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Abstract

Many experts argue that the future of artificial intelligence is limited by the field’s
ability to integrate symbolic logical reasoning into deep learning architectures. The
recently proposed differentiable MAXSAT solver, SATNet, was a breakthrough in
its capacity to integrate with a traditional neural network and solve visual reasoning
problems. For instance, it can learn the rules of Sudoku purely from image
examples. Despite its success, SATNet was shown to succumb to a key challenge
in neurosymbolic systems known as the Symbol Grounding Problem: the inability
to map visual inputs to symbolic variables without explicit supervision (“label
leakage”). In this work, we present a self-supervised pre-training pipeline that
enables SATNet to overcome this limitation, thus broadening the class of problems
that SATNet architectures can solve to include datasets where no intermediary
labels are available at all. We demonstrate that our method allows SATNet to attain
full accuracy even with a harder problem setup that prevents any label leakage. We
additionally introduce a proofreading method that further improves the performance
of SATNet architectures, beating the state-of-the-art on Visual Sudoku.

1 Introduction

Recent years have seen significant advancements in deep learning, providing breakthroughs in image,
video, and audio processing [1]. Despite its success, deep learning has many known limitations, such
as low interpretability, vulnerability to adversarial attacks, and difficulty in solving problems requiring
hard logical constraints [2–5]. To overcome these limitations, experts have described the need to
migrate from purely deep learning-based systems to neurosymbolic artificial intelligence systems,
which integrate neural networks with logical reasoning [6]. In this work we focus on improving a
promising development in this field: the award-winning architecture known as SATNet [7].

SATNet is a differentiable MAXSAT solver based on a low-rank semidefinite relaxation approach.
It can be integrated into traditional Deep Neural Networks (DNNs) to solve composite learning
problems that require both logical reasoning and visual understanding. One such problem is Visual
Sudoku, where the model must learn the rules of a Sudoku puzzle purely from visual examples. When
trained end-to-end, SATNet is able to achieve 63.2% total board accuracy in this task while traditional
DNN architectures are unable to exceed 0% [7]. This was regarded as a significant breakthrough
for neurosymbolic architectures. However, it was recently noted that SATNet training relies upon
“leakage” of labels through the logical constraint layer to the DNN used to classify digits [8].

This leakage essentially means that SATNet is learning in two supervised stages, where it first trains
its digit classification component under direct supervision, and only then trains its SAT layer to
learn the logical constraints delineating Sudoku. When the leakage is removed, SATNet’s ability to
solve Visual Sudoku drops to 0% [8]. This is significant, because taken independently, these two
sub-problems are significantly easier. Digit classification is considered a solved problem, and while
SAT constraint mining is more difficult, it could be argued that the differentiable aspect is no longer
beneficial if the system needs supervision on its inputs to learn regardless. For instance, there exist
other SAT constraint miners that are not differentiable but outperform SATNet [9]. Overall, the issue
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of being unable to learn to solve composite visual reasoning problems end-to-end is referred to as
the Symbol Grounding Problem, and is considered one of the fundamental prerequisites for artificial
intelligence to perform practical logical reasoning [8, 10].

Figure 1: The SATNet architecture used to solve Visual Sudoku. The red line shows the label leakage
issue, which when removed, results in the Symbol Grounding Problem.

We observe a key challenge of symbol grounding is the large gap between the compositional nature
of logical reasoning and the end-to-end gradient-based nature of neural networks. The former helps
to reduce a sophisticated reasoning system into simple, independent modules, each of which can
be designed manually or learned, while the latter encourages fusing all components together and
using gradients as a universal means for learning. Many recent approaches aim to bridge this gap by
relaxing logical constraint solving through numerical optimisations [11–14]. Although such end-to-
end gradient-based optimisation is appealing, it can fail to address seemingly simple tasks like Visual
Sudoku. The success of SATNet is in fact due to inadvertent supervision of intermediate modules. We
argue that compositionality does not have to be the opposite of the end-to-end learning design. The
latter is particularly preferable because it eliminates the need for supervision of intermediate modules,
which is often required by a compositional design. If compositionality can be trained using self-
supervision (i.e. without manual effort), compositionality would then be at least equally preferable.
This is the approach that we take in the present work, synergistically combining compositionality
with end-to-end learning without any explicit intermediate supervision. We envision our methodology
forming a new paradigm for tackling neurosymbolic learning.

We describe a self-supervised pre-training method that can be used to bootstrap SATNet in order to
overcome the Symbol Grounding Problem. Our methodology enables us to tackle a class of what we
call Ungrounded MAXSAT problems, where label data are available only for the output variables
of the MAXSAT problem. In the Visual Sudoku case, this formulation manifests itself as a dataset
where, as before, inputs consist of images of digits describing the input cells of a Sudoku board. The
labels of the dataset, however, consist of numerical representations only for the board cells that were
not given as inputs. This means that there is no way of identifying what digit each input image refers
to except by learning the rules of the Sudoku puzzle in parallel to predict the non-input values. We
refer to this problem as Ungrounded Visual Sudoku. We show that our method improves the state of
the art on this problem from 0% to 64.8%, achieving similar performance on Ungrounded Visual
Sudoku as SATNet with label leakage does in the grounded version of the same problem. In short,
our main contributions are the following:

1. We describe a self-supervised clustering and distillation process for training a visual classifier
within a SATNet architecture.

2. We introduce a Symbol Grounding Loss that makes it possible to train logical constraint
layers on an ungrounded symbol representation.

3. We show empirically that our methodology allows SATNet to achieve full performance
on ungrounded Visual Sudoku (where label leakage is impossible), a task where previous
state-of-the-art was 0%.

4. We introduce a Proofreader that improves the performance of any SATNet system (grounded
or ungrounded), achieving state-of-the-art performance on Visual Sudoku.
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2 Background

Our contribution draws from several areas. We begin with preliminaries describing the problem,
before discussing related work.

2.1 The Problem

MAXSAT, the optimisation analog of SAT, represents a rich set of problems to which many program
complexity classes can be reduced. A MAXSAT Solver S aims to maximally satisfy a set of n
boolean clauses over m variables by modulating the values of the variables. These clauses are
typically written in Conjunctive Normal Form, and represented numerically as a matrix M ∈ Rn×m.
We can further enrich this system by partitioning our variables a1,...,m into a subset of fixed inputs
ain1,...,k, and variable outputs aoutk+1,...,m. The system can then be framed functionally:

aoutk+1,...,m = S(ain1,...,k,M), for 1 ≤ k ≤ m. (1)

This formulation can be used to capture Sudoku, an example used extensively in this work, where
ain represents the input cells of a given Sudoku board, aout represents the cells that we aim to solve
for, and M encodes the rules of Sudoku.

MAXSAT Solvers can be leveraged to solve a broader class of problems that we refer to here as Visual
MAXSAT Problems. These entail a MAXSAT problem where the inputs ain must first be derived
from some other representation ainvisual. This essentially results in a two-step training problem for
which neurosymbolic architectures are optimised1.

We have now established the preliminaries necessary to describe the Symbol Grounding Problem in
the context of Visual MAXSAT solvers. It is the problem of identifying ain given only ainvisual and
aout. This motivates the distinction between two types of Visual MAXSAT Datasets: grounded and
ungrounded. An ungrounded dataset contains ainvisual as data and aout as labels, while a grounded
dataset additionally contains ain in its labels (See Figure 2.

Figure 2: Examples of Grounded and Ungrounded Visual MAXSAT Datasets, focusing on a 3× 3
portion of a larger Sudoku board. Blue entries represent input cells. In previous work, SATNet is
able to solve only the grounded version of the problem.

We note that it is significantly more difficult to solve the ungrounded version of a Visual MAXSAT
problem, as training cannot be trivially broken up into two stages. It is this the class of problems that
we tackle in this work.

2.2 Logical Constraint Solvers & SATNet

There has been significant recent interest in architectures that can integrate symbolic reasoning layers
within neural networks. Many approaches, however, are only capable of integrating pre-existing
logical constraints into these models [15–19]. In the context of our formalism, this is analogous
to having a fixed set of clauses M for a particular problem. Conversely, there exists a family of
approaches that are not differentiable, but are able to learn logical constraints by example [9, 20, 21].
SATNet, however, sits somewhere in between these approaches, as it is both differentiable and able
to learn a matrix M in order to fit some input data [7]. There are a few other algorithms in this class,
such as OptNet and ∂-Explainer [11, 12, 22].

1While it is also possible to train a system end-to-end to derive aout directly from ain
visual, we argue that

internally the system would need to have some form of representation of this two-step approach regardless.
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2.3 Self-Supervised Pre-Training

Self-supervised pre-training has a long history in machine learning, notably being used to navigate
highly non-convex loss landscapes in Deep Belief Networks (DBNs) [23, 24]. More recently, better
methods for end-to-end training have emerged and self-supervision has now been used to pre-train
image tasks on large, cheap unlabeled datasets to obtain slightly better performance on supervised
tasks [25, 26].

In our work we return to the insight that motivated the original use of self-supervision for DBNs. The
Symbol Grounding Problem essentially represents significant non-convexity in the problem space –
both symbol meanings and the way in which symbols interact with one another must be learned in
parallel, with local optima existing for many combinations of prospective groundings. Self-supervised
pre-training enables us to start training from a favorable position on this loss landscape.

2.4 Clustering Algorithms & InfoGAN

Data clustering is a long-standing and rich field of computer science [27]. We leverage clustering in
our method in order to conduct self-supervised pre-training. While many clustering algorithms exist,
for our purposes we choose to use InfoGAN, as it is able to cluster across the semantic dimension
which we are interested in for MNIST with very high accuracy [28].

InfoGAN is a Generative Adversarial Network architecture which boasts disentangled, interpretable
latent encodings [29]. It maximizes the mutual information between a subset of the noise fed into its
generator, and the observation which the discriminator makes. It is thus able to cluster data according
to several interpretable variables. In the case of MNIST, these include handwritten digit thickness,
slant, and most useful to us, the actual digit shape. This latter property is what we aim to leverage in
this work. Specifically, InfoGAN can cluster MNIST digits according to their numerical value with
95% accuracy in a completely unsupervised fashion [28].

2.5 Knowledge Distillation

Knowledge Distillation is a technique for training machine learning models to reach comparable
performance at inference time to a larger reference model, or an ensemble of models [30–33]. While
more complex distillation techniques exist, our work leverages the concept in one of its most basic
forms – simply training a smaller model from a dataset generated by a larger one in order to drastically
improve inference time.

3 Method

Our main contribution is a pre-training pipeline used to bootstrap the learning process such that
SATNet can bypass the Symbol Grounding Problem. Overall our method entails the following steps.

1. Clustering: We first perform unsupervised clustering of the input data, and distill the
knowledge of the clusters into a digit classifier.

2. Self-Grounded Training: We then employ a custom Symbol Grounding Loss to identify
how clusters map to the labels we have in our training data. Once the grounding is learned,
we freeze it and train the rest of the system.

3. Proofreading: We conclude with an optional proofreading step which trains an additional
layer in the SATNet architecture while the rest remain frozen. This was found to slightly
improve performance in all SATNet architectures tested.

Before diving in to each of these steps, we will formalize the composite visual understanding/logical
reasoning problem. Assume we look at a single instance of a MAXSAT problem with N variables
which can fall into one of K classes, where each of the N variables is represented by an image of size
C ×H ×W . Our input data is then a tensor x ∈ RN×C×H×W , and our desired one-hot encoded
output y ∈ RN×K . Our digit classifier D takes input x and returns output D(x) = ŷin ∈ RN×K . We
feed this result into our SATNet layer S such that S(ŷin) = ŷout ∈ RN×K . For Ungrounded Visual
Sudoku using MNIST, we have N = 81 (one MAXSAT variable for each cell of the 9× 9 Sudoku
board), K = 9 (digits 1 through 9), and C ×H ×W = 1× 28× 28 (MNIST images).
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Figure 3: The architecture proposed in this work. It leverages self-supervised pre-training to solve
Grounded Visual Sudoku, thereby overcoming the Symbol Grounding Problem affecting the original
SATNet method.

3.1 Clustering

Our first step in solving an Ungrounded MAXSAT problem is identifying the patterns that exist in
the input data. Intuitively, we do not have to start training a digit classifier from scratch when training
composite visual reasoning architectures. There exists some semantic aspect of the input image which
is of relevance to the MAXSAT problem at hand, and it can often be at least partially identified in a
self-supervised setting. In the Visual Sudoku case, this entails clustering our images into 9 groups
(corresponding values 1 through 9).

In our experiments, we use InfoGAN to perform the clustering, as it is capable of clustering MNIST
digits with 95% accuracy [28]. Any clustering algorithm may be used here however, even ones that
are not differentiable. Once the clustering is complete, we can distill the clustering knowledge back
into a differentiable digit classifier. In our case, we generate a dataset using the clustering algorithm,
and train LeNet on the cluster allocations of the training data [34]. By doing this we implicitly map
each cluster onto some one-hot representation within ŷin. However, this one-hot encoding of the
MAXSAT variables may not match with the encoding present in the labels y. We deal with this next.

3.2 Self-Grounded Training

While our clustering algorithm might be able to achieve high accuracy, it doesn’t have any information
about which numerical digit each cluster is actually associated with, since we don’t have access to
input cell labels. This is the crux of the Symbol Grounding Problem. In an Ungrounded MAXSAT
setting, the only way to learn the association between digits and numerical clusters involves jointly
learning the MAXSAT problem. In the case of Sudoku, this means that we must solve for the rules of
puzzle and learn what each digit means simultaneously.

To reason about this, we consider two sets of encodings for digits: the pre-trained encoding (PTE)
and the (correct) label encoding (LE), which we notate using superscripts. The digit classifier from
the previous step outputs PTE-encoded predictions ŷPTE

in . There exists some unknown permutation
matrix P ∈ RK×K that translates between encodings via ŷPTE

in P = ŷLE
in . Our goal is to align the

PTE encoding with the LE encoding, so that we can make use of the training labels. The question of
performing this translation before or after the SATNet layer is irrelevant, however. This is because
the MAXSAT CNF clauses which SATNet implements are permutation-invariant [35]. This means
that as long as supervision is provided correctly, we can train the SATNet layer S on either ŷPTE

in or
ŷLE
in . 2 In our approach we pass the prior through SATNet, and are left with ŷPTE

out predictions.

We learn the correct permutation (without access to any of the input labels) simultaneously with
training the SATNet layer, by introducing a Symbol Grounding Loss, which is intended to be a smooth
function that is minimized when ŷPTE

out P ≈ yLE for some permutation matrix P .

Note that ŷPTE
out and yLE are N ×K matrices, and let ŷPTE

out (i) and yLE(i) denote the ith columns
of these matrices. Then, yLE(i) is a 1-hot vector capturing the entries of the output that are labeled i
(in the correct label encoding), while ŷPTE

out (i) is a vector of predicted probabilities that the output is

2While this is expected, this was not explicitly stated in the original SATNet paper. We were able to verify
this empirically by applying any permutation on the one-hot encodings of the digits in the nonvisual Sudoku
setting and SATNet’s performance is identical even without re-training.
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labeled i (in the pre-trained label encoding). We define the following loss L:

L(ŷPTE
out , yLE) := 1−meani(max

j
(exp[−BCE(yLE(j), ŷPTE

out (i))])), (2)

where BCE(·, ·) denotes the binary cross-entropy loss between two vectors:

BCE(v, w) = − 1

n

(
n∑

k=1

vk log(wk) +

n∑
k=1

(1− vk) log(1− wk)

)
.

Proposition 3.1. Suppose L is defined as in (2). Then:

1. L(ŷPTE
out , yLE) is minimized if and only if ŷPTE

out P = yLE for some permutation matrix P .

2. In this case, the matrix P is given by Pij := exp[−BCE(yLE(j), ŷPTE
out (i))].

This proposition, which is proven in Appendix A, shows that by minimizing L, we learn an approxi-
mate permutation matrix P̂ ≈ P , given by:

P̂ij := exp[−BCE(yLE(j), ŷPTE
out (i))]. (3)

In practice, we do not minimize L, since the max function presents an obstacle to effective training.
Therefore, we relax the max operation to a function approxmax. This finally gives us our Symbol
Grounding Loss LSG:

LSG(ŷ
PTE
out , yLE) := 1−meani(approxmaxj(exp[−BCE(yLE(j), ŷPTE

out (i))])). (4)

In our experiments, we set approxmax equal to the 2-norm; however, we did not find that performance
was sensitive to the exact choice of approxmax, and other choices are also reasonable.

Having defined LSG, we incorporate it into our training pipeline as follows: First, we freeze the digit
classifier D, and train S under LSG. This begins to train S while also learning a permutation matrix
P̂ ≈ P (defined by (3)). Note that since we are working with the Ungrounded Visual Sudoku task,
the permutation matrix is learned by means of SATNet itself, and it is impossible for labels to be
leaked, since the training process does not even have access to labels for the input entries.

Second, once P̂ has converged to a clear permutation matrix, we freeze this permutation and use it to
align the PTE labels with the correct LE labels by multiplying the final outputs ŷPTE

out by the learned
P̂ . Now that the Symbol Grounding Loss is no longer needed, we switch to the traditional BCE loss
and complete the training of S, also unfreezing D to allow additional training.

3.3 Proofreading

The performance of a SATNet architecture can be improved by the addition of a Proofreader layer.
This consists of a linear layer added just before the SATNet layer S, initialized to a slightly noisy
identity transform RN×K → RN×K . (In the Sudoku case, N = 81 andK = 9.) We freeze the layers
in the original model, and train only the proofreader layer. This is an optional final step resulting in a
slight performance improvement. We find that the Proofreader layer also improves the performance
of the original SATNet (with label leakage), in both the visual and nonvisual Sudoku settings.

4 Results

The above procedure allows us to achieve comparable results on an Ungrounded Visual Sudoku
Dataset as the original SATNet architecture has in the grounded setting3, with results being presented
in Table 1. We may thus claim to solve the Symbol Grounding Problem in the case of Visual Sudoku.

All experiments were carried out on a Nvidia GTX1070 across 100 epochs, with each epoch taking
roughly 2 minutes. The Adam optimiser was used with learning rate of 2 × 10−3 for the SATNet
layer, and 10−5 for the digit classifier [36]. Standard deviations were calculated across 5 runs. We
used the Sudoku Dataset made available under an MIT License from the original SATNet work [7].

3Note that training under a grounded dataset is equivalent to the label leakage problem described in [8]
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Model Grounded vs. Total Board Per-Cell Visual
Configuration Ungrounded Data Accuracy (%) Accuracy (%) Accuracy (%)

Original SATNet grounded 66.5 ± 1.0 98.8 ± 0.1 99.0 ± 0.0
Original SATNet ungrounded 0 ± 0.0 11.2 ± 0.1 11.6 ± 0.0

Our Method ungrounded 64.8 ± 3.0 98.4 ± 0.2 98.9 ± 0.1

Table 1: Performance of our method compared to the original SATNet architecture between grounded
and ungrounded versions of the Visual Sudoku problem. Note that we distinguish the total board
accuracy (how many 81-cell boards are completely correct) from per-cell accuracy (how many board
cells are correct) and visual accuracy (how many input board cells are correct). Our method achieves
comparable performance on a significantly more difficult version of the problem, thus solving the
Symbol Grounding Problem.

Figure 4: Permutation matrices extracted from the Symbol Grounding Loss function. On the left is a
matrix extracted given a clustering with high accuracy, and the right matrix shows the results in a
case where the clustering accuracy was below the necessary threshold (see Section 4.1).

During our pre-training pipeline, the clustering step achieves 95.6± 0.4% clustering accuracy. Under
the Symbol Grounding Loss, our self-grounded training achieves 22.3± 1.0% per-cell accuracy. One
thing to note is that the self-grounded training step is susceptible to overfitting, and one needs to
employ early stopping on the basis of per-cell error in order to learn the permutation matrix P̂ . See
Figure 4 for an example of a learned P̂ matrix.

Note that it is expected that the ungrounded version of the dataset will produce slightly worse results
since it carries less information in its labels than its grounded counterpart. Another relevant aspect
is that InfoGAN itself is sensitive to random seed. 4/10 runs converge to a clustering below the
threshold necessary to ground symbols. We discuss this limitation further in Section 4.1.

4.1 Effect of Clustering Accuracy

Figure 5: The effect of InfoGAN’s clustering accuracy on
our method’s total board accuracy (blue) and per-cell ac-
curacy during the Symbol Grounding Loss training phase
(orange). Each pair of points connected by a dashed line
indicates a different experiment. We note the sharp perfor-
mance drop at roughly 88% clustering accuracy.

An important ablation test to define
some limitations of our approach is
a study on the effect of clustering
accuracy on our pre-training perfor-
mance. It is difficult to measure this,
as performance could vary based on
the distribution of predictions across
clusters, not only raw clustering accu-
racy. In this study we run our pipeline
against InfoGAN at different stages
of its training. In this way the cluster
assignments start out uniform (based
on noisy initialization) and gradually
anneal to a 89.6± 7.7% accurate clus-
tering. We find that our system re-
quires roughly at least 88% clustering
accuracy in order for the rest of the
pipeline to progress. This is shown in
Figure 5. While this is a notable lim-
itation to our approach, solving Un-
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grounded Visual Sudoku was not at all possible with SATNet prior to this work. Furthermore, a
threshold of 88% accuracy is not nearly as high as one might naively expect. Given that our input
dataset contains on average 36.2 input cells per board, 88% digit classification accuracy gives less
than a 0.1% chance of identifying an input board state perfectly with the initial clustering.

4.2 Effect of Distillation

In the case that the clustering algorithm used in our first pre-training phase is differentiable, the
distillation step becomes optional. Despite this, it is desirable to distill our clustering model if there
exists some smaller architecture that can achieve similar performance in the supervised setting. This
is the case with InfoGAN, which in its standard form uses an architecture with 7,307,997 parameters.
We distill this into a LeNet-derived architecture [34], with only 1,049,080 parameters and comparable
performance, as shown in Table 2. Training speed changes from 602± 5 seconds/epoch to 255± 3
seconds/epoch between the two architectures.

Digit Classifier Digit Clustering Accuracy (%)
InfoGAN 89.6 ± 7.7

Distilled LeNet 86.2 ± 13.5

Table 2: The effect of distilling InfoGAN into a smaller LeNet-based convolutional architecture.
InfoGAN performance has a tendency to plateau at different levels based on seed. Here we show
performance across all runs, whereas successful ones are used in the downstream pipeline. A
“successful” InfoGAN run will plateau at roughly 95% accuracy.

4.3 Effect of Proofreading

Proofreading improves the performance of both visual and non-visual Sudoku, as seen in Table 3.
We achieve the following results by training the proofreader with ungrounded Datasets even if the
original model which it augments was trained with the grounded version.

Model Proofreader Total Board Per-Cell Visual
Configuration Present? Accuracy (%) Accuracy (%) Accuracy (%)

Original Non-visual no 96.6 ± 0.3 99.9 ± 0.0 N/A
Original Non-visual yes 97.1 ± 0.3 99.9 ± 0.0 N/A

Original Visual no 66.5 ± 1.0 98.8 ± 0.1 99.0 ± 0.0
Original Visual yes 67.6 ± 1.2 98.6 ± 0.1 99.0 ± 0.0

Our Method no 62.8 ± 3.2 98.6 ± 0.1 98.9 ± 0.1
Our Method yes 64.8 ± 3.0 98.4 ± 0.2 98.9 ± 0.1

Table 3: The effect of adding a proofreading layer to the original versions of SATNet for both visual
and non-visual Sudoku datasets, as well as the pre-training method proposed in this paper. We show
that a proofreader uniformly improves the Total Board Accuracy of SATNet.

We note that the numbers above from the original architectures reflect our reproduction of the results
in the original paper. Please see Appendix B for further details.

5 Discussion

5.1 Sensitivity of SATNet to Random Seeds

It was described in [8] that SATNet exhibits a high sensitivity to the choice of random seed. For
instance, 8 out of 10 random seeds would fail even with label leakage. While we initially reproduced
this behavior, such sensitivity can in fact be circumvented with a minor correction to the PyTorch
implementation, detailed further in Appendix B. We use the corrected, stable model for comparison
in all our results.
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5.2 Incorrect Upper Performance Bound

In the original SATNet paper, it is argued that the performance of the visual Sudoku model is bound
by the probability of identifying all the input cells on a particular board correctly. Thus when using
LeNet, which has a classification accuracy of 99.2%, the best performance we can expect on our
dataset with 36.2 input cells on average is 0.99236.2 = 74.8% [34, 7]. This is not exactly accurate.

It is not necessarily true that the SATNet layer cannot solve a board correctly if some number of input
cells are wrong. Intuitively, if one finds two of the same numbers as inputs in a row of a Sudoku
puzzle, one can infer that one of those inputs might have been classified incorrectly. This can then
be used to make an educated guess about the correct final board state. We are able to show that the
SATNet layer is actually able to reason about incorrect input cells to a certain extent. Interestingly,
SATNet’s ability to reason is affected by whether an incorrectly labeled digit results in an unsolvable
board or not. It is also affected by the presence of a Proofreader layer. Details on these experiments
can be found in Appendix C.

While the upper bound posed originally may not be strictly correct, it is still a good guideline.
Deriving a strict upper performance bound is likely quite difficult as the mathematics of logical
problems such as Sudoku are not fully understood.

6 Limitations & Future Work

While our method is able to address a new class of Visual MAXSAT problems with SATNet, it is
limited by the need to prime the digit classifier with correct data clusters (see Section 4.1). This
imposes a constraint on which datasets can be used as visual inputs to this pipeline. One facet of
this limitation is the fact that the current Symbol Grounding Loss function only supports inferring a
permutation between the pre-trained encoding and the label encoding. This means that if there are K
label classes, the clustering algorithm must cluster the input data accurately in K clusters. One might
imagine allowing the Symbol Grounding Loss to support a more general surjective mapping between
encoding domains, allowing for a higher number of clusters (and consequently a higher accuracy).

A second limitation is the tendency of the Symbol Grounding Loss to overfit somewhat quickly. While
we experimented with several loss function formulations, further experimentation may prove useful.
Implementation of regularisers in the architecture may also be an interesting avenue of research.

We believe neither of these limitations is fundamental; future investigation may help to alleviate them.

7 Societal Impacts

The goal of the present work is to advance methods integrating deep learning and logical reasoning,
which has long been a goal of artificial intelligence and admits a broad range of applications. We
also alleviate reproducibility issues with prior SATNet systems, describing in Section 5.1 how to fix
previously observed training instabilities [8].

Potential negative implications from our work are largely indirect and hard to assess. We envision
the possibility of work on neurosymbolic methods leading to unrealistic expectations of the power
of deep learning methods, which are not yet capable of sophisticated reasoning. This could lead to
inappropriate trust placed in current deep learning methods, or to backlash if expectations fall short.

8 Conclusion

Our work lays out a foundation for distinguishing between grounded and ungrounded variants of
Visual MAXSAT problems, and presents a self-supervised pre-training methodology which enables
SATNet to solve both classes. The ability to solve the more difficult Ungrounded Visual MAXSAT
problems contrasts markedly with the previous state of the art, which was unable to surpass 0%
accuracy on these tasks. Further, we describe a proofreading methodology which can be used to
incrementally improve both our architecture and prior models. This work extends the current state of
the art for logical constraint-learning neurosymbolic methods, a promising area of research which
boasts the potential to dramatically broaden the range of problems which machine learning can
address.
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