK/US 0_0_0_0_0_8
last names 0.717 39 Mexico/Chile 0_0_0_0_6_0
locations 0.75 485 Mostly American 0_0_0_8_0

Table 14: Location communities founds in the subset Glove tokens that exists in Albert Vocab.

Country Precision Support Cluster
Names

US 0.674 522 0_4
UK 0.626 174 0_8
Europe 0.513 39 0_3_8
China 0.625 32 0_3_10
Italy 0.720 25 0_3_14
Philippines 0.556 18 0_3_15
Spain 0.722 18 0_3_15
Japan 0.688 16 0_3_16
France 0.857 14 0_3_9_0
Africa 0.750 12 0_3_3_1
Indochina 0.600 10 0_3_11_1
Netherlands 0.833 6 0_3_17_0

Table 15: Name communities founds in the subset Glove tokens that exists in Albert Vocab.

Country Overal Country Gender Support Cluster
Precision Precision Name

USA 0.835 0.555 female 575 0_2_1
UK 0.695 0.641 male 223 0_2_0_0
USA 0.737 0.337 male 95 0_2_6
Italy 0.942 0.692 male 52 0_2_4_1
Mexico/Colombia 0.889 0.711 male 45 0_2_4_2
Mexico/Peru 0.844 0.6 male 45 0_2_4_3
Austria 0.897 0.793 male 29 0_2_3_3
US/Nigeria 0.821 0.429 male 28 0_2_0_1_2
Russia 0.926 0.481 male 27 0_2_3_4
Saudi Arabia 0.8 0.84 male 25 0_1_6_1
Switzerland/Belgium 1 0.846 male 13 0_2_3_0_0
UAE 0.727 0.727 male 11 0_1_6_3
Saudi-Arabia 0.8 0.7 male 10 0_1_6_0_1
Germany 0.917 0.75 no-gender 12 0_2_3_2_2
UK/Canada 0.917 0.33 no-gender 12 0_2_0_1_5
UAE 0.6 0.467 no-gender 15 0_1_6_2
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Figure 5: Visualization of the hierarchical Communities from Albert. The green blocks show the clusters that being
evaluated and discussed in this paper.
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