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Japan

ABSTRACT
We propose a spatio-temporal mixing kinematic data estimation method to estimate the shape of the 
colon with deformations caused by colonoscope insertion. Endoscope tracking or a navigation system 
that navigates physicians to target positions is needed to reduce such complications as organ perfora
tions. Although many previous methods focused to track bronchoscopes and surgical endoscopes, few 
number of colonoscope tracking methods were proposed because the colon largely deforms during 
colonoscope insertion. The deformation causes significant tracking errors. Colon deformation should be 
considered in the tracking process. We propose a colon shape estimation method using a Kinematic 
Spatio-Temporal data Mixer (KST-Mixer) that can be used during colonoscope insertions to the colon. 
Kinematic data of a colonoscope and the colon, including positions and directions of their centerlines, are 
obtained using electromagnetic and depth sensors. The proposed method separates the data into sub- 
groups along the spatial and temporal axes. The KST-Mixer extracts kinematic features and mix them 
along the axes multiple times. We evaluated colon shape estimation accuracies in phantom studies. The 
proposed method achieved 11.92 mm mean Euclidean distance error, the smallest of the previous 
methods. Statistical analysis indicated that the proposed method significantly reduced the error com
pared to the previous methods.
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1. Introduction
1CT colonography (CTC) is performed to find colonic polyps from 
CT images. If colonic polyps or early-stage cancers are found in 
a CTC, a colonoscopic examination is performed to endoscopi
cally remove them. A physician controls the colonoscope based 
on its camera view during a colonoscope examination. However, 
its viewing field is limited and unclear because the camera is 
often covered by fluid or the colonic wall. Furthermore, the colon 
changes shape significantly during colonoscope insertion. 
Physicians require much skill and experience to estimate how 
the colonoscope travels inside the colon. Inexperienced physi
cians overlook polyps or cause such complications as colon 
perforation. A colonoscope navigation system is needed that 
guides the physician to the polyp position. A colonoscope track
ing method is necessary as its core.

Many tracking methods of endoscopes are proposed 
(Deligianni et al. 2005; Mori et al. 2005; Gildea et al. 2006; 
Schwarz et al. 2006; Peters and Cleary 2008; Rai et al. 2008; 
Deguchi et al. 2009; Ching et al. 2010; Liu et al. 2013; Luo et al.  
2015; Fukuzawa et al. 2015; Visentini-Scarzanella et al. 2017; 
Oda et al. 2017; Wang et al. 2021; Banach et al. 2021; Yao et al.  
2021). They can be classified into the image-based, the sensor- 
based, and the hybrid methods. The bronchoscope is the main 
application of bronchoscope tracking. Many researchers pro
posed image- and sensor-based methods in recent several 
decades. Image-based tracking methods estimate the camera 

movements based on image registrations. Registrations 
between temporally continuous bronchoscopic images 
(Peters and Cleary 2008) or between real and virtualised 
bronchoscopic images (Deligianni et al. 2005; Rai et al. 2008; 
Deguchi et al. 2009) are used for tracking. Recent approaches 
use deep learning-based depth estimation results to improve 
image-based tracking accuracy (Visentini-Scarzanella et al.  
2017; Wang et al. 2021; Banach et al. 2021). Sensor-based 
tracking methods use small sensors to obtain bronchoscope 
position (Gildea et al. 2006; Schwarz et al. 2006). Hybrid meth
ods of them use both image and sensor information to accu
rately estimate bronchoscope position (Mori et al. 2005; Luo 
et al. 2015). Some research groups propose tracking methods 
for colonoscope. In colonoscope tracking, the image-based 
method (Liu et al. 2013) is difficult to apply because unclear 
colonoscopic images appear frequently. Unclear image 
removal and disparity map estimation are utilised to improve 
tracking accuracy (Yao et al. 2021). Electromagnetic (EM) sen
sors are used to obtain colonoscope shapes (Ching et al. 2010; 
Fukuzawa et al. 2015). Unfortunately, they cannot guide physi
cians to polyp positions because they cannot map the colono
scope shape to a colon in a CT volume, which may contain 
polyp detection results. Combining the colonoscope position 
or shape information with polyp position information, which 
can be detected in a CT volume taken prior to colonoscope 
insertion, is essential in colonoscope navigation. Such naviga
tion is called colonoscope-CT-based navigation.
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A few colonoscope tracking methods are applicable to 
perform colonoscope-CT-based navigation. Reference (Oda 
et al. 2017) used colonoscope shape measured by an EM 
sensor and CT volume for colonoscope tracking. The 
method obtains two curved lines representing the colon 
and colonoscope shapes to estimate the colonoscope 
position on a CT volume coordinate system. The method 
enables real-time tracking regardless of the colonoscopic 
image quality. However, the method does not consider 
colon deformation caused by colonoscope insertion. Such 
deformation caused significant tracking error. Large track
ing errors were observed at the transverse and sigmoid 
colons, which are significantly deformed by a colonoscope 
insertion. To reduce tracking errors, estimation methods of 
the shape of the colon with deformations caused by colo
noscope insertion were proposed (Oda 2018a,b). One of 
them (Oda 2018a) uses the shape estimation network that 
has a long short-term memory (LSTM) layer (Hochreiter 
and Schmidhuber 1997) to estimate the colon shape and 
the other (Oda 2018b) uses regression forests. Estimation 
accuracies of them need to be improved to perform accu
rate colonoscope tracking.

We propose a novel shape estimation method of the colon 
for colonoscope tracking using a Kinematic Spatio-Temporal 
data Mixer (KST-Mixer). The proposed method estimates the 
colon from time-series shape data of the colonoscope, which is 
inserted into the colon. The KST-Mixer extracts kinematic fea
tures from the data of the colonoscope using simple multi-layer 
perceptrons (MLPs). The extracted features are mixed along the 
spatial and temporal axes in spatio-temporal mixing blocks to 
estimate the colon shape dynamically. Because the KST-Mixer 
has a simple processing flow, it provides estimation results in 
a short processing time. It is suitable to be used in real-time 
colonoscope navigation systems.

Contributions of this paper are summarised as: (1) to pro
pose a novel colon shape estimation method that utilises spa
tial and temporal kinematic features extraction and mixing 
processes, (2) to enable short computation time in estimation 
used in real-time colonoscope tracking, and (3) to achieve the 
smallest shape estimation error among the previous methods.

2. Method

2.1. Overview

The proposed method estimates the colon shape from the 
colonoscope shape. They are time-series data measured at 
a specific time interval. The KST-Mixer is trained to estimate 
a colon shape from time-series colonoscope shapes. After the 
training, a trained model estimates a colon shape during 
a colonoscope insertion.

2.2. Colon and colonoscope shape representation

We represent the colon and colonoscope shapes as point sets. 
The colonoscope shape (Figure 1(a)) is a set of 3D positions pðtÞn 

and 3D directions dðtÞn , that is represented as

XðtÞ ¼ fpðtÞn ;dðtÞn ; n ¼ 1; . . . ;Ng; (1) 

where t ðt ¼ 1; . . . ; TÞ is the index of time, T is the total number 
of time frames, and N is the number of points in the colono

scope shape. pðtÞn is a point aligned along the colonoscope 

centerline. pðtÞ1 corresponds to the position of the colonoscope 

tip. dðtÞn is a tangent direction of the colonoscope tube at pðtÞn .
The colon shape (Figure 1(b)) is a set of 3D points yðtÞm that is 

represented as 

YðtÞ ¼ fyðtÞm ; m ¼ 1; . . . ;Mg; (2) 

where M is the number of points in the colon shape. yðtÞm is 

a point aligned along the colon centerline. yðtÞ1 and yðtÞm corre
spond to the caecum and the anus positions, respectively.

2.3. Kinematic spatio-temporal data mixer (KST-Mixer)

2.3.1. Overview of KST-Mixer
The KST-Mixer estimates a colon shape from time-series 
colonoscope shapes. Its architecture is based on MLPs 
that are repeatedly applied across the spatial or temporal 
axes. This architecture is inspired by the MLP-Mixer 
(Tolstikhin et al. 2021), which classifies images utilising 
spatial locations and image features. The MLP-Mixer has 
competitive image classification performance to current 
methods such as Vision Transformers (ViT) (Dosovitskiy 
et al. 2021) and provides a short processing time. We utilise 
the MLP-based architecture to process kinematic data in 
shape estimation tasks.

2.3.2. Data preparation
To generate input data of the KST-Mixer, we rearrange a time- 
series colonoscope shape data as a matrix with spatial and 
temporal axes. Components of the 3D point and direction are 
represented as pðtÞn ¼ ðp

ðtÞ
n;x; pðtÞn;y; pðtÞn;zÞ and dðtÞn ¼ ðd

ðtÞ
n;x; dðtÞn;y; dðtÞn;zÞ. 

From pðtÞn , we define the positional matrix (3N� τ) of time 
period t ¼ tc; . . . ; tc � τ þ 1 as 

Figure 1. Examples of (a) colonoscope and (b) colon shapes.
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where τ is time length. We also define the directional matrix as 
DðtcÞ similarly.

Values in PðtcÞ are normalised to take values in the range 
½0; 1�. We regard the normalised matrix as a 2D image to gen
erate S non-overlapping and homogeneous sized image 
patches. The image size is ð3N; τÞ and the size of each patch is 

ðs1; s2Þ. From them, the number of patches is calculated as 
S ¼ 3Nτ

s1s2
. Each patch contains spatially and temporally local 

data. Each patch is projected to a feature vector of hidden 
dimension C. As the result, we obtain a input matrix of posi
tional data �ðtcÞ 2 R

S�C . The order of feature values in the 
matrix is sensitive to both spatial and temporal axes. 
Therefore, such a position embedding technique as ViT 
employs is not necessary. We also obtain a input matrix of 
directional data ΔðtcÞ from DðtcÞ. We make a matrix of colono
scope shape data ΞðtcÞ2 R 2S�C consisting of �ðtcÞ and ΔðtcÞ ele
ments. This process is illustrated in Figure 2.

We generate additional input data of the KST-Mixer from the 
insertion length of the colonoscope. The insertion length of 
colonoscope at time t is lðtÞ. A set of insertion lengths in the 
period of time t ¼ tc; . . . ; tc � τ þ 1 is represented as 

Figure 2. Data preparation process from positional and directional matrixes PðtcÞ; DðtcÞ to ΞðtcÞ .

Figure 3. Architecture of KST-Mixer. It estimates colon shape ̂Y
tc from colonoscope shape data Ξtc and insertion length data Ltc . It extracts colonoscope shape features in 

multiple spatio-temporal mixing blocks. Features are then combined with insertion length feature. Fully connected layers process combined features to generate 
estimation results.
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LðtcÞ ¼ ðlðtcÞ � � � lðtc � τþ1ÞÞ
T , which is a column vector of size τ � 1. 

The insertion length data Ltc is used in the process of the KST- 
Mixer.

2.3.3. Architecture of KST-Mixer
The input of the KST-Mixer are ΞðtcÞ and LðtcÞ. The KST-Mixer 

outputs an estimated colon shape Ŷ
ðtcÞ. The architecture of the 

KST-Mixer is shown in Figure 3. It has b spatio-temporal mixing 
blocks. Each of them consists of two MLP blocks similarly to the 
MLP-Mixer (Tolstikhin et al. 2021). The first is the spatio- 
temporal feature mixing MLP block (patch mixing MLP block). 
In the block, an input patch-wise feature vector is transposed 
and processed by the MLP block. The second MLP block is the 
patch-wise feature extraction MLP block.

Each MLP block has two fully connected layers and an 
activation function. Dropout with a probability of d1 is per
formed. Operation in the spatio-temporal mixing MLP block 
can be represented as 

U�;i ¼ I�;i þw2σðw1NðIÞ�;iÞ; (4) 

Oj;� ¼ Uj;� þw4σðw3NðUÞj;�Þ; (5) 

where I;O are input and output feature vectors, w1;...;4 are 
weight parameters of fully connected layers, and i ¼ 1; . . . ;C, 
j ¼ 1; . . . ; 2S. N is a layer normalisation function (Ba et al. 2016). 
σ is an GELU activation function (Hendrycks and Gimpel, 2016). 
� indicates the row or the column vectors where operations 

are applied. Equation (4) is the calculation in the patch mixing 
MLP block. The calculation is performed for each column of I. 
The number of hidden units of the first fully connected layer in 
this block hS is used to control patch mixing. Equation (5) is the 
calculation in the patch-wise feature extraction MLP block. The 
calculation is performed for each rows of U. The number of the 
hidden units of the first fully connected layer in this block hC is 
used to control feature extraction from the patch.

After the processes of the spatio-temporal mixing blocks, 
feature values are mapped to a vector. It is combined with 
feature values calculated from the insertion length data LðtcÞ

and then processed by some fully connected layers. Dropout 

with a probability of d2 is performed here. The last layer outputs 

an estimated colon shape Ŷ
ðtcÞ.

3. Experimental setup

We evaluated the colon shape estimation accuracy of the pro
posed method in a phantom study. We used a colon phantom 
(colonoscopy training model type I-B, Koken, Tokyo, Japan), 
a CT volume of the phantom, a colonoscope (CF-Q260AI, 
Olympus, Tokyo, Japan), an EM sensor (Aurora 5/6 DOF Shape 
Tool Type 1, NDI, Ontario, Canada), and a depth image sensor 
(Kinect v2, Microsoft, WA, USA). We measured colonoscope and 
colon shapes in our measurement environment shown in 
Figure 4. We assume the colonoscope tip is inserted up to the 
caecum when colonoscope tracking starts because physicians 
observe and treat the colon while retracting the colonoscope 
after its insertion up to the caecum. The colonoscope was 
moved from the caecum to the anus.

3.1. Colonoscope shape measurement

We measured colonoscope shapes using the EM sensor. The EM 
sensor is strap-shaped with six sensors at its tip and points 
along its strap-shaped body (one sensor is 6 DOF and remain
ing are 5 DOF). Each sensor provides a 3D position and a 3D/2D 
direction along the colonoscope by inserting the sensor into 
the colonoscope working channel. The measured colonoscope 
shape is XðtÞ ¼ fpðtÞn ;dðtÞn ; n ¼ 1; . . . ; 6g at every time t.

3.2. Colon shape measurement

We measured colon shapes from the colon phantom using the 
depth image sensor. Twelve position markers were attached to 
the surface of the colon phantom to scan its shape. The depth 
image sensor scanned colon shapes during the colonoscope 
insertions to the colon phantom. We automatically detect mar
ker positions using YOLOv5 (Ultralytics 2022) from the scanned 
colour and depth images. Then, the detection results were 
manually corrected. The detected markers are described as 

YðtÞ ¼ fyðtÞm ; m ¼ 1; . . . ; 12g at every time t, used as colon 

Figure 4. Colonoscope and colon shapes measurement environment. Processing flow of measured data is also illustrated.
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shape. yðtÞ1 and yðtÞ12 correspond to the caecum and the anus 
positions, respectively.

3.3. Training and testing of KST-Mixer

We measured both XðtÞ and YðtÞ during colonoscope inser
tions to the colon phantom. The shape recording frequency 
was six times per second. XðtÞ and YðtÞ belong to the EM and 
depth image sensor coordinate systems. We registered them 
in the CT coordinate system using the iterative closest point 
(ICP) algorithm (Besl and McKay 1992) and manual registra
tions. Registered shape data was used to train and test the 
KST-Mixer. Parameters used in the trainings were: τ ¼ 18, 
ðs1; s2Þ ¼ ð6; 3Þ, b ¼ 7, d1 ¼ 0:1, d2 ¼ 0:3, hS ¼ 64, hC ¼ 128, 
50 minibatch size, and 200 training epochs. Mean squared 
error was used as the loss function in training. We imple
mented the KST-Mixer using the Keras build in TensorFlow 
2.4.0 running on a Windows PC equipped with a NVIDIA RTX 
A6000 GPU. The KST-Mixer used 2.5 GBytes of GPU memory 
in trainings.

In the test step, we provide colonoscope shapes for testing 
to the trained KST-Mixer. We obtain estimated colon shape Ŷ

ðtcÞ

of current time tc from it.

4. Experimental results

We measured colonoscope and colon shapes during eight 
colonoscope insertions and recorded 1,388 shape pairs. An 
engineering researcher operated the colonoscope. Leave-one- 
colonoscope-insertion-out cross validation was performed for 
evaluation. We used mean Euclidean distance (MED) (mm) 
between YðtÞ and Ŷ

ðtÞ
as an evaluation metric. It is defined as 

MED ¼
1

12T

XT

t¼1

X12

m¼1

jjŶ
ðtÞ
m � yðtÞm jj: (6) 

We compared the MED of the proposed method with pre
vious colon shape estimation methods, including SEN (LSTM- 
based method) (Oda 2018a) and regression forests-based 
method (Oda 2018b). Table 1 shows results of the comparison. 
The proposed method achieved the smallest MED among the 
methods. Statistical analysis of the results indicated that the 
proposed method significantly reduced MED compared to the 
SEN (Oda 2018a) (p< 0:05 with paired t-test of MED values). We 
compared computation times in estimations of one colon 
shape among these methods. The results are shown in 
Table 2. From the results, both the proposed and previous 
methods have real-time performances. Examples of colon 
shape estimation results are in Figure 5. The figure shows that 

Table 1. Mean and standard deviation of MED calculated in cross-validations performed 
using proposed and previous methods.

Method MED (Mean � S.D.) (mm)

KST-Mixer (Proposed) 11:92� 1:75
SEN (LSTM-based method) (Oda 2018a) 12:58� 2:08
Regression forests-based method (Oda 2018b) 13:08� 1:55

Table 2. Computation times of proposed and previous methods in estimation of one 
colon shape.

Method Computation time (msec.)

KST-Mixer (Proposed) 7.3
SEN (LSTM-based method) (Oda 2018a) 2.9
Regression forests-based method (Oda 2018b) 8.9

Figure 5. (A) Measurement results of depth image and EM sensors. (b) Colon shape estimation results of three frames. Colonoscope shapes are points on curved green 
lines. Colon shapes (ground truth) are white numbered points. Estimated colon shapes by proposed method are blue numbered points.
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the differences between the ground truths and estimated colon 
shapes were tiny.

5. Discussion

The proposed KST-Mixer achieved the smallest error in the colon 
shape estimation among the previous methods. We designed the 
KST-Mixer to extract features from kinematic data using simple 
MLP blocks. Extracted features are then mixed in the spatio- 
temporal feature mixing MLP blocks to generate spatially and 
temporally global features. This structure is quite effective in pro
cessing time-series kinematic data because we achieved better 
estimation results than the LSTM-based method (Oda 2018a). 
The proposed method improves colonoscope tracking accuracy 
by accurately estimating deformed colon shape during colono
scope insertions. Furthermore, the computation time of the pro
posed method was short enough to be used in real-time 
applications.

The application of the proposed method is not limited to 
colon shape estimation alone. It can be applied to estima
tions of elastic organs in diagnosis and treatment. Organ 
shape estimation is essential in surgical assistances by com
puters. Accurate organ shape estimation contributes to the 
generation of real-time surgical navigation information and 
the automation of surgical assistance robots.

Although we have obtained promising results in colon 
shape estimation, many challenges are still remain for 
application of the proposed method to colonoscope track
ing. Such challenges include (1) collecting data containing 
variations of operators and colon shapes, (2) collecting in- 
vivo data, (3) development of intuitive visualisation method 
of tracking result, and (4) development of a colonoscope that 
have embedded EM sensors. (1) collecting data containing 
variations of operators and colon shapes is necessary to 
improve robustness of the method to real situations. 
Colonoscope movements have variations among physi
cians depending on their years of experience. 
Furthermore, colon shapes also have variations among 
patients. Colon and colonoscope shapes data containing 
such variations is necessary to achieve better estimation 
model. We will measure shape data under operations of 
colonoscope by physicians of various years of experience. 
We also measure shape data using many colon phantoms 
and 3D printed phantoms that have variation of the 
shapes. (2) collecting in-vivo data is necessary to improve 
the proposed method from phantom level to clinically 
applicable level. (3) development of intuitive visualisation 
method of tracking result is required that presents 
deformed colon shapes in real-time during colonoscope 
insertions. Such visualisation helps physicians to under
stand how the colonoscope travelling in the colon. (4) 
development of a colonoscope that have embedded EM sen
sors is required to perform tracking in clinical situations.

6. Conclusions

This paper proposed a colon shape estimation method 
using the KST-Mixer from kinematic data. The KST-Mixer 
extracts kinematic features and mixes them along the 

spatial and temporal axes in multiple MLP blocks. We 
evaluated the method’s estimation accuracy in the colon 
shape estimation from colonoscope shapes in the phantom 
study. The proposed KST-Mixer achieved the smallest esti
mation error in the comparative experiments. Future work 
includes improvement of the data number using other 
phantoms, evaluating the method using shape data mea
sured during colonoscope operations by physicians, appli
cation to colonoscope tracking, and application to the 
human colon.

Note

1. Code and data of the proposed method are available at: https:// 
github.com/modafone/kst-mixer.
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