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ABSTRACT

We propose a spatio-temporal mixing kinematic data estimation method to estimate the shape of the
colon with deformations caused by colonoscope insertion. Endoscope tracking or a navigation system
that navigates physicians to target positions is needed to reduce such complications as organ perfora-
tions. Although many previous methods focused to track bronchoscopes and surgical endoscopes, few
number of colonoscope tracking methods were proposed because the colon largely deforms during
colonoscope insertion. The deformation causes significant tracking errors. Colon deformation should be
considered in the tracking process. We propose a colon shape estimation method using a Kinematic
Spatio-Temporal data Mixer (KST-Mixer) that can be used during colonoscope insertions to the colon.
Kinematic data of a colonoscope and the colon, including positions and directions of their centerlines, are
obtained using electromagnetic and depth sensors. The proposed method separates the data into sub-
groups along the spatial and temporal axes. The KST-Mixer extracts kinematic features and mix them
along the axes multiple times. We evaluated colon shape estimation accuracies in phantom studies. The
proposed method achieved 11.92 mm mean Euclidean distance error, the smallest of the previous
methods. Statistical analysis indicated that the proposed method significantly reduced the error com-
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pared to the previous methods.

1. Introduction

'CT colonography (CTC) is performed to find colonic polyps from
CT images. If colonic polyps or early-stage cancers are found in
a CTC, a colonoscopic examination is performed to endoscopi-
cally remove them. A physician controls the colonoscope based
on its camera view during a colonoscope examination. However,
its viewing field is limited and unclear because the camera is
often covered by fluid or the colonic wall. Furthermore, the colon
changes shape significantly during colonoscope insertion.
Physicians require much skill and experience to estimate how
the colonoscope travels inside the colon. Inexperienced physi-
cians overlook polyps or cause such complications as colon
perforation. A colonoscope navigation system is needed that
guides the physician to the polyp position. A colonoscope track-
ing method is necessary as its core.

Many tracking methods of endoscopes are proposed
(Deligianni et al. 2005; Mori et al. 2005; Gildea et al. 2006;
Schwarz et al. 2006; Peters and Cleary 2008; Rai et al. 2008;
Deguchi et al. 2009; Ching et al. 2010; Liu et al. 2013; Luo et al.
2015; Fukuzawa et al. 2015; Visentini-Scarzanella et al. 2017;
Oda et al. 2017; Wang et al. 2021; Banach et al. 2021; Yao et al.
2021). They can be classified into the image-based, the sensor-
based, and the hybrid methods. The bronchoscope is the main
application of bronchoscope tracking. Many researchers pro-
posed image- and sensor-based methods in recent several
decades. Image-based tracking methods estimate the camera

movements based on image registrations. Registrations
between temporally continuous bronchoscopic images
(Peters and Cleary 2008) or between real and virtualised
bronchoscopic images (Deligianni et al. 2005; Rai et al. 2008;
Deguchi et al. 2009) are used for tracking. Recent approaches
use deep learning-based depth estimation results to improve
image-based tracking accuracy (Visentini-Scarzanella et al.
2017; Wang et al. 2021; Banach et al. 2021). Sensor-based
tracking methods use small sensors to obtain bronchoscope
position (Gildea et al. 2006; Schwarz et al. 2006). Hybrid meth-
ods of them use both image and sensor information to accu-
rately estimate bronchoscope position (Mori et al. 2005; Luo
et al. 2015). Some research groups propose tracking methods
for colonoscope. In colonoscope tracking, the image-based
method (Liu et al. 2013) is difficult to apply because unclear
colonoscopic images appear frequently. Unclear image
removal and disparity map estimation are utilised to improve
tracking accuracy (Yao et al. 2021). Electromagnetic (EM) sen-
sors are used to obtain colonoscope shapes (Ching et al. 2010;
Fukuzawa et al. 2015). Unfortunately, they cannot guide physi-
cians to polyp positions because they cannot map the colono-
scope shape to a colon in a CT volume, which may contain
polyp detection results. Combining the colonoscope position
or shape information with polyp position information, which
can be detected in a CT volume taken prior to colonoscope
insertion, is essential in colonoscope navigation. Such naviga-
tion is called colonoscope-CT-based navigation.
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A few colonoscope tracking methods are applicable to
perform colonoscope-CT-based navigation. Reference (Oda
et al. 2017) used colonoscope shape measured by an EM
sensor and CT volume for colonoscope tracking. The
method obtains two curved lines representing the colon
and colonoscope shapes to estimate the colonoscope
position on a CT volume coordinate system. The method
enables real-time tracking regardless of the colonoscopic
image quality. However, the method does not consider
colon deformation caused by colonoscope insertion. Such
deformation caused significant tracking error. Large track-
ing errors were observed at the transverse and sigmoid
colons, which are significantly deformed by a colonoscope
insertion. To reduce tracking errors, estimation methods of
the shape of the colon with deformations caused by colo-
noscope insertion were proposed (Oda 2018a,b). One of
them (Oda 2018a) uses the shape estimation network that
has a long short-term memory (LSTM) layer (Hochreiter
and Schmidhuber 1997) to estimate the colon shape and
the other (Oda 2018b) uses regression forests. Estimation
accuracies of them need to be improved to perform accu-
rate colonoscope tracking.

We propose a novel shape estimation method of the colon
for colonoscope tracking using a Kinematic Spatio-Temporal
data Mixer (KST-Mixer). The proposed method estimates the
colon from time-series shape data of the colonoscope, which is
inserted into the colon. The KST-Mixer extracts kinematic fea-
tures from the data of the colonoscope using simple multi-layer
perceptrons (MLPs). The extracted features are mixed along the
spatial and temporal axes in spatio-temporal mixing blocks to
estimate the colon shape dynamically. Because the KST-Mixer
has a simple processing flow, it provides estimation results in
a short processing time. It is suitable to be used in real-time
colonoscope navigation systems.

Contributions of this paper are summarised as: (1) to pro-
pose a novel colon shape estimation method that utilises spa-
tial and temporal kinematic features extraction and mixing
processes, (2) to enable short computation time in estimation
used in real-time colonoscope tracking, and (3) to achieve the
smallest shape estimation error among the previous methods.

2. Method
2.1. Overview

The proposed method estimates the colon shape from the
colonoscope shape. They are time-series data measured at
a specific time interval. The KST-Mixer is trained to estimate
a colon shape from time-series colonoscope shapes. After the
training, a trained model estimates a colon shape during
a colonoscope insertion.

2.2. Colon and colonoscope shape representation

We represent the colon and colonoscope shapes as point sets.
The colonoscope shape (Figure 1(a)) is a set of 3D positions p,g)

and 3D directions dﬁf), that is represented as
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Figure 1. Examples of (a) colonoscope and (b) colon shapes.

X9 ={py.dPin=1,....N}, Q)
wheret (t = 1,...,T)is the index of time, T is the total number
of time frames, and N is the number of points in the colono-
scope shape. pﬁ,”

centerline. pgﬂ

tip. d is a tangent direction of the colonoscope tube at p

The colon shape (Figure 1(b)) is a set of 3D points ym that is
represented as

is a point aligned along the colonoscope
corresponds to the position of the colonoscope

0~ fyOm =1, M}, @

where M is the number of points in the colon shape. yﬁ,?

is
a point aligned along the colon centerline. ygt> and yﬁ,? corre-
spond to the caecum and the anus positions, respectively.

2.3. Kinematic spatio-temporal data mixer (KST-Mixer)

2.3.1. Overview of KST-Mixer

The KST-Mixer estimates a colon shape from time-series
colonoscope shapes. Its architecture is based on MLPs
that are repeatedly applied across the spatial or temporal
axes. This architecture is inspired by the MLP-Mixer
(Tolstikhin et al. 2021), which classifies images utilising
spatial locations and image features. The MLP-Mixer has
competitive image classification performance to current
methods such as Vision Transformers (ViT) (Dosovitskiy
et al. 2021) and provides a short processing time. We utilise
the MLP-based architecture to process kinematic data in
shape estimation tasks.

2.3.2. Data preparation

To generate input data of the KST-Mixer, we rearrange a time-
series colonoscope shape data as a matrix with spatial and
temporal axes. Components of the 3D point and direction are
represented as p,,) = (pffl,p,(qy,p,, z) and d; 0 — (df,fl, dﬁ‘},dﬁi)
From p , we define the positional matrix (3N x 1) of time
periodt =t.,...,tc— 1+ 1as



COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION e 3

te te—T+1
Py py Y
Py pye Y
Py pis Y
Pl = | : , 3)

t te—T+1
PN, pas
t te—T+1
PNy Py
(fc) (Q*H‘])
pN$z N.z

where T is time length. We also define the directional matrix as
D) similarly.

Values in P are normalised to take values in the range
[0, 1]. We regard the normalised matrix as a 2D image to gen-
erate S non-overlapping and homogeneous sized image
patches. The image size is (3N, 7) and the size of each patch is

(s1,52). From them, the number of patches is calculated as
S:%. Each patch contains spatially and temporally local
data. Each patch is projected to a feature vector of hidden
dimension C. As the result, we obtain a input matrix of posi-
tional data I1) € R®*C. The order of feature values in the
matrix is sensitive to both spatial and temporal axes.
Therefore, such a position embedding technique as ViT
employs is not necessary. We also obtain a input matrix of
directional data A from D), We make a matrix of colono-
scope shape data =()e R**C consisting of 1) and A ele-
ments. This process is illustrated in Figure 2.

We generate additional input data of the KST-Mixer from the
insertion length of the colonoscope. The insertion length of
colonoscope at time t is /). A set of insertion lengths in the
period of time t=t,...,tr— 17+ 1 is represented as
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L) = (/) ... [te=m+))T which is a column vector of size T x 1.
The insertion length data L* is used in the process of the KST-
Mixer.

2.3.3. Architecture of KST-Mixer
The input of the KST-Mixer are =) and L{*). The KST-Mixer

. ot .
outputs an estimated colon shape Y( ). The architecture of the

KST-Mixer is shown in Figure 3. It has b spatio-temporal mixing
blocks. Each of them consists of two MLP blocks similarly to the
MLP-Mixer (Tolstikhin et al. 2021). The first is the spatio-
temporal feature mixing MLP block (patch mixing MLP block).
In the block, an input patch-wise feature vector is transposed
and processed by the MLP block. The second MLP block is the
patch-wise feature extraction MLP block.

Each MLP block has two fully connected layers and an
activation function. Dropout with a probability of d; is per-
formed. Operation in the spatio-temporal mixing MLP block
can be represented as

U*,i = I*ji + W20(W1N(|)*ﬁi), (4)

0j. = Uj + wso(wsN(U), ), (5)

where |, 0 are input and output feature vectors, w; 4 are
weight parameters of fully connected layers, and i=1,....C,
j=1,...,25. Nis a layer normalisation function (Ba et al. 2016).

o is an GELU activation function (Hendrycks and Gimpel, 2016).
* indicates the row or the column vectors where operations
are applied. Equation (4) is the calculation in the patch mixing
MLP block. The calculation is performed for each column of 1.
The number of hidden units of the first fully connected layer in
this block hs is used to control patch mixing. Equation (5) is the
calculation in the patch-wise feature extraction MLP block. The
calculation is performed for each rows of U. The number of the
hidden units of the first fully connected layer in this block hc is
used to control feature extraction from the patch.

After the processes of the spatio-temporal mixing blocks,
feature values are mapped to a vector. It is combined with
feature values calculated from the insertion length data L%
and then processed by some fully connected layers. Dropout

LEERLT]

Depth image sensor

Position
markers

Magnetic field
generator

Phantom scan
by depth sensor

with a probability of d, is performed here. The last layer outputs

an estimated colon shape ?(m.

3. Experimental setup

We evaluated the colon shape estimation accuracy of the pro-
posed method in a phantom study. We used a colon phantom
(colonoscopy training model type I-B, Koken, Tokyo, Japan),
a CT volume of the phantom, a colonoscope (CF-Q260Al,
Olympus, Tokyo, Japan), an EM sensor (Aurora 5/6 DOF Shape
Tool Type 1, NDI, Ontario, Canada), and a depth image sensor
(Kinect v2, Microsoft, WA, USA). We measured colonoscope and
colon shapes in our measurement environment shown in
Figure 4. We assume the colonoscope tip is inserted up to the
caecum when colonoscope tracking starts because physicians
observe and treat the colon while retracting the colonoscope
after its insertion up to the caecum. The colonoscope was
moved from the caecum to the anus.

3.1. Colonoscope shape measurement

We measured colonoscope shapes using the EM sensor. The EM
sensor is strap-shaped with six sensors at its tip and points
along its strap-shaped body (one sensor is 6 DOF and remain-
ing are 5 DOF). Each sensor provides a 3D position and a 3D/2D
direction along the colonoscope by inserting the sensor into
the colonoscope working channel. The measured colonoscope
shape is XV = {pﬁf), df,o;n =1,...,6} at every time t.

3.2. Colon shape measurement

We measured colon shapes from the colon phantom using the
depth image sensor. Twelve position markers were attached to
the surface of the colon phantom to scan its shape. The depth
image sensor scanned colon shapes during the colonoscope
insertions to the colon phantom. We automatically detect mar-
ker positions using YOLOv5 (Ultralytics 2022) from the scanned
colour and depth images. Then, the detection results were
manually corrected. The detected markers are described as

YO = {yﬂ?;m =1,...,12} at every time t, used as colon

Colonoscope
Colonoscope and Shape
EM sensor

"\
v
{

o0
o ¢
Y @1 ®
[ J
[ J
y(!]u. 12
Marker detection ~ Marker position Colon shape
using YOLOvVS mapping to 3D spacc f o~
2

d;:f,'l&n ,1

> vigo
d(r,\ﬁ

Measurement environment

EM sensor output

Colonoscope shape

Figure 4. Colonoscope and colon shapes measurement environment. Processing flow of measured data is also illustrated.
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Table 1. Mean and standard deviation of MED calculated in cross-validations performed

using proposed and previous methods.

Method

MED (Mean + S.D.) (mm)

KST-Mixer (Proposed)
SEN (LSTM-based method) (Oda 2018a)

Regression forests-based method (Oda 2018b)

11.92+£1.75
12.58 £2.08
13.08 £ 1.55

Table 2. Computation times of proposed and previous methods in estimation of one

colon shape.
Method Computation time (msec.)
KST-Mixer (Proposed) 7.3
SEN (LSTM-based method) (Oda 2018a) 29
Regression forests-based method (Oda 2018b) 8.9

shape. yﬁ” and yﬁ‘; correspond to the caecum and the anus
positions, respectively.

3.3. Training and testing of KST-Mixer

We measured both X and Y® during colonoscope inser-
tions to the colon phantom. The shape recording frequency
was six times per second. X' and Y belong to the EM and
depth image sensor coordinate systems. We registered them
in the CT coordinate system using the iterative closest point
(ICP) algorithm (Besl and McKay 1992) and manual registra-
tions. Registered shape data was used to train and test the
KST-Mixer. Parameters used in the trainings were: T =18,
(s1,52) = (6,3), b=7, d; = 0.1, d, = 0.3, hs = 64, hc = 128,
50 minibatch size, and 200 training epochs. Mean squared
error was used as the loss function in training. We imple-
mented the KST-Mixer using the Keras build in TensorFlow
2.4.0 running on a Windows PC equipped with a NVIDIA RTX
A6000 GPU. The KST-Mixer used 2.5 GBytes of GPU memory
in trainings.
In the test step, we provide colonoscope shapes for testin

to the trained KST-Mixer. We obtain estimated colon shape ?(r‘
of current time t. from it.

4. Experimental results

We measured colonoscope and colon shapes during eight
colonoscope insertions and recorded 1,388 shape pairs. An
engineering researcher operated the colonoscope. Leave-one-
colonoscope-insertion-out cross validation was performed for
evaluation. We used mean Euclidean distance (MED) (mm)
between Y® and Y’ as an evaluation metric. It is defined as

LR
MED:EZZHY,,, -yl 6)
t=1 m=1

We compared the MED of the proposed method with pre-
vious colon shape estimation methods, including SEN (LSTM-
based method) (Oda 2018a) and regression forests-based
method (Oda 2018b). Table 1 shows results of the comparison.
The proposed method achieved the smallest MED among the
methods. Statistical analysis of the results indicated that the
proposed method significantly reduced MED compared to the
SEN (Oda 2018a) (p < 0.05 with paired t-test of MED values). We
compared computation times in estimations of one colon
shape among these methods. The results are shown in
Table 2. From the results, both the proposed and previous
methods have real-time performances. Examples of colon
shape estimation results are in Figure 5. The figure shows that

t. =120

Figure 5. (A) Measurement results of depth image and EM sensors. (b) Colon shape estimation results of three frames. Colonoscope shapes are points on curved green
lines. Colon shapes (ground truth) are white numbered points. Estimated colon shapes by proposed method are blue numbered points.
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the differences between the ground truths and estimated colon
shapes were tiny.

5. Discussion

The proposed KST-Mixer achieved the smallest error in the colon
shape estimation among the previous methods. We designed the
KST-Mixer to extract features from kinematic data using simple
MLP blocks. Extracted features are then mixed in the spatio-
temporal feature mixing MLP blocks to generate spatially and
temporally global features. This structure is quite effective in pro-
cessing time-series kinematic data because we achieved better
estimation results than the LSTM-based method (Oda 2018a).
The proposed method improves colonoscope tracking accuracy
by accurately estimating deformed colon shape during colono-
scope insertions. Furthermore, the computation time of the pro-
posed method was short enough to be used in real-time
applications.

The application of the proposed method is not limited to
colon shape estimation alone. It can be applied to estima-
tions of elastic organs in diagnosis and treatment. Organ
shape estimation is essential in surgical assistances by com-
puters. Accurate organ shape estimation contributes to the
generation of real-time surgical navigation information and
the automation of surgical assistance robots.

Although we have obtained promising results in colon
shape estimation, many challenges are still remain for
application of the proposed method to colonoscope track-
ing. Such challenges include (1) collecting data containing
variations of operators and colon shapes, (2) collecting in-
vivo data, (3) development of intuitive visualisation method
of tracking result, and (4) development of a colonoscope that
have embedded EM sensors. (1) collecting data containing
variations of operators and colon shapes is necessary to
improve robustness of the method to real situations.
Colonoscope movements have variations among physi-
cians depending on their years of experience.
Furthermore, colon shapes also have variations among
patients. Colon and colonoscope shapes data containing
such variations is necessary to achieve better estimation
model. We will measure shape data under operations of
colonoscope by physicians of various years of experience.
We also measure shape data using many colon phantoms
and 3D printed phantoms that have variation of the
shapes. (2) collecting in-vivo data is necessary to improve
the proposed method from phantom level to clinically
applicable level. (3) development of intuitive visualisation
method of tracking result is required that presents
deformed colon shapes in real-time during colonoscope
insertions. Such visualisation helps physicians to under-
stand how the colonoscope travelling in the colon. (4)
development of a colonoscope that have embedded EM sen-
sors is required to perform tracking in clinical situations.

6. Conclusions

This paper proposed a colon shape estimation method
using the KST-Mixer from kinematic data. The KST-Mixer
extracts kinematic features and mixes them along the

spatial and temporal axes in multiple MLP blocks. We
evaluated the method’s estimation accuracy in the colon
shape estimation from colonoscope shapes in the phantom
study. The proposed KST-Mixer achieved the smallest esti-
mation error in the comparative experiments. Future work
includes improvement of the data number using other
phantoms, evaluating the method using shape data mea-
sured during colonoscope operations by physicians, appli-
cation to colonoscope tracking, and application to the
human colon.

Note

1. Code and data of the proposed method are available at: https://
github.com/modafone/kst-mixer.
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